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Splitting of the 3-Complex in Weighted
Spaces of Square Integrable Functions

MICHAEL LANGENBRUCH

ABSTRACT. The splitting of the d-complex in weighted spaces of (locally) square
integrable lunctions {defined on N C ¥ by means of an (increasing) weight system
f W,1n=1}) is characterized by the following criterion on the existence of certain
plurisubharmonic (psh.} functions: For any ¢e {) there are psh. functions &, on (1 and
for any n=1 there are /(n}=n and A(n)=0 such thar for any n=0 and any z, & ()

B, (2)— b, (1) Wy (2)— W, (1) A(n). *)

This is applied to the generation of weighted algebras of holomorphic functions and
to the existence of extension operators for holomorphic functions defined on strongly
interpolating varieties. A systematic study of (*) is given in [11].

The splitting of the d-complex is closely related to the existence of
extension and interpolation operators for holomorphic functions and to the
existence of continuous linear right inverses for partial differential operators
([10-23)]. It has been studied by many authors: B. Mitjagin and G. Henkin[18]
used Hilbert scales to solve related questions in spaces without growth
conditions. V. P. Palamodov [22] has shown that in the space C™({)) the
d-operator has a continuous linear right inverse when acting from (0, k)—forms
to (0, k+ 1y—forms for k=1, while it has none for k=0. Then B. A. Taylor
[23] used the theory of analytically uniform spaces to solve the problem
affermatively in the space of C=-functions of exponential type. R. Meise and
B. A. Taylor used methods from the structure theory of power series spaces
to characterize the weights W, such that the d-complex splits in an associated
weighted space of distributions (growing on €V at most like exp (nW), see
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[17]). Recently, S. Momm [19-21] solved the splitting problem for radially
symmetric weight systems on the disc, obtaining explicit estimates for the
right inverses of the d-operator. Langenbruch [10] studied similar weighted
spaces as R, Meise and B. A. Taylor and used tame splitting theory ([24]) to
obtain right inverses with tame continuity estimates. However the details
were rather complicated and the use of distributions (necessary to apply the
splitting theory) seemed to prevent optimal estimates. From the point of view
of L. Hérmander's solution of the weighted d-problem ([7]) it seemed more
natural to treat the problem entirely in the framework of weighted L2-spaces,
and it is this ansatz which will be used in this paper.

_ The paper is divided into two parts: In the first section the splitting of the
d-complex is studied in the weighted spaces

12(B,0): =€ L] (W N2: =[1f(2))%e PM)dz <o for some n= 1},

loe

Here QC @ is a pseudoconvex set and B: ={W, | n= 1} is an increasing
system of weights satisfying some miid technical conditions (see (1.1)-(1.3)).
So the problem is considered in the most general setting. It is shown that the
splitting of the d-complex on L?(®B, ) is equivalent to the following
condition: For any 7€ (} there are plurisubharmonic (psh.) functions &, and
for any n2 1 there are I(n)=n and A(n)=0 such that for any n= 1, 1€ Q) and
ze )k

©,(1)20 and b, ()< Wy (2)- WO+ A(m) (%)

Moreover we obtain explicit continuity estimates {or the right inverses R
of the J-operator. These estimates cannot be improved essentially (see
Remark 1.8). Condition (*) can easily be evaluated in many cases ([11]).

To prove the sufficiency of (*), we first solve the splitting problem locally
by induction, using a suitable C*-resolution of the identity. Here (*) is needed
to define intermediate weighted Hilbert spaces, where Hérmander’s solution
of the d-problem can be applied, and which locally serve as a simultaneous
substitute for the (L F)-topology of L2(B, £1). So the local «projections» can
be shown to converge in the (L F)-topology. To prove the necessity of (¥}, we
use the fact, that the Koszul complex for (z-r) splits for t&, if the
d-complex is split,

In passing we notice, that the weight system B is equivalent to a system
B consisting of psh. functions, if the d-complex is split for L2(B, ).

For a decreasing weight system % :={V, | n=1} the splitting of the o-
complex for the (F)-spaces L2(®, (1) is equivalent to the following variant of
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(*); For any t€ () there are psh. functions ¥, and for any n=1 there are
I{n)=n and A (n)=0 such that for any n=1 and any z, t€():

V()=0 and Y, ()< W, (2)- Wim(tHAM) (%)

In the second section we give some applications of the results of the first
section. We first consider weighted algebras f2(®, ) of holomorphic
functions, which are generated by a finite set of functions G,,..., G,. By a
linear version of the proof of L. Hormander [6] it is shown, that this
generation can be linearized, that is, there are continuous linear operators T;
in H2(B, ) such that

=3 T:(f)G; for any fe HX (B, ),

iZm

if (*) holds.

We then follow the idea of C. Berenstein, R. Meise and B. A. Taylor
([2,3,17]) to prove the existence of extension operators for holomorphic
functions defined on strongly interpolating varieties, if (*) holds. The
assumptions are more general than in the papers above and again explicit
continuity estimates can be given.

The author wants to thank S. Momm (Diisseldorf) for valuable dis-
cussions and remarks on the subject of this paper.

