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On Vector Fields in € without a Separatrix

J. OLIVARES-VAZQUEZ

ABSTRACT. A family of germs at 0 of holomorphic vector fields in ¢* without
separatrices is constructed, with the aid of the blown-up foliation Finthe blown-up
manifold @ We impose conditions on the multiplicity and the linear part of & at its
singular points (i.e. non-semisimplicity and certain nonresonancy), which are
sufficient for the original vector field to be separatrix-free.

A separatrix of a germ of a holomorphic vector field W in @ is a germ of
an analytic curve 6 at 0 tangent to W. The aim of this work is to construct
a locally closed algebraic subvariety

Mcig- ®C3,0

such that every vector field of algebraic multiplicity 4+ 1 whose (d+2)— jet
lies in % does not have a separatrix.

The exposition and main ideas folow [4]. In a few lines, these are as
follows: One considers a polynomial vector field W in @, with non-vanishing
homogeneous terms only in degrees d-+ 1 and d+ 2, the foliation .% it induces
in a neighbourhood of 0 @3, and the blown-up foliation %; on @2 for which
the exceptional divisor E=@P? is invariant and non-dicritical (i.e. % is
tangent to, and not identically zero on E).

We fix a projective line < C E and a finite set of points {p,}«c; on it, and

impose the following conditions on the coefficients of the vector field W:
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(i) Zis tangent to %,
{ii) Each p, is an isolated smgulamy of %..

(iii) 3, 1(F; p)=c2(Ly® TEP?) (Where p is the Milnor Number of
the singularity).

(iv) At each p, the linear part D W(p,) of £, has a non-zero double
eigenvalue whose generalized eigenspace V is not tangent to E, and

v) DW(p|yis non-semisimple.
The terms of degree d+ 2 play a role only in (v).

It has been proved in [4] that conditions (¢ to (v) abave are sufficient for
a vector field W to be separatrix-free if, by blowing-up the foliation at each
Py, the two {(and only two) arising singularities of the new foliation are simple
corners (see section 3 below), The stability properties of simple corners under
succesive blowing-up’s (se¢ {3], pp- 166) are then .used to prove that all the
separatrices of .%; are contained in E.

A section* X of the bundle L,® TEP? defines a foliation by curves -y,
where [, is the line bundle on C¥? with Chern class 4. It is known that the
number of isolated singularities (counted with multiplicities) of such an X
equals the second Chern class of this bundle, which is d2+3d+ 3. If X leaves
a line % invariant then at least d+ 2 of these singularities must occur on

From now on, we assume 4d=>1. We shall construct 'a family of such
foliations _9/—‘} with a chosen invariant line, having the property that the
singular set is concentrated on the origin and the (d+ 1) —roots of unity in
some local coordinate of ., We show that % can be extended to a foliation
. on the blown-up manifold & in such a way that conditions (i) to (v}
above are verified. Finally, we prove that every separatrix of &T is contained
{Section 3, resonant case). To that end, ‘we nse the arguments described

above, and.a Normal Form for singular vector fields in, @ having an invariant
d1v1sor (see the Appendlx Proposmon A) I TR
X The extensmn of this plan to h}gher dlmenswn ie. to 1mpose condltlons
for. nonesemlslmphcuy at: the _singular points, depends on whether lhe
dimension of the (prOJecuve) space of foliations. of. degree d in P (the
number of variables) is smaller than c,(L,@TCP") (i.e. the number of
equations: at least one repeated-eigenvalue condition for each singular point).
For, dlmcnswn n=2, these dimensions, fit, for every. degree d, but, for, big
enough dimension n and Chern class d, one has the opposite mequallty The
present calculation in dimension 7 =2 will show that, for foliations having
high-multiplicity singular points, less .equations. are.- needed to, impose the
repeated-eigenvalue conditions. It will also show that not all the variables are
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relevant for the construction. However, it allows us to expect that the above
restriction is not an obstruction to push this ideas to get separatrix-free vector
fields in higger dimensions,

From another point of view, this construction shows that some eigen-
values-prescribed dynamics in P2 are indeed realizable.
1. CONSTRUCTION

The construction of the family goes as follows: We choose the expression

d
Xy =azn (" =5~

to preassign the singularities on the invariant line, and then we extend it, first
to a section X HO (€2, 1,® TEP?), which has the form

d
X (23, z3)=[az(z5"' =Dtz (P§+ 2, L)) N

+ z3[az§" "+ 23 L+ Qff] —a‘i—
3

d d
—-Xza—zz—ﬁ-)(;——a—z—; (.n

— P d __ §'d i f

where Ly= 21 ,-0022{, Q§= X% 0923 2]
d__ <'d i
and Po— E,-ﬂ:op,-jzzz:{

(see [5], Proposition 1.23) and afterwards, to the blow-up W of a (d+ )-
homogeneous polynomial vector field ¥ in @3, having local expression (1.1)
when restricted to the invariant {(and non-dicritical) exceptional divisor

