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The Space of Countabíy Simple Bounded
Functions with Values in a DF-Space
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ABSTRÁCT. We study the posibility of lifting sorne properties, as heing
a (barrelled, quasi-barrelled, bornological or ultrabornological) DF, gDF or
quasí-normable space, frorn a locally convex space E te thé space S~0(pi, E),
of countably-valued and beunded (classes of pi-a.e. equal) functions frorn a
zueasure space (fl,Z,p) into E.

Let (1?, S,pi) be a measure space and E # {O} be a- llausdorfflocally
convex space. Denote by S~~0(S, E) tite space of ah funetinas
‘p: fl—> Etbat can be written as

00

ZxsÁ.)x,,, (*)
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where (x,,) is a- bounded sequence from E and (S,,) is a- sequence of
non-empty and pairwíse disjoint subsets of E covering 1?. A function of
this forrn is cailed a counta-bly simple baunded funetion. II we endow
SR0(E, E) with the uniform convergence topology and identify functions
that are equal ji-a.e., we obtain the quotient space St~0(pi,E). Titis
paper is devoted to tite possibility of lifting sorne properties from E to
SN0 (s~ E), rnainly in the case witen E is a- DF-space. For tite space-
CB(X, E) of continuous bounded functions, similar results to our Tite-
orenis 1-4 here were obtained by Bierstedt, Bonet azul Schmets in [2], and
for the space ¡S

00(ji, E) of essentially baunded measurable functions by
Fernández and Florencio in [6]. We refer tite reader to tite monographs
of Jarchow [8] and Pérez Carreras and Bonet [10] for tite terminology
used in titis paper.

lo fix sorne notation, denote by QE) tite family of a-ii continuous
seminorms defining tite topology of E, by U(EJ tite family of a-II a-b-
solutely convex and closed zero-neighbouritoods of E and by B(E) the
family of aH a-bsolutelyconvex and closed bounded snbsets of E. Then, a
fundamental system of seminorms for tite topology defined on SRa(E, E)
Is given by the rnappings

x~~) = sup{q(z,,) : u =

where q runs through tite set Q(E).

When ji is tite cardinal measure, both spaces SR
0(E,E) and

S~0(ji, E) coincide. In particular, if pi is tite cardinal measure on tite set
N of al] positive integers, we itave that

5N
0 (u,E) = 1

00(E), tite space
of a-II bounded sequences frorn E. TEtis, tite case studied itere can be
considered a generalization of titis space of vector-valued sequences. We
slia-11 see, however, titat when pi is atomless tite beitaviour can be very
different (see Iheorein 5 below).

We start by proving tbat S~
0(pi,E) isa Hausdorff quotient of8R

0(S, E).

Praposition 1. ¡Set K~. be the subspace of alt functions in
8N0(E,E) that are equal pi-a.c. to the zerofunetion. ThenAf~ is ciosed.
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Proof. Let y be a countably simple bounded function sucit that
so « ~ Then, we can write ‘p as in (*), requiring in addition that
pi(S,) > O and z1 $ O. Thus, there is a continuous seminorm qE Q(E)
such that q(xj) > O. Consider the following open neigitbourhood of y,

V := {4, E S~0(E,E) 4(4,—y) <q(x1)/2}.

We only bave to show that VON,~ is empty. Take 4, E 1/. According to
(*), 4, can be written as 4’ Zi XT,n Vm. Consider the elernent ob E
defined by

7’:=U7’m, wherel:={mEN:ym#O}.
mE!

Since 4’ $ 0, 7’ is non-ernpty. Let us see tha-t já(St \ 7’) = O. Indeed,
ib we suppose tha-t ji(Sí \ fi’) > 0, titen Sí \ 7’ is non-empty. In this
set, 4,— y takes tite value —x1. Titerefore q(xi)/2 > «4’— so) =q(zí)
and this is a contradiction. Since pi(sí) > O, titere mnst be a-u index
m0 E ¡ such that ¡<Sí O Tmo)> O, thus ¡<fEmo) > O. Since Vmo # O, we
conclude 4> « AI,~. U

lo avoid trivial cases, we assnme tite following condition ((7):

(C) There is a sequence (A,,) of pairwise disjoint sets in E with
ji(A,,) > 0, for al] u E N.

