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On a Formula for the Jumps in the
Semi-Fredholm Domain

VLADIMIR RAKOCEVIC

ABSTRACT. In this paper we prove some properties of the lower s-numbers and
derive asymptotic formulae for the jumps in the semi-Fredholm domain of a bounded
linear operator on a Banach space.

1. INTRODUCTION AND PRELIMINARIES

In this note X, ¥, Z and W are complex Banach spaces, and B(X, V)
(B{X)) the set of all bounded linear operators from X into ¥ (on X). Let
K (X, Y) denote the set of compact linear operators from X into Y Let U
denote the closed unit ball of X. Let 7€ B(X, ¥} and

m(T)=inf{i|Tx|| : |lx|l=1}
be the minimum modulus of 7, and let
g(T)=sup{e=0 : TUDeU}

be the surjection modulus of 7. Recall that both m (T) and ¢ (T) are positive
if and omly if T is invertible, and in this case m(T)=q(T}=}§ T'}{-L.

For each r=1, 2, ..., ¢ we define the following lower analogues of the
approximation numbers [8]:

m (T)=sup {m(T+ F): rank F<r},
g (T)=sup {g(T+ F): rank F<r},
g (T)=max{m,(T), q.(T)}.
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If M is a subspace of X, then T, will denote the restriction of T'to M. T is
a semi-Fredholm operator if either the null space N(7) is finite-dimensional
and the range R (T) is closed, or the codimension of R (T} is finite. For such
operators the index defined by

ind (T)=dim N(T)—codim R(T),
and the minimum index by

min. ind (7)=min {dim N(T), codim R(7T)},

which is always finite. It was shown in [12, Theorem 8.3] that

$(T)=Tim gu (T4

is the semi-Fredholm radius of T, i.e. the supremum of all e=0 such that
T— AT is semi-Fredholm for jA| <<e. It is well known that the function min.
ind (T— A} is constant everywhere in the disk |A| <s (T} except possibly for
a discrete subset . We denote by n(T) this constant, and call it the stability
index of the semi-Fredholm operator T[8]. A point w in & is called a jumping
point of the minimum index in the semi-Fredholm demain, For w in G we
have min. ind (T— wl)>n(T), and X decomposes into the direct sum of two
closed T-invariant subspaces Y, and Z,, where Z, is finite-dimensional and
T— el is nilpotent on it, while the restriction on T'— A/ to Y, has constant
minimum index on a neighbourhood of w[3, Theorem 4]. Consistently with
the matrix case we define the (algebraic) multiplicity of the jumping point w
to be dim 2, [8, pp. 232]. Thus the point in G can be ordered in such a way
that

lo (T) | =N (T =...<s(T),

where each jump appears consecutively according to its multiplicity. If there
are only p(=0, [,2,...) such jumps, we put jw, 1 (T)| = |@p+2(T)| =...=s(T).
Recall that [8, Theorem 1.1]if T'is a semi-Fredholm operator, then for each
r=1,2, ... we have

(1) |wr (T)| zl}cm Skntr (Tk)”_k9

where n=n(T) is the stability index of T,

In this note we prove (1) when the stability index of T is zero, and we
believe that in this case the proof is simpler than the mentioned one in the
general case. Further, we use a restriction techniques and show how this
particular case is related to general case.
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2. RESULTS

In the following lemma we list some properties of the lower s-numbers.

Lemma 2.1. Let Te B(X, Y). Then

(i) 0<m (DI<m(T)...<mu(T)<  sup m(T+K)< inf
KEKR(X. ¥) KEK(X, Y)
N7+ KI,

(i) m (ST T)=m,(S)+ |1 for §, TEB(X, Y)

(iii) m,(RST)=m(R)m,(S)m(T) for TEB(X,Y) SE€B(Y,Z) and
REB(Z, W),

(iv) If dim X=n, then m,(I)=1,
) My (ST)Zm, (S)m,, (T) for TEB(X, Y) and S B(Y, Z),

(vi) m, (T)>0e&pdim N(T)<n, R(T}is closed and ind (T)=0.

Proof. (i) By the definition and [6. pp. 389].
(ii) Let FEB(X, Y) and rank F<n. By [l, Lelﬁma 2.2] we have
m(S+T+F)<m(T+ F)+ IS =m, (T)+ |5},
and hence m,, (S+ T)<m, (T}+ || Sl|

(iii) Let FE B(Y, Z)and rank F<n. Now, RFTe B(X, W), rank RFT<n .
and by [1, pp. 21] we have

m, (RST)Zm(R(S+F)T)Z2m(R)m(S+ F)m(T).
Further, it follows that m, (RST)=m (R}m, (S)m(T).