1. SPLITTING OF THE 3-COMPLEX

In this section we will consider the d-complex in certain spaces of square
integrable functions, which are defined by inductive weight conditions. We
will show that the splitting of the d-complex is equivalent to the existence of
certain plurisubharmonic (psh.) functions (see (1.4)), if the weight system
satisfies some mild technical conditions (see (1.1)—(1.3)), weaker than those
normally used in the hiterature.

Let QCE¥ be open and pseudoconvex and let B:={W,|n =1} be an
increasing system of locally bounded Lebesgue measurable functions on ().

Let d(z):=dist(z, 8Q):=inf{|z-£|a| £€ 0} with |fl:=max {|§] | I=N}
for £€@¥. Let r be defined on ) such that ‘

0<<r(z)<min(1,d(z)). (1.0)
r is connected with B by the following conditions:

For any n=1 there are /;(n)=n and A;(n)=0 such that for any ze
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sup{ W,(z+£) | 1fle=r(z)}Sinf{ Wy, (z+O) | [l Sr(z)}+ A4, (1) (1.1)
W, (z)+ QN+ 1) In(l +|z|)< W,z-(,,)(z)-kAz(n) (1.2)

W,(2)+ 4N+ 1) N (1 r(z) < Wiy (2) + As(n) (1.3)

In the literature mainly r=1 and } =& is considered (see e.g. [17]). This
means that the weight system B (or rather the spaces defined by B) are
invariant under shifts. Smaller functions r are certainly needed for {1 @Y
(see [15. 16]), but they can also be useful for shift invariant systems B to
improve on the continuity estimates for the projections in Theorem 1.3. A
convenient choice for r (and Q=) is r(z)= (1 +|z[?)~< de€ N, since then
(1.3} and (1.2) almost coincide.

The essential condition now is the following:

For any ¢€(} there are psh. functions ®, and for any n=1 there are
I(my=n and A4(n)=0 such that for any n=21 and r.z€ ()

D, (1)=0

(1.4)
P (2)= Wiy (2) — W) + As(n)

(1.4) is the only condition to be evaluated in concrete situations, while
(1.1)—(1.3) arc trivially satisfied in most cases. Moreover [, -I; are often
«small», while /, can be «large» ([11]).

We will consider the following weighted L2-spaces:

D)= D(B,0): =/ L2, () | N3 = [If(2) e "t dz <o

loc
for some n=1}.

Let Lfo_ o (B, Q) be the k-forms in dZ with coefficients in L2(%, (1), that is,
the set of
f: Z f.}dz.h
JEQ,

where ;€ I2(B, Q) and Qp:={=(J),.. J) | 1 =1, <..<J =< N}, endowed
with the «norms» {|f]i,.:= || if] | where [f{z)|*: =2 [f; (2}

Let H?(B):= H*(B, (1) denote the holomorphic functions in L2 (B, ).
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We consider the d-complex

0—>H®B)— 12 (B)— 12 (B)— ..

| ~ dn=0
S @50 (1.5)

where d=(38/3z,,..,0/9zy) is the Cauchy-Riem;nn system and
Ly B :={feLll, (B)|dfell , (B)}
endowed with the «norms»
Pa(N: :(W}]},*F ||§kﬂ|ﬁ)”2 for 0=k=N.

Since we want to keep track of the several choices of seminorms and the
use of conditions (1.1} —(1.4), the following convention is used to simplify the
notation:

1.1. Convention. We ofien delete the number n counting the seminorms
(e.g. I, =1,(n}) and indicate compositions with the functions I, only in the
index (Eg Iz(lj(ﬂ))z 12_;).

For a locally bounded function f defined on () let f* be its upper
regularization, that is.

S*(z):=lim_sup f(n)

As a first and simple consequence of (I.4) we notice:

_ 1.2. Remark. Let Bsatisfy (1.1)—(1.4). Then there is a weight system
B which is equivalent 1o B and consists of psh. functions. (1.5) is
algebraically exact.

Proof. a) Let W,,::(sup @, (z)+ W,,(t))*. W, exists by (1.4), is psh.
1€}

([14], Theorem 1.26) and dominates W, again by (1.4). Using also (1.1) we
get:

W ()< sup{ @, (24O + W ()| 1€Q, [E—2]=r(2))

<sup { W, (z+O + AM)| lé—zl=rz) | = W, () + A'(n)
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b) The range of J, is contained in E%o k+])(35) since 9y d,=0. d, is
surjective onto the kernel of d;4, by Hormander’s solution of the weighted

d-problem (7D, use also a) and (1.2)).

