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Metabelian Groups Acting on Compact
Riemann Surfaces

G. GROMADZKI!

ABSTRACT. A metabelian group G acting as automorphism group on
a compact Riemann surface of genus ¢ > 2 has order less than or equal to
16(g — 1). We calculate for which values of g this bound is achieved and on
these cases we calculate a presentation of the group .

1. INTRODUCTION

Given a class of finite groups F denote by N(g,F) the order of
a largest group from F that can stand as a group of automorphisms
of a compact Riemann surface of genus ¢ > 2. The exact values of
N{g,F) for all g are known only for cyclic [9] and abelian [14] groups.
However the bounds for N(g,F) have been intensively studied in the
literature. For the classes of all finite, nilpotent, supersoluble, soluble
and metabelian groups, an upper bound for N(g, F) as well as infinite
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sequences of g for which the corresponding bounds are sharp were found
in [10,3,4,5,6,11,12,13,15,16] among the vaste literature, [18,19], 7], [1,8]
and (2] respectively. However the problem of finding for given F all g
and all groups for which the corresponding bound is achieved is rather
difficult. In this paper we solve it for the class of metabelian groups.
Partial results have been obtained by Chetiya and Patra in [2] where
they proved that a metabelian group of automorphisms of a compact
Riemann surface of genus ¢ > 2 (¢ # 2,3,5) has at most 16(g — 1)
elements. In this paper we go much further by describing exactly those
values of g for which this bound is sharp, finding the presentations of all
corresponding groups by means of defining generators and relations and
finally characterizing in terms of these groups those surfaces which are
symmetric i.e., admitting an anticonformal involution. More precisely
we prove the following theorems.

Theorem 1.1. A necessary and sufficient condition for the ezis-
tence of a Riemann surface of genus ¢ > 2 admitting a metabelian group
of automorphisms of order 16(g — 1) is that g = 2 or g = k*B + 1 is
odd, where k is an arbitrary positive integer and § is any integer such
that —1 is a quadratic residue mod § (i.e. —1 is a square in the ring of
integers modulo ).

Theorem 1.2. Let g =2 or g = k8 + 1 be an odd integer, where
B is an integer dividing 1 + o for some a. Then

G1 = {(z,yl2%, v*, (z9)?, (zv)*(y2)*, [y, 2P, [z, v~ 1 ]¥[w, 2] )
for k even,

G2 = (z,yl2%,¥*, (zv)%, (z9)*(y2)*, [y, =] (z9)?, [z, ¥~ ")F [y, 2]*)
Jor k+ 8 odd,

Gs = {z,ylz%, v, (z9)%, (zy)*(y2)*, [y, 2] (2)*, [z, ¥y~ ]F [y, z]*(zy)*)
fork+ 3 and o + 8 odd,

Gy = (z,ylz%, v*, (zy)%, (z9) (w2)%, [y, 2)*P, [z, y ") *lw, 2] (zy)")
for k and 3 even,
Gs = (z,ylz%, 4, y*(zy)?) forg=2

are the metabelian groups of order 16(g — 1) acting as groups of auto-
morphisms on compact Riemann surfaces of genus g. Conversely, every
such group G is isomorphic to some G; defined above.
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Theorem 1.3. A Riemann surface of genus ¢ > 2 having a
metabelian group G of automorphisms of order 16(g — 1) is symmetric
if and only if G is one of the following groups: G1,G3,G3 for § = 1,2,
G,y for § =2 or Gs.

2. PROOFS

A finite group G is said to be a (k,{, m)-groupif it can be generated
by two elements of order & and ! whose product has order m. From [2] it
follows that the problem of describing metabelian groups that can occur
as groups of automorphisms of order 16(g — 1) of a compact Riemann
surface of genus ¢ > 2 is equivalent to the purely group theoretical
problem of finding all finite metabelian (2, 4, 8)-groups.

