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Best Approximants for Bounded Functions
and the Lattice Operations

A. Q. CHIACCH10, J. B. PROLLA and M. §. M. ROVERSI

ABSTRACT. If Vis a closed and non-empty subset of £ (T}, the Banach space of ail
real-valued bounded functions on a set T, then existence of best approximants from
V and Lipschitz continuity of the metric projection in the Hausdorff metric are
proved, whenever V has the following lattice operation property: ((w-+eg) A ) V{w — )
belongs to ¥V, for every w and A in ¥ and > 0.

1. INTRODUCTION

Let T be a non-empty set, and let E= Z,(T) be the Banach space of all
bounded real-valued functions f: T— R, equipped with the sup-norm

Al =sup{lf@)I; teT}

Let V be a closed and non-empty subset of £ (7). For each f€4.(T),
define

dist (f; Y=inf{||f—v||; veV}.
A best approximant to f from V is an element v€ V such that
Ilf= Vil =dist(f; V).

Let P, (f) denote the (possibly empty) set of all such v’s. The set-valued
mapping f— P, (f) is called the metric projection onto V. In this paper we
study some properties of ¥ that imply that P, (/)@ and moreover

™ dy(Pv(f), By (@))=21/~¢gll
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for all fand g in E. Here dj denotes the Hausdorff metric (see definition
below). Condition (*} implies that P, admits a continuous selection: i.e., there
exists a continuous proximity map m: E— V, such that

m{Ne P () forall fekFE

Essentially, we prove that any closed non-empty subset ¥ C 4.(7) such
that {(w+¢e) A )V (w —&) belongs to ¥, whenever w, A€ V, is proximinal, i.e.,
P (N0 for every f€ Z.(T), and (*) is valid. In fact, we prove more, namely
that relative Chebyshev centers exists, i.¢., cent (B; ¥) %0 for all bounded and
non-empty subsets BC £, (T} and moreover

(**) dy(cent (B, V), cent(A4; V) =2 dy(B; A)
for every B and A4 bounded non-empty subsets of Z.(7).

The proof consists in showing that such subsets VC A, (T) enjoy a
property here called “property (C)” in the Banach space 4. (7) and that
property (C) is responsible for proximinality of ¥ and for (*) and (*¥). (See
Theorem 1 below).

We then apply this result to various concrete situations, proving new
results and extending and generalizing many cases that were known in the
literature through the use of deep arguments, or of ad hoc methods.

The connexion between best approximants and lattice operations in 2 ( 7)
was also used by Kripke and Holmes [14], in order to get best approximants
by interposition.

This paper is organized as follows: in §2 we fix our notation and termi-

nology; in §3 we show that property (C) implies existence and continuity of
best approximants; in §4 we give concrete exampies.

2. NOTATION AND TERMINOLOGY
For any Banach space E, the open and closed balls of center g and radius
r are denoted, respectively, by B(a;r) and B(a;r). If V' is any non-empty
subset of E and ac E, then
dist(a; V). =inf{[la—v||; veV}.

We denote by P.(a) the set of all best approximants to g from V), i.e.,

Po(ay:={veV; |lv—al =dist(a; V)}.
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If P.(a)#0 for all a€ E, we say that V is proximinal in E. If BC E is any
bounded non-empty subset, then

rad (B; V):=inf{ sup|| f— v||; ve ¥V}
fes

is called the relative Chebyshev radius of B with respect to V. When V= Fwe
write simply rad(B) and call it the Chebyshev radius of B. An element ve V'
such that

sup||f—v|| =rad (B; V)
/fEer

is called a relative Chebyshev center of B with respect to V, and we denote by
cent {B; V) the set of all such elements. When V= E, we write simply cent (5B)
and its elements are called the Chebyshev centers of B.

When cent (B; )70 for any bounded BC E, we say that ¥ has the
relative Chebyshev center property in E. When cent (8)79 for all such B, we
say that F admits Chebyshev centers.

If % (E) denotes the class of all bounded and non-empty subsets of £, the
Hausdorff metric dy is defined to be

dy(A, B) :=inf{r>0, ACB+rU, BCA+rU}

for all A and B in % (E), where U denotes the closed unit ball of E, ie.,
U={veE |lv||=1}.

