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0. INTRODUCTION

Consider the open unit disk A of the complex plane € and denote
by G the group of all holomorphic automorphisms of A. Each & in G
admits a decomposition b = g, o u, where uj is a linear isometry of
€, a = h(0) and g, € G satisfies g,(0) = a. It is a classical result thaf
if a sequence (h, : n € N) in G is pointwise convergent on A to a limit
h: A —Cand (h,(0): n € N)is bounded away from the boundary
T of A, then k belongs to G and h,, tends to h uniformly on compact
subsets of A. We remark that the restriction on (£,(0) : n € IN) can not
be dropped; however, there is no restriction on the linear components
u, of the h,, n € N, i.e., once the condition lim, h,(0) ¢ T is fulfilled
we have h € G and h, tends to h in the topology of G.

A natural generalization of A to higher (and even infinite) dimen-
sions are the bounded symmetric domains in their standard realizations.
These are precisely the open unit balls D of those complex Banach spaces
E for which the group G of all holomorphic automorphisms acts transi-
tively on D. It is therefore reasonable to ask whether the above stated
result still holds in the new situation.

Even in infinite dimensions, G is a topological group when en-
dowed with the topology of (local) uniform convergence on D, and every
holomorphic automorphism A € G admits a canonical decomposition
h = gn(oy o un, where gy0) € G, 9.(0) = 2 (2 € D), the mapping D — G
given by z ~ g, is continuous and u, is suitable linear E-unitary oper-
ator. We ghall see (Section 4) that the non-linear part g(o) can easily
be ruled out.

On the other hand, in infinite dimensions even the simplest case
provides new features. Consider a Hilbert space H (a factor of type
1) with an orthonormal basis {e;,e;3,...}. The sequence U;,U;,... of
reflections in H acting on the basis as Uy(eg) 1= (—1) 1o ey (n,k =
1,2,...) converges pointwise but not (locally) uniformly on H. Moreover
there are pointwise convergent sequences of H-unitary operators whose
inverses diverge. A typical example is given by Vi(ex) := e, i) (n,k =
1,2,...) where 7, denotes the cyclic permutation of the first n indices
(ie. 7(k) := k+1for k < n, 7(n) := 1 and 7(k) := kif &k > n).
The pointwise limit of the V,, is a unilateral shift of H, which is not an
H-unitary operator.
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Our considerations in this work are inspired by these two examples.
Infinite dimensional Cartan factors can be represented as spaces of lin-
ear operators acting between Hilbert spaces. Their atoms are operators
of rank at most two in these representations, and we may control the
effect of pointwise convergent nets of linear automorphisms by investi-
gating some attached nets of Hilbert space unitary operators. Hence
we achieve relevant information concerning pointwise convergent nets of
holomorphic automorphism in Cartan factors and in spaces of Cartan
factor-valued continuous functions. In particular, we establish a suffi-
cient condition for the pointwise limit & = lim, A, of a net in G to be a
holomorphic automorphism of D.

Notation and background material Let D be a bounded do-
main in a complex Banach space E. A function f: D — F is called
holomorphic if for every a € D the Fréchet derivative f'(a) € L(E)
exists. A holomorphic automorphism of D is a bijection h : D — D such
that  and A~! are holomorphic, and G := Aut(D) denotes the group
of all holomorphic automorphisms of D endowed with the topology of
local uniform convergence. Then D is called symmetric if to every a € D
there is an s = 8, € G with s = id having a as isolated fixed point. It
is known that G acts transitively on D, and that D is biholomorphically
equivalent to the open unit ball of £ when renormed adequately (see [9]
for details). i

A complex Banach space E is called a JB*-triple if the open unit
ball D C F is symmetric, or equivalently if the automorphism group G =
Aut(D) acts transitively on D. Then there exists a uniquely determined
continuous ternary operation (called the Jordan triple product on E)
(z,y,2) — {zyz} from E3 to E such that, by writing Oy for the linear
operator z — {zyz} on E, the following axioms are satisfied

(J1) {zyz}is symmetric bilinear in the outer variables z, z and conjugate
linear in the inner variable y

(2} [z o,y Oy} = {zzy} Oy + y O{ysz}
(J3) z cxr is hermitian and has spectrum > 0

