REVISTA MATEMATICA de la Universidad Complutense de Madrid Volumen 5, números 2 y 3; 1992. http://dx.doi.org/10.5209/rev_REMA.1992.v5.n2.17909

On Slice Knots in the Complex Projective Plane

AKIRA YASUHARA

ABSTRACT. We investigate the knots in the boundary of the punctured complex projective plane. Our result gives an affirmative answer to a question raised by Suzuki. As an application, we answer to a question by Mathieu.

1. INTRODUCTION

Throughout this paper, we work in the smooth category, all manifolds are oriented and all the homology groups are with integral coefficients.

Let M be a closed 4-manifold, B^4 an embedded 4-ball in M, and K a knot in $\partial(M-\operatorname{Int} B^4)$. If K bounds a properly embedded 2-disk in $M-\operatorname{Int} B^4$ then we call the knot K a slice knot in M. Let Slice(M) be the set of slice knots in M. It is well-known that $Slice(S^4)$ is proper subset of the set of knots (Fox and Milnor [3]) and $Slice(S^4)$ is a subset of Slice(M). In [17], Suzuki proved that $Slice(S^2 \times S^2)$ is equal to the set of knots, and asked the following question.

Question 1. Is there a 4-manifold M such that $Slice(S^4)$ is a proper subset of Slice(M) and Slice(M) is a proper subset of the set of knots?

In [20], the author has proved that $Slice(CP^2)$ does not contain a (-2,15)-torus knot. This assertion gives an affirmative answer to Question 1 since $Slice(S^4)$ is a proper subset of $Slice(CP^2)$ (Kervaire and Milnor [6]). In [20], the author could not find a knot that belongs to neither $Slice(CP^2)$ nor $Slice(\overline{CP^2})$. In Section 2, we show that there exist the knots that belongs to neither $Slice(CP^2)$ nor $Slice(\overline{CP^2})$.

1991 Mathematics Subject Classification: 57M25; 57M13, 57R95. Editorial Complutense. Madrid, 1992.

Let K be a knot $\inf \frac{\partial(n_1CP^2 \# n_2\overline{CP^2} - \text{Int } B^4)}{\overline{CP^2}}$. The knot K is an evenly slice knot $\inf \frac{\partial(n_1CP^2 \# n_2\overline{CP^2} - \text{Int } B^4)}{\overline{CP^2}}$ if K bounds a properly embedded 2-disk in $n_1CP^2 \# n_2\overline{CP^2} - \text{Int } B^4$ that represents an element $z(\varepsilon_1 \gamma_1 + ... + \varepsilon_{n_1} \gamma_{n_1} + \varepsilon_{n_1} \gamma_{n_1} + ... + \varepsilon_{n_2} \overline{\gamma_{n_2}})$ in $H_2(n_1CP^2 \# n_2\overline{CP^2} - \text{Int } B^4, \partial)$, where $\gamma_1, ..., \gamma_{n_1}, \overline{\gamma_1}, ..., \overline{\gamma_{n_2}}$ are standard generators of $H_2(n_1CP^2 \# n_2\overline{CP^2} - \text{Int } B^4, \partial)$, $\varepsilon_i = \pm 1$, $\overline{\varepsilon_j} = \pm 1$ and z is an integer. Let e-Slice $(n_1CP^2 \# n_2\overline{CP^2})$ be the set of evenly slice knots in $n_1CP^2 \# n_2\overline{CP^2}$. (Note that e-Slice $(CP^2) = \text{Slice }(CP^2)$ and e-Slice $(\overline{CP^2}) = \text{Slice }(\overline{CP^2})$.) In Section 3, we deal with in the case $n_1 = n_2 = 1$ or $n_1 = 0$.

Let K_0 be a knot and D^2 a 2-disk intersecting transversely K_0 with the linking number $lk \cdot (\partial D^2, K_0) = l$. Let p be a positive integer and $\varepsilon = \pm 1$. By performing $\frac{\varepsilon}{p}$ —Dehn surgery along ∂D^2 , we have a new knot. The new knot is said to be the knot obtained from K_0 by an $(\varepsilon p, l)$ -twisting. Let \mathcal{K}_p be the set of knots obtained from a trivial knot by an $(\varepsilon p, l)$ -twisting for some integer l and $\varepsilon = \pm 1$. Section 4 is devoted to two applications. Our first application is to find infinitely many knots that give a negative answer to the following question given by Mathieu [12].

Question 2. For any knot K, is there a positive integer p such that $K \in \mathcal{H}_p$?

Our second one is to find infinitely many counterexamples to the following conjecture made by Akbulut and Kirby.

Conjecture. If K is a knot with Arf invariant zero, then K is obtained from a slice knot by a $(\pm 1, \pm 1)$ -twisting. (Problem 1.46 (B) of [9].)

It is shown that a (2,7)-torus knot cannot be obtained from a ribbon knot by a (|,|)-twisting by using Donaldson's outstanding theorem [1, Theorem 1] (see [10]). Since then Donaldson improved this result to drop "simply connectedness assumption" [2, Theorem 1], a (2,7)-torus knot cannot be obtained from a slice knot by a (|,|)-twisting. Here we give infinitely many counterexamples in different knot cobordism classes.

Similar results for Question 2 were obtained independently by Katura Miyazaki [13].

1. PRELIMINARIES

In this section we introduce some useful lemmas to us. In particular, Lemmas 1.8 and 1.11 are key lemmas in this paper.

Let α , β be the standard generators of $H_2(S^2 \times S^2)$ with $\alpha^2 = \beta^2 = 0$, $\alpha \cdot \beta = 1$ and let γ or γ_i (resp. $\bar{\gamma}$ or $\bar{\gamma}_i$) be the standard generator of $H_2(CP^2)$ (resp. $H_2(\overline{CP^2})$) with $\gamma^2 = \gamma_i^2 = 1$ (resp. $\bar{\gamma}^2 = \bar{\gamma}_i^2 = -1$). From now on a homology class in $H_2(M-\text{Int }B^4, \partial)$ is identified with its image by the homomorphism

$$H_2(M-\operatorname{Int} B^4, \partial) \stackrel{\cong}{\leftarrow} H_2(M-\operatorname{Int} B^4) \rightarrow H_2(M).$$

Let l and m be nonnegative integers and $\varepsilon = \pm 1$. An $(\varepsilon l, m)$ -torus link is the link that wraps around the standardly embedded solid torus in S^3 in the longitudinal direction l times and in the meridional direction m times, where the intersection number of the meridian and longitude is ε . When l and m are relatively prime, it is a knot and called an $(\varepsilon l, m)$ -torus knot. An $(\varepsilon l, m)$ -torus knot is denoted by $T(\varepsilon l, m)$.

