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Qn a Non/mear Stationary Problem
in Unbounded Domains

CARLOS FREDERICO VASCONCELLOS

ABSTRACT. We study existence and sorne properties of solutions of the nonlinear
elliptic equation

N(x.aÚ¿j)Lu=f

In unbounded dornains. The aboye model is not a variational problern. Our
techniques involve fixed point arguments ami Oalerkin method.

1. INTRODUCTION

In this paper we present sorne results on Lhe following problem:

N(x,a(u,),)Lu=f in 12
(1.1)

u=0 on 812=F

where 12 is an open subset of RÑ, N=1 with boundary E, N is a real valued
function with domain flx[0»- oc) and Lis a differential operator defined by

M
6

~ (aii—+aúuxi
and

Ou 3u
a (u,) =>j f aú(x,)-r— — dx+f a,, (x,)u

2(x,)dxfI uX
1 3x1
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The origin of ibis problem can be found in Lions [6] ‘where dxc following
evolution problem connected with nonlinear vibrations was sLudied

u,,—M(I¡uj¡2)Auzf in Q=12x(0, 7’)
(1.2) u=0 on X=312x(0,D

u(O)=u
0 u’(0)=u¡

In(¡.2) Mis acontinuous real valued funetion whichsatisfies M(X)=m~,>0,
VXER and 12 is an open bounded set of 11N with smooth boundary r=812.

Menzala [7] solved the problem (1.2) wlien 12 = RM and the initial data are
smootlx functions.

Ebiliara-Miranda-Medeiros [3] solved tbe problen (¡.2) when 12 ¡5 an
open beunded set of RN witb srnooth boundary, M is a nonnegative
continuously differentiable real function and the initial daLa are smooth.

Recently Crippa [2] generalized the aboye paper using «1-lilbertien Inte-

gral» methods.

In Lions [6] the following prob<em was also proposed:

u,,— M(x, ¡¡uI¡
2)Au=f in Q

(1.3) u=0 on Z

u(O)=u
0 u’(O)=u~

This problem was solved in Riyera [8] wherx 12 is a smootlx open bounded
set of RN and

M(x,X)>ni >0 VxE12 VXcR

He used Galerkin method and the discrete spectrum of dxc Lapiacian

operator in bounded domains.
Wben 12 is a general unbounded open set of RN, in Vasconcellos [9] the

existence and uniqueness of the solution for the problern (<.3) was proved.
There, fixed poiní argumenis togeiher with energy methods were used.

The elliptic problem (¡.1) can not be defined like a variational problem,
that is, one can not fund a nonlinear functional Jdefined in a suitable Soboley
space, such that LIxe equation of problem (1<) is its Euler equation. Then, to
solve this problem we shall use a consequence of Brouwer fix point theorem
and Galerkin metI-xods.
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In the section 2 we prove an abstract existence theorern (Theorem 2.1).
Sorne properties about rixe set of soluíions are given.

In section 3 we apply the Theorem 2.1 Lo solve the problem (1.1) wben 12
‘s a general open subset of RM.

Qur assurnptions about Lhe mapping IV and Lhe operator L are described
rn §3.

2. AN ABSTRACT EXISTENCE THEOREM

Let libe a real separable l-lilbert space with inner product denoted by (.¡.)

and non

We consider a linear operator A in H, witlx the following properties:

(2.1) D(A,), the domain of A, is dense in U.

(2.2) A is a self-adjoint operator and there is a constant C
0>0 such that

(Au/u)=C0¡u¡
2,for each u in U.

(2.3) Ihe Hilbert space V=D(A’/2), with norm denoted by I¡v¡¡ = ¡A”2

for ‘a in Y, Ls compactly embeded on Ji.
Now, we denote by ~(H,) the space of the symmetric linear bounded

operators in U with the whole space as domain and we define the mapping

(2.4) For each u in U the mapping u— M(X)u, is continuous.

