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A Conftinuous Surjection from the
Unit Interval onto the Unit Square

JARI TASKINEN

ABSTRACT, We show that there exists a continuous surjection ¢:f — I* which admits an
averaging operator in the sense of Pelczyiiski and which has the additional property that the
map ¢°f — f & ¢ is an isomorphism from LP(F) onto a subspace of L (f), where 1 £ p < o,

1. INTRODUCTION

In [T] the author proved that for a wide class of pairs of compact
metric spaces (K,K,) there exists a continuous surjection y:K — K,
admitting an averaging operator in the sense of Peiczyrski, {P]. The
results of [T] contain the important special case that there exists a
continuous surjection @:/ — I, where I = [0,1) < R, having a regular
averaging operator (for the terminology, see below). The aim of this paper
is to show that the definition of @ can be modified such that ¢°: f — fe
in addition becomes an isomorphism from Lp(Iz) onto a subspace of L,({},
where 1 € p < o (Corollary 7 and Theorem 8). So, we get an operator
@°:C(I») — C(I) which has good properties simultaneously with respect
to the sup- and L -norms. This result, while being of interest in itself, is
connected with the study of some Fréchet function spaces, see Section 4.
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We introduce the notations and definitions used in this paper. If K is
a compact metric space, we denote by C(XK) the Banach space of
continuous, real or complex valued mappings, endowed with the sup-
norm. If K, and K, are compact.metric spaces and ¢: K, — K, is a
continuous surjection, we denote by ¢° the linear isometry from C(K,)
into C(K)) given by @°f = f o ¢. If °(C(K,)) is 1-complemented in C(X),
i.e., if there exists a contractive projection from C(K,) onto ¢°(C(K,)), we
say that ¢ admits a regular averaging operator. For more details we
recommend the reference [LT], Sections I1.4.h.i; see also [P].

Let A < I be the "middle thirds"-Cantor set; see for example {R], p.
179. Using the homeomorphism

(sm):=|—)z 2e 377,
=1

where ¢, = 0 or | for all m € N, we identify the topological product

1.0 | (M

m=1

with A. By y: A — {0,1] we denote the continuous surjection
W((e,)5-0=Y £,2 ©)
m=1

Each dyddic point of the form
E g 2"el,
m=0

where €, = 1, n 2 1, has twb inverse_images, (£,,....£,,0,0,0,...) and
(¢,,...8,,4,0,1,1,1,...). The other points of / have only one inverse image.
We define the discontinuous right inverse g: { — A of y by

e(x)=miniye A|y(y)=x!, 3

where "min” is taken with respect to the usual order of J > A. The
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mapping @° is an isometry from C(A) onto

D(), @

which is the subspace of /_(/) (the Banach space of bounded scalar valued
functions on / endowed with the sup-norm) spanned by continuous
functions and the characteristic functions of intervals with dyadic
endpoints. It is easy to check that such characteristic functions are
contained in 0°(C(A)), and that the other details of this statement also
hold.

The elements of A* are considered as 4 x co-matrices consisting of
numbers 0 or 1 (see (1.2)). We denote 4 x 1-matrices, i.e., the columns
of elements of A*, by (£,,£,,£5,€,)". By O (resp. 1) we denote a matrix
which consists of numbers O (resp. 1) only; the dimension of such a
matrix will be clear from context. If A = (g,) is a matrix with €, =0 or
1 for all i and j, we denote by A” the matrix (£7;), where

0, ifeg;=1
ey = . 5)
1, ifg;=0.

The space of 4 x m-matrices, consisting of numbers 0 and 1, is
denoted by A’

We denote by m, the n-dimensional Lebesgue measure. We define
the ¢-algebra A¢ of subsets of A by

af= {y'(a) | 4cTIis Lebesgue measurable},

and we define the measure p, on (A, M) by p,(2) = m,(W(A2)), where e M.
Note that p, is additive and even 6-additive in spite of the fact that y is
not an injection: if 2 € A and B A are disjoint, then y(A4) M y(B) is
contained in the subset of the dyadic points of [; this set has Lebesgue
measure 0. We denote by p, the n-fold product of the measure p,.