Let L be a μ -component link in S^3 . Let $f_i: I \times I \to S^3$, i = 1, ..., m-1 $(m \le \mu)$ be mutually disjoint embeddings such that

- (i) $f_i(l \times l) \cap L = f_i(l \times \partial l)$ for each i (i = 1, ..., m-1) and
- (ii) the link $L' = Cl(L \cup \bigcup f_i(\partial I \times I) \bigcup f_i(I \times \partial I))$ has the orientation compatible with that of $L \bigcup f_i(I \times \partial I)$ and $\bigcup f_i(\partial I \times I)$.

The link L' is said to be the link obtained from L by m-fusion if the number of the components of L' is $\mu-m$. In particular if the number of the components of L' is one, then L' is said to be the knot obtained from L by complete fusion. We call the images $f_1(I \times I), ..., f_m(I \times I)$ the strips connecting L. Let $\mathcal{F}_{ex}(\varepsilon=\pm 1, x \ge 0)$ be the set of knots obtained from a $(2\varepsilon, 4x)$ -torus link by 1-fusion. Note that a knot K belongs to \mathcal{F}_x if and only if the reflected inverse -K! belongs to \mathcal{F}_{-x} .

1.1. Lemma. For any knot $K \in \mathcal{T}_{ex}$, there exists an embedded 2-disk Δ in $S^2 \times S^2 - \text{Int } B^4$ such that Δ represents an element $2\alpha + 2\epsilon x\beta$ in $H_2(S^2 \times S^2 - \text{Int. } B^4)$ and $\partial \Delta \subset \partial (S^2 \times S^2 - \text{Int. } B^4)$ is -K!.

Proof. We first deal with the case that $K \in \mathcal{T}_x$. It is easily seen that there exist mutually disjoint 2x+2 properly embedded 2-disks $\Delta_1, ..., \Delta_{2x+2}$ in $S^2 \times S^2 - \operatorname{Int} B^4$ such that $\bigcup \Delta_i$ represents an element $2\alpha + 2x\beta$ and $\partial (\bigcup \Delta_i) \subset \partial (S^2 \times S^2 - \operatorname{Int} B^4)$ is a Figure 1. Since a (-2,4x)-torus link is obtained from $\partial (\bigcup \Delta_i)$ by 2x-fusion, there exist 2x+1 strips $b_1, ..., b_{2x+1}$ connecting the link $\partial (\bigcup \Delta_i)$ such that $\Delta = \Delta_1 \cup ... \cup \Delta_{2x+2} \cup b_1 \cup ... \cup b_{2x+1}$ is an embedded 2-disk in $S^2 \times S^2 - \operatorname{Int} B^4$ and $\partial \Delta \subset (S^2 \times S^2 - \operatorname{Int} B^4)$ is -K!.

The above argument remains valid in case $K \in \mathcal{T}_{-x}$ \square

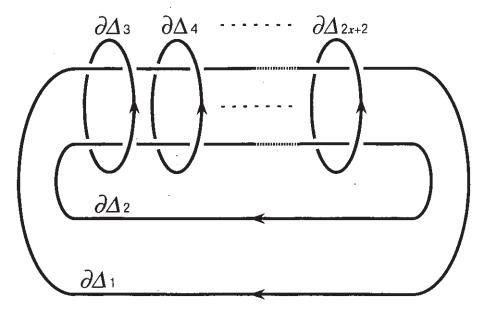


Figure 1

1.2. Lemma. For any knot $K \in \mathcal{T}_{\varepsilon x}$, there exists an embedded 2-disk Δ in $CP^2 \# \overline{CP^2} = \operatorname{Int} B^4$ such that Δ represents an element $(2x + \varepsilon) \gamma + (2x - \varepsilon) \bar{\gamma}$ in $H_2(CP^2 \# \overline{CP^2} - \operatorname{Int} B^4)$, and $\partial \Delta \subset \partial (CP^2 \# \overline{CP^2} - \operatorname{Int} B^4)$ is $-K^1$.

Proof. We first deal with the case that $K \in \mathcal{T}_x$. Let $O_1 \cup O_{-1}$ be a 2-component trivial link in ∂B^4 such that O_j is framed by j ($j=\pm 1$). By considering the "Kirby's calculus"[8] as Figure 2, we note that there exist mutually disjoint 2x+1 properly embedded 2-disks $\Delta_1, \ldots, \Delta_{2x+1}$ in $CP^2\#\overline{CP^2}-\operatorname{Int} B^4$ such that $\bigcup \Delta_i$ represents an element (2x+1) $\gamma+(2x-1)$ $\bar{\gamma}$ in $H_2(CP^2\#\overline{CP^2}-\operatorname{Int} B^4, \partial)$ and $\partial (\bigcup \Delta_i) \subset \partial (CP^2\#\overline{CP^2}-\operatorname{Int} B^4)$ is as Figure 3. Since a (-2,4x)-torus link is obtained from $\partial (\bigcup \Delta_i)$ by (2x-1)-fusion, there exist 2x strips b_1,\ldots,b_{2x} connecting the link $\partial (\bigcup \Delta_i)$ such that $\Delta=\Delta_1\cup\ldots\cup\Delta_{2x+1}\cup b_1\cup\ldots\cup b_{2x}$ is an embedded 2-disk in $CP^2\#\overline{CP^2}-\operatorname{Int} B^4$ and $\partial\Delta \subset \partial (CP^2\#\overline{CP^2}-\operatorname{Int} B^4)$ is -K!.