The weighted space H2(3, (1) can always be given by a system of psh.
weights. Since we will see in Theorem 1.7, that (1.4) is a necessary condition
for the splitting of the d-complex (1.5), Remark 1.2 implies, that in this case
also L2 (3, (1) can be given by a system of psh. weights. For instance, if the
weights in B are radial, then a necessary condition for the splitting of (1.5) is,
that B is equivalent to a radial weight system of logarithmically convex
functions. So we could assume without loss of generality, that 3 consists of
psh. functions, as far as the splitting problem 1s concerned. Of course, this is
not the main feature of condition (1.4)(see the remarks below Theorem 1.3).
For a psh. function ¢ let B,:={W,+ ¢ | n=1}. The sufficiency part of the
main result of this section is now contained in the following theorem:

1.3. Theorem. Let B satisfy (1.1)—(1.4) and let Q1 be pseudoconvex.
Let i be psh. Then (1.5) is split for B, more precisely, for N= k=0 there are

continuous linear projections my in Lf'ro’ X (B,,0) onto

K, = ‘;:?0. ol B,, WNker 3, satisfying the following estimate

Py (e () =N (Ol = Dy pu (9 for fELZ,  (By, ), (1.6)
where F(n)< L, JJ1,J and J is the 2(N+ 1 )-fold composition of I,

The proof of Theorem 1.3 will be obtained in several steps. First we will
construct suitable cut off functions (in Lemma 1.4) such that the problem can
be treated locally. Then by (1.4) we can define suitable weighted Hilbert
spaces of square integrable functions, which locally serve as a simultaneous
substitute for the (LF)-topology of L2(®, ), and where Hérmander’s solu-
tion of the weighted d-problem can be applied. The choice of these spaces is
the main meaning of condition (1.4). The splitting problem is then solved
locally by induction (in Lemma 1.5) and finally we show, that the local
solutions converge and have the properties stated in Theorem 1.3.

Since the functions in B are locally bounded, we know by (1.3), that
| for any KCC ) there ise >0 such that :;(z)zsfor ze K. (LN
Let ry(2):=r(z).and for k=1 let r, be defined by '
re@h=inf{r ()] In—zla=r(m) ot In—zla=r(z)}.

ry is positive by (1.7}



Splitting of the 3-Complex in Weighted Spaces of Square 207

1.4. Lemma. There is a sequence z;€ ) such that the following holds

a) The balls

b:={¢| 1£-zjl<r(z)/2 }
are an open covering of 0, and any z€ () is contained in at most (8/r,(z)P*N
different balls

B;:= {§| |§—~zj|w<r(z‘,)}.

b) Theset M;:= {m | B,,N Bﬁég} contains at most (8/r; (z) PN elements

¢) There is a C>-resolution of the identity {hj| jelN} subordinate to
{Bj{je N }Such that

| grad || < C(1/r3(z)2N

Proof. The proof is parallel to that of Lemma 1.4.9 in [8], however we
do not use the slowly varying condition (1.4.5) in {8}

a) 1) By (1.7) we can choose a maximal sequence (z;);- such that

|z)—zp|ew= 1y (22} 2 fOr k£ . (1.8)
For any z& ()} we have:

fz— 2o << (22 (2)] 2 OF |2— 24| <1 (2)/ 27 (2,)/ 2
by the definition of r;. So the balls 4, cover (}

i) Let z€ BN By for k+ j and let B;: = { €| |§—2z;|=<ry(2)/4}. The balis
{ BJ|ZEB}are contained m{f] [6—z|= }and they are disjoint, since
otherwise

r(2)/2=r(2)/2= 27—zl <2 (2)/ 2.

So at most (8/r,(2))?" different balls B; can contain z

b) As in a) ii) we see, that the balls B, :={ €| 1£—2,10<r;(z)/4 }are
disjoint for mé& M;. So b) follows.

c) We choose ¢, € D(B)} such that 0=¢<1,¢;,=1 on b; and

lgrad-¢; ]| = C/r(z).
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Then h;: = ¢;(1—¢)...(1 ~@; ;) is a resolution of the identity as desired.
In each step of the induction proving Lemma 1.5 we will have to work

with different psh. weights ;. These and the intermediate spaces £y and Fj
will now be introduced.

For jeN. let ¥,y: = B; and for k<N let ¥ be the union of all sets ¥, ;1
such that me M;:={m| B, N B=Q}. '

For N=k=20 let

i

= (sup{ @, ItE Vi })*+ 4 and 4 0= @y -+ (2N—k+1)In(1+|z|?) and

I :=f f(z)|?e—24 #) dz for k-forms f.
Yy 1s psh. by (1.1). For meN define
Epi: ={fELGH D) | e (P = (1117 gy T I Mo gy <0}
Fop: —{fEL%gl?f:m(ﬂ)l N m, k1 <0 and v f=0}

Then E,, and F,,; are Hilbert spaces and K, : = E,,Mker d, is closed in
E,,, stnce d, is continuous from E,, into F,,,. Since iy is psh., we know from
Hoérmander’s solution of the weighted d-problem ([7]) that for any ge F,;
there is f€ E,,; such that

I f=g and [f(1+]1) | 41 =18l mt1- (1.9)
Let m,, be the orthogonal projection in E,, onto K, and let
ks Fot — Foie be defined by ., (8): = o ()
with f from (1.9). r,, is well defined and linear,
Bt (€)= Tt (N =9y f= g (1.10)
Since ,,, is an orthogonal projection we obtain from (1.9)
ook &) (1117 s ket = Gk (Tt ) = Gk (D =208V g (1D

For fe 12 : () with compact support let my(f): =/ and for k<N let
Wk(f):=f-—§ Toik (a1 (Bn9i 1)) 1.12)

with £, from Lemma 1.4. This definitions is justified in the following lemma:

