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On Slice Knots in the Complex
Projective Plane

AKIRA YASUHARA

ABSTRACT. We investigate the knots in the boundary of the punctured complex
projective plane, Qur result gives an affirmative answer to a question raised by
Suzuki. As an application, we answer to a question by Mathicu.

1. INTRODUCTION

Throughout this paper, we work in the smooth category, all manifolds are
oriented and all the homology groups are with integral coefficients.

fet M be a closed 4-manifold, B* an embedded 4-bali in M, and K a knot
in d (M — Int BY. If K bounds a properly embedded 2-disk in M — Int B4 then
we call the knot K a slice knot in M. Let Slice (M) be the set of slice knots in
M. Tt is well-known that Slice(S5*) is proper subset of the set of knots (Fox
and Milnor [3]) and Slice (§*) is a subset of Slice (M). In [17], Suzuki proved
that Slice (§2x §?) is equal to the set of knots, and asked the following
question.

Question 1. Is there a 4-manifold M such that Slice (S*) is a proper
subset of Slice (M) and Slice (M) is a proper subset of the set of knots?

In [20], the author has proved that Sfice (CP?) does not contain a (—2,15)-
torus knot. This assertion gives an affirmative answer to Question 1 since
Slice (5§*%) is a proper subset of Slice (CP?) (Kervaire and Milnor [6]). In [20],
the author could not find a knot that belongs to neither Slice (CP?) nor
Slice (CP?). In Section 2, we show that there exist the knots that belongs to
neither Slice (CP?) nor Slice (CP?).
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Let K be a knot in 3(n, CP2#n,CP? — lat BY. The knot K is an evenly slice
knot in EPZ#nZE}'TZ if K bounds a properly embedded 2-disk in
mCPHn, CP2—1Int B* that represents an element z(g, y;+.- t &y, Y, +
B it &y, V) in Hy(m CP24m,CP2—Int BY,9), where | ..., Y, Vi veves Ty
are standard generators of H, (nICPZ{f_nLE‘?wIm B%d),e,=%1,§==1and
z is an integer. Let e-Stice (n, CP?#n,CP?) be the set of evenly slice knots in
m CP#n,CP2. (Note that e-Slice(CP?) = Slice(CP?) and e-Slice (CP?) =
Slice (CP%).) In Section 3, we deal with in the case n,=n,=1 or n,=0.

Let Ky be a knot and D? a 2-disk intersecting transversely K, with the
linking number /& (8D?, K;)=1 Let p be a positive integer and e==+1. By
performing £ —Dehn surgery along 302, we have a new knot. The new knot

is said to be the knot obtained from Kj by an (ep, )-twisting. Let %, be the
set of knots obtained from a trivial knot by an (gp, /)-twisting for some integer
land ¢ =1 1. Section 4 is devoted to two applications. Our first application
is to find infinitely many knots that give a negative answer to the following
question given by Mathieu [12].

Question 2. For any knot K, is there a positive imeger 14 such that Ke
2
e

Our second one is to find infinitely many counterexamples to the
following conjecture made by Akbulut and Kirby.

Conjecture. If K is a knot with Arf invariant zero, then K is obtained
from a slice knot by a (£1, &1)-twisting. (Problem 1.46 (B) of [9].)

It is shown that a(2, 7)-torus knot cannot be obtained from a ribbon knot
by a (i,|)-twisting by using Donaldson’s outstanding theorem [1, Theorem 1]
(see [10]). Since then Donaldson improved this result to drop “simply
connectedness assumption” [2, Theorem I], a (2, 7)-torus knot cannot be
obtained from a slice knot by a (|,|)-twisting. Here we give infinitely many
counterexamples in different knot cobordism classes.

Similar results for Question 2 were obtained independently by Katura
Miyazaki[13].
1. PRELIMINARIES

In this section we introduce some useful lemmas to us. In particular,
Lemmas 1.8 and [.11 are key lemmas in this paper.
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Let @, 8 be the standard generators of H,{$2x $?) with 2= §2=0,
a-B=1 and let vy or y, (resp. v or ¥;) be the standard generator of H,(CP?)
(resp. H, (CP?) with y2= v2=1(resp. ¥*= <y}=—1). From now on a homology
class in H,(M —Int B*, d) is identified with its image by the homomorphism

H,(M—Int B%, 3) = H,(M — Int BY) — H,(M).