(Ja) I{zzz}ll = ll=IP°

forall z,y € E and [,] being the commutator product of linear operators.
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On the other hand, every complex Banach space £ admitting a
continuous mapping {,,} with (J;)-(J4)} is a JB*-triple. The notion of
triple automorphism can be introduced in the natural way, and the group
Aut(FE) of all triple automorphisms of E coincides with the group of all
surjective linear isometries of E. An element e € ¥ is called a tripotent
if {eee} = e and a tripotent e is called an atom in E if {eEe} = Ce. The
set at( E) of all atoms is closed in E and, except for e = 0, is contained in
dD. The following examples of JB*-triples are known as Cartan factors
of type k, (k =1,2,3,4):

Type 1: Are the spaces £{H,K) of all bounded linear operators z :
H — K where H and K are complex Hilbert spaces.

Types 2,3: Let H be a complex Hilbert space with a conjugation ~ and let
* be the induced transposition o L(H); for ¢ =1 and ¢ = ~1
the spaces {z € L(H) | z' = ez} are called Cartan factors of
types 2 and 3, respectively.

Type 4: Also called spin factors, are defined as any norm closed selfad-
joint complex subspace & C L(H) such that {z? | z € U} C
Cly and dim ¥ > 2.

In all these cases the triple product is defined by {zyz} := (zy*z +
2y*z)/2, where y* denotes the adjoint of the operator y. If U is a spin
factor, then for every pair a,b € I we have ab* + b*a = (a|b}1y for
some {(a|b} € C, and (.[.) is an inner product in & whose norm ||| - ||| is
equivalent to the operator norm || -||. We refer to H := (U, [||-|{|) as the
Hilbert space associated to U.

Besides these special Cartan factors, there are two ezceptional Car-
tan factors which are finite dimensional spaces (see [11]). If Q is a
locally compact Hausdorff space and E is a J B*-triple, then Cp((, E),
the space of continuous E-valued functions that vanish at infinity with
the pointwise triple product and the norm of the supremum, is alsc a
J B*-triple.

For a special Cartan factor £, we shall need the characterization
of its atoms that is given in [4] and the representation of its surjective
linear isometries given in {10] for k£ = 1, in [5] for £ = 2,3 and in {6] for
k=4

"The group of surjective linear isometries {(or unitary operators) on
a Banach space FE will be denoted bv U(E). Whenever (z;, « € I\ is
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a net in F and lim; z; — z holds for some © € F with respect to the
norm topology, we shall say that (z;) converges in E and write z; — z or
z; = z+0(1). We shall also write 2; — z and 2; = z+o(1) iflim; z; = =
holds with respect to some other topology T on E, but then an explicit
reference to r will be made. In particular, the abbreviations SOT and
SSOT stand respectively for the strong operator and the strong star
operator topologies on L(H, K).

1. SOME PRELIMINARY RESULTS

1.1 Lemma. Let H and K be the Hilbert spaces and suppose
that (e;) and (f;), i € I, are nets of unit vectors in K and H, re-
spectively, such that the operators e; ® fI = (-, fi)e; converge in the
SOT of L(H,K). Then (f;) converges in H if and only if (e;) converges
in K.

Proof. If (fi) converges in H then we have
lle: —ejll = |I(es —e;) @ fill = llei @ £ —e; @ f] +e; @ (f; = £:)"l

<llei® fi —e; ® fill + | f; — fil| = 0.
Thus (e;) is a Cauchy net. The converse argument is similar. =

1.2 Proposition. Let H and K be Hilbert spaces and let (e;) and
(f:), 1 € I, be nets of unit vectors in K and H, respectively, such that the
operators (e;® f!) converge in L(H,K). Then there is a net (o; : 1 € I)
in T such that (o;e;) and {a;f;) converge in K and H respectively.

Proof. Since at[L(H, K)) is closed we can find unit vectors e € K
and f € H such that
&@fi »e®f"

holds in L(H,K). By writting (-,-} for the scalar product both in
and K we have

(ei?e>(f$ ft) = ((ei ® f,-‘)f,e) —

((e® f*)f,e) = {e,e){f, f) =1
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Therefore the definition a; := (e, e;)/|(e, €;)| makes sense for i € I, i >
%y, and

lloze: — ell® = [lese:ll* + [le]|* — 2Re{ases, €)

— 2(1=Re %_’) = 2(1 - [{e,ei}]) = 0.