(. k)
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1.5. Lemma. (I.12)defines linear mappings m, for N=k =0 having the
following properties for any je N:

m(8x_; )=x_, f for feigﬂ_ v, () with compact support. (1.13)
mf) € Fx_; for f€ IZ, () with supp [C B; and (1.14)
|me = G Djkpk(f) (1.15)

W”h Djk .':(1+12]'2)_N_Ir[(k)(Z_,')—(4N+U(N—k); l(k):=2(N—k)+3, and

PP =1 3t 119 feull3

Proof. 1) For k=N and my=id (1.13) and (1.14) are trivial, and (1.15)
follows from the first part of (1.4), since V;y=B; D supp f and

Y=g+ (N+ D in(1+]z|)+ C on B, (1.16)

i) Let k<N and let Lemma 1.5 be proved for k+ 1. Then m, is defined
by (1.14). Fix jeN and fe L%O © (€1) with supp fC B, Then
hnd f=0,ifm ¢ M;={m| B,N B#D}.

Since @y = P, 1+ for me M}, we get by (1.11). Lemma [.5 and Lemma
1.4b)

|7Tk(f)_fljk 52M|rmk(ﬂ'k+1(hm gkf))(l-i_l'lz)_llm,k-!-l
me i
<23 17t (B O Dl 441

mEMj

S Cery(z) 2 sup{ Dy, 41 | mE M} pkti (R, 3, f) (117
By Lemma 1.4c¢) we have for me M; |
PEH (b 33 f P < (1 C1 || DA [|2)| e S5
=0 (zm)—4N—2” % fe‘"‘”%. (1.18)
since 3ty (hy 9 = 21: 8/9Z; hy, d2; /\ 9y f. Also, we have for me M,
Dyt (2)7 R (2, = G Dy (1.19)
Combining (1.17)—(1.19) we get

e (D —Fla = C7 D |1 9y fe¥l,



210 Michael Langenbruch

The corresponding estimate for f follows from (1.16), since g = tn.

So (1.15) is proved. (1.13) is obvious from the definition of m. (1.14)
foltows for & from (1.10} and (1.13) for &+ 1: For compactly supported
fel . () we have

3k(f—7rk(f)) 277k+!(h (akﬂ) 7Tk+l(akf) 5kf (1.20)

Until now, we essentlally only have used (1.7) and the first part of
condition (1 4) The connection of ®, and B as stated in the second part of
(1.4} is now used to complete the

©.4)

Proof of Theorem 1.3: Let wk(f) be defined by (1.12) for
fe [2 (B, 0). '

k) ‘
1) The theorem obviously holds for X =N and my=id.
i) m, satisfies (1.6) for k<TN.
Proof. Let L(n) be the [2(N -k)—1]-foid composition of /,. By the
definition of #; 4+, and (1.1} —(1.4) we obtain for any n
Wi (D= ¥ (@DS—d 1 (D —inf{ W, (2) | 2E V) 441 } = In(1+|21) + D,

— Y41 (D — Wo(z) —In(1+|2)) + D,

Here and in the following 0, changes from line to line. (1.11), Lemma 1.5
and (1.18) now imply:

|tm‘(f)_f”’2|4l-SDn 2 |-"jk(Trk+1 (hjgkf)) (11 et e—WnlZ)
J
S D, 3, i (9x DV ke e—"n(z))
4 _
=D, 3 D i1 r3(z)-N-! e—"¥n(2)) ||akf€“'*"||1,2(3j)- (1.21) -
i

Let K be the (2N+ 1)-fold composition of /. Then (1.3) implies for z€ B;:
W, (2) 4N+ DN In(1] ran41 () S Wy g4, (2) + Dy,

From (1.21) we now get for F(n)= L, JJ/LJ:

{tme ) — N ey
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<D, 2(1+|z|2)—N—|r3( )N exp (— WKBK,I(ZJ.))QNH(ZJ_)A(NH)N

X 13 fe =111, 5) S D 3 A+ 1502751 13 (2)* pa().
i

This proves (1.6), since by Lemma 1.4a)
? R I+ = Cf 5 (2)*"Xg,(2) (1+]21)-N-1dz
i
= C’fmax { r3(zj)2N| ZEB:,-}rz (2)-2¥(1+|z|2)-¥-1dz

<Cf(1+|z|)N-1dz <o,

iii) Since m; is continuous in L(ﬂ © (B,) by ii), the equation d, m, =0
foIlows from (1.20), since the compactly supported k-forms are dense in

k)("B,,,) Since also m,=1id on K, =, is a projection onto K, and this
completes the proof of Theorem 1.3

To prove that (1.4) is also necessary for the splitting of the d-complex we

will use the Koszul-complex ([6,9]). Let Ly, := L ('B) and for s€eN. and
keNg let L, denote the set of all skew symmetnc mappmgs from

Do={I=(,...i) | 1< N} into 12

. , 0,k
norms

)(33). L, is topologized by the

=111 I.I,l with |f]12: =23 |f;|2, where the sum runs over /€T,

d, acts componentwise on the elements of Ly. For G:=(G,. .., G,,) € H({{H)™
and fe L.y, , let Pg(f) be the interior product of f wich G, that is,

(PGU))I:z‘; G,'fu',') for all IEFS

Let also P;(f): =0 for fe Ly,.