E=EP:,

To be precise: Using the correspondence between HO(CP2, L, @ TCP?)
and the set of (d+ 1)-homogeneous polynomial vector ficlds in @, one
obtains that the homogencous vector field in @

i+i=

( iy @
W(x), x3, x3)=—[ax§ "' +x; 3, li,szxé]a—x"
d I

d
tl—axfx,+x; 3

Coxed—(D el e
P
it i=0 h 2 3] ax:
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d
_(i+)) o d 0
+x3[i+2_0 i ;X  x; 0] 3x;

3
= 2 Wi (x1, x5, xs)_a
k:’

satisfies D IT(W)= X, where IT : @ — {0} — €P? is the natural projection. Let

o : & — @ denote the blow-up map and chooose coordinates on & such that
o is given by

o(zi,z5,29)= (zn, 2122,y 23) = (X, X2, X3) (1.2)

and E by {z; =0}. The local expression of the blown-up vector field in this
chart is

- 1
Wiz, 23 23)=?(D0)_' Wiz, 2 23,2, 23)
I

J 3 d
=z W1(1,22,23)-9-ZT +A§2[Wk—'zk WL, z3, z3) £

so that W(O, 23, 23) = X (23, 23).

For any d-homogeneous polynomial

H= 3  hex xxd (1.3)
i+jtk=d .

the (d+ 1)-homogeneous vector field in @

WH = W+H2x, ax,

induces the same foliation % as W on E with local expression in & given by

~ ] J d
H_— 2
W =2z [H+ H/I](I!zlsz.'i) 82. +k§ Xk azk
. , s
é k az‘ ¢
The linear part D W¥ (0, z,,0) of Tl is
WH (1,2,,0) 0 oy
0 (d+2azit' —a ﬁ(z% 0) (1.4)
3

0 0 azg+l+2‘!=09‘f.o z;



On Vector Fields in &3 without a Separatrix 17

where

d
H — i d+1
WI (13221 O)_Eﬂ hf.d—i.ozz —daz;
i=

IxX JL
To (20 =n[La+ 1@ 0+ P 0)

By construction, the foliation %; has (d+ 2) singularities, located at the
points py={0,0,0), and p,=(0,w*,0), k=1, ...,d+ 1, where w = g27ii{dt1},

The vector space of (d+ 1)-homogeneous polynomial vector fields in @3
has dimension (3d?+ 154+ 18)/2 and so, its associated projective space,
where most of the time we will work, has dimension (34?+ 154+ 16)/2. The
family just constructed has codimension 2 (d+ 2) there.

Our goal now is to impose conditions on the coefficients of W so that %%
has simple singularities at the points py, ..., p44+, and a singular point at p, of
multiplicity 1+ (44 1) we want this because

ALy®@ TEPY=d?+3d+3=d+ 1 +(1 +(d+1)?)

Observe in (1.4) that the matrix is triangular: The eigenvalues of D W* at
each singular point lie in the main diagonal. Since the lower right 2 x2 block
is DX(z2,,0), the linear part of %, on & we shall say that the other
eigenvalue is normal to E.

1.1 Multiplicities

This calculation involves only the (d+ 2)? coefficients of X defined on
(1.1), which are regarded as variables (i.e., does not depend on the A,
variables).

From (1.4), we see that the points {p;: k=1, ...,d+ 1} on €P?2 are simple
singularities of %;( if the correspondent eigenvalues are non-zero:

(d+1)a0
a+qoo+ 39, giowki=0 k=1, .d+]1 (1.5)

Sufficient conditions for py being singular of multiplicity 1+ (d+ 1) may
be obtained as follows: from (1.1), define T; by X;=2z; ¥;; one observes that

1l Xy, 23 ¥y po> = < Xy, 23, po? + 1< Xa, Y33 po”?
=pulXy(22, 0, W+ u< Xy, B 0o

=1+pulXy, Kipo?
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so that u<X; pp>=2 if u<X,, ¥5;(0,0)>=1, which is the case, from (1.1), if

qoo=0 (1.6)

since qqp is the independent term of ¥;. Assuming (1.6), we may now increase
1< X3, Vi py> by forcing the curves (X;=0) and ( ¥;=0) to be very tangent at
a common chosen line: The linear terms of X, and ¥;=z7! X3 in (1.1) define,
respectively, the tangent line at p, to the curves (X; =0} and.(¥; =0). The line
(zy=0) is then tangent to both curves if these linear terms- satisfy the
conditions