Thus (o;e;) converges in K. Since €; ® f* = (a;e;) ® (o, f;)* for i € I,
by (1.1) the net (o f;) converges in H. =&

1.3 Corollary. Let H be a Hilbert space and ~ a conjugation on
H. If(e;: i €1) is a net of unit vectors in H such that the operators
e; @&} converge in L(H), then there isa net (¢;: 1 € I) in {—1,1} such
that (e;e;) converges in H.

Proof. By (1.2) we can find a net (o;) in T such that (a;e;) and
(;&;) converge in H. By conjugation also (@;€;) converges in H, and
50 e; @ €7 and aje; ® asef = ale; @ € converge in L(H). Therefore
a? — a for some a € T. Fix a determination of /a. Then ¢; :=
sgn(Re(a;i/\/a)), which is well-defined for 7 > iy, suits our requirements.
|

1.4 Proposition. Let H be a Hilbert space and ~ a conjugation on
H. Let (e;) and (f;) be nets of unit vectors in H such thate; L fi, i € I,
and the operators e; ® f! — fi® &} converge in L(H). Then there are nets
(a,-) and (ﬁ,) in{ such that |t:!,'|2 + |ﬂ1‘|2 =1, 1 € I, and both a;e; + B; f;
and —B;e; + &; f; converge in H.

Proof. Since at{L(H)] is closed in £L(H), there exists an orthonor-
mal frame {e, f} in H with

&R ff-figer -exf —fRe  in L(H).

Set A; := {e,e;), pi = (e, fi) and gi 1= Aie; + pifi, hi 1= —fiie; + Aif;
for all 2 € I. Then

gGi®h ~ k@7 = (M + ) e @ fF - f; @ &)
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By the reflexivity of H we can choose a subnet (ix : &k € K) and two
vectors eg, fo € H such that

€, = € , fi, = fo (weak convergencein H)

Ai, & A, pi, —p where X := (e,e0), p:= (e, fo).

Since for all z,y € H we have

((eik ® 7o)z, ¥) = e, y){(z, fix) —

<30$y>(m1 f0> = ((Eo ® f—6)31y)5
it follows that

e®fi-foReg=e® f —fRe
_ (M)
G0 ®hy—ho®7s = (A +|ul’Ne® /- fRE)
where _
go = Aeo + pufo, ho:=—jieo + Afo.

A comparison of the ranges in (1) gives the existence of a,3,7,6 € €
with
eo=ae+ff, fo=ve+éf.

Hence
e®f -fRE =e®f - fo®&G=(ab-p)ed [ - fRE).
Thus

ab — By =1and lleol® = |a® + |8 < 1, {lfoll® = Iy + 18> < 1.
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By ‘the Schwarz inequality, the relation 1 = aé — 3y = {(a,8),(8, -7))
may hold only if @« = é and 8 = —%. Therefore

eo = e+ fBf fo=—Petaf

a:(eo,e)=5\, —B-——(fo,e)=,l_£,’)’=—ﬁ~=ﬁ,6=d=)\

1=0é—Fy= A"+ |ul’
go=Aeo+ pfo = (AP + |uffle=e, ho= (AP +[u)f = f.
From the above considerations we can conclude that

N, ei, + i, fi, — e, —fi ei, + A; fi, — f (weak convergence in H)

ey )P+ e, fidl = i + i P — 1.
Notice that these relations are valid for arbitrary weakly convergent
subnets (eix), (fir). Since the closed unit ball of H is weakly compact,

the same statement holds for the whole nets, i.e.

Xei + pifi — e, —jiei + Aifi = f (weak convergence in H)

(e, e + [{e, fi)|* — 1.

A weakly convergent net of unit vectors whose limit is a unit vector
converges in norm, hence

o A _ (e, i)
N INE AP Ve + e fl
ﬁi = i (ehfi)

VINEFE Vel + e )P
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suits our requirements. &

1.5 Lemma. Let (u; : i € I) be a net of unitary operators in a
Hilbert space H. Let e, f be orthogonal unit vectors in H and (o), (8;),
nets inC such that ja;i|® + |8 =1, i€ I, and

aiui(e) + Biui(f) = e,  —Fiui(e) + &ui(f) = fo

for some orthonormal couple eg, fo € H. Then for each orthonormal
basis zo,y0 of Ceg +Cfy there ezists a pair (X;),(1i) of nets in € such
that

Xl 4+l = 1, uile) = Azo+pivo +0(1), wi(f) = —gizo + Mo +0(1).