We start with a series of elementary results concerining presenta-
tions of groups of small order. Throughout all the paper we shall use left
hand notations for commutators and conjugationsi.e. [z,y} = zyz 'y}
and z¥ = yry~!. We denote by G' the commutator subgroup of G and
by Gap = G/G' its abelianization.

Lemma 2.1. The group G with the presentation
(z,y|z?, v, (zy)*y?) is the only (2,4,8)-group of order 16.

Proof. Let G be a group of order 16 generated by elements a
and b of order 2 and 4 respectively whose product has order 8. The
subgroup H generated by ab is normal in G as a subgroup of index 2.
So ba = a(ab)a = (ab)’, where i = 1,3,50r 7. But if s = 1 then G is
abelian which is impossible, whilst ba = (ab)” implies b* = 1 which is
also impossible. Finally, ba # (ab)® since otherwise b* = (ab)® and so
(ab)* = b* = 1. Therefore ba = (ab)® and so b = (ab)*. Thus we are
done since the group from the lemma has clearly order 16.

Lemma 2.2. Let G be a metabelian (2,4,8)-group. Then there
erists a normal subgroup H of G order 2 such that G/H is a (2,4,4)-
group and Gab = (G/H)ab.

Proof. G is generated by elements a and b of order 2 and 4 respec-
tively whose product has order 8. Now it is easy to check that

(ab)*(ba)! = b*[[b, a],[b7t, aljb~2.
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So since ab is an element of order 8 and G is metabelian we obtain
(aby* = (ba)*. Therefore

((ab)")* = (ba)* = (ab)!, ((ab}*)" = (ba)! = (ab)*
and thus H = {{ab)*) is the subgroup we are looking for. ®

Lemma 2.3. There are no (2,4,4)-groups of order 16 with the
abelianization Zy @ Z,.

Proof. Assume to the contrary that G is such a group and let a
and b be generators of order 2 and 4 respectively, whose product has
order 4. Then &%, (ab)? € G'. Obviously 6% # (ab)? and so they generate
G'. Thus

ab’a = b* or ab’a = (ab)® or ab’a = (ab)’b’.

However ab’a # b? since otherwise G = (a, bla?, b%, (ab)*, (ab?)?) as the
last is a group of order 16 whilst on the other hand G, = Z; @ Z4. Also
ab®a # (ab)? since in the other case G would be abelian. Finally in the
last case (ab)? = 1 which is also implssible. =

Lemma 2.4. Let G be a metabelian (2,4,8)-group. Then G has
order 16N, where N = 1 or N i3 an even integer. Furthermore the
abelianization G, of G is isomorphic to Z; @ Zy or to Z, @ Z,.

Proof. A (2,4,8)-group has order 16N by [2]. First we shall show
that G contains a normal subgroup H of index 8. For, notice that since
G' is abelian, G' = K @ L, where L is the Sylow 2-subgroup of G'.
Clearly K and L are normal in G. Now since G = G/K is a 2-group it
contains a normal subgroup M of index 8. So the subgroup H of G for
which H = H/K is a normal subgroup of G of index 8 as G/H ~ G/H.

Now from the one hand G is clearly a factor group of Z; @ Z,4
whilst from the other one it has (G/H g, which is either Z; @ Z4 or
Z3® Zy, as a homomorphic image. Thus Gop = Z:8Z4 or Gos = Z2D 2.

To finish the proof, suppose that N is odd. Then G/K has order 16
and is still a (2,4,8)-group. So by lemma 2.1 G/K has the presentation
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(z,y | 2%, 9%, (zy)?y?) and therefore Z» @ Z2 = (G/K)w = G/G'K =
G/G' = G, since K C G'. Thus L is a group of order 4 and clearly
G /L must be a (2,4,4)-group of order 4N. A contradiction, since on the
one side we have (G/L)/(G'/L") = Gy ~ Zy & Z, whilst on the other
one this factor must still be a (2,4,4)-group as G'/L ~ K has odd order.
|

Observe that from the above lemma follows that a necessary condi-
tion for the existence of a metabelian (2,4,8)-group of order 16V is that
N is even in contrary to [2] where it is claimed that there exists such a
group of order 16n* for arbitrary positive integer n.

