REVISTA MATEMATICA de la Universidad Complutense de Madrid Volumen 6, número 1; 1993. http://dx.doi.org/10.5209/rev_REMA.1993.v6.n1.17854

A Continuous Surjection from the Unit Interval onto the Unit Square

JARI TASKINEN

ABSTRACT. We show that there exists a continuous surjection $\varphi:I \to l^2$ which admits an averaging operator in the sense of Pełczyński and which has the additional property that the map $\varphi^{\circ}:f \to f \circ \varphi$ is an isomorphism from $L_n(l^2)$ onto a subspace of $L_n(l)$, where $1 \le p < \infty$.

1. INTRODUCTION

In [T] the author proved that for a wide class of pairs of compact metric spaces (K,K_1) there exists a continuous surjection $\psi:K\to K_1$ admitting an averaging operator in the sense of Pełczyński, [P]. The results of [T] contain the important special case that there exists a continuous surjection $\phi:I\to I^2$, where $I=[0,1]\subset\mathbb{R}$, having a regular averaging operator (for the terminology, see below). The aim of this paper is to show that the definition of ϕ can be modified such that $\phi^\circ: f\to f\circ \phi$ in addition becomes an isomorphism from $L_p(I^2)$ onto a subspace of $L_p(I)$, where $1 \le p < \infty$ (Corollary 7 and Theorem 8). So, we get an operator $\phi^\circ: C(I^2) \to C(I)$ which has good properties simultaneously with respect to the sup- and L_p -norms. This result, while being of interest in itself, is connected with the study of some Fréchet function spaces, see Section 4.

¹⁹⁹¹ Mathematics Subject Classification: primary 46B20, secondary 54C05 Editorial Complutense, Madrid, 1993.

We introduce the notations and definitions used in this paper. If K is a compact metric space, we denote by C(K) the Banach space of continuous, real or complex valued mappings, endowed with the supnorm. If K_1 and K_2 are compact metric spaces and $\varphi: K_1 \to K_2$ is a continuous surjection, we denote by φ° the linear isometry from $C(K_2)$ into $C(K_1)$ given by $\varphi^{\circ}f = f \circ \varphi$. If $\varphi^{\circ}(C(K_2))$ is 1-complemented in $C(K_1)$, i.e., if there exists a contractive projection from $C(K_1)$ onto $\varphi^{\circ}(C(K_2))$, we say that φ admits a regular averaging operator. For more details we recommend the reference [LT], Sections II.4.h.i; see also [P].

Let $\Delta \subset I$ be the "middle thirds"-Cantor set; see for example [R], p. 179. Using the homeomorphism

$$(\varepsilon_m)_{m=1}^{\infty} \to \sum_{m=1}^{\infty} 2\varepsilon_m 3^{-m},$$

where $\varepsilon_m = 0$ or 1 for all $m \in \mathbb{N}$, we identify the topological product

$$\prod_{m=1}^{\infty} \{0,1\} \tag{1}$$

with Δ . By ψ : $\Delta \rightarrow [0,1]$ we denote the continuous surjection

$$\Psi((\varepsilon_m)_{m=1}^{\infty}) = \sum_{m=1}^{\infty} \varepsilon_m 2^{-m}.$$
 (2)

Each dyadic point of the form

$$\sum_{m=0}^{n} \varepsilon_{m} 2^{-m} \in I,$$

where $\varepsilon_n = 1$, $n \ge 1$, has two inverse images, $(\varepsilon_1,...,\varepsilon_n,0,0,0,...)$ and $(\varepsilon_1,...,\varepsilon_{n-1},0,1,1,1,...)$. The other points of I have only one inverse image. We define the discontinuous right inverse $\varrho: I \to \Delta$ of ψ by

$$\varrho(x) = \min\{y \in \Delta \mid \psi(y) = x\},\tag{3}$$

where "min" is taken with respect to the usual order of $I \supset \Delta$. The

mapping ϱ° is an isometry from $C(\Delta)$ onto

$$D(I),$$
 (4)

which is the subspace of $l_{\infty}(I)$ (the Banach space of bounded scalar valued functions on I endowed with the sup-norm) spanned by continuous functions and the characteristic functions of intervals with dyadic endpoints. It is easy to check that such characteristic functions are contained in $\varrho^{\circ}(C(\Delta))$, and that the other details of this statement also hold.

The elements of Δ^4 are considered as 4 x ∞ -matrices consisting of numbers 0 or 1 (see (1.2)). We denote 4 x 1-matrices, i.e., the columns of elements of Δ^4 , by $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)^T$. By $\bar{0}$ (resp. $\bar{1}$) we denote a matrix which consists of numbers 0 (resp. 1) only; the dimension of such a matrix will be clear from context. If $A = (\varepsilon_{ij})$ is a matrix with $\varepsilon_{ij} = 0$ or 1 for all i and j, we denote by A^- the matrix (ε_{ij}^-) , where

$$\varepsilon_{ij}^- = \begin{cases}
0, & \text{if } \varepsilon_{ij} = 1 \\
1, & \text{if } \varepsilon_{ij} = 0.
\end{cases}$$
(5)

The space of $4 \times m$ -matrices, consisting of numbers 0 and 1, is denoted by Δ_m^4 .

We denote by m_n the *n*-dimensional Lebesgue measure. We define the σ -algebra \mathcal{M} of subsets of Δ by

$$\mathcal{M} = \{ \psi^{-1}(\mathcal{A}) \mid \mathcal{A} \subset I \text{ is Lebesgue measurable} \},$$

and we define the measure μ_1 on (Δ, \mathcal{M}) by $\mu_1(\mathcal{A}) = m_1(\psi(\mathcal{A}))$, where $\mathcal{A} \in \mathcal{M}$. Note that μ_1 is additive and even σ -additive in spite of the fact that ψ is not an injection: if $\mathcal{A} \subset \Delta$ and $\mathcal{B} \subset \Delta$ are disjoint, then $\psi(\mathcal{A}) \cap \psi(\mathcal{B})$ is contained in the subset of the dyadic points of I; this set has Lebesgue measure 0. We denote by μ_n the n-fold product of the measure μ_1 .