We follow a common itabit and do not distinguish by notation
between a rnap a-nd its p-equivahence class. lii particular, using (*)
aboye and condition (C), for a non-zero element so E SN0 (p,E) we
can always choose a representative of tite form 2Z1 xs~x,,, witere
(x,.) is a bonnded sequence from E ami (5,,) is a pairwise disjoint se-
quence of subsets of E with positive measure convering fi. Tite set
R(so) := {z,, : u E N} is clearly well-deflned, we cali it the essential
range ob the function so. Ibe qnotient topology of S~0(pi,E) can be
defined by the farnily of seminorms q00 given by

= inf{4(4>) : 4, = so (ji — a.e.)}
= snp{q(x) : x E RQpfl (q E 9(E)).
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We give now some tecitnicah results that describe tite beitaviour of
those subsets of SN0Qá,E) that are lifted from sets in E in a natural
way.

If A is a subset of E, we sa-y titat a fnnction so E St~0(p, E) takes
its values essentiafly in A ib ‘«so) c A. We denote by A(A) tbe subset
of aII bunctions in S~0(pi, E) tita-t take titeir vahues essentiafly in A. Tite
set A(A) inberits certain properties from A. We JJst sorne of them that
will be useful and can be easily checked:

(1) Por ah subsets A, fi of E we itave titat A(A) a 19(B) ib and only
ib A cli.

(2) L(OA,,) = OL(A,.), for every sequence (A,,) ob subsets ob E.

(3) ¡S(ctA) = a¡S(A) for ahl A (2 E and sca-jan a.

(4) Ib eltiter A or fi is bonnded, titen A(A) + ¡S(B) = ¡S(A + fi).

(5) L(A)is absolutely convex it sois A.

(6) U a E is a zero-neighbourhood in E if and only ib 19(U) is a
zero-neighbonritood in SNa(pi,E). Tite system {L(U) : Ue U(E)} is a
basis of zero-neighbourhoods for tite topology of S~0(pi,E).

(7) A is a bounded subset of E ib and only ib A(A) is a bonnded
subset of SNo(ji, E). Moreover, br every bonnded snbset Cof S~0(ji, E),
there exists A 6 5(E) sucit tbat C (2 A(A); just take A to be tite closed
absolutely convex itulí:

A

Frorn tbe hist aboye, it is clear titat ma-ny properties —like tite
existence of a fundamental sequence ob bounded subsets, tbe metrizabil-
ity of tite bounded snbsets or tite countable boundedness property —are
equivalent for tbe spaces E and SN0 (pi, E).

Theorem 1. S~0(p,E) isa DF-space (resp. apDF-space) zjand
only IlE is a DF-space (resp. a gDF-space).
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Proof. (<=)Assnme titat E is a DF-spa-ce and let (B,,) be an iri-
creasíng fundamental sequence of absolutely convex bonnded subsets in
E. As we pointed out aboye, (¿(fi,,)) is a fundamental sequence of abso-
lntely convex bounded subsets in SR0 (pi, E). Now, we itave to prove titat
SN0 (pi, E) is countably-quasi-barrelled. Let (It,) be a- sequence ob abso-
lutely convex zero-neigitbouritoods in SN0 (s~ E) sucit that W = fl,,W,, 15
bornivorons. We have to see that W is also a- zero-neighbouritood. For
every u E N, tahe r,, > O witit r,,L(B,.) c 2-dn+l)W. Titen we have

U (vi L(B) + r2L(B2) + ... + r,,L(fi,,)) (2

Since (W,~) are zero-neigitbourhoods fu S~0(g, E), there exists a sequence
(V,,) in U(E) such that ¡S(V ) (2 iW,,, bor al] u E N. Consider, bor
u = 1,2,..., the absoiutely convex zero-neigitbourhoods in E given by

U,, := y1 fi1-~- fi2 + ...f r,,B,, + V,,.