(2.5) There is m
0>O such that (M(X)u¡u)=m,,¡u¡

2for each
uin Hand X=O.

Theorem 2.1 (abstract existence theorem).
Under aboye hypotheses, (1 f belongs ¿o U, ¿líen ihere exisis u ¡u D (A)

suciz thai:

(2.6) M(¡¡u¡¡2)Au=f, ¡ti U.

To prove tI-xis ttxeorem, it is sufficient te sI-mw rtxat, fon fin U diere exists
‘a in 1/ such LI-mt:

(2.7) (M(¡u12)A”2v¡A’/2w)=(JIA’/2w), VoE V
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In fact, if ve 1/ satisfies (2.7), we define u=A’12v. Then, u belongs to
D(A,) and ¡¡uI¡2= ¡v¡2. Moreover, from (2.7) we obtain that:

(M(!¡u¡¡2)Au¡A”2en)=(j]A’/2 en), VCVE 1/

Since, a>=A’12z belongs to 1/ for every z in H we obtain (2.6).

Now, let us prove (2.7).

By (2.5) we obtain Lhat

(2.8) (M(¡v¡2)A’¡2v¡A’’2v)—(JA’12v)=ni
0 ¡¡v¡¡

2— ¡f ¡¡vb VvE ~“

By (2.3), we observe Lhat, ihe operator A has discrete spectrum, i.e., tIxere
exists a sequence of real numbers {X4, and a sequence {en~}, of elements in
D(A,) such that:

(2.10) hm X~=+co

(2.11)

(2.12) {a>~, en
2, ...} is a orthonorrnal complete set in H.

We denote by V~ the space generated by {en~, a>2 w4, v= 1,2, ... aud we
define P:R~—R~ by P(a1 a,j=(f3~ f3~), where

f3~= (vÍ(¡v~¡2)Á¡¡2 u5 ¡A’’
2 en

1 (flA /2 a>] ) , ,...,vy\
and

v,Z a,X ~‘
2en.1

1=’

By (2.4) and (2.8) we obtain tI-mt: P is a continuous function wI-xich
satisfies

(2.13) (Pa,a)=O V&ER~ such Lhat ¡iy¡ =1/1ni”

where ¡c~¡ { Z a}í/2 and (fi a) is a dot product in R~.
.1=’

Now, we recalí the following lemma:
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Lenima 2.1 Leí P: Ru— R~ be a coníinuous funcíions which sarisfies:
Eir>0 suclí 1/ial (Pcv.a)=0,Yac R~, ¡a¡=r. Then t½ereexisis a0ER”,
¡a,,l =r such thai P(ct,,,)=O.

This lemnia is a consequence of tlie Brouwer point fixed theorem and one
can find the proof, for example, in Lions [4] page 53.

So, by (2.13) and Lemma 2.1 we obtain for eaclx vEN a vector y3. in 1”.,
such Lhat:

(2.14) ¡lv3.¡ISivIfI~ vl,2
(3

(2.15) (M(¡v3.¡2)A~/2 u3.¡A’/
2 = (I1Á¡/2 ¿E.) ~= í

By (2.14) and assumption (2.3) diere is a subsequence, also denoted by
{u4, and u belonging to 1/ such tI-nt:

(2.16) hm u
3.=u xveak in 1/.

(2.17) hm v~=v strong in 11.

By (2.16), (2.17) and (2.4) we fix j and passing the limit in (2.15) we obtain
(2.7).

Remark 2.1 If u satisfies (2.6) it follows, by (2.5) that

<II(2.18) ¡Au¡

and therefore by (2.2)

(2.19) ¡u¡¡ =

Tbeorem 2.2 (Properties of the solutions).