Lemma 2.5. The only metabelian (2,4,4)-group with the abelian-
tzation Zy @ Z, is the quaternion group ¢ of order 8.

Proof. Clearly, the quateraion group is the only nonabelian (2,4,4)-
group of order 8. Let G be a group in question of the smallest possible
order greater than 8 and let G' = K@ L, where L is the Sylow 2-subgroup
of G'.

Now if X = 1 then G is a 2-group which by lemma 2.3 has order
greater than 16. Let H be a normal subgroup of G of order 2. Clearly,
(G/H)ab = Za @ Zy and so by the minimality of G, G/H is (2,2,2) or
(2,2,4)-group. Thus G has order 8 or 16, a contradiction. So we see
that @ is the only (2,4,4) metabelian 2-group with the abelianization
Zo @ Zy.

Finally if K # 1 then G/K is a metabelian 2-group being a (2,4,4)-
group with abelianization Z3 @ Z,. But then G/K = @ and thus in
particular L = Z;. So by the minimality of G, G/L is a (2,2,2) or
(2,2,4)-group of order 4N where ¥ # 1 is odd, a contradiction. H

Our task is to to find all metabelian (2,4,8)-groups. According to
the second part of the Lemma 2.4 we divide our study into two parts.
The following Proposition is an immediate consequence of lemmas 2.1,
2.2 and 2.5.

Proposition 2.8 A metabelian (2,4,8)-group whose abelianization
is tsomorphic to Zo @ Z» has order 16 and the presentation

(z,y | 22, 9%, (zy)*y?).
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The next Proposition together with the previous one gives the proof
of Theorem 1.1.

Proposition 2.7. There ezists a metabelian (2,4,8)-group G with
Gap =~ Zy @ Zy of order 16M if and only if M = k*3 is even, where k
is an arbitrary positive integer and B is any integer dividing 1 + a? for
some .

Proof. Let @ = (z,y | z*,y*) be the free product of two cyclic
groups of order 2 and 4. Then G = /K and G' = N/K for some
subgroups K and N of 2. We first look at the group N. Notice that
G/G'=Q/N. Thus N = Q' and A = [y,z], B = [y~ },z], C = (y*z)?
belong to N. On the other hand it is easy to check that

A*=A"', AY=CA™!,
B*=B"1, BY = A", (2.1)

C*=C"1, Cv=PBA"L.

Hence N = (A, B,C). By the Kurosh subgroup theorem N is a free
group and it is not difficult to check that A, B and C generate it freely.
Therefore we have to look for subgroups K of N that are normal in
(i.e. invariant with respect to the action (2.1)) and make N/K abelian.

First notice that, by (2.1), A, B and AC™! represent in N/K el-
ements of the same order and the same is true also for' C and BA™!.
Moreover y(zy)'y~' = AC~'B and so AC~'B represents in N/K an
element of order 2. Using (2.1) we see that it generates a normal sub-
group H of G of order 2. Let H = L/K for some subgroup L of N.
Then G'/H = N/L and C = AB in this group. Thus N/L is generated
by the images A and B of A and B and G = /L acts on N/L subject
to the following rules:

A*F B

i, A
(22)

B = B, BV = A
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From (2.2) we see that A and B are elements of the same order n,
say. By Lemma 2.4, n is even. So there exists k£ dividing n such that
B¥ = (A¥)* for some o coprime with n/k. But by (2.2) A~% = (B¥)®
and thus A¥1+2”) = 1. Therefore n/k divides 1 + a2, Denote n/k by 3
and notice that if § divides (1 + a?) then in particular (8,a) = 1. So
we have shown that G = G/H = Q/L has order 8k?3, where k is an
arbitrary integer and 8 is an integer which divides 1 + a® for some a.
In particular G has order 16k*8 where kg is even by Lemma 2.4.