Proof. There exist v,6 € € with
zo=7e0+8fo, y=-beot3fo, WP+ =1.

By assumption a;ui(e) + Biwi(f) = eo + o(1), —Biui(e) + aui(f) =

fo + o(1) whence
(59) = (5 ) (30) +ow

(G 20 ) )
- (2 5) () +e

where \; 1= @7 — 36, pi = —a@;§ — B;v. Thus P2+l =1, i€,
holds. [ ]

-

iy

Egss
S 2l

1.6 Lemma. Let (u; : i € I) be a net of unitary operators in
a Hilbert space H. Suppose that for every ¢ € H there erxists a net
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(af: i € 1) in'T such that (afu,;(e)) converges in H. Then there exists
a net (o 1 1 € I) such that the operators (a;u,) converge in the SOT of
L(H).

Proof. Let us fix any unit vector e € H and write g :=
lim; a§u;(e). Consider any f € H lying orthogonally to e. It suffices to
show that afu;(f) is norm-convergent.

We may assume ||f]] = 1. Set fo := lim; o u;(f). Since unitary
operators preserve the scalar product, afu;(e) L afui(f), i € I, and
hence ep 1 fy. Moreover there is gy € H such that

e ue+ =g, llgoll=lle+ fll=v2.

We have -
ui(e) = afeg + o(1), ui(f) = af fo + o(1),

wie) + wi(f) = wi(e + f) = af* gy + o(1).

Thus . .
go = et afeq + aftal fo + o(1) .

Therefore there exist o, 7 € T with

af+fa'f—+ar, af+fa;f—>'r , go=0ep+Tfo .

It follows of /af — o/7 that is af = -,-a{/a + o(1) and ofu;(f) =
(3ol +o(ulf) = Falu(f) +o(1) > 2fo. m

2. NETS OF ISOMETRIES OF C(Q, F)

In this section F denotes an arbitrary Cartan factor, 2 is a com-
pact Hausdorff space and U := C(f2, E) is the J B*-triple of continuous
functions f : @ — FE with the norm of the supremum. We recall
that ([1] p. 142) a Banach space X has the strong Banach-Stone prop-
erty if whenever M and N are locally compact topological spaces and
[: Co(M,X) — Co(N,X) is a surjective linear isometry, then / can be
represented in the form

()w) = uw(w)f[r(w)], weN fely(M,X) (2)
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for some homeomorphism 7 : N — M and some continuous function
©: N — U(X), where U(X) C L(X) is the group of surjective lin-
ear isometries of X with the strong operator topology. If I admits the
representation (2), then we write ! := (u,7)

2.1 Lemma. In the above conditions, letl; = (u,7) andlz := (v,0)
be two isometries of U with T # a. Then there exists f € U with ||f]| = 1
such that [|L(f) - L(AI > 1.

Proof. Fix any wp €  with 7(wp) # o{wo) and let K C 2 be a
neighbourhood of wy such that 7(K) N o(K) = 0. Take any ¢ € C(2)
with values in [0, 1] such that

Plry =1 and  @po(xy =0

Fix any a € E with ||a]| = 1. Then f := ¢ ®a satisfies the requirements.
|

2.2 Lemma. Let U := C(Q, FE) for an arbitrary Cartan factor E.
Then E has the strong Banach-Stone property, and for everyl € Aut{l4)
the representation (2) is unique.

Proof. By ([2], cor. 2.11) the centralizer Z(E) of E is a one-
dimensional space, hence by ([1], th. 8.11) F has the strong Banach-
Stone property.