If T is any non-empty set, we denote by Z.(7T) the vector space of all
bounded real-valued functions defined on 7. When we endow 4. (T) with the
sup-norm

I/l =sup{lf(l; €T}

it becomes a Banach space. When T is a topological space, then the vector
subspace of all elements of 4.(T) which are continuous on T is denoted by
C, (1. Since it is closed in A(T), it i1s a Banach space toco. When T is
compact, then all continuous real-valued functions on T are bounded, i.e.,
C(T)= Cy(T). For any topological space T, the space C,(7) is isometrically,
algebraically and lattice isomorphic to C(K) for some compact Hausdorff
space K. When T'is a completely regular Hausdorff space, then we may take
K to be the Stone-Cech compactification of T. The set of all f €4, (T) such
that f(#)=0, for any ¢t 7, is denoted by £ (7). For any subset A C £.(T),
At:=ANL(D.
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3. EXISTENCE AND CONTINUITY OF BEST APPROXIMANTS

Definition 1. Let ¥ be a closed non-empty subset of a Banach space £,
and let % be a class of bounded non-empty subsets of E. We say that the pair
(V, B) has property (C)in E, if given Bz, weV, r>0and 0<<e<I such
that VNN, B(f; 1540 and ||/~ w|| <1 ¢, for all f€ B, there exists ve V
such that ||[v—w|=eand ||f —v||=r for all f€B.

Let us say that ¥ has property (C) in F, if the pair (¥, & (E)) has property
(C) in E, where % (F) is the class of @/’ bounded non-empty subsets of E.
Clearly, if V¥ has property (O) in £, and Fis a closed vector subspace such that
Vv C FCE, then V has property (C) in the Banach space F too.

S Vs a closed vector subspace and the class 4 in invariant under
translations, then we may take w=0 when proving that (¥, %) has property

(O- '

When & is the class of all singletons of E and ¥ is a closed vector

subspace, then (¥, @) has property (C) if, and only if, ¥ has the 1 L ~ball
property defined by D. T. Yost [23]. 2

-
Theorem 1. Let V be a closed non-empty subset of a Banach space E. If
V has property (C) in E, and F is any closed vector subspace of E containing
V, then
(D cent (B; V)#0, for every bounded and ndn—empry subset B of F.

(2) The map B—-cent (B, V) is Lipschitz dy-continuous, with Lipschitz
constant not greater than 2, i.e. .

dy(cent (K; V), cent(L; VN =2d,(K. L)

Jfor any pair K, L of bounded and hon—émpty subsets of F.
(3) Vis p{éx{minal in F. ‘ ‘ _
@) dy(Pe(), Pr(@)=2f—gl for any pair J, g in F.

' (5) The metric foro;ectzon Py .admits a continuous sélection.

IN T AN . c oo .
Proof. (3) follows from’(1). On the other hand (2)=>(4)=>(5). It remains
to prove (1) and (2).
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Proof of (1): Let B be a bounded and non-empty subset of F. We may
assume that r=rad (B8, ¥}>0. Choose w €V with {jw,—f{=r+2-, for
every f€ B. Then

VﬁQBE(ﬁ r+2-2)5#0 and ||w,—fll<r+2-14+2-2.

By property (C), there exists w,& ¥ such that ||w,—w;||=2-! and
lw; —fll <r+2-2for all fe B. Suppose wy, wy,...,w, & ¥ have been chosen
with

() W1 —wpll S2-" (n=1,2,3,....k—1)
(i) fw,—fll<r+2-" (n=1,2,3,..,k), for all f€ B.

Then VNN, B r+2-%+0)3£0 and ||w, — f]) <r+2-%+2-+0 for
all f€ B. By property (C) there exists wi4 € V such that ||wy — w,| <2-*
and Hwgy— fll<r+2-%N for all fe B. By induction one gets a sequence
{w,} satisfying (i) and (ii) for all n=1,2,3, .... By (i), the sequence {w,} is
Cauchy and by (ii) its limit, say w, satisfies ||w —f]| Sr=rad (B, V) for all
feB. Hence wecent(B; V). o

Remark. The proof presented above is, mutatis mutandis, the proof that
the 1 % —ball property implies proximinality (see Lemma 1.1, Yost [23]).