In order to prove the converse, let us start with the scheme illus-
trating the subgroups of  involved in the proof up to now:

Let n = kB be even, where & is an arbitrary integer and § is
an arbitrary integer dividing 1 + a® for some . Then from the first
part we know that [ has to be chosen as the normal closure in N of
A¥8 B-kpke C-14AB, (A, B). Now as L/K is a group of order 2 gen-
erated by the image of C"1AB we see that the only candidates for K
making N/K an abelian group of order 2k?3 are the normal closures K;
in N of the following sets:

Xy = {A*P, B-k A% (ABC1),[A, B],[4,C],(B,C1},
X, = {A*(ABC™"), B~* A%, (ABC')%, (A, B],[A,C],[B, C]},

X3 = {A*(ABC-"), B~*A**(ABC™"),(ABC~1)%,[A, B),[A,C],
[8,CT},

X, = {AR8 Bk A**(ABC1),(ABC~1)%,[4, B|,{A,C),(B,C]}.
We claim that K; is a normal subgroup of Q if and only if

-kiseven fori =1,

- k, 8 have different parity for i = 2,

- k, 8 have different parity and k, a have the same parity for ¢ = 3,

- k and B are even for ¢ = 4.
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Notice first that each K, is invariant with respect to the conjugation by
z. All equalities below are understood modulo K i.e. as equalities in
N/K.

Case i=1. Since k3 is even, (A*P)¥ = C¥PA—F3 = BFP = (A¥F)2 = 1.
Moreover ( B~ A*¥*)v = Ck@ gAF(1~a) Now if k is even then
Cropk(1=a) — pha gk = Ak(a® +1) = 1.

So if k is even then K is a normal subgroup of 2 such that /K is
(2,4,8)-group of order 16k*(. However k cannot be odd since in such
case

CkaAk(l—a) ___CAka—}.Bkcr—lAk(l—cx) - CAk—-lBkor—l -
(CA"IB 1 ARI+e™) = cg~1p~1 £ 1,

Case 1=2. Here we must have #(A) = #(B) = 2kB. Thus (¢,28) = 1
and so & has to be odd. Hence

(A*P(ABC-1))Y = C* A% (ABC") =B**(ABC™') =
Ak,@Bkﬂ = Ak,ﬁ(a+1) =1

as a + 1 is even. Now (B54F )W = AkCkag=ko = gHl-a)Cka,

If k is even then A*1-®)Cka = gkBka — gk(1+0?) whilst the last
is equal to 1 if and only if 28 divides (1 + o?) what is equivalent to the
fact that J is odd.

If £ is odd then § is even. Conversely, if this is the case then in
particular 28 does not divide (1 + a*) and so

AkA-e)gke - gkpka(4-1g=1Cy = MU+ ARC1) T = 1.

This completes the proof of the case ¢ = 2.
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Case i=3. Here we have A¥(@=P) = B¥ and #(A) = #(B) = 2k8. So
(@—£,28) = 1 and therefore & and 3 have different parity. In particular
B8 = AFB,

Assume first that § is even. Then « is odd and 28 does not divide
(1 + a?). Now

(AP(ABC™1)Y = C*PA*P(ABC ') = C*° = A B = 1.
On the other hand
(B~*A**(ABC™'))Y = A*CF* A~F*(ABC™1) = AF1-o)Cke(ABCT).
Now if k is even then

A=) Ck(ABC™') = A*B**(ABC™')y = A*(B*(ABC™'))* =
= AR+e®) £ g

So if 3 is even then k£ and a have to be odd. However if this is the case
then

Ak(l-a)cka(ABc——l) — Ak(l—a)ABAka—lBko:—l — A¥Bke =
- AkAka(a—ﬁ) _ Ak(l-{—a:)A—kaﬁ — Ak(l-l-az)Ak,G =1

as 20 does not divide 1 + a® and thus K3 is a normal subgroup of Q.