By considering the Kirby's calculus as in Figure 4, the above argument remains valid in case $K \in \mathcal{T}_{-x}$

1.3. Lemma. (Rohlin [16]) Let M be a connected, simply connected, closed 4-manifold. If $\xi \in H_2(M)$ is represented by an embedded 2-sphere in M, then

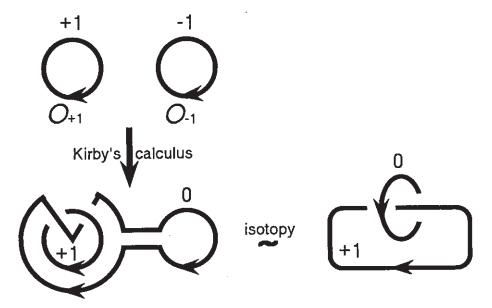


Figure 2

- (a) $\left|\frac{\xi^2}{2} \sigma(M)\right| \le \text{rank } H_2(M) \text{ if } \xi \text{ is divisible by 2,}$
- (b) $\left|\frac{\xi^2(q^2-1)}{2a^2} \sigma(M)\right| \le \text{rank } H_2(M) \text{ if } \xi \text{ is divisible by an odd prime}$

integer q, where $\sigma(M)$ is the signature of M.

- **1.4. Lemma.** (Weintraub [18], Yamamoto [19]) Let K be a knot. If the unknotting number of K is less than or equal to u then there exists embedded 2-disk Δ in $u(CP^2\#\overline{CP^2})$ Int B^4 such that Δ represents the zero element in $H_2(u(CP^2\#\overline{CP^2})$ Int B^4 , ∂) and $\partial\Delta \subset \partial(u(CP^2\#\overline{CP^2})$ Int B^4) is $K^!$.
- **1.5.** Lemma. (Lawson [11]) Let $\xi \in H_2(\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2})$ be a characteristic element. The element ξ is represented by a 2-sphere in $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$ if and only if $\xi^2 = -1$.
- 1.6. Lemma. (Lawson [11]) Let $\xi \in H_2(CP^2 \# n\overline{CP^2})$ $(n \ge 3)$ be a characteristic element. If ξ is represented by a 2-sphere in $CP^2 \# n\overline{CP^2}$ then $\xi^2 \le -2$.

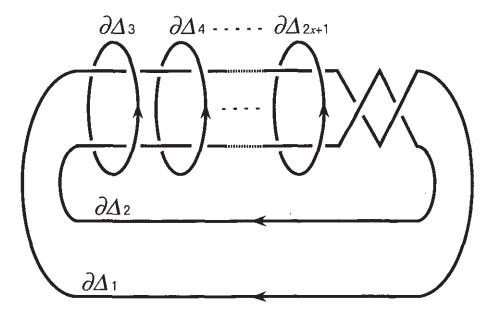


Figure 3

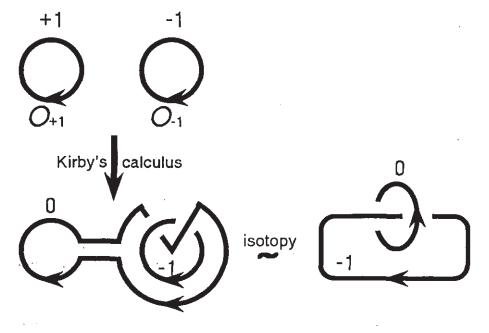


Figure 4

- 1.7. Lemma. (Kikuchi [7]) Let $\xi \in H_2(CP^2 \# 3\overline{CP^2})$ be a <u>characteristic</u> element. The element ξ is represented by a 2-sphere in $CP^2 \# 3\overline{CP^2}$ if and only if $\xi^2 = -2$.
- **1.8.** Lemma. Let p be a positive integer and x a nonnegative integer. Let $K \in \mathcal{T}_x$ be a knot such that the unknotting number of K is less than or equal to u. If $K \in e$ -Slice($p \ \overline{CP^2}$) then there exists an integer z such that z satisfies a condition

(a)
$$\frac{8x-4}{p} \le z^2 \le \frac{4u}{p} + 4$$
 and z is even, or

(b)
$$\begin{cases} z^2 = 8x + 1 & \text{if } p = 1, \\ z^2 = 4x + 1 & \text{if } p = 2, \\ \frac{8x + 2}{p} \le z^2 \le \frac{9}{2} \left(\frac{u}{p} + 1 \right) & \text{and } z \text{ is odd if } p \ge 3. \end{cases}$$

- **Proof.** Suppose that $K \in \mathcal{T}_x \cap e$ -Slice $(p\overline{CP^2})$ and the unknotting number of K is less than or equal to u. Since $K \in \mathcal{T}_x \cap e$ -Slice $(p\overline{CP^2})$, there exists an integer z such that
 - (1) $2\alpha + 2x\beta + z(\bar{\epsilon}_1 \bar{\gamma}_1 + ... + \bar{\epsilon}_p \bar{\gamma}_p) \in H_2(S^2 \times S^2 \# p \overline{CP^2})$ is represented by a 2-sphere in $S^2 \times S^2 \# p \overline{CP^2}$ and
 - (2) $(2x+1)\gamma + (2x-1)\overline{\gamma} + z(\overline{\epsilon}_1\overline{\gamma}_1 + ... + \overline{\epsilon}_p\overline{\gamma}_p) \in H_2(CP^2\#(p+1)\overline{CP^2})$ is represented by a 2-sphere in $CP^2\#(p+1)\overline{CP^2}$,

by Lemmas 1.1, 1.2 and the definition of evenly slice knots. Since the unknotting number of K is less than or equal to u, by Lemma 1.4,

(3) $z(\bar{\epsilon}_1 \bar{\gamma}_1 + ... + \bar{\epsilon}_p \bar{\gamma}_p)$ is represented by a 2-sphere in $p \overline{CP^2} \# u(CP^2 \# \overline{CP^2})$.