We define the homeomorphism 1: A — A*,
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By
oI x{—>1 @)

we mean the continuous surjection which assigns to (x,y) € I* the unique
number ¢ € 7 such that (x,y) belongs to the line segment joining (0,f) with
(1,£). This map is used in the proof of the so called Milutin’s lemma, see
[LT], I1.4.21.

2. CONSTRUCTION OF THE MAP ¢
We first define the continuous surjection y: A* —> A* as follows.

Let A € AY; we write A = (A,,A,,A;,...) where each A,, = (B,,C,,) is
a 4 x 2-matrix consisting of (2m-1):th and 2m:th columns B,, and C,, of
A. We first define for all m € N the 4 x l-matrices D, inductively as
follows. Let D, =C,. Let me N, m > 1, and assume that D, is defined for
k < m. We first define T7:{0,1} — A} by

D,, ifA =0
[3(0) = . =
D, ,, ifA,, #0,
D, ifA,, =1
= o -
D, itA  #1

To define D,, we distinguish between several cases.
i©IfB,#2C,and B, =C,, wesetD, =C,.
2° Assume that A, =0 or 1. IfA, = A, ,, weset D, =D, and if

A,#A,,wesetD, =D, Remark. If 4, = 0, we have D, = I';(0), and
if A, =1, we have D, = T"}(1).
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3% a) Assume that B, =C,, A, #0and A, # 1. If T}(0) = C,, we set
D, =000 1fIr0)=C_ wesetD, =C

m*

b) Assume B,, = C2, C,, # (0,0,0,0) and C,, # (1,1,1,1)". If T7(1) =
C,. we set D, = (1,1,1,1)" and ™(1) = C,,, we define D_ = C,,.

42, Consider the case B,, = C;, and C,, = (0,0,0,0)" or C,, = (1,1,1,1)".
a) If [(0) = (1,1,1,1)7 and T7(1) # (0,0,0,0)", we set D, = (0,0,0,0)".
b) If (1) = (0,0,0,0)" and I(0) # (1,1,1,1)", we define D, =

(1,1,1,1)%,
¢) In the other cases we set D, = C,,.

We define the element D € A* by D = (D,,D,,D,,...). We define also
for all m the mapping v,: A3, —> A} by

’Ym((Al,"'yAm)) = (Dl,-..,Dm).

and we set
Y(A) = D.

In the following we denote :=(W,y,y,y): A* = I* and 6:=(0,0):
F—r.

Lemma 1. The map v. A* — A* is a continuous surjection which
admits a continuous right inverse and for which the map

Q=Goyoyer e -1 2 (8)

is a continuous surjection.

Proof. The continuity of v, the existence of a continuous right inverse
of ¥ and the surjectivity of @ can be proved exactly as in Lemma 3.2 of
[T]. Also the idea for the proof of the continuity of ¢ is the same as in
[T], but because of the details it is necessary to give the proof here. In
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view -of Lemma 3.1 of [T] it is enough to show that

J:=oyon: AT 4 )

maps the elements, a.d € A of the form

a = (1,000,.)
(10)
T oo a=(b0,1,1,1,.); :

where b is a finite sequence consisting of numbers 0 or 1, to the same
element of I*.

We denote N(a) = A = (4,A,,...) € A* and n(@) = (ALA,,..) € A
where A, (respectively, A ) consists of the 2m-1:th and 2m:th columns B,,
and C,, of A (resp. B,.C,,A). In view of (10) and the definition of 1, (6),
there exists a unique number m such that A, = A, for k < m (if m > 1),
A#A and A, =0 A =1fork>m.

We now consider Y(A) = D = (D,[,,...) and y(A) =D = (D, ,Dz, .

It is clear from the definition of y that D, = D, for k < m. Moreover,
the matrix A,, contains an element equal to } and, similarly, A, contains
an element 0 Hence, we have A, # A,,, and A, # A . By 2" we get

D,., =D;and D, = D;, and, moreover, D, = D aand D, =D, ., for
k>m+1. So, we have

Yen(a) =D =(D.D,...D,.D,.D,.D.D,,...)}
’Y Tl(a) - (D 7D25 aDm ]9D 9D meaDm, )
Let us consider the i:th (1 < i < 4) rows (d}", dP,..) € A and (d".d,...)
€ Aof D and D, respectively. We have d’ = 0 for 1 £j < m. Moreover,
d® = d\% and d“’ = d'® for all k > m. ThIS shows that
w((d e, ) = ¢ (d,dP,..))

and, hence, J(a) = W(D) = (D) = J(a).
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Theorem 2. The map ¢: I — F (see (8)) has a regular averaging
operator.

