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Isometries and Automorphisms of the Spaces
of Spinors

F. J. HERVES! and J. M. ISIDRO!

ABSTRACT. The relationships between the JB*-triple structure of a complex spin
factor 5 and the structure of the Hilbert space & associated to % are discussed.
Every surjective linear isometry L of 5 can be uniquely represented in the form
L{xy=pU(x) for some conjugation commuting unitary operator U on £¢” and some
ue@, |u}=1. Automorphisms of % are characterized as those linear maps (conti-
nuity not assumed) that preserve minimal tripotents in £ and the orthogonality
relations among them. :

§0. INTRODUCTION

The spaces of spinors were introduced by E. Cartan in [1] to solve the
problem of analytic classification of bounded symmetric domains in €%, and
they also arise in the quantization of free fermionic fields [9, p. 104]. More
recently, these spaces have been considered in various problems in the context
of infinite dimensional holomorphy by Harris, Kaup and others. In this note,
an arbitrary spinor space & is considered and the relationship between the
atriple structure» of 5 and the structure of its underlying Hilbert space &~
is discussed. In §2, we prove that any surjective linear isometry L of & can
be represented in the form L—=uU for some puc, |p|=1 and some
conjugation commuting surjective linear isometry of &7, Since surjective
linear isometries of %, and conjugation commuting unitary operators on &7,
are the same as automorphisms of the corresponding structures of ~“and &7,
our result can be rephrased by saying that, except for an automorphism, the
spaces of spinors are uniquely determined by their underlying Hilbert space.
This is a result that anyone could expect, though the authors have found no
precise reference for the statement and proof. In §3, the sets Min(5#) and
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Extr (%) of minimal and maximal tripotents of & are discussed. In §4 we
prove that any linear mapping (continuity is not assumed) that preserves
minimal tripotents and the orthogonality. relations among them is an
automorphism of &/ and that any holomorphic automorphism of the unit
ball of % is uniquely determined by its values at the set Min (S} {0},

§1. NOTATION AND PRELIMINARY RESULTS

Let H be a complex Hilbert space with dim (H)>>1. We recall ([2] p. 16,
[4] p. 358) that a Cartan factor of type 1V, also called a spinor or a spin factor,
is a norm closed seifadjoint complex subspace % of .2/(H) such that
{@* ae }CE 1y, where &(H) is the (C*-algebra of bounded linear
operators on H and 1, is the identity operator. For @ and b in &/ there is a
unique complex number (a{b} such that

(1.0) ab* + b*a=2(a|b)! 4

and the mapping (a, b)— (alb) defines an inner product on % whose
associated norm, denoted-by ||.]|, 1s equivalent to the usual operator norm
| - Il induced by “(H} on 57 Let us define

x=:{as & a=a*}.

The norms ||| and || . }|» coincide on x, and we have the topological direct
sum decomposition

Y=xoix

In particular, & is a complex Hilbert space with conjugation a— a=:a*,
a€ % the hilbertian norm and the operator norm being related by

lLallz=1lall>+[ llall*— | (ala*)|2]"2

On the other hand, 5 is a J*-algebra of operators, i.e., % is a norm
closed complex subspace of .2(H) such that the triple product

(1.2) fab*c} ::Lz(ab.*c+cb*a)

is in %" whenever a, b, and ¢ are in %’ The J*-algebra structure and the
Hilbert space structure are linked by the formula ([4] p. 358)

(1.3) faa*a}=2(ala)a- (a|a*)a* (ag€ 5
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An alternative introduction of the spaces of spinors is the following: Let
K be a complex Hilbert space with conjugation-and inner product (.|.).
Define a triple product by

fxy*zi=(x|y)z- | D) y+(z(p)x

Then K with the conjugation -, the triple product {...} and the norm || . {|
given by -

1% = 1l 2+ [l | (el %) 12112

is a Cartan factor of type 1V. The norms ||.|| and || . |{. are referred to as the
Hilbert and the Lie norm on K, their unit balls being denoted by B and B...