Po.o=490,1=0 (L.7)
a#0,q, 7,70 (18‘)

Assuming (1.6), (1.7) and (1.8) we rewrite the vector field (1.1) as

X(z, zy=[—azntz(azy " + 23 L)+zP{]5 -

+Z3[q|‘q22+a22+|+Z3Ld+Q2] a . o

d g

;Xza—zz“*'zz:, }’3?3 (19)

From the last expression, consider X23—(——22)Y3+X2 The ideals
(X2, ¥3) and (X, 13) comc1de qro
Now, if Xy€&- 24" and ¥,(0,29)€(29"") then
wlXy, Yy pp> = M<th Yi; Py’ = #<k2§+ Y5 po?
=(d+1)- p< K0, 2,); O =(d+ 1)2
so that u<X; p>= 1+ (d+ 1)?, as desired.

We proceed now to write equations for the previous conditions: From
(1.9) define Q" and Q” by
d

Qz (z2,23) = Z q;, 022+21( S, gz

i+j=2, j=1

=Q'(z)) +'2;Q" (22, 23)
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Then X;; is a scalar multiple of z4' if the following conditions are verified
Fio (Lt Q)= 2 Q"+ P{=0 (1.10)
o @ta ) —nQ-gedeEdt) (LY

We may solve equation (1.10) for the coefficients of P¢:
Pi=2Q"~ (L, +Q") (1.12)

(1.12) is a system of d{d+3)/2 equations and hence the p;’s are not free
variables anymore.

Factorizing the powers of z, in (1.11), one finds the following sufficient
conditions for (1.11) to be satisfied

qio=Aa, go=MNa for j=2,..,d (1.13)

atquoqo=A'—1)a?#0  for some AeC* (1.14)

Finally, the conditions for ¥3(0, z;)€(z4%") are
o, ;=0 forj=1,..,d (1.15)
lo.q#0 (1.16)

The total number of equations in (1.6}, (1.7}, (1.12), (1.13), and (1.15) is
(d?+7d+6)/2, in (d+2)? variables. One may find solutions to this system
which are consistent with the open conditions (1.5), (1.8), (1.14) and (1.16)
since, up to now, the parameter A introduced in (1.13) and (1.15) only has to
satisfy that it is not zero and that it is not a (¢ 1)-root of 1. Summarizing,
we have proved:

Lemma 1.1 The space of polynomial (d+ 1 )~homogeneous vector fields
{W} in @ whose blown-up foliation F; satisfies (i), (i) and (iii), contains a
quasi-profective subvariety 7] formed by vector fields whose blown-up
foliation 5 has simple singularities at p,, k=1, ...d+ 1, and a singularity at
pp of multiplicity 1+(d~+ 1)°. It is defined by the solutions of (1.6), (1.7),
(1.12), (1.13) and (1.15) that satisfy the open conditions (1.5), (1.8), (1.14) and
(1.16). Each non-empty irreducible component has codimension at most
(@°+i1d+ 14}/ 2.
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1.2 Repeated Eigenvalues

Now we begin to work on the whole @, so it is just now when the
variables #; ;. introduced in (1.3) appear. From (1.4), it follows that the
condition for a repeated non-zero eigenvalue at py is

hdlo‘():-“a (1.17)

which we will assume in what follows. As X is tangent to a line &=CP',
those eigenvalues which have .% as generalized eigenspace do satisfy a
relation (see [2]). To avoid it, we are forced to make a clever choice of those
pairs of eigenvalues that might be repeated. To say, we impose the condition
that the eigenvalue which is normal to the exceptional divisor E, coincides
with the one rangent to & only at the d points p,, k=1,...,dand, at the
remaining one p; = (0, 1,0), to coincide with the one not tangent to % on
E. From (1.4), these conditions are

=1
—2a+ 3 hg_owt@) _g(d+ =0 k=1,..d
i=0
d—1 a4
—3a+ 3 hia_ij0—2 qio=0 (1.18)
i=0 =]

We now proceed to find a solution to equations (1.18) satisfying the
conditions in Lemma [.1.
For simplicity, let’s replace &, ,_;, by h, Then subsiituing (1.13) on (1.18)
we arrive to the system of equations
St hjaki= a(3+d) k=1,...d

(1.19)
Sist b= @B+ 30 M)

which in matrix form is

By, a3+ 3N

haa| | a(3+d)
;!Ad+l = - LU

ho Ca(G+d)

0/ a3+ d)
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where Ag., denotes the transpose of the (d+1)x(d+1) Vandermonde
matrix with values w,w?, ..., wd7! =1

1 ... 11
w o ... ofl
w? wt .. w ]
w? ¥ . wf ]

. | .
Since A}, equals N times the transpose conjugate of A44,, the solu-

tion of equations (1.19) is then

hd—l a(3 + 2‘?:] )\-’)
hdig a(3+d)
Iﬁ'(AdH)T :
ho a(3+d)
0 a(3+d)

The last equation imposes a condition on the parameter A obtained in
equations (1.13) which is equivalent to

d
MN=—(d?+3d+3) {1.20)
j=1
To say, that A is a root of
d
Px)=(d+1)(d+2D)+3 x/ (1.21)
J=0

In particular, if A is real, it most be negative.