The proof is the same as that of Theorem 3.3 of [T].

3. MAIN RESULT

We now show that ¢ also has the additional property that ¢° defines
an isomorphism from Lp(lz) into L(I) for 1 € p < oo

Lemma 3. Letm > [ and A € A}, and D € Al. There exist exactly
16 different matrices A, € A} such that

1.(AA N=(Y,.,(A).D). (1)

Proof. The proof of this lemma consists of a straightforward but
elaborate verification of the different cases in the definition of y,,. The
numbers 12-4? refer there.

i) We first assume that D = (0,0,0,0)" and D # (1,1,1,1). There exist
14 vectors B € A} such that B # D and B # D". By 1° we see that A,, =
(B.D) satisfies (11) for all such B.

Next we check if the cases A, = 0,1, (D,D) or (D",D) could satisfy
(11). First, if I'(0) = D, then, by 2% and 3% a), A, = 0 satisfies (11) and
A, = (D.D) does not (use the remark in 2°). If I';(0} # D, then A,, = (D.D)
satisfies (11) and A,, = 0 does not. Hence, in every case exactly one of the
matrices 0 and (D,D) satisfies (11). In the same way we see that exactly
one the matrices 1 and ([",D) satisfies (11).

Since D # (0,0,0,0)7,(1,1,1,1)" we see that 4° cannot produce other
matrices satisfying (11). Finally, by 12-4% a matrix A,, of the form A, =
(B,(), where C # D and, moreover, either B or C is different from
(0,0,0,0)" and (1,1,1,1)", cannot satisfy (11).
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Summing up, we see that (11) holds for exactly 16 different matrices
A€ A

ii) We assume D = (0,0,0,0)". Again there exist 14 vectors B € A},
B#Dand B # [r. By 1° (11) holds for A, = (B,D).

It follows immediately from 1°-4° that a matrix A,, = (B,,C,,), where
C,#D, cansatisfy (1D onlyif C,=D and B, =DorD,orifB,=C,
= ["3(0) (see 3° a)). Hence, we need only to consider such cases and the
cases A,, = 0 and A,, = (D",D). We should find exactly two matrices of
these types satisfying (11).

a) We assume I'{(0) = (0,0,0,0)". Then A, = 0 satisfies (11).
Moreover, if T%(1) = (0,0,0,0)7, then also A, = 1 works, by 22, and, by
4%), the cases A, = (D,D), A, = (D,D) do not work. If T7(1) =
(0,0,0,0), then A, = 1 (see 29) and A, = (D,D") (see 4° c)) do not work
but A, = (D,D) does, by 42 ¢). So we get altogether two positive cases.

b) We assume T7(0) = (1,1,1,1)" so that A, = 0 does not work, If
(1) = (0,0,0,0), then by 22, A, = 1 satisfies (11). Moreover, by 4° c),
(D',D) satisfies (11) and (D,D) does not. If T5(1) # (0,0,0,0)', then A,, =
1 does not satisfy (11), but by 42 a), (D",D) and (D,D") do.

c) Assume I5(0) # D and I';(0) # D", The case A, = 0 does not
work. By 32 a), A, = (I(0),I"(0)) satisfies (11). If (1) = (0,0,0,0)",
then A,, = 1 works, and by 42 b), A, = (D,D) and A,, = (I',D) do not. If
(D) # (0,0,0,0)7, then A,, = 1 does not work, and by 4° ¢), 4, = (D",D)
satisfies (11) and A,, = (D,D) does not.

iit) The case D = (1,1,1,1)7 is analogous to ii). But since the point in
this kind of proofs is a careful verification of all the details, we want to
give the proof also in this case.