For 0=k=N and 0=s<m—1 let 84 :=min{2(N-Kk)+1, 2(m—s)—1}
and vy, :=minf{ N-k, m—‘l—s}. With G_(z2):=min{ 1, [((z)] } and

|DG(z1)| : = (3 |9/3z G;(z) | )"/ we define
ij
LS :={feLy|d f=0, Ps(/)=0,
flf(z)lze—2 W) G_(2)~ 2 (14 | DG(2)| )27+ dz<<oo for some neN }.

G H(Q) is called a multiplier in H2(%, 1), if the following holds:
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For any n=1 there are Is(n)=n and 45(n)=1 such that
W, (2) 4 in| G(2)| = Wi m(2) + As(n) (1.22)
The following lemma is a linearized variant of Theorem 7 in {6] and

Theorem 2.6 in [9], which is stated in the generality needed in this paper.

.1.6. Lemma. Suppose that B satisfies (1.1)—(1.3) and that 3, has a
continuous linear right inverse Ry in the complex (1.5) for 0 =k < N, which
satisfies .
| By Ol pey= CBM)|fll, for n=1 and fe L2 (":B)ﬁker gr1=1 Kiyp
Let GE H(Q)™ be a multiplier in H* (B, QS T en for 0Ss=<m-1 and
0=k= N there are continuous linear mappings

TG: LG — Ly, such that Pg TG =id and 3, TG =0
and such that the Jollowing estimate holds for n=1:
I TSN sm= G A (@)1 G- (22 (1+1DG (z) prs € (2)d2)', (1.23)
where J is the vyy-fold composition of I F.
Proof. Fix k=N and s=<=m=1. Let feL§.
i) Let HY (f) be the exterior product of f by G|G|-2,that is,

HG (= E (—1)’“'JGIGI‘2f1,

jest
where /€T, and /; is obtained from 7 by deleting i;. Since 8,=1, we have
1HG DNlsoy= C\ Al and Pg HG ()=, (1.24)

where || ||, denotes the norms in LE.
If k=N or s=m—1, then dHG=0. For s=m—1 this follows from the
f}l}]}:&){:t:lv’:;y of P; and (1.25) below. So the lemma is proved in this case (with

i) Let x<{N and s<m—I. We use the ansatz

TS (D:=HS () Fo R TS, 1 9HS (1),
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where Ry is a right inverse for d from K., into L 0.4) (B), existing by

assumption. Since 57}1, «+1 =0 by the induction hypothesm we only have to
show, that

dHS (DELZ | 4.
We obviously have the following:
d(IHS (f))=0 and 0= df= (P HS (f))= Py (AHS ().  (1.25)

To estimate dHG, (f), we use formula (2.1) of [9], which holds for forms g
with dg=0 and g|G|-?€ L2 _(Q), namely .

loc
3 GG, g)= }GI—";‘_% G;(G, 3G, - G; 3G;)Ag
Let J, 6 and -y be chosen for (s+1,k+1).
| TG00~ HE O 1375 = Do | R TGt 441 OHG D || s
=D, || TG it FHS O |5
<D, (JIHS (D ()? G B (1+| DG ()2 e2%dz)'
< D,(JIf (@))2 G2 26+D (1+] DG (2)| R0+ dz)'F?

D, is changing from line to line. Together with {1.24) this shows the
desired continuity estimate.

513‘ =‘§Hﬁc — P; 9R,, s+ k+1 gHSc = 5113‘ —Fe ir1~G+1,k+| dHG =0

by (1.24). The lemma is proved.
We will apply Lemma 1.6 in this section to the functions
G (z):=(zy—ay,..,zy—ay) for ac )

(see section 2 for further applications). Here the dependence of I5, A5 and
A(n) on the parameter ¢ is important. We have m=N and =1, and
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As(n)=A,(m)(1+|a|) and | DG, (z)| = C. We therefore have for the constant
in Lemma 1.6 :

A(m)=A,(1+t|al)r+  for some A, (1.26)

1.7. Tht;,orem. Let B satisfy (1.1)—(1.3). The following are equivalent:
i) Bsatisfies (1.4).

ii) B satisfies (1.4) with ®,:=lIn|g,| for some g, H{{}).

iii) The d-complex (1.5) is exact and split.

iv}) The d-complex on L? (B, Q1) is exact and split for any psh. function

Yy on (1.

Proof. «i)=>iv)» This follows from Remark 1.2 and Theorem 1.3.
«iv) =>iii)» and «ii}==>i}» These implications are trivial.