Under rhe hypoíheses of ihe Tizeorein 2.1, 1ff belongs lo H ihen:

(2.20) Tize set x~={uED(’A,): M(¡¡u¡¡
2)Au=f} Ls a compací se: of 1/.
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(2.21) hin dv(xf. XL,)0 where dv(xp xQ=inf{¡¡u—u
0¡I :uEx1 u0Ex1I.

1—~!

(2.22) If MQ’jp=qiQQ¡,,, where 1,», is ihe ¡deníiíy operalor on H and 4.’:
R — [m0, + oc,) isa conrinuous increasingfuncíion, ihenfor each fe H
ihe sel Xf Ls a singleton.

To prove (2.20) we consider {u3.} a sequence in Xp then by (2.19), tIxere is
a subsequence of [u3.},also denoted by (u,] such that:

hm Au,,=Au weak in ¡1, where u belongs to D(A,).
“—.4.’,

Hence, by (2.3),

¡ini u3.=u strong in 1”.
“—.4.”

Since that (M(¡¡u3.¡¡
2)Aujv)=(Jlv) foralí y in Hand foreactx vEN, then

by assumptions about Al xve obtain that u beíongs to Xp

To proVe (2.21), let f~ be in H and ive consider L4} a sequence in II such
Lhat:

hm f=f, strong in H.“—.4.’,

For each c>0 we define I%= (vGN: dv(xj,,, xí,,)=e). We claim tIxat 1% is
a finite set.

In faét, suppose tIxat I’3. is an infinite set, then there is u: N — N strictly
¡ncreasing function such tI-mt u(N)= P~.

We denote by g
3. =f0~3.>. VvCN thus xve obtain, for each vG N, v~ in Xg3. and

therefore by (2.19) (Ay,] is a bounded sequence in H.

Hence tixere is a subsequence of (y,] (also denoted by (u3.)) and u in D(A,)
such that:

(2.23) hm Av3.=Au weak in H.

(2.24) hm u3.= u strong in y.

Since (Av3. ¡M(I¡u3.I¡2)en)=(g3.¡ a>), for alí a> in Vand ueN passing to limit
we obtain tlíat:

VCOE 1/.
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Iherefore, y belongs to x>r~ and moreover dv(xg3.~ xL)=¡Jv3,—v¡¡, veN.
Ihis proves (2.21) by contradxctton.

To prove (2.22) xve consider q belonging Lo Vand we define the following
functional:

(2.25) J~p)

where f belongs to Ji.

LeL u be in Xf then by (2.25) xve obtain that:

(2.26) hm J(u+i(p—u))—J(u) =0, flor a114’ tn 1/.
i—0 i

Now, since that g~,)=J(u+t(p— u)) is a differentiable convex function
on R we obtain that:

g(i,)—g(O) <g(¡)—g(0), 0<1<1

therefore by (2.26)

O = g’ (O)=g (1) — g (0)

so, J(u)=J(~p), V~e Vthat is, if ucxj~ we prove that

J(u,)=min{J(g);gc 1/).

Since J is strictly convex funetional we have (2.22).

3. APPLICATION TO A NONLINEAR PROBLEM

First, we need to present a compact immersion result for unbounded
domains, in weighted Sobolev spaces.

LeL 12 be an unbounded set of RM with the cone property and q: 12 R is
positive measurable funotion which satisfies the following properties

(3.1) qEL~0(O)

(3.2) hm q(x,)=O
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Let 19 (12, q) be the Hilbert space of measurables functions

u: 12— R such that f u(x)¡2q(x)dx<+oc endowed with Lhe norm

(3.3) ¡u¡ =1/ ¡u(x,)¡2 q(x,)dx]”2

Remark 3.1 Since the linear application u: L2 (12, q) — ¡¿2(12) defined by
0(u) = u v’ñ is a isometric isomorphism, then 19(11, q) is a separable Hilbert
space with inner product (u¡v)=f u(x)v(x)q(x,)dx u, vEL2(f1,q).

Proposition 3.1 (compact immersion).