It is clear that U = O,,U,, is bornivorous in tite DF-space E. Titerefore
U is a zero-neigitbouritood in E. Finally, we will show that 19(U) (2 W.

L(U)=L(flUn) =flL(U,,Áfl ZvkBk+Vn)

=,C1 (Érk¡SBk+É(vn)) c (~ (~w±~w~)
c flw~=w.

(Dtt) Now, assuine titat S~o(pi, E) is a DF-space. Ib ((7,,) is a funda-
mental sequence of absolutely convex bounded subsets of SNo(jI, E), we
can flnd a sequence of absolutely convex bonuded subsets (fin) in E
sucb that C,, (2 L(fi,,) for a-II u E N. It is easy to see that (fi,,) is
an fundamental seqnence ob bounded sets in E. To show tbat E is
countably-quasi-barrelled, Iet (U,,) be a sequence ob absolutely convex
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zeTo-neigitbonrhoods iii E snch tha-t U = fl,,U,, is bornivorons. Titen
(L(U,,)) is a sequence ob zero-neigitbouritoods in 5N0(pi, E) sucli that
19(U) = O,,19(U,,) is bornivorous. Since SR0(pi,E) is a DF-space, it
bollowsthat 19(U) is a zero-neighbonritood 111 S~0(pi,E), itence U is a
zero-néighbourhood lii E. Ihis finisites tite proot

To prove titat S~0(ji, E) is a gDF-spa-ce ib a-nd only ib E is a- gDF-
space use the fact that bor all seqnences (fi,,) in 8(E) and (U,,) in U(E)
we bave that

L(n(B~+ Un)) =

togetiter witit condition [8, 12.3.1]. We leave tite detalis to tite reader.
u

Theorem 2. S~0(pi,E) is quasi-norrnable if amI only if E 18 quasi-
normable.

Proof. (~=) Given any zero-neighbourhood W in SN0(p, E), titere
is an absolntely convex zero-neighbouritood U in E with 19(U) c W. By
itypotitesis, we can flnd y e U(E) snch titat br every ¿ > O titere exists
fi E 8(E) witit 1/ (2 fi + ¿U. Titen

19(V) (2 L(B + ¿U) = 19(B) + ¿19(U) (2 19(B) + ¿W,

so S~0(p, E) is qnasi-normable.

(=~) Qn tite otiter itaud, given U e U(E), since 19ff]) is a zero-neigit-
bouritood in S~0(g,E), by itypotitesis there exists 1/ E U(E) snch titat
for every ¿ > O titere is fi E 8(E) witit 19(1/) (2 19(B) + ¿19(U) =
L(fi + ¿U). It boIIows that V (2 fi + ¿U, and tite proob is finisited. U

We now study witen tite space SR0(p, E) is qnasi-barrelled or horno-
logical bor E a DF-space. In die characterization ob tite qnasi-barrelled
ami b¿rnologicah spacés t

00(E) given by Bierstedt a-ud Bonet in [1, Thm.
5 and Cor. 8] tite dual density condition and tite strong dual density
condition, introduceed and stndied by them in tlie same paper, pía-y a-ii
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essentiah role. We sitah] see that these condjtions are also essential in our
more general case.

Ibese conditiops read technically as bollows (see [1, Prop. 1.4(b)]):
A DF-space E with a bundamental sequence (fi,.) ob bounded subsets,
verifles tite dual density condition (resp. strong dual density conidition)
ib and on]y ib bor every decreasing sequence (A,,),.>1 ob positive real
nurnbers, there exists U E U(E) such that bor every u =1, we can flnd
‘ni-> u ami ¿,, > O with

m m

k= 1 k’=1

We alsoknow titat a DF-space satisfies tite dual density conditkrn ib ami
on]y ib its bounded snbsets are metriza-ble [1, Titrn. 1.5].