In case that z is even. By Lemma 1.3, (1) and (3),

$$\left|\frac{8x-pz^2}{2}+p\right| \leq p+2,$$

$$\left|\frac{-pz^2}{2} + p\right| \le p + 2u.$$

It follows that

$$\frac{8x-4}{p} \le z^2 \le \frac{4u}{p} + 4.$$

In case that z is odd and $|z| \ge 3$. By Lemma 1.3 and (3), there exists an odd prime integer q such that

$$\left|\frac{-pz^2(q^2-1)}{2q^2}+p\right| \leq p+2u.$$

This implies

$$(1-1) z^2 \leq \frac{9}{2} \left(\frac{u}{p} + 1 \right).$$

We note that

$$(1-2) 1 < \frac{9}{2} \left(\frac{u}{p} + 1 \right).$$

The inequations (1-1) and (1-2) imply that any odd integer z satisfies

$$(1-3) 1 \leq z^2 \leq \frac{9}{2} \left(\frac{u}{p} + 1 \right).$$

Moreover if z is odd then $(2x+1)\gamma + (2x-1)\bar{\gamma} + z(\bar{\epsilon}\bar{\gamma}_1 + ... + \bar{\epsilon}_p\bar{\gamma}_p)$ is a characteristic element in $H_2(CP^2\#(p+1)CP^2)$. By Lemmas 1.5, 1.6, 1.7 and (2),

(1-4)
$$8x - z^2 = -1 \text{ if } p = 1,$$

(1-5)
$$8x - 2z^2 = -2 \text{ if } p = 2,$$

(1-6)
$$8x - pz^2 \le -2 \text{ if } p \ge 3.$$

By (1-3), (1-4), (1-5) and (1-6), we have

$$z^2 = 8x + 1$$
 if $p = 1$,

$$z^2 = 4x + 1$$
 if $p = 2$,

$$\frac{8x+2}{p} \le z^2 \le \frac{9}{2} \left(\frac{u}{p} + 1 \right) \text{ if } p \ge 3.$$

This completes the proof. \square

Suppose that knots K_+ and K_- have representatives in S^3 that are identical outside a 3-ball within which they are as in Figure 5. Then we say that K_- is obtained from K_+ by changing a positive crossing and that K_+ is obtained from K_- by changing a negative crossing. We define the positive unknotting number (resp. negative unknotting number) of a knot K, to be the minimum, over all sequences transforming K to be a trivial knot, of the number of positive (resp. negative) crossings which are changed. If K cannot be a trivial knot by changing only positive (resp. negative) crossings, then we define the positive unknotting number (resp. negative unknotting number) of K is infinite.

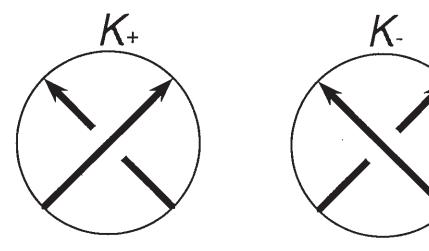


Figure 5

- 1.9. Lemma. (Weintraub [18]) Let K be a knot. If the positive unknotting number (resp. negative unknotting number) of K is less than or equal to u, then there exists an embedded 2-disk Δ in $u\overline{CP^2}$ —Int B^4 (resp. uCP^2 —Int B^4) such that Δ represents the zero element in $H_2(u\overline{CP^2}$ —Int B^4 , ∂) (resp. $H_2(uCP^2$ —Int B^4 , ∂)) and $\partial\Delta \subset \partial (uCP^2$ —Int B^4) (resp. $\partial\Delta \subset \partial (uCP^2$ —Int B^4)) is $-K^!$.
- 1.10. Lemma. (Kervaire and Milnor [6]) Let M be a connected, simply connected, closed 4-manifold. Let $\xi \in H_2(M)$ be a characteristic element. If ξ is represented by an embedded 2-sphere in M, then $\xi^2 \equiv \sigma(M) \mod 16$.

1.11. Lemma. Let p be a positive integer and x a nonnegative integer. Let $K \in \mathcal{T}_{-x}$ be a knot such that the negative unknotting number of K is finite. If $K \in e$ -Slice $(p\overline{CP^2})$ then there exists an integer z such that z satisfies a condition

(a)
$$z^2 \le 4 + \frac{4-8x}{p}$$
 and z is even, or

(b)
$$\begin{cases} z^2 = 1 \text{ only if } x = 0 \text{ and } p = 1, 2, \\ z^2 = 1 \text{ only if } x \equiv 0 \mod 2 \text{ and } p \ge 3. \end{cases}$$

Proof. Suppose $K \in \mathcal{I}_{-x} \cap e$ -Slice $(p\overline{CP^2})$ and the negative unknotting number of K is u. Since $K \in \mathcal{I}_{-x} \cap e$ -Slice $(p\overline{CP^2})$, there exists an integer z such that

- (4) $2\alpha 2x\beta + z(\bar{\epsilon}_1 \bar{\gamma}_1 + ... + \bar{\epsilon}_p \bar{\gamma}_p) \in H_2(S^2 \times S^2 \# p \overline{CP^2})$ is represented by a 2-sphere in $S^2 \times S^2 \# p \overline{CP^2}$ and
- (5) $(2x-1)\gamma + (2x+1)\overline{\gamma} + z(\overline{\epsilon}_1\overline{\gamma}_1 + ... + \overline{\epsilon}_p\overline{\gamma}_p) \in H_2(CP^2\#(p+1)\overline{CP^2})$ is represented by a 2-sphere in $CP^2\#(p+1)\overline{CP^2}$,

by Lemmas 1.1, 1.2 and the definition of evenly slice knots. Since the negative unknotting number of K is u, by Lemma 1.9,

(6) $z(\bar{\epsilon}_1 \bar{\gamma}_1 + ... + \bar{\epsilon}_p \bar{\gamma}_p)$ is represented by a 2-sphere in $p \overline{CP^2} \# u CP^2$.

In case that z is even. By Lemma 1.3 and (4),

$$\left| \frac{-8x - pz^2}{2} + p \right| \le p + 2.$$

This implies

$$z^2 \leq 4 + \frac{4 - 8x}{p}.$$

In case that z is odd. If $|z| \ge 3$, then by Lemma 1.3 and (6), there exists an odd prime integer q such that

$$\left| \frac{-pz^2(q^2-1)}{2a^2} + p - u \right| \le p + u.$$

It follows that

$$z^2 \leq \frac{9}{2}$$
.

This is a contradiction. Thus |z| = 1. Moreover, by Lemmas 1.5, 1.7, 1.10 and (5), we have

$$-8x - pz^2 = -p$$
 if $p = 1, 2,$
 $-8x - pz^2 = -p \mod 16.$

Since |z| = 1,

$$-8x = 0$$
 if $p = 1, 2,$
 $-8x \equiv 0 \mod 16.$

This implies

$$x=0$$
 if $p=1, 2$,
 $x\equiv 0 \mod 2$.

This completes the proof. \square

2. SLICE KNOTS IN CP^2 or $\overline{CP^2}$

In this section we shall prove the following two theorems.