The following lemma is going to be used in the proof of part (2) of
Theorem 1.

Lemma 1. I/ V has property (C}in E, then, given any bounded and non-
empty set BCE, any we V and any € >0 satisfying || f—w]| <rad (B; V)+¢
Jor ali f€ B, there exists vCcent (B, V) such that ||v—wi| <e.

Proof. If rad (8; ¥)=0, then & is a singleton, say {f} and fe€ ¥. Then
cent (B; )={s} and | f—w| <e.

If rad (B; V}=r>0, then cent (&, V)= VM, B(f:r)#06. By property
(C), there exists v€ V such that ||[v—w|| =g and ||v—f]| =r for all f€B.
Hence vecent(B; V). o

Proof of (2): Let A=2d,(K L)+e, where ¢>0 is arbitrary. Then
dy(K, L)< \/2. Hence KC L+ pUand LC K+ pU for some p<<A/2, where
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U/ is the closed unit ball of E Choose vecent (K, V) and wecent (L; ). Let
ge L. Then g=f+x, where f€ K and || x|| =< p. Hence

Ilv—gll=ilv=AIl -+l f-gll=rad (K; ¥} +p
=sup |lk—wll+p.
kEK

On the other hand, for any k€ K we have k=m+y, where me L and
19l <p. Hence

fHk—wil = ltk—mll +1lm—wl = p-+rad(L; V),
and then sup,c . ||k —w|| < p+rad (L; V). Therefore
flv—gll <rad (L; M+2p<rad(L; )+ i

for all ge . By Lemma | there exists u&cent (L; V) such that |ju—v[|=A.
Hence cent(K; V)Ccent(L; V)+ AL, Similarly, one has cent(L; V)C

cent (K; )+ AU. Therefore.
Tdy(cent(K; V), cent(L; V))<= A =2dy(K, L) te.

Since £>>0 was arbitrary, dy(cent (K; V), cent (L, M) =2dy,(K;L). =«

Corollary 1. If V has the ll?—ball property in E, then

*) dy(Pr(f), Py@)=2|/—¢l

for all f and g in E. Hence P, admits a continuous selection.

Remark. The Corollary above generalizes the corresponding result of
Holmes, Scranton and Ward [10] which says that (*) holds if Vis an Af—ideal

in E. Recall that M—ideals have the | —12-—ball property, and that property (C)

reduces to the | 1E—i:»all property when % is the class of all singletons of E.
i

4. EXAMPLES

In this section we will present many examples of closed non—empty
subsets of Z/(T) which have property (O) in 4 (7). The following theorem
will provide a wide class of such examples.
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Theorem 2. (1): Let V be a closed and non—empty subset of £.(T) such
that for each 0<e<1

i) w, he V= ((w+e)AMV(w—erel.

Then V has property (C) in Z.(T).

(2) Let V be a closed subspace of £.(T) such that for each
0<e<l

(ii) heEV == (s ARV (—£)E V.

Then V has property (C) in £(T.

Proof. (1) Let BC 4.(T) be a bounded and non—empty subset, let
weV, r>0 and 0<e<l be given with VNN, B(fir)#0 and
|f—w|| <r+e for all fe€ B. Choose he V such that ||[f— k|| =<r, for all f€ B.
Let v=((w+e)AR)V(w—~g). Then ve¥ and |lv -w||<e We claim that
|lf— v|l <r for all fe B. Indeed, let x& T and f< B be given.

Case 1. |h(x)— w(x)| <e.
Then vix)=h(x) and |f(x)—vix)|=|f(x)—h(x) =r.

Case 2. h{x)—w(x)>c.
Then v(xj=w(xjteand —r < fix)— h(x)< f(x})—w(x)—e<r+e—e=r.

Case 3. hfx)—w(x)<-—c.
Then vix)=w{x)—e and —r= —(rt+e)+e<f(x)—wix)+e< f(x)
—h{x)=r.

Hence our claim is true, and ¥ has property (C) in Z.(T).