The Sobo/ev space II’ (f1)is compactlv cinheded ¡ti 19(12, q,).

This proposition is proved in Eenci-Fortunato [1] corollary 2.10.

Remark 3.2 It is possible to consider, in the aboye proposition, 12 a
general open unbounded set of RM, if we replace Lhe assumption (3.2) by

(3.4) hm q4v)=O x
0e812 and hm q(x,)=O.

In this case xve can see the corollary 2.9 in Henci-Fortunato [1].

Let IV: Dx [0, + oc) — R be a function satisfying Lhe following assumptions:

(3.5) ¡‘¿(xv): [O,+oc)—.R is a continuous function a.e. in xc12.

(3.6) N(’,X):12—R belongs to L~(12), VX=O.

(3.8) There exists ni0>0 such that N(x, A) =m0,V(x, X)G12x[0,+oc).

We consider Hz 2(12, q) where q satisfies (3.1) and (3.2) (or (3.4)).

Now, we define VX>O the operator M(X) in H by

(3.9) M(X)u= N(~, X)u, udH.

Then VX>O, M(X)EÁ/4H,) and by (3.5)—(3.8), the mapping M:
[O,+oo)~ £/(I-f,) satisfies (2.4) and (2.5).
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Wc consider a,~ 1, j= 1v.., n and a,, elements of L~(12) which satisfy:
‘2

(3.10) Thereisc0>Osuch diaL ~ a~(x)q,q.>c (Q+...+q~> a.e. in fiand

a,, (x,)=c.,a.e, in 12.

(3.11) ap=a¡¡ tj=l ,..., n.

3( &u ‘~

We define the d¡fferential operator tu = — ~ p\a¡j7) +a,,u, u~n
1-4(12) and the bilinear form a: H¿(12)x 14(12) — R by

du 8v r
a(u,v)=Z f a,1(x,)j— .y— dx+J a0(x,) u (x,) y (x) dx.

By (3.10) and (3.11) aQ~) is a synxmetric, coercive, continuous bilinear
forrn.

We define D(A,)=iuCH<~412):~!~LuEL2(12,q)). Then, by (3.10), (3.11)
q ¡and Proposition 3.1, the operator A:D(A,)GH—H defined by Au=—Lu,q

UCD(A), satisfies (2.2), (2.2) and (2.3), where V=D(A¡I2)~H’ (12) with dxc
norm ¡¡ u¡¡ = A”

2 u¡ = [a(u, u)]”2 =

Now, by Theorem 2.1, if f belongs to H = ¡¿2(12, q), there exists u in
14(12) sucI-x that:

(3.12) N(x,a(u),)Lu=qf(x)a.e. md.

Therefore, if j’belongs to 19(12 1.) by (3.12) we obLain Lhat, there exists
uE HI(12) such that: q

(3.13) N(x,a(u))Lu=f(x,)a.e. in 12.

Rcmark 3.2 If we consider qEL~(fil) we obtain that L2(fi,~) is con-q
tained in ¡¿2(12). In general, if Q is dic set of q: 12— R which belong tu L”(12)

and satisfy (3.2) (or (3.4)) then X= U ¡¿2(12 —) is a dense subset of 19(12).

Remark 3.3 If O is an general open bounded subset of RM, we consider
H = ¡¿2(12) and the problem (1.1) has a solution u in Hft12) flor each fin L2 (12).
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Remark 3.4 lf we consider IV: [O,+ oc) — [m0, + oc) increasing eontinuous
function, Lhen by Tlieorem 2.2, tlie problem

N(a(u,),)Lu=f in 12

uzs0 on 612

has an unique solution u in 14(12), for each fe H.

Where H= ¡¿2(12 1.) ~í 11 is an open unbounded set or H— L2(fl) 1112 is

an open bounded set)

Remark 3.5 AIí tixe solutions of tIxe problem (¡.1) have the properties
given by the TIxeorem 2.2.
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