We define the homeomorphism $\eta: \Delta \to \Delta^4$,

$$\eta: (\varepsilon_m)_{m=1}^{\infty} \to ((\varepsilon_{4m-2})_{m=1}^{\infty}, (\varepsilon_{4m-2})_{m=1}^{\infty}, (\varepsilon_{4m-1})_{m=1}^{\infty}, (\varepsilon_{4m})_{m=1}^{\infty})^T.$$
 (6)

By

$$\sigma: I \times I \to I \tag{7}$$

we mean the continuous surjection which assigns to $(x,y) \in I^2$ the unique number $t \in I$ such that (x,y) belongs to the line segment joining (0,t) with $(1,t^2)$. This map is used in the proof of the so called Milutin's lemma, see [LT], II.4.21.

2. CONSTRUCTION OF THE MAP ϕ

We first define the continuous surjection $\gamma: \Delta^4 \longrightarrow \Delta^4$ as follows.

Let $A \in \Delta^4$; we write $A = (A_1, A_2, A_3,...)$ where each $A_m = (B_m, C_m)$ is a 4×2 -matrix consisting of (2m-1):th and 2m:th columns B_m and C_m of A. We first define for all $m \in \mathbb{N}$ the 4×1 -matrices D_m inductively as follows. Let $D_1 = C_1$. Let $m \in \mathbb{N}$, m > 1, and assume that D_k is defined for k < m. We first define $\Gamma_m^m: \{0,1\} \to \Delta_1^4$ by

$$\Gamma_A^m(0) = \begin{cases} D_{m-1}, & \text{if } A_{m-1} = \bar{0} \\ D_{m-1}^-, & \text{if } A_{m-1} \neq \bar{0}, \end{cases}$$

$$\Gamma_A^m(1) = \begin{cases}
D_{m-1}, & \text{if } A_{m-1} = \bar{1} \\
D_{m-1}^-, & \text{if } A_{m-1} \neq \bar{1}
\end{cases}$$

To define D_m we distinguish between several cases.

1º. If
$$B_m \neq C_m$$
 and $B_m \neq C_m^-$, we set $D_m = C_m$.

 2° . Assume that $A_m = \bar{0}$ or $\bar{1}$. If $A_m = A_{m-1}$, we set $D_m = D_{m-1}$, and if $A_m \neq A_{m-1}$, we set $D_m = D_{m-1}^-$. Remark. If $A_m = \bar{0}$, we have $D_m = \Gamma_A^m(0)$, and if $A_m = \bar{1}$, we have $D_m = \Gamma_A^m(1)$.

- 3°. a) Assume that $B_m = C_m$, $A_m \neq \bar{0}$ and $A_m \neq \bar{1}$. If $\Gamma_A^m(0) = C_m$, we set $D_m = (0,0,0,0)^T$. If $\Gamma_A^m(0) \neq C_m$, we set $D_m = C_m$.
- b) Assume $B_m = C_m^-$, $C_m \neq (0,0,0,0)^T$ and $C_m \neq (1,1,1,1)^T$. If $\Gamma_A^m(1) = C_m$, we set $D_m = (1,1,1,1)^T$ and $\Gamma_A^m(1) \neq C_m$, we define $D_m = C_m$.
 - 4° . Consider the case $B_m = C_m^-$, and $C_m = (0,0,0,0)^T$ or $C_m = (1,1,1,1)^T$.
- a) If $\Gamma_A^m(0) = (1,1,1,1)^T$ and $\Gamma_A^m(1) \neq (0,0,0,0)^T$, we set $D_m = (0,0,0,0)^T$. b) If $\Gamma_A^m(1) = (0,0,0,0)^T$ and $\Gamma_A^m(0) \neq (1,1,1,1)^T$, we define $D_m = (0,0,0,0)^T$. $(1,1,1,1)^T$.
 - c) In the other cases we set $D_m = C_m$.

We define the element $D \in \Delta^4$ by $D = (D_1, D_2, D_3, ...)$. We define also for all m the mapping $\gamma_m : \Delta^4_{2m} \longrightarrow \Delta^4_m$ by

$$\gamma_m((A_1,...,A_m)) = (D_1,...,D_m).$$

and we set

$$\gamma(A) = D$$
.

In the following we denote $\overline{\Psi}:=(\Psi,\Psi,\Psi,\Psi,\Psi)$: $\Delta^4 \to I^4$ and $\overline{\sigma}:=(\sigma,\sigma)$: $I^4 \rightarrow I^2$.

Lemma 1. The map $\gamma: \Delta^4 \to \Delta^4$ is a continuous surjection which admits a continuous right inverse and for which the map

$$\varphi = \overline{\sigma} \circ \overline{\psi} \circ \gamma \circ \eta \circ \varrho : I \longrightarrow I^2$$
 (8)

is a continuous surjection.

Proof. The continuity of γ , the existence of a continuous right inverse of γ and the surjectivity of φ can be proved exactly as in Lemma 3.2 of [T]. Also the idea for the proof of the continuity of φ is the same as in [T], but because of the details it is necessary to give the proof here. In view of Lemma 3.1 of [T] it is enough to show that

$$J:=\overline{\psi}\circ\gamma\circ\eta:\Delta\to I^4$$
 (9)

maps the elements, $a, \tilde{a} \in \Delta$ of the form

$$a = (b,1,0,0,0,...)$$

$$\tilde{a} = (b,0,1,1,1,...),$$
(10)

where b is a finite sequence consisting of numbers 0 or 1, to the same element of I^4 .

We denote $\eta(a) = A = (A_1, A_2, ...) \in \Delta^4$ and $\eta(\tilde{a}) = (\tilde{A}_1, \tilde{A}_2, ...) \in \Delta^4$, where A_m (respectively, \tilde{A}_m) consists of the 2m-1:th and 2m:th columns B_m and C_m of A (resp. $\tilde{B}_m, \tilde{C}_m, \tilde{A}$). In view of (10) and the definition of η , (6), there exists a unique number m such that $A_k = \tilde{A}_k$ for k < m (if m > 1), $A_m \neq \tilde{A}_m$ and $A_k = \bar{0}$, $\tilde{A}_k = \bar{1}$ for k > m.

We now consider
$$\gamma(A) = D = (D_1, D_2, ...)$$
 and $\gamma(\tilde{A}) = \tilde{D} = (\tilde{D_1}, \tilde{D_2}, ...)$.