(2) This follows from (1) and the remark that, when V is a closed
subspace then we may take w=0 when proving that (¥, & (E)) has property
(O) in E=24.(T). The fact that &8 (E), the class of all bounded non—empty
subsets of E, is invariant under tanslations is also needed. o

Remark 1. It is perhaps worth noticing that we do not assume in
Theorem 2 that ¥V itself is a lattice. In Example 8 we give an example of a
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vector subspace V which is not a lattice, but such that (ii) is true and so F has
property () in Z(T). .

Let us note the following Corollary of Theorem 2,

Corollary 2.  Let V be a closed and non—empty subset of Z.(T) verifying
the hypothesis of Theorem 2. Then V is proximinal in £.(Tx58) for every
non—empty set S. If T is a topological space and V is a closed and
non—empty subset of C,(T) verifying the hypothesis of Theorem 2, then V is
proximinal in 4. (TXS), for every non—empty set S, and, a fortiori, in
C, (1% 8), for every non—empty topological space S.

Proof. By Theorem 1, cent (B; V)0 for every bounded subset BC Z.(T).
Now given fe £.(Tx.S), define the section f; as the mapping t—f(t,5).
Clearly, f,€ Z(T) and B={f;; seS} is bounded in Z.(7). It is easy to see that
any element of cent (B, V) provides a best approximant to fin ¥ considered
as a su_bse,t of £ (Tx.S). o

1

Remark 2. lLet ¥, and V; be two closed non—empty subsets of Z.(T)
such that both V| and V; satisfy the conditions stated in part (1) of Theorem
2. Then, whenever ¥ M ¥, is non—empty, ¥, M V; also satisfies the conditions
stated in part(l) of Theorem 2. Hence V(M F, @ implies that VN F; 'has
property (C) in £{7). A similar remark applies to part (2) of Theorem 2.
Now, given a non—empty subset N of T, the closed subset

VIN}={f€&(T), f{)=0 forall (eN]

is non—empty and satisfies the conditions stated in both (1) and (2) of
Theorem 2. Hence, whenever Vis a subset of £.(1) satisfymg the conditions
in (1) or (2) of Theorem 2, then V= VM V(N), when it is non—-empty, also
has property (C) in Z.(7T). Therefore to each example ¥ given in the sequel,
there is a corresponding example provided Vo= VN V(N) is non—empty. We
shall abstain of statmg In each instance that such a corresponding example
exists.

Notice also that, when 7"is a non—empty topological space, then C, (7T)
satisfies the condmons of part (1) and (2) of Theorem 2. Hence, whenever
VC Z(D satlsfles the conditions of part (1) or part (2) of Theorém 2, then
VN C, () also satisfies the same conditions when it is nonw—empty, and there-
fore provides a further example of a set satisfying property (C) in £.(T).

When 7 is a locally compact non—empty topological space, a similar
remark applies to V. G (T), where (G (7) denotes the space of all continuous
real—valued functions defined on. T and vanishing at infinity.
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Remark 3. Suppose § and T are non—empty sets (resp. topological
spaces), and let¢: S— T be a map of § onto 7T (resp. a continuous map of §
onto 7). The map o*: Z(T) —=£.(8) defined by @*{f) =f0¢ defines a linear
isometry of Z.(T) onto a closed subset of Z(8). Since ¢* is linear and
preserves products and lattice operations, if VC Z.(7) is a closed subspace,
or a closed subalgebra or a closed lattice, ¢*(V)C Z.(5) has the same
properties in Z.(5). Whene is continuous and ¥V C C,(T), theng* (F) C C, (S).
Since ¢* preserves linear and lattice operations, we see that whenever VC
Z.(T) satisfies the hypothesis of Theorem 2, the same is true of 0*(¥) as a
subset of Z.(5). Hence ¢* (¥) satisfies (1) —(5) of Theorem 1. In particular,
©* (V) is proximinal in £.(.5). Note that, by the properties of the map ¢* what
one can conclude in general is only that, if V' is a proximinal subset of £(7),
then ¢* (V) is proximinal in ¢* (Z.(7)). But we see that when V satisfies the
hypothesis of Theorem 2, ¢* (V) is proximinal in the whole space £o(S).