«i1i) =>>ii}» Since the complex (1.5) is exact and split, there is a continuous
linear right inverse R, for d; in (1.5). So Lemma 1.6 is applicable. For a€{}
choose ¢ € D(B,) such that

0=¢=<l,p(z)=1"for |z—a|a=r(a)/2 and ||Ve¢|l.= C/r{a).
Let Ry be a right inverse for the Cauchy-Riemann operator and define
' ‘P(Z)—ISEN(ZJ—GJ)RO (T35,1); (Bp) (2)=: go(2)=:9(2) = ha(2)
where 75 ;=T | is taken from Lemma 1.6 for G=G,.
g, (2)=de(2) — %(Zf— ) IR (T35, 1)1(39) (2)
=3¢ (2)— Po, T4, (39) () =0

So g, is holomorphic on } and obviocusly g,(a)=1. The mean value
property of g, and (1.1) —(1.3) imply that

180 ()| = Cr @ ¥ (fimir |22 (2 1) 2 dn )12

= Cr A, 118 (11177  Ggmyexp (Wagny (2)) (1.27)
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with H= FJly and H = I3, FJ1)5;, where Jis the (¥V—1)-fold composition of
LF by Lemma 1.6, By (1.26) and again by (1.1) —(1.3) we obtain

e (14 1+ [27¥l oy < A @
o (111"l = Cy (11 al) sup Il Ro (T3 1); (3o sy
=A,(Ital) 175, (3l s,y
< 4, (1+1a)¥ (f| de (2)1?|z-a| 225V exp (=2 W, (2)) dz )12
< Ay (1+1a) 1@ 2N (fupps, eXp (— Wi, () dz )12
S A, (14|l r(@y~ exp(—W, (@) < B, exp(— W, (a))

Here A, may change in the inequalities. Togeiher with (1.27) this proves
ii) with I,=H.

The proofs of Theorem 1.3 and 1.7 also show, that the continuity esti-
mates obtained in Theorem [.3 cannot be improved in general:

1.8. Remark. Let B consist of psh. functions and satisfy (1.1)— (1.3). If

B satisfies (1.4), then we get from Theorem 1.3 right inverses R, for 3, with
module of continuity F(n)=F(I,(n)), which is essentially I,(n) (modulo
finite compositions with the «mally functions I,, .., I;). Conversely, if right
inverses R, for 3, exist with module of continuity F, then (1.4) holds with the

. N-fold composition of F taken as I, (again modulo I,, .., 1;). So the estimates
are optimal in the case of one variable, for radial weight systems B and also
in the case of several variables, if B consists of positive functions of the form

Wa(z)=2W;n(z)

and ) is the product of open sets in &, since these cases can easily be reduced
1o the first case.

The splitting of the J-complex (including continuity estimates) in
weighted spaces of distributions as considered by R. Meise and B. A. Taylor
[17]) can be obtained from the splitting of the d-complex in weighted [2-
spaces by the homotopy argument in the proof of Proposition 1.9 in [17] (for
Q)= @¥ and shift invariant spaces). Also the results of S. Momm ([19-21]) for
the Cauchy-Riemann operator on the polydisc and the former results of the
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author ([10]) can be obtained and improved from Theorems 1.3 and 1.5 (see

[11]).

In spite of Theorem 1.7 the complex (1.5) may change from nonsplitting
to splitting by adding a psh. function to the weight system: Let

B:={nin(1+|z|)| n=1}. Then B satisfies (1.1)—(1.3) for r=1 on 2=C.
(1.5) is not split in this case. Indeed, if (1.5) splits, the dual space H*(B, €);,
has a continuous norm, since it is a (complemented) subspace of L? (B, ©);,
which obviously has a continuous norm. But H?(®, ) is the space of all
polynomials for the above choice of B and.the dual is isomorphic to the space
w of all sequences, which certainly has no continuous norm. On the other
hand take 35,,,:={nl’n(l-l-|z|2)-|-(1'n(l-|-|zlz))2 |[n=1 };Then B, satisfies
(1.1)—(1.3) for r=1 on Q=@ and B, is equivalent to B:=
{(In(1+|nz|?}| n=1}and (1.5) splits for B (see [11]).

In the context of the implicit function theorem of Nash and Moser it is
important to know, whether there is a tame or linear tame splitting for (1.5).
Here a mapping T is called tame (resp. linearly tame) if the following holds:
There is ¢ such that for any n=1

[ TN o= Ca AL, with s(r)=n~+c (and s(n)=cn+c. resp.).

So a module of continuity is {(n+¢) (and (cn+c¢), resp.). From the above
remarks it 1s clear, that Theorem 1.7 also holds in the tame (resp. linear tame
category).

1.9. Corollary. Let B sarisfy (1.1)— (1.3) with a tame (resp. linear tame)
choice of I, The following are equivalent:

i) B satisfies (1.4) with a (linear) tame choice of I,.

ii)  Bsatisfies (1.4) with a (linear) tame choice of I, and ®,=In|g,| with
g, H(Q1).

iii) The 3-complex (1.5) is (linear) tamely exact -and splits (linear)
tamely.

iv) The d-complex on L?(B,,Q) is (linear) tamely exact and splits
(linear) tamely for any psh. function i on (1.
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1.9iii) means, that there are (linear) tame projections onto ker d, and
(linear) tame right inverses for d; for any £,

We finally notice a variant of Lemma 1.6, which uses Theorem 1.3 to
improve on the choice of Jin 1.6. Let G4.(2):=max {1, |G(z)| } and define

Lg:= {fe L. |f[f(z)|2 Gy (z) sk e=2Wotndz<oo for some n=11}.