Let / and m be nonnegative integers and e ==x1. An (ef, m)-torus link is
the link that wraps around the standardly embedded solid torus in 87 in the
lengitudinal direction / times and in the meridional direction m times, where
the intersection number of the meridian and longitude is e. When / and m are
relatively prime, it is a knot and called an (ef, m)-torus knot. An (el, m)-torus
knot is denoted by T(el, m).

Let L be a p-component link in 82, Let f;: IXI— 83, i=1,.m—-1(m=y)
be mutually disjoint embeddings such that

(i) fi(IxDNOL=f(Ix 3I) for each i (i=1,...,m—1) and

(i) the link L'=CI(LUU f,(dIxD—J f;(IxdN) has the orientation
compatible with that of L—VU f;(Ix3I) and U f;@Ix ).

The link L’ is said to be the link obtained from L by m-fusion if the
number of the components of L’ is 4 — m. In particular if the number of the
components of L’ is one, then L’ is said to be the knot obtained from L by
complete fusion. We call the images f, (Ix 1) ,..., f,. (Ix I) the strips connecting
L. Let %, .(e==1,x=0) be the set of knots obtained from a (2e, 4x)-torus
link by 1-fusion. Note that a knot K belongs to < if and only if the reflected
inverse —K' belongs to & ,.

1.1. Lemma. Forany knot K€ 9, there exists an embedded 2-disk A
in S*x §2—Int B such that A represents an element 2a+2exf in
Hy(52x 82— Int. B4, d) and JAC I (2% 2 —Int. BY) is — K.

Proof. We first deal with the case that K€ 7. It is easily seen that there
exist mutually disjoint 2x+2 properly embedded 2-disks Ai,..., Ay,4, in
S$2x 52 — Int B such that U A, represents an element 2a+2x8 and ¢ (U A)C
d(5?x 52— Int B%) is a Figure 1. Since a (—2,4x)-torus link is obtained from
d(LUA)) by 2x-fusion, there exist 2x+1 strips by ,..., by,+ connecting the link
d(UA) such that A=A U .UA, ,Ub U...Uby, 4 is an embedded 2-disk
in §2x §2—Int B* and AT (52x 5% —Int B*) is— K.

The above argument remains valid in case Ke %_, 0
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aA 4 ~°~°°=- aA 2x+2
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1.2. Lemma. Forany knot K€ 7, there exists an embedded 2-disk A

in CPMY CPI_Int B such that A represents an element 2x+¢e)y+(2x—¢g)y
in H,(CP2#CPI—1Int. B, 3) and SACH(CP2ECP:—1Int BY) is— K'_.

Proof. We first deal with the case that K€ % Let O;UO_; be a
2-component trivial link in dB? such that O; is framed by j (j==I). By
_considering the “Kirby’s calculus”[8] as Figure 2, we note that there exist
mutually disjoint 2x+1 properly embedded 2-disks Ay,..., A4, in
CPX CP? —Int B such that \J A, represents an element (2x+1) y+(2x— yy
in H, (CP*#CP?—Int B*, d) and d(UA)C3(CP*#CP:—Int BY) is as Figure
3. Since a {—-2,4x)-torus link is obtained from d (UA)) by (2x —1)-fusion, there
exist 2x strips  by,..., by, connecting the link J(UJA;) such that
A=AU. Uy Ub, U..uU b, is an embedded 2-disk in CP2# CP? — Int B*

and JACI(CPHCPI~Int BY) is— K.

By ccnnsuiermg the Klrbys calculus as in Figure 4, the above argument
remains valid in case Ke 7, 0

1.3. Lemma. (Rohlin [16]) Let M be a connected, simply connected,
closed 4&-manifold. If € € H, (M) is represented by an embedded 2-sphere in M,
. then
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{a) '%2— o(M)} = rank H,(M) if £ is divisible by 2,

(b) §2(q2"_l) O'(M)‘ < rank H. . . ... .
g = (M) if € is divisible by an odd prime

2q’
integer g, where o (M) is the signature of M.

1.4. Lemma. (Weintraub [18], Yamamoto [19]) Let K be a knot. If the
unknotting number of K is less than or equal to u then there exists embedded
2-disk A in u(CPX# CPY — Int B* such that A represents the zero element in

H, (u(CP2HTP?) — Int B4, 8) and AC 3 (u(CPHCPY) —Int BY) is— K.