Some other basic facts on J*-algebras are needed in the sequel. Let

L; &/ — % be a vector space isomorphism (continuity not assumed) between
the J*-algebras %7 and 2. Then L commutes with the triple product, lLe.,

Liab*cy={L(a)L{b)* L{c)} (a, b, ce),
if and only if L is an isometry. In that case, L is said to be a J*-isomorphism,
An element a€ 57 is said to be a tripotent if ¢ #£ 0 and {a a* a} — ¢, and in that
case || @ |l.=1. The tripotent & is said to be minimal if, to each x& 5 there
exists A, €@ such that

{fax*al=A.a.

J*-isomorphisms preserve tripotents and minimal tripotents. The set Min (%)
of minimal tripotents of <# is given by ([3]p. 179)

Min( ) =fac & a?=0}.

§2. ISOMETRIES OF THE SPACES OF SPINORS

In this section, & and y stand for a fixed space of spinors and its
selfadjoint part.

Lemma. [let L: 55— 5 be any surjective linear || . ||«-isometry of /.
Then there exists a complex number A€, |\ =1, such that
(2.1) La)f=xL{a) {faeX).

As a consequence, || Lali = || @ ||l» holds for all a in x.
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Proof: Let a€ X, a0, be given. By (1.3)
|  feard=llalla
Thus applying L
Liaa*ay=1all> L(a)
whence again by (1.3)
(22)  L{aa*a}={L(@) L(@* L(@)}=2! L@ |? L(@)-(L(@)| L(a}*) L(a)*
If(L(a)| L{ay*)=0 then by (1.1) and {1.3)
2 L(aP=2(L(@) | L@*) 1;=0

i.e., L{a)is a minimal tripotent; but then « is also a minimal tripotent and so
a’>=0 which, together with a€ x, implies a=0, a contradiction. From (2.2)

(2.3) L{af=\L(a) (@acx)

where |A| =1 and

w2l L@ llal?

[ N
T L@ (@ex)

We claim that A does not depend on a< . Indeed, let <X be given so that
a. b are linearly independent (this is possible since by assumption dim %> 1),
By (2.3) there are unitary numbers A, u, v €&, such that

L@)=XL(a)*, L(b)—pL(b)*, L{a+b)=s[L(a+b)]*

whence by the linearity of L and the independence of L(a) and L(b), we get
A=pu—v. Using (2.3) and the expression of A,

IL@I?=(L(@)] L@)=(L(a)| A L@af)=\(L(@)| L(a}*)=2L(@}||>—||all?

whence, by the coincidence of || . ]| and |]. || on X, we get
HL@))?=llall*=llallZ
Theorem. Let % be any spin factor, and let L: % — % be any surjective
vector space isomorphism. Then the following statements are equivalent:

l. Lisan | ||<isometry of
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2. There is a unitary operator U on the Hilbert space 5 with
Ufa*)y= Ua)* for all a in & and there is a number pe@ with ju| =1 such
that

La)=p Ula) {ac 57).

In particular, any || ||l-isometry of ¥ is an isometry for the underlying
Hilbert space.

Proof: “2=>1" is immediate, so we show *“!1=>2". By the previous
lemma .

L@*=X\L(a) (a€X)

for some A€@, |A| = 1. Let u=@ be such that u2= X, and define U/: % — &
by U=:pulL. Then, for a€x we have

Ula)=pL(a)=pL{a)* =[(uL)(a)]* = Ula)*
re., U(x)Cx, and so
U*)=[Ub)1* (be ).
Since L=4U, in order to prove the thearem it suffices to show that Uis an
isometry for the hilbertian norm |}.|} on %7 But this is a consequence of the

sesquilinearity of the scalar product and the fact that U is an ||.||-isometry on
the selfadjoint part x of &7

Note. The authors thank Prof. Rodriguez Palacios for simplifying their
original proof of this theorem.