Theorem 3. Let (fl,S,pi) be a measuve space amI E be a DF-
space. Titen, tite following assertions are equivalent:

(1) E .satisfies tite dual den.sity condition or, equiualently, each

bonuded subset of E is rnetrizable.
(2,) .%0Q¡, E) is quasi-barrefled.

Proof. (1) =~ (2) By Theoreni 1, SRO (,u,E) is a DF-space whose
bounded subsets are metrizable by properties (6) and (7) aboye. Tite irn-
plica-tion bol]ows from a well-iknown result on DF-spaces [9, ~29 3.(12)].

(2) ~ (1) Consider an increasing bundamental sequence (fi,.) ob closed
absolutely convex bonnded snbsets ob E, a-nd suppose tita-t (1) does not
hoid. By rea-ding the dual density condition in the technical form given
aboye, we can see titat there exists a decrea-sing sequence (A,,) ob strictly
positive numbers sucit that for every U c U(E 71, we can Ibid u> 1 with
the property that bor every ni> u and every ¿ > O, in particular ¿ = 1,
WC itave

fi,, O U ~Cm :=~Y(A1 B1U A2B2 U ~ Amflm).

Titis gives us a-u increasing sequence (Cm) of closed absolntely convex
bonuded subsets of the DF-space E such that:



226 5. DIn, A. Fernández, M. Florencio and Pi. Paúl

(i) (A;1Cm) is a fundamental sequence ob bonuded sets in E.

(II) For ea-cit U E U(E), there is k > 1 with fik fl U ~ Cm bor ah
m>1.

We now adapt a technique due to S. Dierolf (see [5, Prop. 4.5]) to
get a contradiction. Since every bounded set in S~

0(ji, E) is absorbed
by sorne L(C,,), tite set

W = ~ L(C,,)

is bornivorotis in S~0(p,E). Titen, tite c]osnre W ob W in SN0(p,E)
is a bornivorons barrel iii S~0(pi, E), and by hypothesis, it is a zero-
neigitbourhood in

5N
0 (,¿¿,E). Titen, titere exists U E U(E) siicit tbat

1—
L(U) (2 —W.

Now, by (ji) there is a bounded sequence (4,,) in U sucit that x,, ~‘ (7,,.

Since ((7,,) are closed subsets ob E, titere is a sequence (1/,,) (2 U(E) sucb
tbat

x,,«C,,+V,,,ucN. (**)

By (i), and since tite sequence ((7,,) 18 increasulg, tite set

fl(4ck+vk)

k> 1

isbornivorous in tite DF-space E. Hence, Vis a zero-neiglibourhood in
E and 14V) isa zero-neighbourhood in SN0(pi,E). We have titat

1
L(U) c c + 19(1/) = ~ -19(Q) + 19(1/)

2

= U ~L(C,,)+ fl
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Clearly, tite bunction y : 1? —* E defined by so = Z,,>~ ~
where (A,,) is the sequence given by condition (C), is in W0fr~,E).
Moreover, so E 19(U) because the bounded sequence (4,,) is contained
in ti. By *** *), there is u e N sucb tha-t y E L(C,, + y,,). Since
pi(A,1) >. O, we ha-ve tha-t x,, E 0,, + y,,, which is in contrañiction with

u

Theorem 4. ¡Set (fZ,fl,pi) be a measure space aud E a DF-space.
Titen, tite following assertions are equivalent:

(1) E satisfies tite strong dual density condition.

(2) SN, (pi, E) is bornological.