Taking absolute value on both sides of (1.20) one verifies that no root A
of {1.21) has modulus=1. Each one gives a compatible election of the
parameter introduced in (1.13) and so, the solutions A, of the system of linear
equations (1.19)) are readily seen to be

h=—a(@d+3) j=0,1,..,d—| (1.22)
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1z{. Then for k=1,...,d+ 1, the lower right

Remark: Define Q(z;) = 21 —0 24
eigenvalue of (1.4) at p, is non-zero and its value may be written as

AH ]
a-QAw¥)=a(l +2 Noty=go———
‘ = Awk —1

f:'—a(d+1)(d+2)-‘)\)‘+'
: w" —

1 (1.23)

L
The last equality follows from the fact that A is a root of (1.21). Thus, the
points p, are indeed simple singularities.

Lemma 1.2 The space of polynomtal (d+ 1)homogeneous vector fields
in @3, contdins a nof-empty quasi-projective subvariety 9~ defined by the
equations (1.6), (1.7), (1.12), (1.13), (1.15), (1.17). (1.18), (1.20), and by the
open conditions (1.5), (1.8), (1.14), (1.16). Its elements are vector fields { W} in
@ (of Lemma 1.1) such that, at each singular point, the linear part of %, has
a double non-zero eigenvalue. Edch non-empty arrea'uc!ble component has
codimension at most (d?+ 13d-+ 20)/ 2.

Proof. The assertion will follow if we exhibit an element in 9. Let A
satisfy (1.20), @ =e?7/(@+N 4540 and { ,50.

! L

Let H(x,,x;,x;)——a(d-f- 3 Z =) x/ xf~' — ax?. Then, the vector field

Wi (xlstsx_'i) [le (ax H'f‘lodxgﬂ)] a

d
+oH - ax? xy— X g g x4t e (1.24)
X2

+x3[H+a2" N x{ xd=7] ai
. ‘ 7 3

belongs to 7/

1 3 Non-Semnsnmpllclty
., o . I - f ! T
Now consider a polynomlal (a’ + 2) homogeneous vector fxeld in- 0:3

d
'_‘f W E m ax
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=3 . oyl ik
= it jrk=d+2 Qi i X Xy X3 ax,
(1.2%)

C . @
+ it jekmdta bign X K xf 57—
6‘x2

C ik d
+ it jtk=d+2 Cijk X1 X§ X5 %y

the sum V= W#+ W and the blown-up foliation % whose generator in the
coordinates (1.2) is

~ i
V(le22,23)=‘z‘f‘(DU“‘]) V{z|,2125,21 23) (1.26)

The linear part of & restricted to % leaves (1.4) unchanged, except for
the first column

W (1, z,,0) 0 0
° i d+1 dXz
Wo—i (1,2, 0) (d+2)azz —4a “az—(zz,o)
3
Wi(l,z,,0) 0 azy" +go o+ 3L qi 02

For simplicity in what follows, let

I”i’él(zz): Wz—zz Wl(l,zz,o)
Wi (z2) = Wi(1,2,,0)

Assume now that W# lies in the subvariety 2" defined in Lemma 1.2, then
the linear parts D V at each p, are, respectively,

—a 0 0
Wai (0) —a 0 for py=(0,0,0) (1.27)
wi0) 0 0
—a(d?®+3d+2) 0 _ 0
- 34X,
Wa (1) a(l+d) 55 (L0 for pye =(0,1,0) (1.28)
3

Wi (1) 0 —a(d?+3d+2)
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and
a(H-d) 0 0
: X,
Wa (@) a(l+d) T(wkao) for p, = (0, w*,0),
; i el g (29
LAY 0 a(l+ 34, Mati) =1,..,

So, necesary and sufficient conditions for D V to be non-semisimple at
each p, are, respectively, : s

W, (020  for py=(0,0,0), (1.30)
Z—f(l,oyﬁ@(l);&o or [—a(di+3d+2)+a(d+1)] W;(1)#0
3 L

for par1=(0,1,0), (1.31)

and

J=1

d - - . d
£22 (0,0 W3 @)+ War-[a(1 + D—a(1+ 3 NaA)]£0
Z3

for p,=(0,0%0), k=1,...,d (1.32)

Remark: It is clear that we have two different eigenvalues in (1.27) and
in (1.28) but this is not a priori true for (1.29). They are different if and only
if

QAw)#d+1.
B

holds for every j&{l,...,d}.