- **2.1.** Theorem. Let x be a positive integer.
- (a) If Slice $(\overline{CP^2})$ contains T(2,4x-1), then 2x-1, 2x or 8x+1 is a square number.
- (b) If Slice $(\overline{CP^2})$ contains T(2,4x+1), then 2x, 2x+1 or 8x+1 is a square number.
- **2.2.** Theorem. Let t be a nonnegative integer. The set Slice $(\overline{CP^2})$ does not contain T(-2, 2t+1) if and only if $t \ge 2$.
- **2.3.** Remark. Since $Slice(CP^2)$ contains a knot K if and only if $Slice(\overline{CP^2})$ contains -K!, $Slice(CP^2)$ contains T(l,m) if and only if

Slice $(\overline{CP^2})$ contains T(-l, m). It follows that Theorems 2.1 and 2.2 imply that there exist infinitely many integer $x_i (i=1, 2, ...)$ such that $T(2, 2x_i + 1)$ belongs to neither Slice (CP^2) nor Slice (CP^2) for any x_i .

2.4. Lemma. For any $\underline{T}(2\varepsilon, 4x+1)$ ($\varepsilon = \pm 1, x \ge 0$), there exists an embedded 2-disk Δ in $CP^2 \# \overline{CP^2} - \operatorname{Int} B^4$ such that Δ represents an element $(2x+1+\varepsilon)\gamma + (2x+1-\varepsilon)\bar{\gamma}$ in $H_2(CP^2 \# \overline{CP^2} - \operatorname{Int} B^4, \bar{\sigma})$ and $\bar{\sigma}\Delta \subset \bar{\sigma}(CP^2 \# \overline{CP^2} - \operatorname{Int} B^4)$ is $T(-2\varepsilon, 4x+1)$.

Proof. By considering the Kirby's calculus as in Figure 2, we note that there exist mutually disjoint 2x+2 properly embedded 2-disk $\Delta_1, ..., \Delta_{2x+2}$ in $CP^2\#\overline{CP^2}-\operatorname{Int} B^4$ such that $\bigcup \Delta_i$ represents an element $(2x+2)\,\gamma+2x\bar{\gamma}$ in $H_2(CP^2\#\overline{CP^2}-\operatorname{Int} B^4,\partial)$ and $\partial(\bigcup \Delta_i)\subset \partial(CP^2\#\overline{CP^2}-\operatorname{Int} B^4)$ is as Figure 6. Since a (-2,4x+2)-torus link is obtained from $\partial(\bigcup \Delta_i)$ by 2x-fusion, there exist 2x+1 strips $b_1,...,b_{2x+1}$ connecting the link $\partial(\bigcup \Delta_i)$ such that $\Delta=\Delta_1\cup\ldots\cup\Delta_{2x+2}\cup\underline{b_1}\cup\ldots\cup b_{2x+1}$ is an embedded 2-disk in $CP^2\#\overline{CP^2}-\operatorname{Int} B^4$ and $\partial\Delta\subset\partial(CP^2\#\overline{CP^2}-\operatorname{Int} B^4)$ is T(-2,4x+1).

By considering the Kirby's calculus as in Figure 4, the above argument remains valid for T(-2, 4x+1). \Box

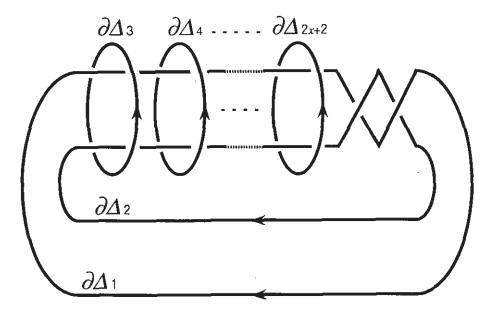


Figure 6

Proof of Theorem 2.1. Suppose $T(2,4x-1) \in Slice(\overline{CP^2})$. Since the unknotting number of T(2,4x-1) is 2x-1, $T(2,4x-1) \in \mathcal{T}_x$ and $e\text{-Slice}(\overline{CP^2}) = Slice(\overline{CP^2})$, by Lemma 1.8, there exists an integer z such that z satisfies a condition

$$(2-7) 8x-4 \le z^2 \le 8x \text{ and } z \text{ is even, or}$$

$$(2-8) z^2 = 8x + 1.$$

We set z=2k in (2-7), then we have

$$2x - 1 \le k^2 \le 2x.$$

It follows that

$$(2-9) k^2 = 2x - 1, 2x.$$

By (2-8) and (2-9), we obtain Theorem 2.1 (a).

Suppose $T(2,4x+1) \in Slice(\overline{CP^2})$. Since the unknotting number of T(2,4x+1) is 2x and $T(2,4x+1) \in \mathcal{T}_x$, by LEmma 1.8, there exists an integer z such that z satisfies a condition

(2-10)
$$8x-4 \le z^2 \le 8x+4$$
 and z is even, or

$$(2-11) z^2 = 8x + 1.$$

The fact that T(2,4x+1) belongs to $Slice(\overline{CP^2})$ and Lemma 2.4 imply that $(2x+2)\gamma+2x\bar{\gamma}+z\bar{\gamma}_1\in H_2(CP^2\#2\overline{CP^2})$ is represented by a 2-sphere in $CP^2\#2\overline{CP^2}$. If z is even, then by Lemma 1.3, we have

$$\left|\frac{8x+4-z^2}{2}+1\right| \leq 3.$$

This implies

$$(2-12) 8x \le z^2 \le 8x + 12.$$

By (2-10) and (2-12), we have

$$(2-13) 8x \le z^2 \le 8x + 4 \text{ and } z \text{ is even.}$$

We set z = 2k in (2-13) then

$$2x \le k^2 \le 2x + 1.$$

It follows that

$$(2-14) k^2 = 2x, 2x+1.$$

By (2-11) and (2-14), we obtain Theorem 2.1 (b). \Box

2.5. Proposition. If $t \ge 3$ then $Slice(\overline{CP^2})$ does not contain T(-2, 2t+1).

Proof. Note that \mathcal{T}_{-X} contains both T(-2, 4x-1) and T(-2, 4x+1) and that the negative unknotting number of T(-2, 4x-1) and that the negative unknotting number of T(-2, 4x+1) are finite. If $Slice(\overline{CP^2})$ contains T(-2, 4x-1) or T(-2, 4+1), then by Lemma 1.11, there exists an integer z such that z satisfies a condition

(2-15)
$$z^2 = 8 - 8x$$
 and z is even, or

(2-16)
$$z^2 = 1$$
 and $x = 0$.