Recall that vy, :=min [ N—k, m—s—I }and Byt =min{2(N—k)+1,
2(m—s)—1}.

1.10. Remark. Let B consists of psh. functions and satisfy (1.1)— (1.4).
Let Ge H(Q)™ be a multiplier in H? (B,Q). Then for 0=k<=Nand 0<s<m—1
there are linear mappings.

TG : LG — Lo\ 4 such that PTG =id and 3, TS, =0
and such that the following estimate holds for n=1:
(NTGO N G (z)2rr =W (1 4(217) v dz )12
< CAM)(JU)I? G- (22 (14| DG(z)) 27 e=2Wn( dz )12,

where F is the y,-fold composition of F from Theorem 1.3.

Proof. We formally use the same ensatz as in Lemma 1.6 with a different
choice of R;. The cases k=N and s=m—1 are treated as in the proof of 1.6.
In part i} we then estimate P; by G, and define a right inverse R, for d, on
ker 9, (N L%o,k+1)(1>’ +yIn[Gy((2)(1+]219)], Q) with ¥ =y as follows:

R (f):=g—m(2).
where m is a projection in E%O‘k)("!}-l-(*y—l) InG,+vyin(l+|-}?))onto
ker d, existing by Theorem 1.3. g is chosen by Hormander’s theorem ([7])
such that 3, g =/ and such that

I8 @2(1+1219-2 Gy ()-2r-2 e~ dz

<[lg@IP(1+]2l) 2742 Gy (@) P2 e WD dz
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. Notice that the module of continuity for m, is independent of -y by the
proof of Theorem 1.3. Using this choice of R; the desired estimates now
follow similar as in the proof of Lemma 1.6.

The case of weighted (£)-spaces L2(®, (1) defined by a decreasing system
B:={V,|n=1}can be trated as before. We assume, that B satisfies the
varniant of (1.1) —(1.3) for decreasing weight systems and obtain:

1.11. Remark. Let B be a decreasing weight system as above. Then the
3-complex (1.5) is split for I2(B, ) if and only if the following holds: For
any t€£) there are psh. furictions i, and for any n=1 there are [(n)=n and
A (@)= 0 such that for any n=1 and any z, 1€ (L

W (=0 and Y, ()< V,, (2)— Vigy()+ A (n).

2. INTERPOLATION IN WEIGHTED SPACES
OF HOLOMORPHIC FUNCTIONS

In this section we will use the results of the first section to linearize the
solution of some problems in weighted spaces of holomorphic functions, This
extends and improves on results of L. Hormander [6]). C. A. Berenstein and
B. A. Taylor[1-3], R. Meise and B. A. Taylor[17), G. Marino, P. Pietramala
and D, Struppa [15] and B. A. Taylor [23].

The first result deals with the generation of an algebra H?(®,(}) and is
just a reformulation of Remark 1.10 in a special case. Let B satisfy the
following condition: B consists of positive functions and for any k=1 and
n=1 there are [{k, i) and A (k, n) such that

 BNHD) W ()t W ()= Wi ny(z)+ Ak, n) 2.0
(2.1) implies that HZ(%, () is an algebra. The choice of the constant before
W, comes from the proof of the following theorem:

2.1. Theorem, Let B satisfy (1.1)—(1.4) and (2.1) on a pseudoconvex
open set QC N, The following are equivalent:

i) G=(G, .., G, H (B, Q) generates H? (B, Q) as an algebra.

it) There is k=1 such that

|G (z)} = C e=Wx(2) for any z€ .
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iii) There are continuous linear opertors T, in H? (%, Q) such that

[=2T:()G; for any fe HZ (B, ).

Proof. «i)=>ii)» Take g;€ H?(®B, (1) such that % G;g;=1.

«i) =>iii)p» We may assume that B consists of psh. functions. Let
T;:=(1%,); with T¢, from Remark 1.10. There are C and « such that

|G (z)] = Ce¥(z)} for any z€(].
This implies that
| DG (z)| = C, exp (WI3| ) (Z))
and 7, satisfies

I 75 (Ol by = A A

where H(n)=hL(I{k,, JU{h;(k), n})])), ki:=max{k, «} and J is the
min{ N, m—1 }-fold composition of F from Theorem 1.3.

The equivalence of 2.1.i) and ii) for systems B={nW|n=1}is due to
Hormander [6]. More general weight systems were recently considered by
G. Marino, P. Pietramala and D. Struppa [15] for one variable. The
assumptions of Hormander [6] mean in our notation {and for the general
weight systems considered here), that we could take r (z)=exp &-— W, (z)—C)
for some k and C. Following C. Berenstein and B, A, Taylor [2.3] we now
consider extension problems for holomorphic functions defined on strongly
interpolating submanifolds of {}.