Anyhow, it is clear that, once the (d + I)— homogeneocus part has been
choosen in 2] one can always find polynomials (1.25) such that equations
(1.30), (1.31) and (1.32) are verified.

We now define the subvariety # mentioned at the begining of the paper.
_ Definition 1.3  Let # be the complement, in 9 of the subvariety defined
by (1.30), (1.31) and (1:32) when the inequality is replaced by equality.

Summarizing, we have shown
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Lemma 1.4 % is a non-empty quasi-projective subvariety in the
projectivized space of polynomial vector fields {V} in @3, which have
homogeneous non-zero terms only in degrees d+ 1 and d+ 2. For VE ¥, the
blown-up foliation 57 satisfies conditions (i) to (v), with singular set
F={p,=(0,0,0), p,=(0,0% 0); k=1,...,d+1} and fixed line &
(z;=2z3=0) in the coordinates (1.2). Each non-empty irreducible component
has codimension at most (&’ + 13d+ 20)/2.

To say, the (d+ 1)-degree part of {V} lies in % (of Lemma-1.2) and the
{d+ 2)-terms satisfy the open conditions (1.30), (1.31) and (1.32).

Remark: 1f one could drop the 2 (d+ 2) conditions required to choose an
invariant line and the singularities on it, the codimension of the family thus
founded would be 42+ 34+ 3.

2. NON EXISTENCE OF SEPARATRICES

Let %%, be the holomorphic foliation described by a holomorphic vector
field X in a neighbourhood of 0 in @. Let o;: @~ &_, j=1,..,r, bea
sequence of quadratic transformations based on p;_,, pp=0, E; a plane
through 0, E;=0a;" (p;_;), p;€ E;. For k>> jlet E} be the strict transform of E;
under 0, o...0 0,4 and Ef= E,. Let & be the (adapted) foliation obtained by
pulling back under g; the foliation &,_|.

Definition 2.1. A singular point p of the foliation & is called a simple
corner (see [3], p. 163) if we may find a coordinate chart (z,, 75, z2) around p
such that:

1) pe Ej,NEj,, with jy<j1<jand z,2,=0 is a local equation for E,’DU E}i,
at p.

2) We may describe the foliation _9; in a neighbourhood of p by a means
of a vector field of the form

d d 2
Y=a(+g) 5~ +nB+e) 3= +a5- @1

with 8 a complex number which is not a strictly positive rational number and
£(0)=0, for i=1,2,3.

We note that in (2.1) g, may be taken to be 0, by dividing ¥ by (1 +g,) and
that B may be 0.
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Theorem 2.2 Assume that the vector field V lies in #, as in Definition

1.3..Then every separatrix.of %5 is contained in E. .
Y2 FERRLIN L I 1 %

Proof: We shall consider three main cases, accordmg to the different
choices :of \pairs of repeated elgenvalues and subject to their corresponding
non-semisimplicity conditions. Namely, the multiple point py.corresponds to
the first case, the simple point p,.; to the second, and the remaining simple
points {#f, ..., ps} to the third. T S

I,.r’ 'h;

Case 1. We begin with py. Subject to condition (1.30), a linear change of
coordinates puts (1.27) in Jordan canonical form: Then the typical element in
the family looks like. .. .. =

Y0, )= - (—at+h), [ —aly+ by, L)
where deghy = 1, deg hy = 1, deg h, =2 ..

The —aand- 0 -cigenspaces are. respectively rp=(0:0: ) and r,=(0:1:0) so
they are isolated singularities of the blown-up foliation ., restricted to
the new exceptional divisor E[ _ '

by . . .t

Itt;.t_"(yd, y;, 73) be coorg_ilihates;g\alround' ro such that
a1,V ¥ =01 ¥ yrya ) =, b, L) ’ (2.2)

The faliation _‘3—"’; is tangent to the divisor Dy(= EJUE,, where
Eo—a—'(E)) Wthh in. thlS coordmate chart lS given by ¥ y;=0, and is
generated by

(*.D?:') ?,z(}’:] (—a +J’g H — ), Y1 ~ayyt yy Hy—yy Hy, yy H3)

where H,=y7! hy, Hy=y72h;, and Hy=y7' k. After dividing by —a we see
from this expression that r, is a simple corner with 8=0

Now let (x,, x5, x3) be coordinates around r; such that

0 (X1, Xz, X3) = (x1 X2, X2, X3 xz)"=(C|, L, L) (2.3)

4

In this coordlnate chart DO 1s glven by x, x,=0 and the foliation is
generated'by " 1

(Do—" Y= o . ’
(x1 (= + %, (G, — G)), xa(—a+x1+x,Gy), ¥3(a—x,+x, x3)(G; ~'Gy) '
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where now G =x3"h|, Gy=x32hy, and Gy = x3' h;. Again, after dividing by
—a, we see from this expression that r| is a simple corner with 8=0.