By 1%, there exist 14 vectors B € A‘,‘, B # D, B # D such that (11)
holds for A,, = (B,D). From now on we need only to consider the cases
A, = 1,0,(0°.D)(D.D) and (I3(1),I73(1)).
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_ a) We assume (1) = D. Now A,, = 1 works. If I[';(0) = D, then also
0 works but (D°,D) and (D,D") do not. If T(0) # D, then 0 and (D,D>) do
not work but (D°.D) does.

b) Assume I75(1) = D". If I"i(0) = D, then 0 and (D",D) satisfy (11)
but T and (D,D") do not. If I'7(0) # D, then the cases A, = 0and A, = 1
are negative and the cases (D7,D) and (D,D") are positive.

¢) Assume I';(1) # D,D. By 3°b), A,, = (I((1),I73(1)) satisfies (11).
If I0) = D, then also 0 works but 1, (D",D) and (D,D") do not. If I'5(0)
# D, then 0,1 and (D,D") do not work but (D°,D) does.

We have now gone through all the cases.

Corollary 4. Given m € N and D € A} there exist exactly 2°"
different matrices A € A}, such that ¥,(A) = D.

Proof. Let 4 = (A,,....A,) € A;,, where A, € A;, and let A’ =
(A,,...,A,.). Since the matrix formed by the first m-1 columns of y,(A) is
equal to v, ,(4’), we can prove Corollary 4 using Lemma 3 and induction
with respect to the number of the columns of D. Note that by definition,
the 16 matrices (8,C), where B € A}, are the preimages of C with respect

10 ¥,

Lemma 5. Let K(i} € Nforalli = 1234 andlet al? € {0,1} for ail
i and for all m < K(i). Let us denote by A < A’ the set

A=), e A |3, =a, for mSKG). (12)

We have

4
(' @n=]J 2. a3
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Proof. Let K = max {K(}) | 1<i<4}. Let us introduce.the set

A={ (xrfzn) temskS A:' | x\2=a’? for m<K(i)}.

1=5s4

It is a direct consequence of the definition of y and 7y, that A € y'(2) if
and only if A = (A4,,B), where A, € A}, B € A* and A, satisfies

YilA))E Ay (14)

For a fixed A, € ¥¢'(A) < Al
p,({A,.B)e A*|Be A*) =278, (15)

We thus need only to calculate #(Y;'(4,)). (We denote by #(C) the
cardinality of the set C). But by Corollary 4,

#1: (A))=2"#(4). (16)

On the other hand it is elementary to see that

#(a0=]] 2.
i=1

Since the sets {(A,B) | B € A*} and {(A,,B) | B & A*} are disjoint for A #
A,, we get by (15) and (16)

4 4
e A= RO (A)=2 | 2570 =[] 270,
=l i=l

Proposition 6. There exist positive constants C, and C, such that
Cym (0™ (D) Smy(ASCym (7' ()

holds for all rectangles 2 < F.
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Proof. 1°. We first find positive constants d, and d, such that

d (Y (A)Sp( D)<y (Y (D)) 7)

holds for all rectangles 4 c A*,

4
2=]] [a®.a®} (18)

=1
where a”,@” € A for all i. (Intervals [¢?,@”] in A are defined with respect
to the natural order of A.} -

Let us denote for x = (x,. ) ), ¥ = (Vodic € A, x 2 Y,

n(x,y)=minlm|x_#y } (19)

and let m{a,i) (resp. m(a,r)) stand for the smallest number m such that m
> n(@”,d") and a'® = 0 (resp. d@.” = 1). Then (*) x € [a",a@"] if either x,,
= a\” for m < m(a,i) and x,,,, = 1, or x,, = 4" for m < m(d,’} and x,,,,
= 0. Moreover, (**) if x € [a®,a”] then either x,, = a'” for m < m(a,i), or
x,, = d.” for m < m(a.i). Denoting M(i):=min {m(a,)),m(d,i)} for all 1<i<4
we thus get

2M0<y ([a,a)<2 #0

80 that,
4

4
[1 2"9<p, (D=<2°]] 2. 20)

i=1 i=1

Let us denote, for all i, b{? = a\” and by, = 1, if M() = m(a,i), or
biY = af and by, = 0, if M(i) = m(a,i). From (*) we see that 2 contains
the set

B={(x e A | xi=bL" for m<M()}. 1)
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By Lemma 5,