Now assume that § is odd. Then k£ and « are even. Conversely if
this is the case then

(AM¥(ABC™))¥ = CH¥ A *(ABC™) = C* = A¥B* =1,

Moreover,
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(B~ A*(ABC1))¥ = AFC**A~**(ABC ™) = A*B**(ABC™!) =
— AM1H0) pha _ 1 k(148) gka(a~p) _ Ak(1+a2)Akﬂ(1-a) -1

as & —1 and 1+ o? are odd. So also here K is a normal subgroup of Q.

Case i=4. Here we must have #(A4) = #(B) = kB and thus
(ABC™1)P = (B7F4*)f = gk gkeb = 1,

So 3 is even and therefore (A*%)Y = C*P A-*0 = BFP = 1. Now

(B™*A*(ABC™1))Y = A*C** A™F(ABC™!) = CroA* =) (ABC ™).

If k is even then since « is odd

Cke ARA=a) (A BCY) = A*B**(ABC1) =A¥(B*(ABC™'))* =
—AROHO?) _ '

and therefore K4 i1s normal in Q.

If k£ is odd then
CkaAk(l—a)(ABc—-l) = AkBka.
However if here A*B*® = 1 then
1= AkaBka2 - AkaBk(1+a2)B—k = AkaB—-k — (ABC_l),

which’is absurd. This completes the proof of proposition 2.7. W&

Now, rewriting the elements of X; in terms of generators z and
y of @ and adding obtained in this way elements to the set {22, y},
we obtain all defining relations for all metabelian (2,4,8)-groups with
abelianization Z; @ Z4. Observe that the relations obtained from [A, C]
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and [B, C] are redundant as they obviously can be derived in /K from
[A, B]) in virtue of (2.1). In this way we have obtained the proof of
theorem 1.2.

A Riemann surface X is said to be symmetricif it admits an anticon-
formal involution. Let X be a Riemann surface with (k,1, m)-group of
automorphisms G generated by elements a and b of order k and ! respec-
tively whose product has order m. Then by the theorem of Singerman
(Thm 2, [17]), X is symmetric if and only if there exists an automor-
phism ¢ of G for which

#la) =a™t, ¢(b)=b"1 or ¢(a)=b"1, ¢(b)=a"l.

Such automorphism clearly exists for the group from Proposition 2.6.
Remaining metabelian groups of order 16(g — 1) that act on Riemann
surfaces of genus ¢ as groups of automorphisms have been constructed
in the proof of theorem 1.2 as quotients 2/ K; for some subgroups K;
of N. Now an automorphism ¢ : Q/K; — @/K; in question exists if
and only if for the automorphism of Q given by ¢(z) = z, ¢(y) =y~ 1,
we have @(K;) C K,;. Observe, that ¢ induces an automorphism ¢ of
N satisfying ¢(A4) = B, ¢(B) = A, ¢(C) = C. So all this reduces to
finding the additional conditions for the parameters defining X; in order
that K;, its normal closure in ¥ is invariant with respect to ¢. We claim
that the last is the case if and only if # = 1,2 in the cases ¢t = 1,2,3 and

8 = 2 in the case ¢ = 4.

As an example let us consider the case ¢ = 3 (the remaining cases
being similar). As before all equalities below are understood modulo K
i.e. as equalities in N/K.

Clearly, (ABC~') = ABC~!. Now, if ¢(B~*A**(ABC-1)) =1
then Ake’~1)(ABC-1)2+! = 1. Hence if { is even then as « and k are
odd we find that A*(¢*-1) = 1. Thus 28 has to divide o? — 1. But as 3
also divides 1+ a? we see that § = 2. Now assume that 8 is odd. Then
 and k are even and thus A¥®*~D(ABC1) = 1. So A" -140) = 1
and therefore 28 divides a® — 1 + 4. But since § divides 1 + o? we
find that @ divides 2 — 8 and so § = 1. Conversely, if 3 =1or § =2
then it is easy to check that @(K3) = K3 and so the map ¢ induces an
automorphism of GG indeed.
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