The function 1 ® a is in C(Q, E) for every a € E, hence I(1® a) is
well defined and

{18 a)(w) = u(w)[(1® a)(r(w))] = w(w)a

which shows that u is unique and is given by u(w)a = I(1® a)}(w) for all
w € Q. Now the uniqueness of (2) is an immediate consequence of (2.1).
|

2.3 Theorem. Let U := C(2, E) for an arbitrary Cartan factor E
and let (I;; ¢ € I) be a net in Aut(U) such that for every f € U, L;(f)
and I7Y(f) converge in U. Then the mappingl : f — lim;L(f) is
surjective and for every f € U we have lim; I7Y(f) = I71(f) in U.
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Proof. We have

L(NHw) = w(@)fr(w)] = U(f)w), (@ef, fel) (3)

By (2.1) this implies 7; = 7 for some homeomorphism of  and all ¢ > 4.
Applying (3) to f:=1®a for a € F, we get

L(1® a)(w) = vi(w)a = (1 ® a)(w)
uniformly for w € 2. Hence to every w €  and every ¢ € E, the net
(ui(w)a, i € I) converges in F. Thus u(w): e~ lim;u;(w)a is in an

isometry of E and u € C(Q, L(E)). We claim that u(w) is surjective for
every w € (. Indeed, by (2.1) and (2.2) we have

(17 ))(w) = viw) floi(w)]
where v;(w) = wi(w)™, o; =7 forallw € Q, i€ J,and oy = o
for some homeomorphism o : © — £ and 7 > ¢. Reasoning as we

did before, (vi;(w)) tends to v(w) for some continuous function v: £ —
L(E). Moreover, we have

u(w) 0 v(w) = idp = v(w) o u(w), (@€ )
since otherwise we would have
w(wo)v(we) a=b#a
for some wg € 2 and a € E But then
lla = Bll = fvi(wnYu(wo)a — v(wo)u(wo)all
< Ilvs(wo)lezi(wo)a — u(wo)all] + [[fes(en) — v(wo)luwo)al|

< ||ui(wo)a ~ u{wo)al| + |[[vi(wo) — v(wo)]u(wa)al| — 0
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which contradicts ¢ # b. Thus u is surjective and so u € Aut(E).
Clearly

(g)(w) = lim Lig() = u(w)glr(w)

holds for all w € 2 and g € U, i.e., we have | = (u,7) which shows that
l is surjective. W

3. NETS OF ISOMETRIES OF SPECIAL CARTAN FAC-
TORS

If Q is a single point and E is special, then the above results can
be improved.

3.1 Theorem. Let U be a special Cartan factor and let (I;; i € I)
be a net in Aut(U) such that (I;(a)) and (7' (a)) converge inU for every
a € at(U). Then there are a subnet (3 : k € K) and an ! € Aut(Y)
such that l;, (z) — {(z) holds in the SOT for every z € U.

Proof. We make a type by type discussion. Suppose £k = 1. By
([10], Satz 4) every I; admits one of these two representations:

(a) Li(z) = uioz 0w (b) i(z) =usoztov; (z€U)

for some u; € U(K), vi € U(H) or, respectively, for some surjective
isometries u;,v; : H — K. We claim that for large enough indices (say
i > ip) either all {; have the form (a) or all /; have the form (b). Indeed,
fix a non zero atom a € at{Y); then (/;(a)) is a Cauchy net in &/ and
the claim follows easily. Clearly it suffices to consider the possibility
(a) since (b) is quite similar. Fix two unit vectors e € K and f € H
arbitrarily. Then the operator e ® f* is an atom of I and

uio(e® f*ov; = ui(e) @ vi(f)".
By (1.2) there exists a net (a; : ¢ € I) in T such that (a;u;(e)) and
(a:v?(f)) converge in K and H respectively. We claim that (a;) does

not depend on the pair e, f. Indeed, consider any couple of unit vectors
g€ K, h ¢ H. By assumption, the operators

uio (9@ fr)ev; = uilg) ®vi(f)"
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converge in &. Hence we have
lleiua(g) ~ osu;(g)ll
= [l[eiui(9)] ® [esvf ()] - [aju;(9)] & [eivf ()"
< Nleui(g)] ® [esv? (N])* - [osu5(9)] @ lerjo; (£
+ [ (9)] @ [y 3 (f) — e} ()
< lowui(9)] @ faiw} ()] - [ajui(9)] ® a3 (Ol

+ |lej o3 (f) = e (NIl — 0

Thus (oju;(g)) is a Cauchy net in K. To deduce the convergence of
(ajvi(h)), we consider the adjoint space L(K,H) and apply the same
argument to the convergent net of operators

[a:of (R)] ® [@ii(9)]” = [ui(g) ® v (R)*]".