Case 2. Consider the point p; Subject to the second condition of (1.31),
we put (1.28) in Jordan canonical form. With the conventions on the A’
adopted in Case 1, we now consider the vector field

Y@, 0,6)= (eath), eslot hp, [ e+ 0 Ay)
where e;=—a{d?+3d+2), es=a(d+ 1)

By an abuse of notation we have used the /s and Y to denote the
coordinates and the vector field, as before.

Once again, the e, and e; eigenspaces are respectively ro=(0:0:1) and
ri=(0:1:0). The blown-up foliation % is tangent to the divisor Dy;= E\U E,
where Ey=o~'(E) and E, stands for the new exceptional divisor, phrasing
Case I:

Around ry we use the coordinates given by (2.2). D, is given by y, y,=0
and F7 is generated by

{Do-Y) Y=
it y(H — Hy)), (es—e)) o — i oty (Hy— vy Hy), ya(ey +y +y3 Hy))

with the H;'s defined on Case 1. After dividing by e, we see from this
expression that ry is a simple corner with 8=0.

For r, we use the coordinates given by (2.3). D, 1s given by x, x,=0 and
the generator is

(De-H Y=
(xi[(ex—e3) T x2(G1 — Go) ], xa(est x: Gy), xy+H(ex—e3) x3+ xyx3(Hy — Hy))

with the G’s defined on Case 1. Dividing by e, —e; we see that ry is a simple
—1

corner with 8= Pl

Case 3. Consider the points {p, ..., p;]. Since we are not able to evaluate
the lower right eigenvalues Q (Aw*), k=1,..., d, we must consider the various
relevant posibilities on the relative position of them in the complex plane.
Call them e;=a(d+1) and ¢, =a-Q(Aw*)=a(l + 2‘1‘?:] A k),
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Case 3.1. If e;=¢; for some ke{l,...,“d}, then the condition (1.32) of
non-semisimplicity turns into one of :

X, |
7 (@ 070 @4

lil/'}.’l(‘:‘)k)’ ﬁé(wk)a Oi_

since condition (iv) might be satisfied, we are forced to choose the first or the
second one (say the first). Then, after a linear change of coordinates around

Pi ﬁ; is generated by

YLl =( - (es+hy), L+ eslat by, Lo (et ) (2.9)

Y is linearizable keeping E invariant (see the Remarks after Lemma A3 and
Proposition A, in the Appendix). Explicit integration of the linear vector field
obtained shows that, by the condition chosen on (2.4), every separatrix of ¥
is contained in E.

Case 3.2. - When ey'and ¢, are different, the situation is similar to Case 2:
with the notation of the preceeding cases, a linear change of coordinates
allows us to consider the vector field

Y(£1,00.83) = (L, - (es + hy), Litesly+ o, G- (ei 1 h3)) (2.6)

The e; and ¢, eigenspaces in this coordinates are, respectively, ri=(0:1:0})
and ry=(0:0:1). %7 is tangent to the divisor Dy, analogously defined.

With the notation of Case 2, around r, and ry, D; is, respectively, locally
. given by x; x,=0 and y, y;=0.

Around r, =(0:1:0), the foliation is generated by
(DoY) Y= . ,
(i [—x T x2(G — G, ;festx+x Gal, X[ (ar—e3) —x1+x2(Gy ~ G)])
Dividing by e; we see that r; is a simple corner with §=0.
_The generator near o= (O:O_; I is
‘(|Da—]) Y= | | _ - (2.7

Willey—cp) + 3 (Hy— Hyl, vy + ey — ) va+ y3 (Hy— yo Hy), yv3[ e+ y3 Ha])
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The following discussion contains concepts and results which are detailed
at the Appendix.

Let A= {33, C,'\-} Cq.

If A is in the Siegel Domain (%e A7), one divides by ¢ in (2.7). The ex-
Gk

ceR

pression obtained shows that ry is a simple corner with 8=

If A is in the Poincaré Domain, two main cases arise:

The non-resonant case. The vector field (2.6) is linearizable keeping F
invariant and one can integrate the lincar vector field thus obiained. Its
separatrices are contained in E.