It is clear from the definition of γ that $D_k = \tilde{D}_k$ for k < m. Moreover, the matrix A_m contains an element equal to 1 and, similarly, \tilde{A}_m contains an element 0. Hence, we have $A_m \neq A_{m+1}$ and $\tilde{A}_m \neq \tilde{A}_{m+1}$. By 2° we get $D_{m+1} = D_m^-$ and $\tilde{D}_{m+1} = \tilde{D}_m^-$, and, moreover, $D_k = D_{m+1}$ and $\tilde{D}_k = \tilde{D}_{m+1}$ for k > m+1. So, we have

$$\gamma \circ \eta(a) = D = (D_1, D_2, ..., D_{m-1}, D_m, D_m^-, D_m^-, D_m^-, ...),$$

$$\gamma \circ \eta(\tilde{a}) = \tilde{D} = (D_1, D_2, ..., D_{m-1}, \tilde{D}_m, \tilde{D}_m^-, \tilde{D}_m^-, \tilde{D}_m^-, ...).$$

Let us consider the i:th $(1 \le i \le 4)$ rows $(d_1^{(i)}, d_2^{(i)}, ...) \in \Delta$ and $(\tilde{d}_1^{(i)}, \tilde{d}_2^{(i)}, ...) \in \Delta$ of D and \tilde{D} , respectively. We have $d_j^{(i)} = \tilde{d}_j^{(i)}$ for $1 \le j < m$. Moreover, $d_k^{(i)} = d_m^{(i)}$ and $\tilde{d}_k^{(i)} = \tilde{d}_m^{(i)}$ for all k > m. This shows that

$$\psi((d_1^{(i)}, d_2^{(i)}, \ldots)) = \psi \; ((\tilde{d}_1^{(i)}, \tilde{d}_2^{(i)}, \ldots))$$

and, hence, $J(a) = \overline{\psi}(D) = \overline{\psi}(\tilde{D}) = J(\tilde{a})$.

Theorem 2. The map $\varphi: I \to I^2$ (see (8)) has a regular averaging operator.

The proof is the same as that of Theorem 3.3 of [T].

3. MAIN RESULT

We now show that φ also has the additional property that φ° defines an isomorphism from $L_{p}(I^{2})$ into $L_{p}(I)$ for $1 \leq p < \infty$.

Lemma 3. Let m > 1 and $A \in \Delta_{2m-2}^4$ and $D \in \Delta_1^4$. There exist exactly 16 different matrices $A_m \in \Delta_2^4$ such that

$$\gamma_m((A, A_m)) = (\gamma_{m-1}(A), D).$$
 (11)

Proof. The proof of this lemma consists of a straightforward but elaborate verification of the different cases in the definition of γ_m . The numbers $1^{\circ}-4^{\circ}$ refer there.

i) We first assume that $D \neq (0,0,0,0)^T$ and $D \neq (1,1,1,1)^T$. There exist 14 vectors $B \in \Delta_1^4$ such that $B \neq D$ and $B \neq D$. By 1° we see that $A_m = (B,D)$ satisfies (11) for all such B.

Next we check if the cases $A_m = \bar{0}, \bar{1}$, (D,D) or (D^*,D) could satisfy (11). First, if $\Gamma_A^m(0) = D$, then, by 2° and 3° a), $A_m = \bar{0}$ satisfies (11) and $A_m = (D,D)$ does not (use the remark in 2°). If $\Gamma_A^m(0) \neq D$, then $A_m = (D,D)$ satisfies (11) and $A_m = \bar{0}$ does not. Hence, in every case exactly one of the matrices $\bar{0}$ and (D,D) satisfies (11). In the same way we see that exactly one the matrices $\bar{1}$ and (D^*,D) satisfies (11).

Since $D \neq (0,0,0,0)^T$, $(1,1,1,1)^T$ we see that 4° cannot produce other matrices satisfying (11). Finally, by $1^\circ-4^\circ$, a matrix A_m of the form $A_m = (B,C)$, where $C \neq D$ and, moreover, either B or C is different from $(0,0,0,0)^T$ and $(1,1,1,1)^T$, cannot satisfy (11).

Summing up, we see that (11) holds for exactly 16 different matrices $A \in \Delta_2^4$.

ii) We assume $D = (0,0,0,0)^T$. Again there exist 14 vectors $B \in \Delta_1^4$, $B \neq D$ and $B \neq D^-$. By 1° , (11) holds for $A_m = (B,D)$.

It follows immediately from $1^{\circ}-4^{\circ}$ that a matrix $A_m = (B_m, C_m)$, where $C_m \neq D$, can satisfy (11) only if $C_m = D^{\circ}$ and $B_m = D$ or D° , or if $B_m = C_m = \Gamma_A^m(0)$ (see 3° a)). Hence, we need only to consider such cases and the cases $A_m = \bar{0}$ and $A_m = (D^{\circ}, D)$. We should find exactly two matrices of these types satisfying (11).

- a) We assume $\Gamma_A^m(0) = (0,0,0,0)^T$. Then $A_m = \bar{0}$ satisfies (11). Moreover, if $\Gamma_A^m(1) = (0,0,0,0)^T$, then also $A_m = \bar{1}$ works, by 2° , and, by 4° b), the cases $A_m = (D^{\circ},D)$, $A_m = (D,D^{\circ})$ do not work. If $\Gamma_A^m(1) \neq (0,0,0,0)^T$, then $A_m = \bar{1}$ (see 2°) and $A_m = (D,D^{\circ})$ (see 4° c)) do not work but $A_m = (D^{\circ},D)$ does, by 4° c). So we get altogether two positive cases.
- b) We assume $\Gamma_A^m(0) = (1,1,1,1)^T$ so that $A_m = \bar{0}$ does not work. If $\Gamma_A^m(1) = (0,0,0,0)^T$, then by 2° , $A_m = \bar{1}$ satisfies (11). Moreover, by 4° c), (D,D) satisfies (11) and (D,D) does not. If $\Gamma_A^m(1) \neq (0,0,0,0)^T$, then $A_m = \bar{1}$ does not satisfy (11), but by 4° a), (D,D) and (D,D) do.
- c) Assume $\Gamma_A^m(0) \neq D$ and $\Gamma_A^m(0) \neq D^-$. The case $A_m = \bar{0}$ does not work. By 3° a), $A_m = (\Gamma_A^m(0), \Gamma_A^m(0))$ satisfies (11). If $\Gamma_A^m(1) = (0,0,0,0)^T$, then $A_m = \bar{1}$ works, and by 4° b), $A_m = (D,D^-)$ and $A_m = (D^-,D)$ do not. If $\Gamma_A^m(1) \neq (0,0,0,0)^T$, then $A_m = \bar{1}$ does not work, and by 4° c), $A_m = (D^-,D)$ satisfies (11) and $A_m = (D,D^-)$ does not.
- iii) The case $D = (1,1,1,1)^T$ is analogous to ii). But since the point in this kind of proofs is a careful verification of all the details, we want to give the proof also in this case.
- By 1º, there exist 14 vectors $B \in \Delta_1^4$, $B \neq D$, $B \neq D^-$ such that (11) holds for $A_m = (B,D)$. From now on we need only to consider the cases $A_m = \bar{1}, \bar{0}, (D^-,D), (D,D^-)$ and $(\Gamma_M^m(1)^-, \Gamma_M^m(1))$.