The conditions (2-15) and (2-16) imply

$$x = 0, 1.$$

This completes the proof. \Box

- **2.5.1.** Remark. By the proofs of Lemma 1.11 and Proposition 2.5, we note that if $Slice(\overline{CP^2})$ contains T(-2,5) then there exists a properly embedded 2-disk Δ in $\overline{CP^2}$ -Int B^4 such that Δ represents the zero element in $H_2(\overline{CP^2}-\operatorname{Int} B^4,\partial)$ and $\partial\Delta\subset\partial(\overline{CP^2}-\operatorname{Int} B^4)$ is T(-2,5).
 - **2.6.** Proposition. The set Slice $(\overline{CP^2})$ does not contain T(-2,5).

Proof. Suppose $Slice(\overline{CP^2})$ contains T(-2,5). Remark 2.5.1 and Lemma 2.4 imply that $2\gamma + 4\bar{\gamma} \in H_2(CP^2 \# \overline{CP^2})$ is represented by a 2-sphere in $CP^2 \# 2\overline{CP^2}$. By Lemma 1.3, we have

$$\left|\frac{4-16}{2}+1\right| \le 3.$$

This is a contradiction. \square

Proof of Theorem 2.2. By Propositions 2.5 and 2.6, if $t \ge 2$ then $Slice(\overline{CP^2})$ does not contain T(-2, 2t+1). If t=0 or 1 then $Slice(\overline{CP^2})$ contains T(-2, 2t+1), see Proposition 3.7. \square

3. EVENLY SLICE KNOTS IN n₁ CP²#n₂ CP²

In [15], Norman proved that $Slice(CP^2 \# \overline{CP^2})$ is equal to the set of knots, but the following theorem implies that there exist infinitely many knots that do not belong to e-Slice $(CP^2 \# \overline{CP^2})$, i.e., e-Slice $(CP^2 \# \overline{CP^2})$ is a proper subset of $Slice(CP^2 \# \overline{CP^2})$.

- 3.1. Theorem. Let t be a nonnegative integer and $\varepsilon = \pm 1$. The set e-Slice $(CP^2 \# \overline{CP^2})$ contains $T(2\varepsilon, 2t+1)$ if and only if t=0 or 1.
- 3.2. Lemma. (Hirai [4]) Let $\xi \in H_2(2(CP^2 \# \overline{CP^2}))$ be a characteristic element. The element ξ represented by a 2-sphere in $2(CP^2 \# (\overline{CP^2}))$ if and only if $\xi^2 = 0$.
- **3.3.** Proposition. For $\varepsilon = \pm 1$, if $t \ge 3$ then e-Slice $(CP^2 \# \overline{CP^2})$ does not contain $T(2\varepsilon, 2t+1)$.

Proof. Let x be a nonnegative integer. If either $T(2\varepsilon, 4x-1)$ or $T(2\varepsilon, 4x+1)$ belongs to e-Slice $(CP^2\#\overline{CP^2})$ then there exists an integer z such that

- (7) $2\alpha + 2\varepsilon x\beta + z(\varepsilon_1 \gamma_1 + \overline{\varepsilon}_1 \overline{\gamma}_1) \in H_2(S^2 \times S^2 \# CP^2 \# \overline{CP^2})$ is represented by a 2-sphere in $S^2 \times S^2 \# CP^2 \# \overline{CP^2}$ and
- (8) $(2x+\varepsilon) \gamma + (2x-\varepsilon) \bar{\gamma} + z(\varepsilon_1 \gamma_1 + \hat{\varepsilon}_1 \bar{\gamma}_1) \in H_2(2(CP^2 \# \overline{CP^2}))$ is represented by a 2-sphere in $2(CP^2 \# \overline{CP^2})$,

by Lemmas 1.1, 1.2 and the definition of evenly slice knots. If z is even, then by Lemma 1.3 and (7),

$$\left|\frac{8\varepsilon x}{2}\right| \leq 4.$$

This implies

If z is odd, then by Lemma 3.2 and (8),

$$8ex = 0$$

It follows that if $x \ge 2$, then neither $T(2\varepsilon, 4x - 1)$ nor $T(2\varepsilon, 4x + 1)$ belongs to e-Slice $(CP^2 \# \overline{CP^2})$. This completes the proof. \square

3.4. Proposition. The set e-Slice $(CP^2 \# \overline{CP^2})$ does not contain $T(2\varepsilon, 5)$ for $\varepsilon = \pm 1$.

Proof. Suppose e-Slice $(CP^2 \# \overline{CP^2})$ contains $T(2\varepsilon, 5)$. Proof of Proposition 3.3 and Lemma 2.4 implies that there exists an even integer z such that $(3+\varepsilon)\gamma + (3-\varepsilon)\bar{\gamma} + z(\varepsilon_1\gamma_1 + \bar{\varepsilon}_1\bar{\gamma}_1) \in H_2(2(CP^2 \# CP^2))$ is represented by a 2-sphere in $2(CP^2 \# CP^2)$. By Lemma 1.3, we have

$$\left|\frac{12\varepsilon}{2}\right| \leq 4.$$

This is a contradiction. \square

Proof of Theorem 3.1. By Propositions 3.3 and 3.4, if $t \ge 2$ then e-Slice $(CP^2 \# \overline{CP^2})$ does not contain $T(2\varepsilon, 2t+1)$. If t=0 or 1 then e-Slice $(CP^2 \# \overline{CP^2})$ contains $T(2\varepsilon, 2t+1)$, see Proposition 3.7. \square

The same arguments as proof of Theorem 2.1 and Proposition 2.5 lead to the following Theorem 3.5 and Proposition 3.6, respectively.

- **3.5.** Theorem. Let x be a positive integer.
 - (a) If e-Slice $(2\overline{CP^2})$ contains T(2,4x-1) then x or 4x+1 is a square number.
 - (b) If e-Slice $(2\overline{CP^2})$ contains T(2,4x+1) then x, x+1 or 4x+1 is a square number.
- **3.6.** Proposition. If $t \ge 3$ then e-Slice $(2\overline{CP^2})$ does not contain T(-2, 2t+1).
- 3.7. **Proposition.** Let K be a knot. If the positive unknotting number or the negative unknotting number of K is less than or equal to p, then both e-Slice (pCP^2) and e-Slice (pCP^2) contain K.