In the resonant case, there are two possibilities:

~ If ¢; = ne; for some ne N\{1}, then ry is a simple corner with the same
of the Siegel Case, since now it equals %— leR.

If ¢; = r¢, for some r& M\{1}, the preceeding arguments must be modified
since some separatrices may appear outside the exceptional divisor F. Indeed,
in this case we may rewrite (2.6) as

r 0o L 0i-hy
Y=|1r 0 L]+ hy (reN\{1} (2.8)
00 1/\4 {3 hy

Let A = A{ denote the linear part of Y. The unique P-resonant monomial
associated to the homological equation (A.5) is I -(% (Lemma A3). From
2

Proposition A, Y is analytically conjugated, keeping the plane E:({;=0)
invariant, with the vector ficld

r o0\ /L 0
=1 r0]g|+ 55‘% (2.9)
00 1t/\g 0

The holomerphic change of coordinates

F(Cls CZ-: CJ)Z(gl +€3rv CZ, 63):(“}]! Wa, W3)
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conjugates Y. with the linear vector field :4 but takes the. invariant plane
£:({;=10) onto the invariant surface §: (w; —wi=0).

The linear vector field Aw has separatrices on the (invariant) plane w, =0
which are not contained in §.

We do not know if this type of resonances appear or not in our examples
since we are not able to compute the roots of (1.21). However, we can ensure
that they will not appear if we make a particular choicé of the root A of (1.21).
First we show that for each choice of A there is at most one resonance.

Lemma 23, Ife; =rc; for some re M\{1}, and some k€{), ..., d}, then k
is unique. _ . ,

Proof: Supose that there exists . j&il,...,d} and s€R\{l}, such that

s D/(Aw/— D =d+1, then (Awk—1)/(Awi—- 1D=r/s€Q" and this

implies that (Aw* — 1) and (Aw/— 1) have the same argument (mod 27). On
the other hand, they lie in the circle centered at —1 of radius [A]>1 and 0c A
(—1,1Xx]). This implies that both points are the same and j=k

Now, r- Q(Aw¥)=d+1 for some re N\ {1} and some k€{l,...,d}, if and
only if A=(1+r(d+2))/(wr+r(d+2)). The real part of this complex
number is positive for every choice of r, k and d and this computation shows
that if a resonance occurs, then the chosen root necesarily has positive real
part, If this number fails to be a root of (1.20) then we are done and the
resonance relation cannot appear, but if it is, all we have to do is to choose
A with negative real part. This root always exists, since the sum of the roots
of (1.21) equals —1 (because the coefficient of x?-! of (1.21) is I). In
particular, if the degree d is odd, then the (negative) real root of (1.20) is a
good choice. . '

Let & be a holomorphic foliation with singular point p. If ¥ a germ of
a holomorphic vector field at p defining %, recall that the algebraic
mudltiplicity of % at p is the degree of the smallest non-zero coefficient in the
power series expansion of V.

: Adding up the former condition on A to the definition of ¥, we have

Theorem 2.4 Ler V be a germ at 0 of a holomorphic vector field on @3,
with algebraic multiplicity d+1 such that its (d+2)-jet belongs to #, then V
does not have a separatrix through 0.
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Remark. Although # has big dimension, the freedom in the above
calculation is constrained just to one discrete variable (A €@ which satisfies
(1.20)). There are many variables in % which never apeared (for example,
B k>0).

A APPENDIX

Here we discuss the normal forms for the vector fields obtained in
Chapter 2. A complete exposition on the general theory can be found in [1].

Consider (the germ at 0 of) an autonomous differential equation defined
by (the germ at 0 of) a holomorphic vector field

x=Ax+3 v,(x) xe@” (A1)
m=2

Let (xy,...,x,) denote coordinates with respect to the basis (e,...,e,) and
xm=x" .. x7n denote by

LA . E?&n_o) _'E?:I",O) (AZ)

the linear operator which transforms each homogeneous polynomial vector
field of degree (or weight) m, into the Poisson Bracket of the linear vector
field Ax, with it.

Let (m,¢)=3_, m;¢;. If A=diag{e;} then L, is diagonal too
Ly(x™e)=[¢;— (m, d)] x"¢; (A.3)

If A has Jordan blocks, then L, also has Jordan blocks, but even in this
case, its eigenvalues are given by the formula above.

A n-tuple ¢ =(¢|, ..., $,) €& is called resonant if there exists a relation
¢;—(m,¢)=0, for some jE{l,...,n}; otherwise is called nonrsonant. A
vector field (A.1) is called resonant (nonresonant) if the eigenvalues of A4 are
(are not) resonant. In the presence of resonances, the corresponding
eigenvector of (A.3) is called a resonant monomial or simply a resonance.