As already noted in Remark 2, C, (7) satisfies the hypothesis of Theorem
2. Hence @* (C, () satisfies (1) —(5) of Theorem I. In particular, ¢* (C, (T))
is proximinal in C,(S8), a result due to Mazur, for compact § and T. The
subspaces of C,(S) of the form ¢*(C, (7)) are called Stone-Weierstrass
subspaces. By the Stone—Weierstrass Theorem they are precisely the closed
unital subalgebras of C,(S), when § is compact.

Remark 4. K. S. Lau[l5, Proposition 4.4] showed that when V satisfies
the hypothesis of part (1) of Theorem 2, then V is U—proximinal, with
"~ g(p)=p, in his terminology, and that (*) of Corollary 1 above holds for
such V.

Let us now give a list of examples of subsets ¥ C A.(7) to which Theorem
2 can be applied. Hence for all of them (1) — (5) of Theorem 1 are valid. Some
of these conclusions were known in the literature, others are new and some
are generalizations or extensions of known results. Whenever the older results
were known to us we indicate the references.

Example 1. Let T be a non—empty topological space. As already
remarked V= C,(T) satisfies the hypothesis of part (1) of Theorem 2 and
therefore has property (C) in £.(T). The proximinality of C, () in Z.(T), for
the particular case in which T'is a paracompact space was proved by Holmes
and Kripke in 1965. (See [9], and also Holmes [7, pg. 125].} The fact that Py,
(for ¥=C, (D) is Lipschitz dy~continuous with Lipschitz constant not
greater than 2 is due to Kripke (see Holmes [7, pg. 173]) again in the
particular case when the space 7 is paracompact. Now observe that (4) of
Theorem 1 is true for any f and g in any closed vector subspace F such that
G, (N C FC A.(T). As an example take Fto be the space of all bounded Borel

real—valued functions on T. Note that C,(7) has the | %—ball property in F,
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but Holmes [7] points out that G, (T) lacks the 2—ball property in F. The
result that € (7T) admits Chebyshev ceaters is due to Kadets and Zamyatin
[12] for T=[a, &), and to Garkavi [6] for a compact Hausdorff space T. Their
results were extended by Mach [16]: indeed, it follows from Theorems 3 and
4 of [16] that, for any topological space T, the space G, (7) has the relative
Chebyshev center property in £(7) and the map B— cent(8; G, (1)) is lower
semicontinuous. The result that G (T) admits Chebyshev centers, for any
topological space T, was also noticed by Franchetti and Cheney [5].

Example 2. Let a and b be two elements in Z.(7), and let V=[g, b}, i.c.,
V={fe 4D, a(x)= f(x)=b(x), for all xeT}.

Then ¥ satisfies the conditions stated in part (1) of Theorem 2. The
proximinality of [a, 5] in Z(T) is implicit in Franchetti and Cheney [5,
Lemma 3.5): any order interval in a Banach lattice is proximinal. Roversi [20,
Proposition 2.6] proved that [a, ] has the relative Chebyshev center property
in Z.(D) (that is part (1) of Theorem 1). Notice that when ¢<Cb are two real
numbers, and if we identify # and & with the respective constant functions
that they define, then

={fe 4(Ty, f(DCla b]}

where now [g, b] denotes an interval in R.

Another example that falls in this category is the following. Let u€ Z.(T)
and 9 € £ (T) be given. Let

V={fe £(T); |f—ul=e}

Note that |f—u|= ¢ means |f(x)—u(x)|< ¢(x) for all x&T. This is
equivalent to a= f<b, where a=u—¢ and b=u-+¢. Hence V=[u— o,
u+ ). In particular, we get that any closed ball in A (7) (resp. in G (1), if
T is a topological space) is proximinal in Z.(7).

Suppose now that 7'is a topological space, and consider V'=[a, b]N G (7},
with @ and b given in 4, (T) with a= b. By Remark 2, we know that ¥ has
property (C) in Z.(7), if it is non—empty. It is well- known that this is the case
when T is a normal space, a is upper semicontinuous and b is lower
semicontinuous: ‘The proximinality of V=[a, /NG, (T) in this case was
proved by Franchetti and Cheney [5, Theorem 3.3]. Further cases in which
V#4§ are listed in Roversi [20, Theorem 3.13].
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Example 3. Let ¥ be a closed non—empty sublattice of £,(7) such that
w r belongs to V, whenever we V and r&R. By part (1) of Theorem 2, ¥ has
property (C) in Z.(7). Roversi [20, Proposition 2.4] had proved that ¥ has
the relative Chebyshev center property in Z.(7).