Proof. Suppose K is a knot and the positive or negative unknotting number of K is less than or equal to p. Let L_{ϵ} be the Hopf link in $\partial (CP^2-\operatorname{Int} B^4)$ with linking number $\varepsilon(\varepsilon=\pm 1)$. It is easily seen that L_{ϵ} bounds a properly embedded 2-disk in $CP^2-\operatorname{Int} B^4$ that represents an element $(1-\varepsilon)\gamma$ in $H_2(CP^2-\operatorname{Int} B^4,\ \partial)$. Since the positive or negative unknotting number of K is less than or equal to p, K is obtained from the p copies of L_{ϵ} by complete fusion. It follows that K bounds a properly embedded 2-disk in $pCP^2-\operatorname{Int} B^4$ that represents an element $(1-\varepsilon)(\varepsilon_1\gamma_1+\ldots+\varepsilon_p\gamma_p)$ in $H_2(pCP^2-\operatorname{Int} B^4,\ \partial)$. This implies that K belongs to e-Slice (pCP^2) .

The above argument remains valid to show that K belongs to e-Slice $(p\overline{CP^2})$. This completes the proof. \square

By Propositions 3.6 and 3.7, we have the following theorem.

- **3.8. Theorem.** Let t be a nonnegative integer. The set e-Slice $(2\overline{CP^2})$ does not contain T(-2, 2t+1) if and only if $t \ge 3$.
- **3.9.** Theorem. For any integer $p \ge 3$, e-Slice $(p\overline{CP^2})$ contains neither T(2, 8p+3) nor T(-2, 8p+3).

Proof. Suppose that $e ext{-Slice}(p\overline{CP^2})$ contains T(2,8p+3). Since T(2,8p+3) belongs to \mathcal{T}_{2p+1} and the unknotting number of T(2,8p+3) is 4p+1, by Lemma 1.8, there exists an integer z such that z satisfies a condition

(3-17)
$$\frac{16p+4}{p} \le z^2 \le \frac{16p+4}{p} + 4 \text{ and } z \text{ is even, or}$$

(3-18)
$$\frac{16p+10}{p} \le z^2 \le \frac{9}{2} \left(\frac{4p+1}{p} + 1 \right) \text{ and } z \text{ is odd.}$$

Since $p \ge 3$, (3-17) and (3-18) imply

$$16 < z^2 < 25$$
 and z is even,

$$16 \le z^2 \le 25$$
 and z is odd.

This is a contradiction.

Suppose that e-Slice $(p\overline{CP^2})$ contains T(-2, 8p+3). Since T(-2, 8p+3) belongs to \mathcal{I}_{2p-1} and the negative unknotting number of T(-2, 8p+3) is

finite, by Lemma 1.11, there exists an integer z such that z satisfies the following condition

$$z^2 \le 4 + \frac{-16p - 4}{p - 2} < 0.$$

This is a contradiction.

- **3.10.** Claim. Let K be a knot. Neither e-Slice (pCP^2) nor e-Slice $(p\overline{CP^2})$ contains K if and only if e-Slice $(p\overline{CP^2})$ contains neither K nor -K!.
- **3.11.** Remark. By Theorem 3.9 and Claim 3.10, we have that T(2, 8p+3) belongs to neither e-Slice (pCP^2) nor e-Slice (pCP^2) for any $p \ge 3$.

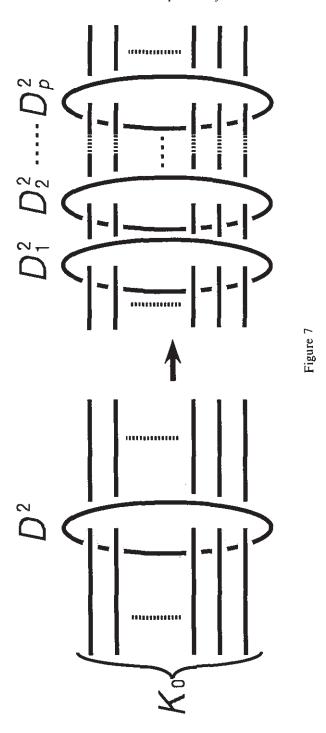
4. APPLICATIONS

4.1. Proposition. If $K \in \mathcal{K}_p$ then K belongs to either e-Slice (pCP^2) or e-Slice (pCP^2) .

Proof. If $K \in \mathcal{H}_p$ then there exists a 2-disk D^2 and a trivial knot K_0 in S^3 such that K is obtained from K_0 by $\frac{\varepsilon}{p}$ —Dehn surgery along ∂D^2 . We take the parallel copies D_1^2 , ..., D_p^2 of D^2 as in Figure 7. It is easily seen that K is obtained from K^0 by Dehn surgery along $\partial (\bigcup D_i^2)$ in which the surgery coefficients are all ε . Suppose that K_0 and $\bigcup D_i^2$ are in the boundary of a 4-ball B_0^4 , then K_0 bounds a properly embedded 2-disk Δ in B_0^4 . Let $\{h_i^2\}$ $(1 \le i \le p)$ be 2-handles on B_0^4 whose attaching sphere are $\{\partial D_i^2\}$ and all framings are ε . We note that $K_0 \subset \partial (B_0^4 \cup \bigcup h_i^2)$ is K, K bounds the 2-disk Δ in $B_0^4 \cup \bigcup h_i^2$ and $B_0^4 \cup \bigcup h_i^2$ is deffeomorphic to either punctured pCP^2 or punctured pCP^2 . Let the punctured pCP^2 and punctured pCP^2 be denoted by pCP^2 —Int B^4 and pCP^2 —Int B^4 , respectively. Suppose the linking number $lk(K_0, \partial D^2) = z$ then $lk(K_0, \partial D_i^2)$ ($1 \le i \le p$) are the same number as z. It is not hard to see that Δ represents either an element $z(\varepsilon_1 \gamma_1 + ... + \varepsilon_p \gamma_p)$ in $H_2(pCP^2 - \text{Int } B^4, \partial)$ or an element $z(\varepsilon_1 \bar{\gamma}_1 + ... \bar{\varepsilon}_p \bar{\gamma}_p)$ in $H_2(pCP^2 - \text{Int } B^4, \partial)$. This implies that K belongs to either e-Slice (pCP^2) or e-Slice (pCP^2) .