1.5. Lemma. (Lawson [11]) Let feHz(CPWZCP’-) be a characteristic
element. The element & is represented by a 2-sphere in CPXH2CP? if and only

ife=—1.

1.6. Lemma, (Lawson [11]) Let é€ H,(CP2EnCP?) (n=3) be a charac-
teristic element. If € is represented by a 2-sphere in CP2#n CP? then £2< -2,
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1.7. Lemma. (Kikuchi [7]) Let £€ H,(CP*#3CP?) be a_characteristic
element. The element £ is represented by a 2-sphere in CP43CP? if and only
if =-2.

1.8. Lemma. Ler p be a positive integer and x a nonnegative integer.
Let Ke 7, be a knot such that the unknotting number of K is less than or
equal to u. If K€ e-Slice(p CP?) then there exists an integer z such that z
satisfies a condition

(a) §)£—p——4- <72 %—4—4 and z is even, or

Z2=8x+1ifp=1,
l=dx+1 if p=2,
Bx+2 9(u

=zl — —+1)andzis odd if p=3.
> 2\ D if p

(b)

Proof. Suppose that K€ 7, Me-Slice (p CP?) and the unknotting number
of K is less than or equal to u. Since K€ &, Me-Slice (p CPY), there exists an
integer z such that

() 20+2xB+z(8 )+ ...+ 8,7,) € Hy(S2x S2#p CP?) is represented by
a 2-sphere in §2x §2#p CP? and

@ @x+D)y+Qx—-Dy+zE 7+ +87,)€ R (CP#(P+1)TPYis
represented by a 2-sphere in CP2#(p+1) CP2,

by Lemmas 1.1, 1.2 and the definition of evenly slice knots. Since the
unknotting number of K is less than or equal to u, by Lemma 1.4,

(3) z(& % +..+E,7,) is represented by a 2-sphere in
p CPIHu(CP2H CPY).

In case that z is even. By Lemma 1.3, (1) and (3),

' —p=2?
[Br=pz i pl<ptr,

_pzl
'—%{—-l-p'ip-l-Zu.
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It follows that

8x—4
P

4u
<2< Hig
“=p

In case that z is odd and {z| = 3. By Lemma 1.3 and (3), there exists an
odd prime integer g such that '

—pz2(g°—1)

oy +p‘£p+2u.
q
This implies
9f{u
- g Pl
(1-1) z_z(p +l).
We note that
9fu
(1-2) I<E(; -H).

The inequations (1-1) and (1-2) imply that any odd integer z satisfies
9 (u
- < L2l |
(1-3) l_z_z(le -H).

Moreover if z is odd then 2x+1)y+2x—=Dy+z@E% .. TE ¥} isa
characteristic element in H,(CP2#(p+ 1) CP?). By Lemmas 1.5, 1.6, 1.7
and (2),

(1-4) ' Bx—22=~1if p=1,
(1-5) Bx —222=-2if p=2,

(1-6) Bx—p2=_2if p=3.
By (1-3), (1-4), {1-5) and (1-6), we have
Z2=8x+1if p=1,

2=dx+1if p=2,
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8x+2 9 f{u
— o 2 - |= 1 -3
> —ZSZ(p +l)1fp_3.

This completes the proof. O

Suppose that knots K; and K_ have representatives in $3 that are
identical outside a 3-ball within which they are as in Figure 5. Then we say
that K_ is obtained from K by changing a positive crossing and that K, is
obtained from K by changing a negative crossing. We define the positive
unknotting number (resp. negative unknotting number) of a knot K, to be the
minimum, over all sequences transforming K to be a trivial knot, of the
number of positive (resp. negative) crossings which are changed. If K cannot
be a trivial knot by changing only positive (resp. negative) crossings, then we
define the positive unknotting number (resp. negative unknotting number) of

K is infinite.
K+ K-

Figure 5

1.9. Lemma. {Weintraub [18]) Ler K be a knot. If the positive unknotting
number (resp. negative unknotting number} of K is less than or equal 1o u,

then there exists an embedded 2-disk A in uCP? — Int B (resp. uCP* — Int BY)
such that A represents the zero element in H,(uCP?—Int B%, &) (resp.