- a) We assume $\Gamma_A^m(1) = D$. Now $A_m = \tilde{1}$ works. If $\Gamma_A^m(0) = D$, then also $\bar{0}$ works but (D,D) and (D,D) do not. If $\Gamma_A^m(0) \neq D$, then $\bar{0}$ and (D,D) do not work but (D,D) does.
- b) Assume $\Gamma_A^m(1) = D^*$. If $\Gamma_A^m(0) = D$, then $\bar{0}$ and (D^*,D) satisfy (11) but $\bar{1}$ and (D,D^*) do not. If $\Gamma_A^m(0) \neq D$, then the cases $A_m = \bar{0}$ and $A_m = \bar{1}$ are negative and the cases (D^*,D) and (D,D^*) are positive.
- c) Assume $\Gamma_A^m(1) \neq D,D^-$. By 3° b), $A_m = (\Gamma_A^m(1)^-, \Gamma_A^m(1))$ satisfies (11). If $\Gamma_A^m(0) = D$, then also $\bar{0}$ works but $\bar{1}$, (D^-,D) and (D,D^-) do not. If $\Gamma_A^m(0) \neq D$, then $\bar{0},\bar{1}$ and (D,D^-) do not work but (D^-,D) does.

We have now gone through all the cases.

Corollary 4. Given $m \in \mathbb{N}$ and $D \in \Delta_m^4$ there exist exactly 2^{4m} different matrices $A \in \Delta_{2m}^4$ such that $\gamma_m(A) = D$.

Proof. Let $A = (A_1,...,A_m) \in \Delta_{2m}^4$, where $A_m \in \Delta_2^4$, and let $A' = (A_1,...,A_{m-1})$. Since the matrix formed by the first m-1 columns of $\gamma_m(A)$ is equal to $\gamma_{m-1}(A')$, we can prove Corollary 4 using Lemma 3 and induction with respect to the number of the columns of D. Note that by definition, the 16 matrices (B,C), where $B \in \Delta_1^4$, are the preimages of C with respect to γ_1 .

Lemma 5. Let $K(i) \in \mathbb{N}$ for all i = 1,2,3,4 and let $a_m^{(i)} \in \{0,1\}$ for all i and for all $m \leq K(i)$. Let us denote by $A \subset \Delta^4$ the set

$$A = \{(x_m^{(i)})_{m \in \mathbb{N}} \in \Delta^4 | x_m^{(i)} = a_m^{(i)} \text{ for } m \le K(i) \}.$$
 (12)

We have

$$\mu_4(\gamma^{-1}(A)) = \prod_{i=1}^4 2^{-K(i)}.$$
 (13)

Proof. Let $K = \max \{K(i) \mid 1 \le i \le 4\}$. Let us introduce the set

$$\mathcal{A}_{K} = \{(x_{m}^{(i)})_{1 \le m \le K} \in \Delta_{K}^{4} \mid x_{m}^{(i)} = a_{m}^{(i)} \text{ for } m \le K(i)\}.$$

It is a direct consequence of the definition of γ and γ_K that $A \in \gamma^1(\mathcal{A})$ if and only if $A = (A_1, B)$, where $A_1 \in \Delta_{2K}^4$, $B \in \Delta^4$ and A_1 satisfies

$$\gamma_{K}(A_{1}) \in \mathcal{A}_{K}. \tag{14}$$

For a fixed $A_1 \in \gamma_K^{-1}(\mathcal{A}_K) \subset \Delta^4_{2K}$

$$\mu_{s}(\{(A,B)\in\Delta^{4}|B\in\Delta^{4}\})=2^{-8K}.$$
 (15)

We thus need only to calculate $\#(\gamma_K^{-1}(\mathcal{A}_K))$. (We denote by #(C) the cardinality of the set C). But by Corollary 4,

$$\#(\gamma_{\kappa}^{-1}(\mathcal{A}_{\kappa})) = 2^{4K} \#(\mathcal{A}_{\kappa}). \tag{16}$$

On the other hand it is elementary to see that

$$\#(\mathcal{A}_K) = \prod_{i=1}^4 2^{K-K(1)}.$$

Since the sets $\{(A,B) \mid B \in \Delta^4\}$ and $\{(A_1,B) \mid B \in \Delta^4\}$ are disjoint for $A \neq A_1$, we get by (15) and (16)

$$\mu_4(\gamma^{-1}(\mathcal{A})) = 2^{-8K} \# (\gamma_K^{-1}(\mathcal{A}_K)) = 2^{-4K} \prod_{i=1}^4 2^{K-K(i)} = \prod_{i=1}^4 2^{-K(i)}.$$

Proposition 6. There exist positive constants C_1 and C_2 such that

$$C_1 m_1(\varphi^{-1}(\mathcal{A})) \leq m_2(\mathcal{A}) \leq C_2 m_1(\varphi^{-1}(\mathcal{A}))$$

holds for all rectangles $A \subset I^2$.