4
p(Y (@D)zp Y (B)=f [ 2. (22)
i=l

Moreover, by (**) 4 is contained in the union of the 16 sets
Be |,£,85,6,)={(x e A* | xP=c" for m<M(i)) (23)

where £, € (0,1} for i = 1,...4 and ¢ = al? form < M@i), if ¢, = 0, or
cl? = @' for m < M(i), if €, = 1. Hence, by Lemma 5

4
B (DSpl U Y (BKe e 3!94)))3281—[ 2710, (24)

£ 10,1} i=1

Combining (20), (22) and (24) we see that (17) holds with d, = 2%,
d, =28

2% We find constants c¢,c, > 0 such that

¢ (M "l(ﬂ))Sm(ﬁl)SCg}l. m'(a) (25)
holds for all 4-rectangles 2 < A*. We define the elements ¢"” and @ and

the numbers m(a,i), m(a,i), b.” and M(i) as in 12 Let M = max {M() |
i = 1,...,4}. Note that by (20) we again have

4 4
I 2" <p (<P ] 249, (26)
i=l

=1

Let us define the set B < 4 as in 12, (21). From the definition of 1,
(6), we see that

N B ()i € Ayst | Xy, i=b > for all 1<i<4 and m<M(i)). @27)

Let us denote
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C={ (0 € Agpg | Xyimye=h)" for all 1€i<4 and m<M(i)). (28)
Now x = (x,) € 0''(B) if and only if x = (y,z), where y € Cand z € A.
For a fixed y € C we have

b, (02| ze A=24, (29)

We calculate #((). In view of (28), the elements of ¢ are vectors with 4M
components out of which X}, M(i) are fixed and thus 4M - X}_, M(i) may
be chosen arbitrarily from the set {0,1}. So,

4M-I,,M(i)

#o=2 . (30)

Combining this with (29) we get
4

pM 7 @zp (@)= 2. (3D

i=1
To get an upper estimate for p(n'(4)) we define the 16 sets

B(e ,€,,€4,8,), Where €, € {0,1}, as in 12, (23). Since these sets are of the
same form as B above, we get by (31)

4
IO (Be s epe e )=]] 2407 (32)

Since the union of all the sets B(g ,,&,,£,,&,) contains .3, we get from (32)

4
(728 ] 2. (33)

Combining (26), (31) and (33) yields (25) with ¢, = 2%, ¢, = 2*.

32 We consider the map G. If [a,b] < /, the definition of ¢ implies
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(o ([a,bD)=((b+b ) ~(a+aH)2=(b-a)(1 +b+a)L2.

Hence, m,({a,bD)/2 < my(6"({a,b]) < 2m,([a,b]), and so
(0~ () A< A)Am (57 () (34)
for all rectangles 2 < I,

42, Our statement now follows by combining (17), (25) and (34); the
maps @ and  are measure preserving. Note that if 4 < [*'is a rectangle,
then 6"'(4) is not a 4-rectangle but there is no difficulty to approximate
it as well as we wish by finite unions of 4-rectangles. Moreover, if ZcA*
is a rectangle, then y'(4) need not be. However, the lower and upper
estimates for p,(y~'(4)) are done using 4-rectangles in A*, see (21) and
{23), respectively. Hence, we need also the result of 22 only for
rectangles.

Corollary 7. There exist positive constants C, and C, such that for
all fe C(F)

¢, [ifeuldxs [fnld<c, (Ifom)ds. (35)
! 12 !

Proof. If (A))"_, is a sequence of disjoint rectangles in /, we have for
all sequences (a,);., of scalars

[IX ax@lax=3 lafma),

5 =l Sy

[IX ax0001ax=Y la,lm o',
7 =t i=]

where 7, is the characteristic function of A,. So, for simple functions of
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this form (35) follows from Proposition 6, and for continuous functions
we gel the statement by approximation.

We immediately get the following

Theorem 8. The operator ¢° can be extended to an isomorphism
from L(F) into L (1), where [ < p < oo,

4. ON THE SPACES C(Q) N L,(Q)

If Qc R, n21,is an open set, we denote by C() M L(Q),
1<p<es, the Fréchet space of continuous, L, -integrable functions from Q
into . The topology of this space is determined by the seminorms

pp=([lrry™,
Q

pN=sup|fx)|, keN (36)

xefl,

where (£2,)7_, is an increasing sequence of compact subsets of €2, whose
union is £2. For more detajls on these spaces we refer to [BT].