(iv) 1t is clear that m, ({)= 1. If m,(I)> 1, then there is an Fe& B(X) and
rank F<n, such that m{+ F)>1. Since m(F)=0, it follows that
m(I+ F)=m(F)+ || || = 1, which is a contradiction. Hence m, ({)=1.

(v} Let FLEB(X, Y) rank Fi<n, F,€B(Y, Z) and rank F,<<m. Then
(S+ E)(T+ FQe B(X, Z), (S+ F)(T+ F)=8T+ SF,+ F:(T+ F)eB(X, Z)
and rank [SF+ F(T+ F)][<n+m—1. Thus m, ., ((ST)Z2m[(S+ F)
(T+ F)1>m S+ F))m({T+ F,), which proves (v).
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(vi} Suppose that m,(T)>>0, rank F<n and dim N (T)=n. Now
codim N(F)<n, and it follows that N(T)N N(F)1{0}. Thus m(T+ F)=0,
ie., m,(T)=0, whence a contradiction. Thus m,(7)>0 implies dim
N(T)<n. That R(T) is closed and ind (7)<0 follows by elementary
properties of semi-Fredholm operators [9]. Conversely, if R(7) is closed, dim
N(T)<nand ind (T)=0, then by [11, Theorem 3.9 (2)] there is an operator
Fe B(X) such that rank (F)<<n and m(T+ F)>0. This implies that
m, (T)>0.

This completes the proof of the lemma,

Theorem 2.2. [lLet T< B{X) be a semi-Fredholm operator with the
stabilitty index of T equal to zero and min. ind(T— A)=dim N(T—\I} in
the disk | M| <<s(T) except possibly for the jumps w,(T), r=1, 2, .... Then for
eachr=1,2,...we have

e, (T)] = i m, (TH)! 1%,

Proof. We have to prove two things. First

) le, (T)| < limy, inf m, (T5H4
and second
3) imy sup m (T < o, (T)],

Note that w, (T)= l}cm my (T*)V/%[4, Theorem 3], and it is clear that (2} and

(3) are true for r=1. To show the induction step for (2), take the least g such
that w,_,(7)# w,(T). (If such a ¢ does not exist, then (2) is obvious since
|w, (T)] = | (T)| in that case). Let Z be the direct sum of the finite-dimen-
sional parts in the Kato decompositions corresponding to the points w, (T), ...,
w,_,{T}[3, Theorem 4]. Now dim Z=n—gq. Let Y be the intersection of the
corresponding Kato complements to the finite-dimensional parts in the Kato
decompositions corresponding to the points w; (7),..., w,_o(7). Thus the
space X decomposes into a direct sum of two closed subspace ¥ and Z. These
subspaces are T-invariant. Let F be the removing operator from the proof of
[12, Theorem 7.1], ie.,, Fis zero on Y and u,f on Z; g, is any complex
number with [g,| > || T1| +s(T). By the proof of [12, Theorem 7.1] and [4,
Theorem 3] we have that

limk m((T+F)“)”k= Iwn~q+1(T)| v
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Further for each k=1, 2, ... we have

m (T5)Zm, o (THZm T+ F)*),
and so the proof of (2) is complete.

Now we turn to prove the inequality (3). Let W be the direct sum of the
finite-dimensional parts in the Kato decompositions corresponding to the
points w,(T), ..., @,(T) [3, Theorem 4]. Now dim W =n. Let V be the
intersetion of the corresponding Kato complements to the finite-dimensional
parts in the Kato decompositions corresponding to the points w( (T), ..., e, (7).
Thus the space X decomposes into a direct sum of two closed subspaces W
and V. These subspaces are T-invariant, Let € B(X) and rank F<'n. Hence,
there is a vector € WM N (F) such that #20. Let P be the projection of X
onto W along V. Then

T+ Al =IThll = TPRI = Tiwlt 1P| 1Al
Thus, m(T+ F)=< || P|| || T,wll. It is easy to see that for each k=1, 2, ... we
have m(T++ F)< || P|| || T wll. Consequently m, (T*)< || P|| || T* 4|, and
since the spectral radius of 7|y is equal to |w, (T)], it follows that

limy, sup m, (THVE< |w, (T)] .