Proof. 1° . We first find positive constants d_1 and d_2 such that

$$d_1\mu_4(\gamma^{-1}(\mathcal{A})) \leq \mu_4(\mathcal{A}) \leq d_2\mu_4(\gamma^{-1}(\mathcal{A})) \tag{17}$$

holds for all rectangles $\mathcal{A} \subset \Delta^4$,

$$\mathcal{A} = \prod_{i=1}^{4} \left[a^{(i)}, \tilde{a}^{(i)} \right] \tag{18}$$

where $a^{(i)}, \tilde{a}^{(i)} \in \Delta$ for all *i*. (Intervals $[a^{(i)}, \tilde{a}^{(i)}]$ in Δ are defined with respect to the natural order of Δ .)

Let us denote for
$$x = (x_m)_{m=1}^{\infty}$$
, $y = (y_m)_{m=1}^{\infty} \in \Delta$, $x \neq y$,

$$n(x,y) = min\{m \mid x_m \neq y_m\}$$
(19)

and let m(a,i) (resp. $m(\tilde{a},i)$) stand for the smallest number m such that $m > n(a^{(i)},\tilde{a}^{(i)})$ and $a_m^{(i)} = 0$ (resp. $\tilde{a}_m^{(i)} = 1$). Then $(*) x \in [a^{(i)},\tilde{a}^{(i)}]$ if either $x_m = a_m^{(i)}$ for m < m(a,i) and $x_{m(a,i)} = 1$, or $x_m = \tilde{a}_m^{(i)}$ for $m < m(\tilde{a},i)$ and $x_{m(\tilde{a},i)} = 0$. Moreover, (**) if $x \in [a^{(i)},\tilde{a}^{(i)}]$ then either $x_m = a_m^{(i)}$ for m < m(a,i), or $x_m = \tilde{a}_m^{(i)}$ for $m < m(\tilde{a},i)$. Denoting $m(\tilde{a},i) = m(\tilde{a},i)$ for all $1 \le i \le 4$ we thus get

$$2^{-M(i)} \le \mu_1([a,\tilde{a}]) \le 2^{-M(i)+2}$$

so that.

$$\prod_{i=1}^{4} 2^{-M(i)} \le \mu_4(\mathcal{A}) \le 2^8 \prod_{i=1}^{4} 2^{-M(i)}. \tag{20}$$

Let us denote, for all i, $b_m^{(i)} = a_m^{(i)}$ and $b_{M(i)} = 1$, if M(i) = m(a,i), or $b_m^{(i)} = \tilde{a}_m^{(i)}$ and $b_{M(i)} = 0$, if $M(i) = m(\tilde{a},i)$. From (*) we see that $\mathcal A$ contains the set

$$\mathcal{B} = \{ (x_m^{(i)}) \in \Delta^4 \mid x_m^{(i)} = b_m^{(i)} \text{ for } m \le M(i) \}.$$
 (21)

By Lemma 5,

$$\mu_4(\gamma^{-1}(\mathcal{A})) \ge \mu_4(\gamma^{-1}(\mathcal{B})) = \prod_{i=1}^4 2^{-M(i)}.$$
 (22)

Moreover, by (**) A is contained in the union of the 16 sets

$$\mathcal{B}(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4) = \{ (x_m^{(i)}) \in \Delta^4 \mid x_m^{(i)} = c_m^{(i)} \text{ for } m < M(i) \}$$
 (23)

where $\varepsilon_i \in \{0,1\}$ for i=1,...,4 and $c_m^{(i)}=a_m^{(i)}$ for m < M(i), if $\varepsilon_i = 0$, or $c_m^{(i)}=\bar{a}_m^{(i)}$ for m < M(i), if $\varepsilon_i = 1$. Hence, by Lemma 5

$$\mu_4(\gamma^{-1}(\mathcal{A})) \leq \mu_4(\bigcup_{\epsilon_i \in [0,1]} \gamma^{-1}(\mathcal{B}(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4))) \leq 2^8 \prod_{i=1}^4 2^{-M(i)}. \tag{24}$$

Combining (20), (22) and (24) we see that (17) holds with $d_1 = 2^{-8}$, $d_2 = 2^{8}$.

 2° . We find constants $c_1, c_2 > 0$ such that

$$c_1 \mu_1(\eta^{-1}(\mathcal{A})) \le \mu_4(\mathcal{A}) \le c_2 \mu_1(\eta^{-1}(\mathcal{A})) \tag{25}$$

holds for all 4-rectangles $\mathcal{A} \subset \Delta^4$. We define the elements $a^{(i)}$ and $\tilde{a}^{(i)}$ and the numbers m(a,i), $m(\tilde{a},i)$, $b_m^{(i)}$ and M(i) as in 1°. Let $M = \max \{M(i) \mid i = 1,...,4\}$. Note that by (20) we again have

$$\prod_{i=1}^{4} 2^{-M(i)} \le \mu_4(\mathcal{A}) \le 2^8 \prod_{i=1}^{4} 2^{-M(i)}.$$
 (26)

Let us define the set $\mathcal{B} \subset \mathcal{A}$ as in 1° , (21). From the definition of η , (6), we see that

$$\eta^{-1}(\mathcal{B}) = \{ (x_m)_{m=1}^{\infty} \in \Delta_{4M} \mid x_{4(m-1)+i} = b_m^{(i)} \text{ for all } 1 \le i \le 4 \text{ and } m \le M(i) \}.$$
 (27)

Let us denote

A Continuous Surjection from the Unit... 113

$$C = \{ (x_m)_{m=1}^{4M} \in \Delta_{4M} \mid x_{4(m-1)+i} = b_m^{(i)} \text{ for all } 1 \le i \le 4 \text{ and } m \le M(i) \}.$$
 (28)

Now $x = (x_m) \in \eta^{-1}(\mathcal{B})$ if and only if x = (y,z), where $y \in \mathcal{C}$ and $z \in \Delta$. For a fixed $y \in \mathcal{C}$ we have

$$\mu_{t}(\{(y,z)|z\in\Delta\})=2^{-4M}.$$
 (29)