H,(uCP? —Int B%, 9)) and dA C 3 (uCP? — Int B*) (resp. 9A Cd (uCP2—Int BY)
is— K

1.10. Lemma. (Kervaire and Milnor [6]) Let M be a connected, simply
connected, closed 4-manifold. Let § € Hy (M) be a characteristic element. If ¢
is represented by an embedded 2-sphere in M, then é2=¢ (M) mod 16.



264 Akira Yasuhara

1.11. Lemma. Ler p be a positive integer and x a nonnegative integer.
Let Ke &, be a knot such that the negative unknotting number of K is
finite. If K€ e-Slice (pCP?) then there exists an integer z such that z satisfies
a condition

(a) 22<4+

4 —8x .
I and z is even, or

Z=lonlyifx=0and p=1,2,
(b
2Z2=1 only if x=0mod 2 and p=3.

Proof. Sﬁppose Ke .‘7__;0 e-Slice (pﬁ)a_nd the negative unknotting

number of K is w. Since K€ % Ne-Slice (p CP?), there exists an integer z
such that

4) 20—2xB+z(& ¥+ ... £ 8 7)€ Hy (ST S2#p CP?) is represented by
a 2-sphere in $2x §2#p CP? and :

(5) Qx_ny+0x+uf+4aﬂ+m+¢ﬂ£§waww+nfﬁﬁs
represented by a 2-sphere in CP2#(p+1) CP?,

by Lemmas 1.1, 1.2 and the definition of evenly slice knots. Since the
negative unknotting number of K i1s », by Lemima 1.9,

(6) z(&y +..+E,7,) is represented by a 2-sphere in
pCPHuCP.

In case that z is even. By Lemma 1.3 and (4),

This implies

In case that z is odd. If |z] = 3, then by Lemma 1.3 and (6), there exists an
odd prime integer g such that

—pz*(q*—1)

2 +p—u|=ptu
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It follows that

9
R,

2

This is a contradiction. Thus |z| = 1. Moreover, by Lemmas 1.5, 1.7, 1.10
and {9), we have

—Bx—pf=—pifp=1,2,
—8x—pzi=—p mod 16.

Since |z] =1,

—Bx=0ifp=1, 2,

—8x=0 mod [6.
This implies
x=0ifp=1,2,
x=:0 mod 2.

This completes the proof. O

2. SLICE KNOTS IN CP? or CP?

In this section we shall prove the following two theorems.

2.1. Theorem. Let x be a positive integer.

(a) If Slice (CPY) contains T(2,4x—1), then 2x—1, 2x or 8x+1 is a
square number,

(b)Y If Slice(CPY contains T(2,4x+ 1), then 2x, 2x+1 or 8x+1 is a

square number.

2.2. Theorem. Lett bhe a nonnegative integer. The set Slice (CP?) does
not contain T(—2, 2t +1) if and only if t =2,

2.3. Remark. Since Slice(CP?) contains a knot K if and only if
Stice (CP?) contains —K', Slice(CP?) contains T([,m) if and only if
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Slice (CP?) contains T'(—/, m). It follows that Theorems 2,1 and 2.2 imply that
there exist infinitely many integer x,(i=1,2,...} such that T(2,2x,-+ 1)
belongs to neither Slice (CP2) nor Slice (CP?) for any x;.

24. Lemma. For any T(2e, 4x+1) (e=%x1, x=0), there exists an
embedded 2-disk Ain CP2# CP?—Int B* such that A represents an element
QCxt1+e)y+ 2x+1—e)¥in Hy(CP2ECP?—Int B, 3) and
JAC 3 (CPHCPI—Int BY is T(—2e, 4x+1).

Proof. By considering the Kirby’s calculus as in Figure 2, we note that
there exist mutually disjoint 2x+ 2 properly embedded 2-disk A,,..., A, 15 in
CPM CPI_ Int B* such that U A; represents an element (2x+2)7+2x7 in
H,(CP2#CP?—Int B, 9) and 3 (U A)CI(CP#CP?—Int BY is as Figure 6.
Since a (—2, 4x +2)-torus link is obtained from d (U A)) by 2x-fusion, there
exist 2x+1 strips &,,...., b2+, connecting the link a(UA) such that A=A,
U.. UAy ,Ub UL Ub2,+, is an embedded 2-disk in CP*# CP? —Int B* and
6‘AC8(CP2#CP2 Int BY is 7(=2,4x+1).