This proves (3), and the proof of the theorem is complete.

Remark 2.3. lLet us mention that if in Theorem 2.2 we have that
w; (T)5£0, then we can prove (3) in the following way (we use the same
notations as in the proof of Theorem 2.2): Now T\y.: W— W is invertible and
since dim W=n we have by Lemma 2.1 (iv) that m, (T*(T\y*))=1, k=1,
2, ... Thus by Lemma 2.1 (v) we have 1 =m, (T*}m (T|»~")*), and so

m, (TH)=1/m (T )= 1T w*l .
Since the spectral radius of Ty is equal to |w,(7)| we conclude that
timy sup m, (T )+ <w, (TN,
whence the result.

Next we state propertics of g, (7T) and the dual result of Theorem 2.2.
They can-be proved similarly, so we leave out details,
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Lemma 2.4. Let TeB(X, Y). Then

(i) 0=g(D=<q(T)..<qu(T}= sup q(T+K)= inf
. KEK(X. 1} KEK(X. Y)
| T+ K|l -

(i) qu(SF+ T)=q,(S)T Tl for S, TEB(X, ¥),

(iii)‘r q,,(RSYqu(R)q,,(S)q(T) for TEB(X Y) 'SEB(Y,Z) and
ReB(Z W),

(iv) If dim X=n, then q,()=1,
() rims (ST)= G0 (S) G (T) for T B(X, Y) and S B(Y, Z),
(vi) q.(T)>0e&=codim R(T)<n, and ind (T)=0,

(vii) 1 m, (T)>0 and q,(T)>0, then m,(T)=gq,(T) and ind (T)=0.

Proof. We shall prove only (vii). From (vi) and Lemma 2.1 (vi), it
follows that dim N (T)<n, R(T)is closed, codim R({T)< x and ind (T)=0.
Let Fe B(X, Y)and rank F<<a. Y{ m(T+ F)>0, then dim N{T+ F)=90, and
it follows that codim R(T+ F)=0. Thus, m(T+ F)=q(T+ F)=q,(T), and
we have that m, (7)== q,(T). In a similar way, we can prove that ¢, (1) =m, (T),
and the proof is complete.

Theorem 2.5. Let T€B(X) be a semi-Fredholm operatior with the
stability index of T equal to zero and min. ind(T— AI)=codim R ( T—Al)in
the disk | A <s ( T) except possibly for the jumps w, (T}, r=1, 2, ... . Then for
each r=1, 2, ... we have

[w, (T =1im g, (TH)!'k.

Proof. By Lemma 2.4 and Theorem 2.2.

For Tin B(X) set N(T*)=UN(T"}and R(T*)=NR(T?). If Tis a semi-
Fredholm, then it is well known ([3, Theorem 4.1] see also [7, Theorem 35.2]
for general case) that the function A — ¥N((F'— A)*)+ R{(T— A)*) is constant,
say W everywhere in the disk |A]<s(T). Let us remark that W is closed,
hence Banach subspace in X (see ([5, pp. 517, Corollary 3.2] and [10,
Proposition 1.10]) or ([7, Remark 5.3] and [2, L.emma 3.6 (a) Theorem 3.8]))
The restriction of T to the subspace W has been studied in [2], [5), [7] and
[10]. Now we have ‘
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Theorem 2.6, Let T B(X) be a semi-Fredholm operator, and w, (T),
r=1, 2,...are as above, Then for each w (T), r=1, 2,... we have

lw ()] =1im g, (7w) *)%.

. Proof. By [5, Theorem 4.1] and [3, Theorem 4] we know that

everywhere in the disk |A]| <<s(7T) we have that W= R{(T— X))@ N,, where
N, is finite dimensional subspace T~invariant and (T— A), is nilpotent on it
{see alse [7, Remark 5.3]). Thus by [2, Theorem 3.4] we have that {T—X\)
(M) =(T—X) (R(T—N)") & N)=R{(T—N=) & (T—A) (M. Thus,
(T—A)ywis semi-Fredholm, dim W/ R((T— A)|»)<* and the stability index
of T\ is zero ([5, Proposition 2.6]). Let us remark that w,(T), r=1, 2, ... are
jumps (with the same multiplicity) in the semi-Fredholm region of T|y. Now
the proof of the theorem follows by Theorem 2.5.

-
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