Proof. Let (fi,,) be a-ii increasing funda-mental seqilence of abso-
iutely convex closed bounded subsets of E. lo prove titat (2> * (1),
snppose titat (1) does not hoid. Readung tite strong dual density con-
dition in the tecitnical form given aboye, we ha-ve tha-t there exists a
(lecreasing sequence (A,,) ob strictly positive nnmbers sncit titat bor eacit
U E U(E), we can flnd u > 1 witit tite property tita-t bor every ni > u
and e > O, in particular £ = 1, we ha-ve

fi,,flU ~Cm :=acx(AíBí UA2B2U’•UAmBm).

Ihis gives 118 a-n increasing sequence (Cm) ob absolutely convex bounded
subsets ob E. Take W = u,,L(C,,). This set W is absolutely convex and
hornivorous in S~0(pi, E). Since SN0(ji,E) is bornologica], then W isa-
zero-neighbourhood, a-ud we can flud U E U(E) sucit tha-t 19(U) c W.

Since fi,,flU ~ (7,,,,we can take Xm E (fi,,OU)\Cm bor ahí ni> 1. If
we set y = XmXAm, where (Am) is the sequence from condition
((7), then y E S~0(pi,E). Moreover, so E 19(U) (2 W = u,,L(C,,).
Iherebore, titere exists u0 E N such tha-t y E L(C,,j. Since pi(A,,0) > O,
then x,,0 E C~ anO titis isa- contra-diction with tite selection obthe z,,’s.

(1) != (2) Since (L(B,,)) is an uncreasing bundamental sequence ob ab-
solutely convex closed bounded subsets iii 5N0(pi,E) anO titis is a VE-
spa-ce, we only ha-ve to sitow that ib W is an absoiutely convex bor-
nívorous subset ob S~0(pi, E), titen W o L(fi,,) is a zero neigitbourhood
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in L(B,.) bor every u E N, witen L(fi,.) 18 endowed witit tite topology
unherited brom St~(p, E).

Sunce W 18 barnivorous, titere exists a decreasung sequence ob posi-

tive real numbers (A,,) such titat A,.L(fi,,) (2 W bor every u E N.

Bearing in minO tite definition of tite strong dna] density condition,
there exists U E U(E) such that brom alí u E N, we can finO ni> u anO
¿,, > O witb

finfl¿nUCacX(~fiiU~B2U ...USBm)

Therebore,

L(B,,) O ¿,,L(U) = L(B,, O ¿,,U) (2 L(acx (Ci irBk))

CL(Z~fik) =Z~19(Bk)cW.

Finally, L(fi,,)n¿,,L(U) (2 WnL(fi,,) bor every u E N, so tite proof
is finished. U

To study witen SN0 (pi, E) is barrelled or nitrabornological, we shafl
use tbe abstract results given in [3] (barrelledness) and iii [4] (ultra-
bornology) bor a loca-ny convex space endowed with a suitable Boolean
algebra of projections. A baanily P~ = {F.g : 5 E EJ ob continuous linear
projections iii E is calleO an (O, E,pi)-Boolean algebra of projections it
the bollowing conditions are satisfled:

(i) Pfl is tite identity on E.

(u) Ps = O whenever .9 c E anO pi(S) = O.

(iii) Psnr = Rs -PT for al] 8,7’ E E.
(iv) PSUT = Ps + PT for ahí disjoint .9,7’ E E.
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Tite results mentioned aboye can be stated as follows. (Similar
results as in [3] and [4] bor sorne spa-ces ob (sca-lar or vector-vaheO) con-
tunuous bnnctions defined on an interval [a, 4) (2 R, itave been obtauned
undependently anO about the same time by Giioil [7].)

Tbenrem A. ([3, Cor. 1 anO 2] anO [4, Cor. 1 a-ud 2].) ¡Set (1?, E,pi)
be a «-finite measure space. ¡Set E be a Hansdorff loeally convez space
aud Pr be an (12, E,pi)-Boolean algebra of projections. Assnrne titat Pr
18 equicontinuous and thai the following conditions holds:

(e) If (O,,) is a decreasing sequence in E with ¡<n,,Q,,) = O, (z,,)
is a bounded sequence in E sucit that every X,, 13 supported in O,, (i.e.
Pn~(x,,) = x,,), aud (a,,) isa sequence ini’, titen tite series S,,a,,x,,
converges in E.