We calculate #(C). In view of (28), the elements of C are vectors with 4M components out of which $\sum_{i=1}^{4} M(i)$ are fixed and thus $4M - \sum_{i=1}^{4} M(i)$ may be chosen arbitrarily from the set $\{0,1\}$. So,

$$\#(\mathcal{C}) = 2^{4M \cdot \Sigma_{i,\nu}^{\dagger} M(i)}. \tag{30}$$

Combining this with (29) we get

$$\mu_{1}(\eta^{-1}(\mathcal{A})) \geq \mu_{1}(\eta^{-1}(\mathcal{B})) = \prod_{i=1}^{4} 2^{-M(i)}.$$
 (31)

To get an upper estimate for $\mu(\eta^{-1}(\mathcal{A}))$ we define the 16 sets $\mathcal{B}(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$, where $\varepsilon_i \in \{0,1\}$, as in 1° , (23). Since these sets are of the same form as \mathcal{B} above, we get by (31)

$$\mu_1(\eta^{-1}(\mathcal{B}(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4))) = \prod_{i=1}^4 2^{-M(i)+1}. \tag{32}$$

Since the union of all the sets $\mathcal{B}(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ contains \mathcal{A} , we get from (32)

$$\mu_1(\eta^{-1}(\mathcal{A})) \le 2^8 \prod_{i=1}^4 2^{-M(i)}.$$
 (33)

Combining (26), (31) and (33) yields (25) with $c_1 = 2^{-8}$, $c_2 = 2^{8}$.

3°. We consider the map $\overline{\sigma}$. If $[a,b] \subset I$, the definition of σ implies

$$m_2(\sigma^{-1}([a,b])) = ((b+b^2)-(a+a^2))/2 = (b-a)(1+b+a)/2.$$

Hence, $m_1([a,b])/2 \le m_2(\sigma^{-1}([a,b]) \le 2m_1([a,b])$, and so

$$m_4(\bar{\sigma}^{-1}(\mathcal{A}))/4 \le m_2(\mathcal{A}) \le 4m_4(\bar{\sigma}^{-1}(\mathcal{A})) \tag{34}$$

for all rectangles $\mathcal{A} \subset I^2$.

12 1 ...

 4° . Our statement now follows by combining (17), (25) and (34); the maps ϱ and $\overline{\psi}$ are measure preserving. Note that if $\mathcal{A} \subset I^2$ is a rectangle, then $\sigma^{-1}(\mathcal{A})$ is not a 4-rectangle but there is no difficulty to approximate it as well as we wish by finite unions of 4-rectangles. Moreover, if $\mathcal{A} \subset \Delta^4$ is a rectangle, then $\gamma^{-1}(\mathcal{A})$ need not be. However, the lower and upper estimates for $\mu_4(\gamma^{-1}(\mathcal{A}))$ are done using 4-rectangles in Δ^4 , see (21) and (23), respectively. Hence, we need also the result of 2^{ϱ} only for rectangles.

Corollary 7. There exist positive constants C_1 and C_2 such that for all $f \in C(I^2)$

$$C_1 \int_{I} |f \circ \varphi(x)| dx \le \int_{I^2} |f(x)| dx \le C_2 \int_{I} |f \circ \varphi(x)| dx.$$
 (35)

Proof. If $(A_i)_{i=1}^n$ is a sequence of disjoint rectangles in I^2 , we have for all sequences $(a_i)_{i=1}^n$ of scalars

$$\int_{i^2} |\sum_{i=1}^n a_i \chi_i(x)| dx = \sum_{i=1}^n |a_i| m_2(A_i),$$

$$\int_{I} \left| \sum_{i=1}^{n} a_{i} \chi_{i} \circ \varphi(x) \right| dx = \sum_{i=1}^{n} |a_{i}| m_{1}(\varphi^{-1}(A_{i})),$$

where χ_i is the characteristic function of A_i . So, for simple functions of

this form (35) follows from Proposition 6, and for continuous functions we get the statement by approximation.

We immediately get the following

Theorem 8. The operator φ° can be extended to an isomorphism from $L_p(I^2)$ into $L_p(I)$, where $1 \le p < \infty$.

4. ON THE SPACES $C(\Omega) \cap L_p(\Omega)$

If $\Omega \subset \mathbb{R}^n$, $n \ge 1$, is an open set, we denote by $C(\Omega) \cap L_p(\Omega)$, $1 \le p < \infty$, the Fréchet space of continuous, L_p -integrable functions from Ω into \mathbb{K} . The topology of this space is determined by the seminorms

$$p_0(f) = (\int_{\Omega} |f|^p)^{1/p},$$

$$p_{k}(f) = \sup_{x \in \Omega_{k}} |f(x)|, \quad k \in \mathbb{N}$$
(36)

where $(\Omega_k)_{k=1}^{\infty}$ is an increasing sequence of compact subsets of Ω , whose union is Ω . For more details on these spaces we refer to [BT].

The isomorphic classification of such spaces is an open problem. Probably the most interesting question in this area is, whether the spaces $C(\mathbb{R}) \cap L_p(\mathbb{R})$ and $C(\mathbb{R}^2) \cap L_p(\mathbb{R}^2)$ are isomorphic to each other. It is not difficult to see, using a natural imbedding, that $C(\mathbb{R}) \cap L_p(\mathbb{R})$ is isomorphic to a complemented subspace of $C(\mathbb{R}^2) \cap L_p(\mathbb{R}^2)$. (First, select a continuous cut-off function with compact support $\varphi \in C(\mathbb{R})$ such that $0 \le \varphi \le 1$ on \mathbb{R} and $\varphi = 1$ for every $x \in [0,1]$. Put $E := C(\mathbb{R}^2) \cap L_p(\mathbb{R}^2)$ and $F := C(\mathbb{R}) \cap L_p(\mathbb{R})$ and define $T : F \to E$ by $Tf(x,y) = f(x)\varphi(y)$ for all $f \in F$, $x,y \in \mathbb{R}$, and $S : E \to F$ by $Sg(x) := \int_0^1 g(x,y) dy$ for all $g \in E$, $x \in \mathbb{R}$. It is a direct matter to check that T and S are continuous linear maps such that $S \circ T$ is the identity of F. So, $P := T \circ S$ is a continuous projection on E whose image is isomorphic to F.) So, in view of the decomposition

method of Pełczyński, the crucial problem is, whether $C(\mathbb{R}^2) \cap L_p(\mathbb{R}^2)$ is isomorphic to a complemented subspace of $C(\mathbb{R}) \cap L_p(\mathbb{R})$. Using the results in earlier sections we can prove that the space defined on \mathbb{R}^2 is isomorphic to a subspace of $C(\mathbb{R}) \cap L_p(\mathbb{R})$, but to prove the complementedness we would still need a "measure preserving" continuous surjection $\phi: I \to I^2$ and a projection P which is simultaneuously bounded $C(I) \to \phi^{\circ}(C(I^2))$ and $L_p(I) \to \phi^{\circ}(L_p(I^2))$, and this result is not (yet?) available.