§3. EXTREME POINTS OF THE UNIT LIE BALL OF %

A tripotent e of & is said to be regular if the operator £ — {ee* £}, (€7,
is invertible in %7(&), and this occurs ([7]p. 190) if and only if e is a (real or
complex) extreme point of the unit Lie ball of. &, whose set is denoted by
Extr{%”). We have ([9]p.37)

Theorem. If & is any spin factor, then the following equalities hold:

{e€ e is a unitary operator}={e€ 5| e is a normal operator and || e||..=1}

={ec 5’| e is a normal operaior and ||le|l=1}={ec 5’| e is a real extreme
point of B} =fec | |lelle=1 and e*=Xre, A€@ |r| =1},
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Proof: Let us denote by 8, 1=k=<35, the sets above. The inclusion
8§, C 8, is clear, and §, C §, follows by (1.1). We now prove 5;C §8;. Letee S5;
from (1.1), the assumption ||e}| =1 and the normality of ¢ we get

3.1 eet=1,=¢*e

whence by composing with e, {ee* e} =e which shows that e is a tripotent.
From (3.1} {ee* x}1 =1 ee* x+ xe*e) = x for x& & which shows the regu-
larity of e, hence e€ Extr{ %)

We now prove “S5,C 85". Let ec §,, hence in particular

e ={ee*e}l =eere

If here we compose with e and use the fact that e2=a 1 ;; for some a € € (recall
the definition of <), we obtain a{ee*-1,)=0. But a0 as otherwise
e2=0=¢"? and so

fee*e¥} =%(ee‘2+e‘le)=0

which contradicts the regularity of e. Thus ee* = |5 and multiplying by e on
the left, ae*=¢, where |a|=1 since e€Extr(%") entails {|e|l.=1. The
inclusion S5C .S is trivial.

§4. BOUNDARY BEHAVIOUR OF AUTOMORPHISMS

In this section, % denotes an arbitrary JB*-triple of finite rank ([8],
p.5.4), ||.]l~ denotes its unique JB¥*-norm, B.. is the unit ball of 5, and
= Aut(B.) is the group of all holomorphic automorphisms of B.. It is
known ([5], prop. 3.2) that each g € G extends to a holomorphic mapping on
a neighbourhood of B.., and that g maps the boundary d B, of B., onto itself.
1t is also known that ([8], p.3.10) that each x€ % x3£0, admits a spectral
representation of the form

@1 x=3 Ay

for some pairwise orthogonal minimal tripotents e, and some uniquely
determined scalars A;, 1=k <n with

(4.2) M=Zh= ., >0, [[x]le=max{r; | | =k=<n}
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Theorem. Let & be any finite rank JB*-triple, and let L: &~ & be any
finear mapping (continuity not assumed). Then the foflowing statements are
equivalent:

1. L is a J*-automorphism of </,

2. L maps Min(5) onto itself and preserves the orthogonality relations

on Min (%),
4.3)  L[Min(=Min(¥) [a, beMin(), a Lbl=>L(a) LL(b).

Proof: We show that “2 ==>1" as the converse is trivial. Let x€ $”and let
- (4.1) be its spectral decomposition. Then

L(x)=é1Ak L{e)

where by (4.3}, L(e,), 1 <k=n, ar¢ pairwise orthogonal minimal tripotents
and so, by the properties of the spectral representation and (4.2),

1L oo = |[ )] 0-
Besides, L is surjective, Indeed, if
y=3 1€,
1

by (4.3} there are tripotensts f, [ =X /= m (orthogonality is not needed now),

such that L (f;}=e;, hence x =3, u; f; satisfies L (x)=y. Thus L is a /*-auto-
morphism. I

Corollary. Any J*-automorphism L of a finite rank JB*-triple 7 is
uniquely determined by its values at the set Min(5").

Corollary. A holomorphic automorphism of the unit ball B. of a finite
rank JB*-triple is uniquely determined by its values at the set {0} U Min ().

Proof: letfand gin Aut (&) be such that /{0)=g(()=a and fe}=g(e)
for all e€ Min(%”). Take any A€ Aut(B.) such that A(a)=0. Then L=:
(hg)~'s thf) fixes the origin, hence by Cartan’s uniqueness theorem, L is
linear. Since L fixes any minimal tripotent of &, we have L=1Id.  and f=g.
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