The isomorphic classification of such spaces is an open problem.
Probably the most interesting question in this area is, whether the spaces
C(R) n L(R) and CRH N LP(RZ) are isomorphic to each other. It is not
difficult to see, using a natural imbedding, that C(R) n L (R) is
isomorphic to a complemented subspace of C(R?) n L,(R?). (First, select
a continuous cut-off function with compact support @ € C(R) such that
0<¢@<1onRandg=1 forevery x € [0,1]. Put E:=C(R?) N L,(R?) and
F=CR) N L, (R) and define T: F — E by Tfix,y) = f)g(y) for all fe F,
xy € R, and §: E — F by Sg(x):=/lg(x,y)dy forallge E,xe R. Itisa
direct matter to check that T and § are continuous linear maps such that
S o T is the identity of F. So, P:=T » § is a continuous projection on £
whose image is isomorphic to F.) So, in view of the decomposition
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method of Pelczyriski, the crucial problem is, whether C(R*) M Lp(Rz) is
isomorphic to a complemented subspace of C(R) n L,(R). Using the
results in earlier sections we can prove that the space defined on R? is
isomorphic to a subspace of C(R) ~ L, R), but to prove the
complementedness we would still need a "measure preserving" continuous
surjection @: I — I* and a projection P which is simultaneuously bounded
C() = ¢°(C{?) and L — (p°(Lp(12)), and this result is not (yet?)
available,

So, let us prove what we can do.
Lemma 9. There exists an enumeration (Q,),., of the family of
closed squares (Q, ), mez Where Q,,, = {(xy) € R T n<x<n+l,m<

y S m+1}, such that Q, and Q,,, have a common side for all n € Z.

There is no difficulty to make such an enumeration for example
according to the following picture:

17 -16 | 15 | 16 | 17 18
131 -14 | <15 | 14 | 13 ] 12 19
-12 1 -3 -2 1 2 11 20

-111 -4 -1 0 3] 10 | 21
-10 7 -5 615 4 9 22
-9 -8 -7 6 7 8 23
27 126 25 | 24
28 |29 |
Figure 1.

Proposition 10. For all p, 1 £ p < o, the space C(R*) N L(R?) is
isomorphic to a subspace of C(R) N L(R).
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Proof. Let ¢ be the map constructed in Section 2. It can be verified
from the definition that @(0) = (0,0) and (1) = (1,1). Let ¢ be a
homeomorphism from /° onto itself such that y"(0,0) = (0,0) and y(1,1)
= (1,0). It is then clear that also the operator y°, where y:=y‘" @, is an
isometry from C(/*) onto a subspace of C({) and an isomorphism from
Lp(lz) onto a subspace of L (/). Let (Q,);... be the sequence of closed
squares as in Lemma 9. We ciaim that it is possible to choose a sequence
of continuous surjections @™:[n,n+1] ~—> @, such that

(i)) each ¢ is of the form t? e r, o @ o, 0or T® oy, oy o 7,
where 1, is the translation from [n,n+1] onto /, r, is an isometry from I*
onto itself, and T!% is the translation from I° onto Q,, and

(ii)) @ "(n) = @*(n) for ali n € Z.

Note that ii) means in particular that

¢ meg,. (37)

To prove this we first choose ¢@ of the form i} such that ¢**(0) €
Q. and ¢“(1) € Q,. Assume that n > 1 and that ¢ is constructed for
-n+1 < k < n-1 such that i) holds for these ¢* and such that ¢* (k) =
o™ (k) for -n+1 < k < n-1 and ¢"(n) € Q, and @"(-n+1) € Q,. By
Lemma 9 the squares @, and Q,,, have one common side §,. So, it is
possible to join one of the endpoints, say s,, of S, and @""(n) by one side
of @, or one diagonal of Q,. We thus can find a map ¢* which is of the
form i) and satisfies ©"(n) = ¢"""(n) and @"(n+1) =5, € Q,.,. (If 5, and
¢@""(n) are the endpoints of a side of Q,, we can take a map of the form
1P or, oy o1, and if 5, and @"(n) are in the opposite comers of Q,,
i.e. they are the endpoints of a diagonal of @,, we can take a map of the
form ¥ o r, o @ ° 17,. In each case r, is the combination of some
rotation and reflection.) The map ¢t is defined analogously.