So, let us prove what we can do.

Lemma 9. There exists an enumeration $(Q_n)_{n\in\mathbb{Z}}$ of the family of closed squares $(Q_{n,m})_{n,m\in\mathbb{Z}}$, where $Q_{n,m}=\{(x,y)\in\mathbb{R}^2\mid n\leq x\leq n+1,\,m\leq y\leq m+1\}$, such that Q_n and Q_{n+1} have a common side for all $n\in\mathbb{Z}$.

There is no difficulty to make such an enumeration for example according to the following picture:

		-17	-16	15	16	17	18	
[-13	-14	-15	_14	_13	_12	19	
· },	-12	-3	-2	1	2	11	20	
ļi	-11	-4	-1	_ 0	3	_10	21_	
 	-10	-5	-6	_ 5	4	9	22	
	-9	-8	-7	_ 6	7	8	23	
<u> </u>				_27	26	25	24	
l				28	29			

Figure 1.

Proposition 10. For all $p, 1 \le p < \infty$, the space $C(\mathbb{R}^2) \cap L_p(\mathbb{R}^2)$ is isomorphic to a subspace of $C(\mathbb{R}) \cap L_p(\mathbb{R})$.

Proof. Let φ be the map constructed in Section 2. It can be verified from the definition that $\varphi(0) = (0,0)$ and $\varphi(1) = (1,1)$. Let $\psi^{(1)}$ be a homeomorphism from I^2 onto itself such that $\psi^{(1)}(0,0) = (0,0)$ and $\psi^{(1)}(1,1) = (1,0)$. It is then clear that also the operator ψ° , where $\psi:=\psi^{(1)} \circ \varphi$, is an isometry from $C(I^2)$ onto a subspace of C(I) and an isomorphism from $L_p(I^2)$ onto a subspace of $L_p(I)$. Let $(Q_n)_{n=\infty}^{\infty}$ be the sequence of closed squares as in Lemma 9. We claim that it is possible to choose a sequence of continuous surjections $\varphi^{(n)}:[n,n+1] \longrightarrow Q_n$ such that

(i)) each $\varphi^{(n)}$ is of the form $\tau_n^{(2)} \circ r_n \circ \varphi \circ \tau_n$ or $\tau_n^{(2)} \circ r_n \circ \psi \circ \tau_n$, where τ_n is the translation from [n,n+1] onto I, r_n is an isometry from I^2 onto itself, and $\tau_n^{(2)}$ is the translation from I^2 onto Q_n , and

(ii))
$$\varphi^{(n-1)}(n) = \varphi^{(n)}(n)$$
 for all $n \in \mathbb{Z}$.

Note that ii) means in particular that

$$\varphi^{(n-1)}(n) \in Q_n. \tag{37}$$

To prove this we first choose $\varphi^{(0)}$ of the form i) such that $\varphi^{(0)}(0) \in Q_{-1}$ and $\varphi^{(0)}(1) \in Q_1$. Assume that $n \ge 1$ and that $\varphi^{(k)}$ is constructed for $-n+1 \le k \le n-1$ such that i) holds for these $\varphi^{(k)}$ and such that $\varphi^{(k-1)}(k) = \varphi^{(k)}(k)$ for $-n+1 < k \le n-1$ and $\varphi^{(n-1)}(n) \in Q_n$ and $\varphi^{(n-1)}(-n+1) \in Q_{-n}$. By Lemma 9 the squares Q_n and Q_{n+1} have one common side S_n . So, it is possible to join one of the endpoints, say s_n , of S_n and $\varphi^{(n-1)}(n)$ by one side of Q_n or one diagonal of Q_n . We thus can find a map $\varphi^{(n)}$ which is of the form i) and satisfies $\varphi^{(n)}(n) = \varphi^{(n-1)}(n)$ and $\varphi^{(n)}(n+1) = s_n \in Q_{n+1}$. (If s_n and $\varphi^{(n-1)}(n)$ are the endpoints of a side of Q_n , we can take a map of the form $\tau_n^{(2)} \circ r_n \circ \psi \circ \tau_n$, and if s_n and $\varphi^{(n-1)}(n)$ are in the opposite corners of Q_n , i.e. they are the endpoints of a diagonal of Q_n , we can take a map of the form $\tau_n^{(2)} \circ r_n \circ \varphi \circ \tau_n$. In each case r_n is the combination of some rotation and reflection.) The map $\varphi^{(-n)}$ is defined analogously.

Defining

$$\phi(t) = \varphi^{(n)}(t) \text{ for } t \in [n, n+1], n \in \mathbb{Z},$$
 (38)

we get a continuous surjection from \mathbb{R} onto \mathbb{R}^2 . We claim that $\phi^{\circ}:f \to f \circ \phi$

is the desired isomorphism from $C(\mathbb{R}^2) \cap L_p(\mathbb{R}^2)$ onto a subspace of $C(\mathbb{R}) \cap L_p(\mathbb{R})$. Since ϕ is a continuous surjection and since $\phi^{-1}(K)$ is compact for all compact $K \subset \mathbb{R}^2$, ϕ° is an isomorphism from $C(\mathbb{R}^2)$ onto a subspace of $C(\mathbb{R})$. It is thus enough to prove the corresponding statement between L_p -spaces. For all $f \in C(\mathbb{R}^2) \cap L_p(\mathbb{R}^2)$

$$\int_{\mathbf{R}} |f \circ \phi|^p = \sum_{n \in \mathbb{Z}} \int_{n}^{n+1} |f \circ \phi|^p = \sum_{n \in \mathbb{Z}} \int_{0}^{1} |f \circ \tau_n^{(2)} \circ r_n \circ \phi_n|^p$$
(39)