An example is provided by the set of functions with a prescribed modulus
of continuity. Let (7, d) be a metric space, and let w: R, — R, be a non-
decreasing function. Let ¥V'= C,(7) be the class of all f&€ G (7) such that
wr () = w(d), for all §>0, where

wr(@)=sup{lf(@)—f(s); d(15)=0}

A special case i1s given by the subclass Lip,(M) of all felip, with
Lipschitz constant not greater than M:

V={fe &(D); [f/()—fH=Md(s5)}.

One can generalize this in the following manner. Let T be a non—empty
set, and let A be a non—empty subset of Tx T, For each function¢: A—[0,
oo}, define

V={fe &(T); | f()—fD)|=e(s ) forall (s7)€l},
V=€ &) fO)=f+e(sn  forall (sn)eal,

and

Va={f€ &(T); fO)Zf()—e(s,0)  forall (sned},

Clearly, ¥'= V; M V. A special case is given by a pre-ordered set (7, <) and
A={(s,)eTxT; s=t}. When ¢=90, FV(resp. V) is the set of all non-
decreasing (resp. non-increasing) bounded functions. The case in which
¢ depends only on s was studied by Smarzewski [21]. Further examples of
closed lattices ¥ such that w+ r belongs to V, for all r€ R and w € ¥, are given
by the sets of all bounded functions on a topological space that are lower
semicontinuous, respectively upper semicontinuous.

As another example, let {A,; a7} be a family of finite subsets of some
non—empty set 7, say

Ay ={, 18 ,..., thie }.
Let V be the subset of A(T) of all fe £.(7) satisfying

FUHZ )= = f(th)
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for each < I Then Vis a closed sublattice of £ (7) such that /= r belongs
to V, whenever f€} and reR.

When T=17,xT,, where T} and T, are pre-ordered .sets, then new
examples are given by the sets of all functions in Z,(7) that are non-
decreasing in each variable, or non-increasing in each variable, or that are
non-decreasing in one variable and non-increasing in. the other variable.

Example 4. Let ¥ be a closed sublattice of £.(7) containing the
constants and such that V4 VC V. Then ¥ satisfies the hypothesis of Exam-
ple 3. For instance, take I to be a closed sublattice of £.(7) containing the
constants, which is also a convex cone. This shows that Theorems. | and 2
generalize an Approximation Theorem of Blatter and Seever [2], [3]. For
such a V they proved that

Vy={fe V. f()=0 forall tEN),

where Nisa (p0331bly empty) subset of 7T, is proximinal in Z.{(7). Their proof
uses the theory of interposition of functions that they developed. in [3] they
establish a formula for dist (f; V) in terms of the quasi-proximity defined by
V on T. The approximation theorem of Blatter and Seever extends an
approximation theorem of Nachbin [17, Appendix, §5, Theorem 6] which
‘proves that any closed lattice convex cone VC C(T), containing the
constants, is proximinal in C(7T), for T a compact Hausdorff space. (When
N =10, then Blatter and Seever’s result follows from Nachbin’s). Nachbin also
proved a formula for dist(f; P).

Example 5. Let 7 be a compact Hausdarff space. A non—empty subset
ACC(T) is called a semi-algebra {Bonsall [4]) it AAT A4, A+ AC A and
A4 CA for each A=0. The.semi-algebra A is called a semi-algebra with
identity if it contains the positive constants, Given a non-negative integer
n=(, a semi-algebra A is said to be of type n if /(1 +f) belongs to A,
whenever fe A, Every semi-algebra of type 0 is a semi-algebra with identity,
and if A is a semi-algebra of type n=0, then A C C (7). Notice that if 4 is
of type n, then it is of type n+ 1,

--Let now A be a closed semi-algebra of type | and with identity. Define a
pre-order =on T by declaring s=<¢ whenever f(s)= f(1) for all feA. By
Theorem 7 of Bonsall [4], an element g€ CT(T) belongs to A if, and only if,
£(s)=g () whenever s<=¢. Hence it is straightforward to verify that ((w+¢)
Ah)V (w—e) belongs to 4 whenever w and k& belong to A.