Defining
() =@™() for te[n,n+1], neZ, (38)

we get a continuous surjection from R onto R, We claim that ¢°:;f—fo¢
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is the desired isomorphism from C(R?) N L (R?) onto a subspace of C(R)
N L (R). Since ¢ is a continuous surjection and since ¢"'(K) is compact for
all compact K  R?, ¢° is an isomorphism from C(R?) onto a subspace of
C(R). It is thus enough to prove the corresponding statement between L -
spaces. Forall fe C(R*) n L(R?)

n+1

ﬂf°¢!""§ [Irol= gﬂfw‘”f’r o O

where, for all n, , equals ¢ or y. According to the definition of y we
can find positive constants ¢, and ¢, such that

1
clﬁfwl:f,z)c'r’l jP< f |_f°‘|:f,2)°rn o, |”Sc2f[f°‘tf)°rn | (40)
i? 0 i

for all f and n. Since r, is an isometry, we can further write

Y [y, [y fie-fite ey

neZ 72 nelZ It neZ 0,

Combining (39), (40) and (41) we see that ¢° is also an isomorphism
from L,(R%) onto a subspace of L (R).

NOTE ADDED IN PROOF

After the paper "A continuous surjection from the unit interval onto
the unit square” and the reference [T] in it, "Averaging operators on
spaces of continuous functions" were submitted, I realized that some of
the results of [T] were already proved by B. Hoffmann in "An injective
characterization of Peano spaces”, Topol. and Appl. 11 (1980), 37-46.
This is why [T] does not appear anywhere. In this note we give the
missing- details of the proofs of Lemma | and Theorem 2 of "A
continuous surjection from the unit interval onto the unit square”.

Proof of Lemma 1: The map 7: A* —> A* is continuous, since the
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first m columns of %A), A € A* depend only on the first 2m columns of
A. We show that ¥ is a surjection having a continuous right inverse. Let
D=(D,,D,,...) € A*, where each D,, € A, We define the element A € A*,
using the same notation as in the definition of v, as follows. Let B, = C,
= D,. For m > 1 we set C,, = D,, and for B,, we choose a matrix which is
not equal to anyone of the matrices D,, D, 0 or 1. We set A = (A,A,,...),
where A, = (8,,C,) for all m. It follows now directly from 12 in the
definition of y that Y{A) = D. Moreover, the element A depends
continuously on D, since the first 2m columns of A depend only on the
first m columns of D.

We denote by v the continuous right inverse of v constructed above.

Finally, we show that ¢ is a surjection. Since & and ¥ are
surjections, it is enough to prove that y o 1 © @ is surjective. Let D € A*
be arbitrary and let A = (A,,A,,...) = Y(D). Each A,,, m > 1, contains both
numbers O and 1. Hence, 117'(4) is of the form (e,),_,, where both
numbers O and 1 occur as ¢, for arbitrarily large m. But for such
sequences we have

o> € 2™ (e, )y

so that y © 1} ° @ is surjective.

Proof of Theorem 2. The original proof of Milutin’s lemma, which
is also presented in [T}, Proposition 2.4.21, shows that the continuous
map 6 ° (y,y): A’ — I admits a regular averaging operator. Hence, the
same is also true for

Seoy: A' > P,
Let P, |P| = 1, be a projection from C(A*) onto (& © ¥) ° (C(F*)).
Let v: A* — A* be as above. The operator f =y " P(Y") " fis a

contractive projection from C(A*) onto (G ey o) ° (C(*)). Hence, also
(G o oyon) *(CUP is a 1-complemented subspace of C(A).
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Let g: I ~—> A be the discontinuous map defined in (3). By (4), @° is
an isometry from C(A) onto D(I) so that there exists a contractive
projection R from D() onto ¢°(C(/*)), where

(P:=6°\T’°'Y°T]°Q-

By Lemma 1, ¢ is continuous so that ¢°(C(J*)) is a subspace of
C(DHcD(I). The restriction of R to C(/} gives the desired projection.
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