2.2. Definition. Let O C ¥ be pseudoconvex and let V be a complex
submanifold of O of complex dimension p. Let B satisfy (1.1)—(1.3). V is
called strongly interpolating for B, if there are a psh. positive function k on
O and G=(G,, .., G, )€ HQO )" such that the following holds:

i) For any n=1 there are I;(n) and A;(n) such that

N(iIn(1+1z1%)+ k(z))+ W, (2)= Wy ) (2)+ A5 (n) for any zeQ (2.2)
8(N+1p(In (1/r(z)te(z))+2(N+T1P in(i+|z|)+ W,(z)

= W[E(n)(Z)+A6(n) onV (2.3)
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sup{k (zHE)| |El<r@)}=<C;tx(z) (2.4)

i) V={z€Q|G(z)=0}and
Az):=(Z A y(2)?)PZe @ on V (2.5
|G (2)| < e for any z€Q), (2.6)

The sum in (2.5) runs over all determinants Ay p of the (N—p)x(N—p)
submatrices of DG (z)=(9 G;(z)/9z); ;

The constants in (2.2) and (2.3) are chosen uniformly for p and m to fit
into Theorem 2.3 below. For small m and large p-they can be improved. Of
course (2.2), (2.3), (1.2) and (1.3) are not independent.

We do not assume that the underlying space H2(®, (1) is an algebra. In
the case of algebras HZ(nW, €¥) the definition coincides with the definition
of C. Berenstein and B. A. Taylor[2,3], if W is psh. However the assumptions

r=1and W(z+&=CW(z)+ Cfor |[§|=1
are used in [2.3] instead of (2.4) and (1.1)—(1.3). Let

H®, V):={feHV)| INMy..:=sup{lf (e | z€ ¥} <o for some }
: n=14¢.

2.3. Theorem. Let B satisfy (1.1)—(1.4). Let In(1/r(z)} be psh. and let
F(z)<< Cr(z+§) for |El=r(z). 2.7)

Let V be strongly interpolating for 3. Then there is a continuous linear
operator E: H(B,V)— H2 (B, O) such that E(f)|,=f for any fe H(B , V)
and

WEN gony= CB A v, n

with H(n)= I5(J (I (n))), where J is the min { N, m}-fold composition of F
from Theorem 1.3.

Proof. Since In(1/r(z))is psh. and satisfies (2.7), we can use Remarque 6,
P.99 of Demailly (4] with ¢y =¢3=« and x =In(Ay/r(z)). The conditions
(57) — (59) in [4] are then satisfied and we obtain from Théoréme 5 in [4] a
holomorphic retraction

m Ui={zeQ| |GEN<C gD}~V
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such that
b () — €| <r(6)f Ay on any component U of U with VN F#Q. (2.8)

Here
¥ (z)=exp (4 (N+12[x(2)+1In(Ap/r () |+ (N+ 1) in(1+]z]?)).
We now use the idea of thé proof of Theorem 2.2 in {2]. Let
be={z€ Q] |z—£|=<1/(Cath (B) }or 1= yer+inttoin
and let U; be the union of all components U of
{z€0Q|1G @) < C/(Cy¥(2) } such that U;N ¥'~P. Since
1DG (z)| < Cyex@Fiallira) for any ze(],
we can choose C; so large that
{be| BN U %0} CU. (2.9)

| |::=1l241(z) 15 a slowly varying metric ([7]. Definition 1.4.7) by (2.4) and
{2.7). Therefore are £ >0 and a cut off function x € C°(U) such that

x(z)=1 for any ze U, and supp XC U (2.10)
|9x (2)| = Cyt,(2) (2.11)

. G is a multiplier in H2(B, (1) by (2.2) and (2.6). Let T :=((T§ );)j=m be
chosen from Remark 1.10 and set

E(fy:=X(fom)~Z% G;R(Ty, );(dx(f-m)).

where R is a right inverse for the Cauchy-Riemann system on

LB+ v [in G+ In(1+]2]|9)], O), existing by Theorem 1.3. We obviously
have :

3E=0 and E(f)|,=/ for any fEH(B, V)

The continuity estimate follows easily from (2.8) —(2.11) and Remark
1.10.

For systems B = {nW|n=1} Theorem 1.3 was proved by R. Meise and
B. A. Taylor ([17], Theorem 2.2) without explicit continuity estimates (and
for Q=&% and r=1).
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To prove Theorem 2.3 it is sufficient to know (2.2) and (2.3) for B and
(1.1)—(1.4) for some weight system % with some radius function 7 such that

B<B and 7<r on (0, while B=B on V.

Here 53535 means as usual, that any weh is bounded by C+ W for
some C=0 and some WeB. Thus B should be equivalent on ¥ to some
«good» weight system B, which is globally dqminated, by B,

Condition (2.5} is necessary for the surjectivity of the restriction mapping
p: H2(nW,EN)— H(nW, V), if V is discrete and generated by slowly decre-
asing functions Ge H(nW,EMN with det DG (a)#0 for any acV ([2],
Theorem 4.4). For discrete strongly interpolating varieties (and special weight
systems) the existence of an extension operator E as in Theorem 2.3 is
equivalent to (1.4) being satisfied only for r& ¥ (see [13]).

Again Theorem 2.3 holds in the (linear) tame category:

2.4. Corollary. Let B satisfy (1.1)— (1.4) with (linear) tame choices of [;
and let In(1/r(z)) be psh. Let V be strongly interpolating for B with (linear)
tame choice of Is and I, Then there is a (linear) tame extension operator

E:H(B, V)~ H (B Q).
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