Titen toe itave:

(1) If E is quasí-barrelled aud Ps(E) 18 barrelled foi’ eacit atorn
5 E E, titen E 1$ barrelled.

(2) If E is quasi-barrelled aud pi 18 atornless, titen E 18 barrelled.

(3) 1fF 18 bornologi cal and f’s(E) is ultruborno¿ogicalfor eacit atorn
.9 e E, titen E 18 ultrabornological.

(4) >‘1 E Is bornological and pi 18 atornless, titen E is ultrabornolo-
gical.

lo use Titeorein A in our case, we state the bollowing lemma.

Lemnia. For every subsetS E E, denote

Ps: yE SR~pi,E) —* Ps(so)=xs.soE S~(pi,E).

Titen ine have:

(1) Tite set {Ps : 5’ e EJ 18 an equicontinuous fioolean algebra of
projeetions on SN0(pi,E).

(2) If Sisan atorn, titen Ps(5N0(pi,E)) is isornorpitie to E.
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(3) .%0(pi,E) satisfies tite condition (e) in Theorern A, i.e. if(fi,,)
isa decreasingsequence of subsets ofE such thatg(O,,fi,,) = O and(y,,)
18 a bonnded sequenee in .9~0(pi, E) sueit that so,, 18 supported in fi,,, for
eacit u E N and if (a,,) is a sequence frorn Li, titen tite series 2,, a,,y,,
converges in

5’N
0 (pi, E).

Proof. (1) Tite algebraic part is easy. lo prove tite equicontinuity,
siuíply note that J’s(¡S(U)) (2 19(U), bor every U E U(E) a-nO 5 e E.

(2) It is enougb to prove tita-t a-ny function ob
5’Na (pi, E) is consta-nt onS.

In this case, tite isornorphism is tite natural. Suppose titat y E .9~
0(pi, E)

Ls not consta-nt on 9. Ihen, there exist zí,x2 E E with xí $ x2, such
that the subsets

91 ={wE5’: so(w)=xí} anO .%={weS: y(w)=x2}

are disjoint a-nO they ha-ve positive measure. Sunce 5’ is an atom, we ita-ve
titat pi($) = pi(S2) = pi(S) anO we get a- contradiction.

(3) Since (fi,,) 18 decreasing anO eacit so,, is supported iii fi,,, it follows
titat the series 2,, a,,y,, converges pointwise p-a.e. to a bunction y
teca-use ontside every fi,, titere is only afinite nuinter of non-zero terms
a-ud j4O,,fi,,) = O. Finahly, note tita-t sois countably simple anO bonnded
teca-use

R(so) ~U { Zakxk, zk E R(sok), Iv E N}

Ls bounded aud counta-ble, and that y is ahso tite limit in .%0(pi,E) ob
2,,a,,sc,,. U

Froni titis lemnia anO Titeorem A, we ita-ve the followung.

Theorem 5. ¡Set (fi, E,pi) be a «-finite measure space aud E a
DF-spacc.

(a) If tite measure pi itas atonis, titen

(1) ~ (pi, E) is barrelled if and only ff E 18 barrelled and eacit
bounded sub.set of E 18 rnetrizab¿e.
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(2) $~0(pi, E) ú uitrabornological if aud or
4y if E is ultmnbornological

amI E satisfies tite strong dual density condition.

(b) 4 tite measure pi is atornless, titen

(1) SNo(s, E) 18 barrelled :1 aud only ifeacit bonuded subset of E 18
,netrizabie.

(2) .S’t~
0(pi, E) is uitrabornological 11 aud only if E soti.sfles tite strong

dual density condition.
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