Therefore
ou; —u  and av] = v* (4)

in the SOT of ¢ for some partial isometries u € L(K), v* € L{H). But
(I7(a)) also converges in U for every atom a € at(X). Since

li—l(x)zvfoxov;', (zel, iel),

by the same argument there exists a net (3;) in T such that S;u} — r*
and 3;v; — s in the SOT of U for some partial isometries 7* € L(K), s €
L(H). By setting 7; := a;8;, i € I, we have v;1y = viu;0ul — uor*.
By compactness of T, there is a subnet (v;, ) and some yp € T such
that y;, — o and so v;, Ly — 7oly. Therefore, Yol = uor* and u,r*
are surjective. Similarly v*,s are surjective. By ([12] Remark 4.10, p.
84), on the unitary group U4 (H) the SOT coincides with the SSOT. As
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the adjoint operation z + z* is SSOT continuous, (4) yields &;v; — v.

Multiplication in I restricted to bounded sets is jointly continuous with
respect to the SOT, hence

Li(z) = (cqu;) oz o (@&vi) = l(z):=uozovw

in the SOT and ! € Aut(Y).
Suppose k = 2. By [5] we have

li(zy=u;ozoul, (z€U, i€l

for some unitary operators u; € U(H). Fix any atom e @ &* in ¥. By
assumption, the operators

u;0 (e ®&") o uf = u;(e) ® u;(e)”

converge in U. By (1.3) applied to e; := u;(e), for any unit vector
e € H there exists a net (¢f : ¢ € I) in {-1,1} such that efu;(e)
converge. Fix a unit vector e € H arbitrarily. We claim that efu;(f)
converges in H whenever f is a unit vector lying orthogonally to e.
Write eg := lim;e%u;(e), fo = lim,-e;-fu.-(f), go := lim; efui(g) where
g:= 715(6 + f). Thus

eFu(z) = a0 + o{1)
for z = e, f,g and zo = eg, fo,go respectively. Since ¢F € {~1,1} and so

(€%)* = 1, we have
ui(z) = efzo + o(1)

whence
efeo + ! fo = wile) + uil£) + o(1) = V2ui(g) + o(1) = V3elgo + o(1)
Since g L fo, it follows

Ef = \/5(90,60}6? + 0(1) ’ E;f = '\/§<gﬂa fD)E? + 0(1) '
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Hence e%e/ = constant + o(1). Therefore £fu;(e) and efu;(f) converge
simultaneously, and we can define a net (¢;, ¢ € I) not depending on
e € H so that g;u; — u in the SOT for some partial isometry v € £L(H).
The same argument applied to

IFNz)=ulfozoul® (z€lU,iel)

yields the existence of a net (7, i € I) in {1,—1} such that pyuf — v*
in the SOT for some partial isometry v* € £L(H). But then

E,"r},'lH = &iTKu; O u;' —unop*
in the SOT. By taking a subnet (it : k € K) we may assume that
Pi, = Ei.Mi, — po for some pg € T, hence p;,, 1y — poly and so

poly = wov* which shows that u,v* € U(H). Thus I(z) == uozou
defines an ! € Aut(i) and l;(z) — I(z) in the SOT for every z € U.

Suppose k£ = 3. By [5], we have
f{z)=uiozoul, (z€l,i€el)

for some u; € U(H). Fix any atom e® f* — f ®&* in U. By assumption,
the operators

uio(e® J*— f®&)ouf = ui(e) ® ui(f)* — ui(f) ® uile)*

converge in U, whence by {1.4) there are nets (;) and (8;) in A such
that

aiui(e) + Biui(f) = eo and  — Biwi(f) + &ui(e) — fo

hold in H for some orthogonal unit vectors eg, fo € H. By (1.5) if we
fix a basis zg,y0 in €ep +Cfy, then there are nets (A;), (i), in A such
that

ui(e) = Xizo + piyo + 0o(1) and  ui(f) = ~@izo + Aivo + o(1) (5)
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By compactness of A, there is a subnet (ix; k € K) such that A;, — Ao,
and pi, — po. From (5) we get in particular that (x;, (e)) converges in
H

4, (€) = AoZo + HoYo

By (1.6) the subnet (ix; k € K) does not depend on the pair of vectors
e,f. Thus (u;, : k € K) is well defined and »;, — u in the SOT for
some partial isometry u € £(H). A similar argument applied to (I;, 1y
gives the existence of a subnet (still denoted by (ix : &k € K)) such
that 4}, — v in the SOT for some partial isometry v € L(H) and a
standard reasoning gives that u € U(H). Therefore I(z) := noz o u'
for z € U satisfies the requierements. Notice that, contrary to the other
types of Cartan factors, the consideration of a subnet of ({;) has now
been necesary.