By Remark 3.11, Proposition 4.1 and the definition of evenly slice knots, we have the following theorem.

4.2. Theorem. For any integer $p \ge 3$, \mathcal{H}_p does not contain any knot that is cobordant to T(2, 8p+3).



By Lemmas 1.8 and 1.11, we have the following proposition.

- **4.3.** Proposition. For any p $(1 \le p \le 5)$, e-Slice $(p\overline{CP^2})$ contains neither T(2,75) nor T(-2,75).
- By Claim 3.10, Propositions 4.1, 4.3 and the definition of evenly slice knots, we have the following proposition.
- **4.4.** Proposition. For any p $(1 \le p \le 5)$, \mathcal{H}_p does not contain any knot that is cobordant to T(2,75).
- **4.5.** Lemma. (Motegi [14]) If $p \ge 6$ then \mathcal{K}_p does not contain any composite knot.
- Let K be a nontrivial slice knot. Proposition 4.4 and Lemma 4.5 imply that \mathcal{K}_p does not contain T(2,75)#K for any $p \ge 1$. Hence we have the following theorem that gives a negative answer to Question 2.
- **4.6.** Theorem. There exist infinitely many knots that do not belong to any \mathcal{K}_p $(p \ge 1)$.

Let K be a knot in $\partial(CP^2\#\overline{CP^2}-\operatorname{Int} B^4)$. If K is obtained from a slice knot by a $(\pm 1, \pm 1)$ -twisting, then by proof of Proposition 4.1, K bounds a properly embedded 2-disk in $CP^2\#\overline{CP^2}-\operatorname{Int} B^4$ that represents an element $\pm \gamma_1$ or $\pm \bar{\gamma}_1$ in $H_2(CP^2\#\overline{CP^2}-\operatorname{Int} B^4, \partial)$. It follows that K bounds a properly embedded 2-disk in $CP^2\#\overline{CP^2}-\operatorname{Int} B^4$ that represent an element $\pm \gamma_1 + \bar{\gamma}_1$ or $\gamma_1 \pm \bar{\gamma}_1$ in $H_2(CP^2\#\overline{CP^2}-\operatorname{Int} B^4, \partial)$. We have the following proposition.

4.7. Proposition. If K is obtained from a slice knot by $(\pm 1, \pm 1)$ -twisting, then K belongs to e-Slice $(CP^2 \# \overline{CP^2})$.

Since a $(\pm 1, \pm 1)$ -twisting does not change the Arf invariant of a knot, thus $T(2\epsilon, 3)$ cannot be obtained from a slice knot by a $(\pm 1, \pm 1)$ -twisting. By Theorem 3.1, Proposition 4.7 and the definition of evenly slice knots, we have the following theorem.

4.8. Theorem. Let t be a nonnegative integer and $\varepsilon = \pm 1$. A knot cobordant to $T(2\varepsilon, 2t+1)$ is obtained from a slice knot by a $(\pm 1, \pm 1)$ -twisting if and only if t=0.

If $2t+1\equiv\pm 1 \mod 8$, then the Arf invariant of $T(2\varepsilon, 2t+1)$ is zero (for example, see p266 in [5]). Thus Theorem 4.8 gives infinitely many counterexamples to Conjecture.

Acknowledgement. The author would like to thank Professor Shin'ichi Suzuki for his encouragement.

References

- [1] S. K. Donaldson: An application of gauge theory to four-dimensional topology, J. Diff. Geometry, 18 (1983), 279-315.
- [2] S. K. Donaldson: The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Diff. Geometry, 26(1987), 397-428.
- [3] R. H. Fox and J. W. MILNOR: Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J, Math., 3 (1966), 257-267.
- [4] Y. HIRAI: Representing homology classes of connected sums of 2-sphere bundles over 2-spheres, Kobe J. Math., 6(1989), 233-240.
- [5] L. H. KUAFFMAN: On knots, Ann. of Math. Studies, 115, Princeton Univ. Press, Princeton, N. J., (1987).
- [6] M. A. KERVAIRE and J. W. MILNOR: On 2-sphere in 4-manifolds, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 1651-1657.
- [7] K. KIKUCHI: Representing positive homology classes of $CP^2\#2\overline{CP^2}$ and $CP^2\#3\overline{CP^2}$, to appear in Proc. Amer. Math. Soc.
- [8] R. KIRBY: A calculus for framed links in S³, Invent. Math. 45 (1978), 35-56.
- [9] R. KIRBY: Problems in low-dimensional manifold theory, Proc. Symp. Pure Math. 32, American Mathematical Society, Providence, Rhode Island (1978), 273-312.
- [10] R. KIRBY: 4-manifold problems, Contemp. Math., 35(1984), 513-528.
- [11] T. LAWSON: Representing homology classes of almost definite 4-manifolds, Michigan Math. J., 34 (1987), 85-91.
- [12] Y. MATHIEU: Sur des noeuds qui ne sont pas déteminés par leur complément et problémes de cirugie dans les variétés de dimension 3, These, L'Université de Provence, 1990.
- [13] K. MIYAZAKI: private communication.
- [14] K. MOTEGI: Primeness of twisted knots, prepint.
- [15] R. A. NORMAN: Dehn's Lemma for certain 4-manifolds, Invent. Math., 7(1969), 143-147.
- [16] V. A. ROHLIN: Two-dimensional submanifolds of four-dimensional manifolds, Functional Anal. Appl., 5(1974), 39-48.
- [17] S. SUZUKI: Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad., 45 (1969), 34-38.
- [18] S. H. WEINTRAUB: Inefficiently embedded surfaces in 4-manifolds, Algebraic Topology Aarhus 1978 (J. L. Dupont and I. H. Madsen, eds.), Lecture Notes in Math., 763, Springer-Verlag, Berlin and New York, 1979.
- [19] M. YAMAMOTO: Lower bounds for the unknotting numbers of certain torus knots, Proc. Amer. Math. Soc., 86(1982), 519-524.

[20] A. YASUHARA: (2, 15)-torus knot is not slice in CP², Proc. Japan Acad. ser. A. Math. Sci., 67 (1991), 353-355.

Department of Mathematics School of Science and Engineering Waseda University Tokyo 169-50 JAPAN

Recibido: 18 de marzo de 1992,