By considering the Kirby’s calculus as in Figure 4, the above argument
remains valid for T(-2,4x+1). O

BA 4 e aA 2x+2

QQQ/\/)

OA2

-

OA 1

Figure 6
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Proof of Theorem 2.I. Suppose T(2,4x— 1)& Slice (CP?). Since the
unknotting number_of 7T(2,4x—1) is 2x—1, T(2,4x- 1})€Z, and
e-Slice (CP?) = Slice (CP?), by Lemma 1.8, there exists an integer z such that
z satisfies a condition
2-7 8x—4=z2=8x and z is even, or
(2-8) 2=8x+1.

We set z=2k in (2-7}, then we have

x—1<=k?=2x

It follows that
29 k?=2x—1, 2x.
By {2-8) and {2-9), we obtain Theorem 2.1 (a).

Suppose T(2,4x+ 1) Slice(CP?). Since the unknotting number of
T(2,4x+1) is 2x and T(2,4x+1)e.7,, by LEmma [.8, there exists an
integer z such that z satisfies a condition
(2-10) 8x—4=<z2<8x+4 and z is even, or
(-11) 2=8x+1.

The fact that 7'(2,4x+- 1) belongs to Slice (CP?) and Lemma 2.4 imply that

Qx+2yy+2xy+zy,€ Ho(CP?#2CP?) is represented by a 2-sphere in
CP2#2CPL If ¢ is even, then by Lemma 1.3, we have

-Si_'i_—;;f"l-l =3.
This implies
(2-12) 8x<z2<8x+12.
By (2-10} and (2-12), we have
(2-13) Bx<z2=<8x-+4 and z is even,

We set z=2k in (2-13) then

2x=ki=2x+1.
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It follows that

{2-14) k?=2x, 2x+1.

By (2-11) and (2-14), we obtain Theorem 2.1 (b). U

2.5. Prapaosition. I (=3 then Slice (CP?) does not contain T(—2,
2t +1).

Proof. Note that %—x contains both 7(-2, 4x —1) and T{-2, 4x+1)
and that the negative unknotting number of T(—2,4x—1) and that the
negative unknotting number of T(—2,4x+1) are finite. If Slice (CP?)
contains 7(—2,4x—1) or T(=2,441), then by Lemma [.11, there exists an
integer z such that z satisfies a condition

(2-15) z2=8—8x and z is even, or
(2-16) z2=1 and x=0.
The conditions (2-15) and (2-16) imply
x=0,1.
This completes the proof. 0O
2.5.1. Remark. By the proofs of Lemma [.11 and Proposition 2.5, we
note that if Slzce(Cii)_contains T(—2,5) then there exists a properly

embedded 2-disk A in CP?— Int B* such that A represents the zero element in
H,{(CP?—1nt B*, 3) and dAC3(CP%—1nt B is T(=2,5).

2.6. Proposition. The set Slice (CP?) does not contain T(=2,53).

Proof. Suppose Shce(CPz) contains . 7(—2,5). Remark 2.5.1 and
Lemma 2.4 imply that 2y +4v€ H,(CP# CPY is represented by a 2-sphere
in CP2#2CP?. By Lemma 1.3, we have

4—16 ’
S =3
15

This is a contradiction. O
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Proof of Theorem 2.2. By Propositions 2.5 and 2.6, if =2 then
Slice (CP?) does not contain T(—2, 2¢t-+1). If t=0 or 1 then Slice(CP?)
contains T(—2, 2r-+1), see Proposition 3.7. O

3. EVENLY SLICE KNOTS IN n, CP?#n,CP?

In [15], Norman proved that Sfice (CP2# CP?) is equal to the set of knots,
but the following theorem implies that there exist infinitely many knots that
do not belong to e-Slice (CP2# CP?), i.e., e-Slice (CP*# CP?) is a proper subset
of Slice (CP*# CP?).

3.1. Theorem, Let ¢ be a nonnegative integer and e==k1. The set
e-Slice (CP*# CP) contains T(2e, 2t+ 1) if and only if t=0 or 1.