We say that the n-tuple ¢ =(¢,,...,9,) of eigenvalues of A is in the
Poincaré Domain if 0= is not contained in the convex hull of ¢.

Poincaré-Dulac Theorem If the eigenvalues ¢ of the linear part A of a
holomorphic vector field at a singular point belong to the Poincaré Domain,
then, in a neighbourhood of the singular point:
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1. If ¢ is nonresonant, the vector field is biholomorphically equivalent to
the linear vector field A.

2. If ¢ is resonant, it is biholomorphically equivalent to a polynomial
normal form of the type A+ {resonant monomials}.

The proof is divided in two parts, the first of which is the formal
construction of the desired change of coordinates: For each m=2, the
solution h,, of the homological equation associated to (A.1)

L= | (A4)

gives a (polynomial, tangent to the identity) change of coordinates which
annihiiates all nonresonant monomials on that fixed m. Repeated aplication
of this procedure gives rise to a sequence of changes of -coordinates whose
product, in the limit, is the one we are looking for.

In the second step, the convergence of that power series is proved, using
the fact that the eigenvalues belong to the Poincaré Domain,

To say, at most the resonances will not be annihilated by this change of
coordinates.

Now we come back to the vector field (2.8), in €. We will obtain a
Poincaré-Dulac-type normal form for it.

-
=

Let Z4 ) denote the space of homogenoeus polynomial vector fields of

degree s tangent to the plane E:({;=0), ie., those for which the F‘%-
1

component lies in the ideal ({;). Consider the restriction £, of (A.2) to them.
Lemma Al I:, leaves Fp ) invariant, for every degree s:

Lt Ep oy Zp.0) (A.5)

Proof: Make the calculation using (A.6) below,

_. A monomial in =, , will be called P-resonant if it is not in the range of
L.

Lemma A2 Let A be the linear part of (2.8), s>1, r>>1. The resonant

, . S —_ d d
monomials asociated to Ly: Eig 0, —Eig o) are [ o and [} A
: Xt : X
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Proof: Let ¢k ={{17 g%, k=1,2,3 and I+ m+n=s. Then
k

(r+mrtn-—-re}, +mel,,  —e  ifk=1

Ly(eX Y={(Ir+mr+n—net +mei ,, . ifk=2
Imn Imn 1, mel,
(rtmr+n—NHe}, +mel . ., ifk=3

(A.6)

Since s, r>1, then Ir+rm+n—1 is allways non-zero. Ir+rm+n—~r=0
implies that /+m=0 and s=n=r. This shows that e}, = §5—a%-— and
e, = C;T;% are the only resonances. '

Lemma A3 Let A be the linear part of (2.8). The unique P-resonant

monomial asociated 1o (A.5) is L’E%.
2

Proof: By Lemma A2, Cg—;l;—is P-resonant. (but Cg%is not). A P-
2 1

resonant monomial which is not resonant necesarily lies in Ly (Zign o)\Efp o))

Let €}, €5}, be P-resonant. For each degree s=2, Egng\Zp g, 18

generated by the monomial vector fields of the form
e) ={{Ge:mtn=s,m n=01,.}
From (A.6):
Ly}, J=(mrtn—rje, +m e{_m_l,n —ed

The last two summands on the right belong to = .. Hence Ly (e},..) € Zp 4

if and only if 0=n-+r(m—1), if and only if =0 and m=1 or n=r and

m=10. Since the first one is linear, the only resonance is ef,o,:;;?ag

Remark. Case 3.1 admits a similar treatment: one may assume that the
linear part of (2.5) is that of (2.8) with r=1. From the calculations above, the
homological equation associated to this operator has no P-resonances,
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Proposition A. Ler Y denote the vector field (2.8). There exists a
holomorphic change of coordinaies x =¢ ({) such that ([, =0). =(x; =0) and

@ Y:Ax+‘r-x3’%,for some T,
dx; -

Sketch of Proof: The proof follows by phrasing that one from the usual
Poincaré-Dulac Theorem: By Lemima Al, one is allowed to consider the
homological equation associated with the operator (A.5). It is solvable for
every degree s#r by Lemma A3, and the solutions produce a sequence of
changes -of ‘coordinates which leave invariant the plane E. The product of
them, in the limit, in principle gives rise to a formal conjugation with the
normal form in question. However, since the eigenvalues belong to the
Poincaré Domain, the usual majorant norm éstimates show that this formal
conjugation is indeed convergent,

Corolary-Remark. Case 3.1 is Imeanzable keeping E invariant, as well as
(2.6) in the non-resonant case.
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