Suppose k = 4. Let H be the Hilbert space associated to I. Thus
non zero atoms of If are the same as unit vectors of H. By [6] we have

(z) = Aui(z), (€T, zel) (6)

for some A; € T and some unitary operators u; € U(H) such that
u;(z)* = uy(z*) for z € Y. Suppose that, for every z € H, the net

li(z) = \wi(z),  (i€T) (M)
converges in U, (hence also in H). By taking a subnet we may assume
that A; — Ao for some A; € T. By (7), (u;) converges pointwise to a
partial isometry u of H. A similar argument with (I7!) yields u? — v*

pointwise on H and one easily sees that u o v* = 1y = v* o u. Thus
u € U(H). Since the star operation is norm continuous in i, we have

[w(e)]" = [Jim w(@)]* = Jim [u(2)"] = Jim [v}(2)] = v*(2).

Then {(z) := Mu(z) for z € U satisfies the requirements. @
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4. NETS OF HOLOMORPHIC AUTOMORPHISMS IN
CARTAN FACTORS

If U is an arbitrary Cartan factor with open unit ball D and ¢ €
G := Aut(D), then by [9] we have g = g, 0 XA = Ao gy-1(,) for some
X € Aut(U) and g, € G with a := g(0) = g,(0) and g;! = g_,. By [7]
every g € G extends to a uniformly continuous holomorphic function a
neighbourhood of D and ¢(8D) C 4D.

4.1 Theorem. Let U be a special Cartan factor and (h;: 1€ I) a
net in G such that:

(i) For every z € D, the net (hi(z)) is norm convergent to a limit
h(z) e U.

(i1} (hi(0)) is bounded away from 8D.

(iii) (h7'(€)) is norm convergent for every e € at(lU).

Then h belongs to G, and if the set I is countable, then (h;i) converyes
to h in U uniformly on every compact subset of D.

Proof. Let A; have the representation h; = g,,0A; where a; := h;(0)
for ¢ € I. Notice that 0 € at(i/). By (i) and (ii) we have ¢; —» a € D
in the norm topology of U. Thus by (8], g4, tends to g, uniformly on a
neighbourhood of D. By the uniform continuity of g, on D we have for
everyz € D

1Ai(z) = Ai(2| = llg-a;hi(2) — g—a, hi(2)|
< Nlg-a:hi(z) — g—a;hi(2)| + |lg-ahi(z) — g-ah;(z)l

+lg-ahj(2) ~ g, hj(2)l| — 0

which shows that (A;(z)) converges in U for every z € D, hence also for

every y € U (and in particular for every atom e € at(¥/)) by the linearity
of the A;.

We now conmder the net (7' : i € I), where B! = A7l og_,, =
G, © i with p; 1= A and b; := —p;(a;) for 1 € I. Then (b;) is bounded
away from 8D beca.use so is (a;) and ||g;|| = 1, hence by (iii) b; — bin ¥
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for some b € D. Thus g, tends to g, uniformly on a neighbourhood of D.
If in the above inequalities we replace A;,g_,;,f; and z by y,—,gb..,hi_l
and e respectively and use (iii), then we get that (gi(e)) is a Cauchy net
in U for every atom e € at(if).

Therefore (3.1) applies to our case, and there exists a subnet (i :
k € K) and a A € Aut(f) such that A;, (z) - A(z) in the SOT for every
z € Y. However, as seen before, the whole net (A;(z)) converges in U;
therefore we must have X;, (z) = A(z) in the norm of Z/. Then g, o A lies
in G because A is surjective, and h;(z) — g, 0 A(z) in U for every z.€ D,
hence A = ¢, o A. The remainder of the proof is an easy consequence of
the Banach-Steinhauss theorem. &
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