3.2. Lemma. (Hirai [4]) Ler é€ H,(2(CPM CPZ)) be a_characteristic
element. The element & represented by a 2-sphere in 2(CP*#(CP?) if and only

1f§2_

3.3. Proposition. Fore=21, if =23 then e-Slice (CP2H CP?) does not
contain T(2e, 21+1).

Proof. Let x be a nonnegative integer. If either T(2£: 4x—1) or T(2e,
4x-+ 1) belongs to e-Slice (CP*# CP?) then there exists an integer z such that

(M 2a+2exB+z(e,v,+E& v)€ H, (S?x S CPH CP?) is represented by
a 2-sphere in $2x S2# CP2# CP? and

8) Exte)yy+(x—e)ytz(e yvir& e H,(2 (CPZ#W)) 1s represen-
ted by a 2-sphere in 2{CP*# CF?,

by Lemmas 1.1, 1.2 and the definition of evenly slice knots. If z is even, then
by L.emma 1.3 and (7),

This implies
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If z is odd, then by Lemma 3.2 and (8),
8ex=0.

It follows that if x=2, then neither T(2¢, 4x — 1) nor T(2¢, 4x+1) belongs to
e-Slice (CP?# CP?). This completes the proof. 0

3.4. Proposition. The set e-Slice (CP2# CPY) does not comtain T(2g, 5)
fore==l, '

Proof. Suppose e-Slice (CP2# CP?) contains T(2¢, 5). Proof of Proposition

Bte)yt(3—e)ytzie vitEv) € Hy(2(CP#H CP?)) is represented by a 2-
sphere in 2(CP?# CP?). By Lemma 1.3, we have

This is a contradiction. [

Proof of Theorem 3.1. By Propositions 3.3 and 3.4, if 1 =2 then e-Slice
(CP2# CP?) does not contain T(2e, 2:41). If 1=0 or 1 then e-Slice (CP*# CP?)
contains T(2¢, 2t +1), see Proposition 3.7. 0

The same arguments as proof of Theorem 2.1 and Proposition 2.5 lead to
the following Theorem 3.5 and Proposition 3.6, respectively,

3.5. Theorem, Ler x be a positive integer.

(a) If e-Slice(2 CP?) contains T(2,4x—1) then x or 4x+1 is a square
number.

(b)  If e-Slice (2 CP?) contains T(2,4x +1) then x, x+1 or 4x+1 is a
square number.

3.6. Proposition, If 1=3 then e-Slice (2 CP?} does not contain T(—2,
2t+1).

3.7. Proposition. Let K be a knot. If the positive unknotting number
or the negative unknouting number of K is less than or equal 10 p, then both
e-Slice (pCP2) and e-Slice (pCP2) contain K.
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Proof. Suppose K is a knot and the positive or negative unknotting
number of K is less than or equal to p. Let L, be the Hopf link in
d(CP?—Int B*) with linking number e(e==l). It is easily seen that L,
bounds a properly embedded 2-disk in CP?—Int B* that represents an
element (1 —¢)y in H,(CP?—Int B4, d). Since the positive or negative
unknotting number of K is less than or equal 10 p, K is obtained from the p
copies of L, by complete fusion. It follows that K bounds a properly
embedded 2-disk in pCP?—Int B* that represents an element (1 —g)
(& yvit...+e,v,) in Hy(pCP2—Int B4, ). This implies that K belongs to e-
Slice (pCP?).

The above argument remains valid to show that K belongs to e-Slice
(pCP?). This completes the proof. 0

By Propositions 3.6 and 3.7, we have the following theorem.

3.8. Theorem. Let ¢ be a nonnegative integer. The set e-Slice (2 CP?)
does not contain T(=2, 2t+ 1) if and only if 123,

3.9. Theorem. For any integer p=3, e-Slice (pCP?) contains neither
T(2,8p+3) nor T(=2, 8p+3).

Proof. Suppose that e-Slice(pCP?) contains 7(2,8p+3). Since
T(2,8p+3) belongs to .%7,,4, and the unknotting number of 7(2,8p+3) is
4p+1, by Lemma 1.8, there exists an integer z such that z satisfies a condition

1E;+4 O [

- =< +4 and z is even, or
(3-17 z 7 z

(3-18) —ﬁ@;‘mszzs%( 47“"“‘10 -H)and zis odd.

Since p=3, (3-17) and (3-18) imply
16 <Cz2<(25 and z is even,
16<<z2<(25 and z is odd.
This is a contradiction.

Suppose that e-Sfice (p CP?) contains T(—2,8p—+3). Since T(—2,8p+3)
belongs to 7 ,,_; and the negative unknotting number of T(-2,8p+3) is
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finite, by Lemma 1.11, there exists an integer z such that z satisfies the
following condition

—16p—4

2
22=4+ —

<0.