where, for all n, ϕ_n equals φ or ψ . According to the definition of ψ we can find positive constants c_1 and c_2 such that

$$c \int_{I_{2}} |f \circ \tau_{n}^{(2)} \circ r_{n}|^{p} \le \int_{0}^{1} |f \circ \tau_{n}^{(2)} \circ r_{n} \circ \phi_{n}|^{p} \le c \int_{I_{2}} |f \circ \tau_{n}^{(2)} \circ r_{n}|^{p}$$

$$(40)$$

for all f and n. Since r_n is an isometry, we can further write

$$\sum_{n \in \mathbb{Z}} \int_{I^2} |f \circ \tau_n^{(2)} \circ r_n|^p = \sum_{n \in \mathbb{Z}} \int_{I^2} |f \circ \tau_n^{(2)}|^p = \sum_{n \in \mathbb{Z}} \int_{O} |f|^p = \int_{\mathbb{R}^2} |f|^p. \tag{41}$$

Combining (39), (40) and (41) we see that ϕ° is also an isomorphism from $L_p(\mathbb{R}^2)$ onto a subspace of $L_p(\mathbb{R})$.

NOTE ADDED IN PROOF

After the paper "A continuous surjection from the unit interval onto the unit square" and the reference [T] in it, "Averaging operators on spaces of continuous functions" were submitted, I realized that some of the results of [T] were already proved by B. Hoffmann in "An injective characterization of Peano spaces", Topol. and Appl. 11 (1980), 37-46. This is why [T] does not appear anywhere. In this note we give the missing details of the proofs of Lemma 1 and Theorem 2 of "A continuous surjection from the unit interval onto the unit square".

Proof of Lemma 1: The map $\gamma: \Delta^4 \to \Delta^4$ is continuous, since the

first m columns of $\gamma(A)$, $A \in \Delta^4$ depend only on the first 2m columns of A. We show that γ is a surjection having a continuous right inverse. Let $D=(D_1,D_2,...)\in \Delta^4$, where each $D_m\in \Delta_1^4$. We define the element $A\in \Delta^4$, using the same notation as in the definition of γ , as follows. Let $B_1=C_1=D_1$. For m>1 we set $C_m=D_m$ and for B_m we choose a matrix which is not equal to anyone of the matrices D_m , D_m^- , $\bar{0}$ or $\bar{1}$. We set $A=(A_1,A_2,...)$, where $A_m=(B_m,C_m)$ for all m. It follows now directly from 1° in the definition of γ that $\gamma(A)=D$. Moreover, the element A depends continuously on D, since the first 2m columns of A depend only on the first m columns of D.

We denote by γ^{-1} the continuous right inverse of γ constructed above.

Finally, we show that φ is a surjection. Since $\bar{\sigma}$ and $\bar{\Psi}$ are surjections, it is enough to prove that $\gamma \circ \eta \circ \varrho$ is surjective. Let $D \in \Delta^4$ be arbitrary and let $A = (A_1, A_2, ...) = \gamma^{-1}(D)$. Each $A_m, m > 1$, contains both numbers 0 and 1. Hence, $\eta^{-1}(A)$ is of the form $(\varepsilon_m)_{m=1}^{\infty}$, where both numbers 0 and 1 occur as ε_m for arbitrarily large m. But for such sequences we have

$$Q(\sum_{m=1}^{\infty} \varepsilon_m 2^{-m}) = (\varepsilon_m)_{m=1}^{\infty}$$

so that $\gamma \circ \eta \circ \varrho$ is surjective.

Proof of Theorem 2. The original proof of Milutin's lemma, which is also presented in [LT], Proposition 2.4.21, shows that the continuous map $\sigma \circ (\psi, \psi)$: $\Delta^2 \rightarrow I$ admits a regular averaging operator. Hence, the same is also true for

$$\bar{\sigma} \circ \bar{\Psi} : \Delta^4 \longrightarrow I^2$$
.

Let P, ||P|| = 1, be a projection from $C(\Delta^4)$ onto $(\bar{\sigma} \circ \bar{\Psi}) \circ (C(l^2))$.

Let $\gamma: \Delta^4 \to \Delta^4$ be as above. The operator $f \mapsto \gamma \circ P(\gamma^{-1}) \circ f$ is a contractive projection from $C(\Delta^4)$ onto $(\bar{\sigma} \circ \bar{\psi} \circ \gamma) \circ (C(I^2))$. Hence, also $(\bar{\sigma} \circ \bar{\psi} \circ \gamma \circ \eta) \circ (C(I^2))$ is a 1-complemented subspace of $C(\Delta)$.

Let $\varrho: I \to \Delta$ be the discontinuous map defined in (3). By (4), ϱ° is an isometry from $C(\Delta)$ onto D(I) so that there exists a contractive projection R from D(I) onto $\varphi^{\circ}(C(I^2))$, where

$$\phi := \bar{\sigma} \circ \bar{\psi} \circ \gamma \circ \eta \circ \varrho$$
.

By Lemma 1, φ is continuous so that $\varphi^{\circ}(C(I^2))$ is a subspace of $C(I) \subset D(I)$. The restriction of R to C(I) gives the desired projection.

References

- [BT] BONET, J. and TASKINEN, J. Non-distinguished Fréchet function spaces. Bull. Soc. Roy. Sci. Liége 58, 6 (1989), 483-490.
- [LT] LINDENSTRAUSS, J. and TZAFRIRI, L. Classical Banach spaces. Springer Lecture Notes in Mathematics, 338.
- [MT] MATTILA, P. and TASKINEN, J. Remarks on bases in a Fréchet function space. Rev. Mat. Univ. Complut., 6, Nº 1 (1993), 83-99.
- [P] PEŁCZYŃSKI, A. Linear extensions, linear averaging and application to linear topological classification of spaces of continuous functions. Rozprawy Matematyczne 58 (1968).
- [R] RUDIN, W. Real and complex analysis. Second edition. Mc Graw-Hill.
- [T] TASKINEN, J. Averaging operators on spaces of continuous functions. Manuscript (1992).

Department of Mathematics University of Helsinki Hallituskatu 15 SF-00100 Helsinki FINLAND Recibido: 28 de agosto de 1992 Revisado: 10 de diciembre de 1992