This is a contradiction. [

3.10. Claim. Let X be a knot. Neither e-Slice (p CP?) nor e-Slice (p CP?)
contains K if and only if e-Slice (#CP?) contains neither K nor — K.

3.11. Remark. By Theorem 3.9 and Claim 3.10, we have that T'(2, 8p+3)

belongs to neither e-Slice (pCP?) nor e-Stice (pCP?) for any p=3.

4. APPLICATIONS

4.1. Proposition. [f K€ ¥, then K belongs to either e-Slice (p CP?) or
e-Slice (pC P?).

Proof. If K& %, then there exists a 2-disk D? and a trivial knot Kj in
$3such that K is obtained from K, by £ —Dehn surgery along d D2, We take
the parallel copies D1, ..., Df; of D? as 1n Figure 7. It is easily seen that K is
obtained from K® by Dehn surgery along d(U D% in which the surgery
coeflicients are all £, Suppose that Ky and UD? are in the boundary of a 4-
ball B}, then K, bounds a properly embedded 2-disk A in B} Let {A}}
(1=i<p) be 2-handles on B} whose attaching sphere are {dD?} and all
framings are €. We note that K,Cd(B§UUAY) is K, K bounds the 2-disk A
in BiUUh? and B{UUA? is deffeomorphic to cither punctured pCP? or
punctured p CP2. Let.the punctured pCP? and punctured pCP? be denoted by
pCP?—1Int B* and pCP? - Int B4, respectively. Suppose the linking number
Ik (Ko, D% =z then lk (K, d D?) (| = i< p) are the same number as z, It is not
hard to see that A represents either an element z(g, y,+..+¢,y,) in
H,(pCP2—Int B, 9) or an element z (8, , + ... &, ¥,) in H,(pCP?— Int B4 3).
This implies that K belongs to cither e-Slice (pCP?) or e-Slice (pCP?). O

By Remark 3.11, Proposition 4.1 and the definition of evenly slice knots,
we have the following theorem.

4.2. Theorem. For any integer p=3, %%, does not contain any knot
that is cobordant to T(2,8p+3).
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By Lemmas 1.8 and 1.11, we have the following proposition.

4.3. Proposition. For any p (1 =p<=15), e-Slice (p CP?) contains neither
T7(2,75) nor T(=2,75).

By Claim 3.10, Propositions 4.1, 4.3 and the definition of evenly slice
knots, we have the following proposition.

4.4. Proposition. For any p (1=p=5), 4, does not contain any knot
that is cobordant to T(2,75).

4.5. Lemma. (Motegi [14]) If p=6 then ‘%, does not comain any
composite knot.

Let K be a nontrivial slice knot. Proposition 4.4 and Lemma 4.5 imply
that %, does not contain 7'(2,75)# K for any p=1. Hence we have the
following theorem that gives a negative answer to Question 2.

4.6. Theorem. There exist infinitely many knots that do not belong to
any %, (p=1).

Let K be a knot in d(CP2# CP?— Int B%). If K is obtained from a slice knot
by a (1, £ 1)-twisting, then by proof of Proposition 4.1, K bounds a properly
embedded 2-disk in CP2# CP2—Int B* that represents an element Ty, or ¥,
in Hy(CP2# CP2—Int B, 3). It follows that K bounds a properly embedded
2-disk in CP?# CP?— Int B that represent an element £y, + ¥, or y, £ ¥, in
H,(CP*# CPI_1Int B4, d). We have the following proposition.

4.7. Proposition. - If K is obtained from a slice knot by (1, £1)-twisting,
then K belongs to e-Slice (CP2# CP?).

Since a (%1, £1)-twisting does not change the Arf invariant of a knot, thus
T'(2e, 3) cannot be obtained from a slice knot by a {(£1, X 1)-twisting. By
Theorem 3.1, Proposition 4.7 and the definition of evenly slice knots, we have
the following theorem. :

4.8. Theorem. Ler ¢ be a nonnegative integer and e==%1. A knot
cobordant to T(2e, 2t +1) is obtained from a slice knot by a (L1, £1)-twisting
if and only if t=0.
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If 2¢+ 1=%1 mod 8, then the Arf invariant of T(2e, 2t+1) is zero (for
example, see p266 in [5]). Thus Theorem 4.8 gives infinitely many
counterexamples to Conjecture.
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