HACC(T)is a subalgebra then AT={fe A; f=0} is a semi-algebra,
and its closure V= A% is a closed semi-algebra. If A4 contains the constants,
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then ¥V is a semi-algebra of type 0. Hence V is a closed semi-algebra of type
1 with identity. If 4 C C(T) is a subalgebra which does not contain the non-
zero constants (this is equivalent, by the Stone-Weierstrass Theorem, to say
that N={xe T, f(x)=0 for all fe A}s4§), then V= AT is still a closed semi-
algebra, but we cannot apply the previous argument. Instead, one can reason
as follows. Let w, i€ V and £>>0 be given. Define

f={(wt+eyAR)V(w—e)

If f(x)=# f(y), then w(x)5=w(y) or h(x)7h(y). Since w, h€ A7, there is
some g< At such that g(x)=#g(y). On the other hand, if f{x)>>0, then
w(x)>>0 or A(x)>0. Since w, h€ A%, there is some g€ AT such that gfx)>0.
By Corollary 4, Prolla [18], the function f belongs to V. Notice that this
argument applies regardless of the fact that 4 contains or not the identity.

Example 6. Let A be asubalgebra of 4.(7). Let T; be the set T'equipped
with the discrete topology. Then £(T)= G, (T and so 4.(7) is isometrically,
algebraically and lattice  isomorphic to C(K), where K is the Stone-Cech
compactification of 7 Hence we may suppose that A4 is a subalgebra of
C(K), K a compact Hausdorff space. Let ¥="4. Let A ¥ and >0 be given.
Define f=(e A h)V (—¢). Suppose fix}+ f(¥). Then h(x)s£ h(y). Since he A,
there is some g€ 4 such that g(x)# g(v). Suppose, on the other hand that,
J(x)70. Then h(x)70. Since h € A4, there is some g € 4 such that g(x)s 0. By
the Stone-Weierstrass Theorem, f€ A. By part (2) of Theorem 2, ¥=A has
property (C) in C(K)

If T is any topological space and 4 C G, (T), then we consider A as a
subalgebra of Z.(7), and apply the previous result to get that A has
property (C} in £(7T) and consequently (1) —(5) of Theorem 1 are true when
E=/.(T) and F is any closed vector subspace of Z.(7) containing 4. In
particular, we may take F=C,(T) or more generally any F such that
ACFCC,(T)

If T1s locally compact, the same results hold for a subalgebra 4 of G (7).
Just notice that F= C,(T) is a closed subspace of C, (T). Hence the closure of

A in G(T) has property () in  Z(T).

Some of the conclusions (1) —(5) of Theorem 1! in the case of a closed
subalgebra 4 C G, (T) are well-known, but were proved using less elementary
methods than the one presented here. For example, Smith and Ward [22]
proved, using interposition theorems, that any closed subalgebra A of C(T),
for compact T, has the relative Chebyshev center property in C(T).

Example 7. Let T be a compact topological space, and let D (T) be the
subset of C(T) of all continuous functions f: T— R such that 0= fr1}<1, for
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all 1€ T. Let AC D(T) be a closed non-empty subset with property ¥ and
containing one constant 0 <<¢<{1. Property ¥ is defined as follows: 1 —¢ and
¢ i belong to A, whenever ¢ and ¢ belong to A. Then A has property (C) in
4o(T). Indeed, let he 4 and we A be given. Let f=((w+e)AR)V(w—g),
where 0<le<{I. If f(x)# f(y) then either w(x)s w(y) or h(x)7*h(y). By
Corollary 1, Prolla [19], fe A=A. By Theorem 2, A has property {C) in
Z.(T). Notice that, even though it is known that A4 is a lattice (Jewett [12],
Theorem 1), this fact alone is not sufficient to prove that f€ A, because w+¢
or w—e¢ may not belong to A.

Example 8. Let M be a non-empty collection of maps of a non-empty set
T into itself. Let p=1 or p=—1. Let

V={fe £(D; flge@)=pf (1), foreach geM and reT}.

When p=1, V is a closed linear lattice containing all the constants and
Theorem 2, part (1) applies. When p=—1, V is a closed subspace of Z(7),
and the only constant belonging to ¥ is zero. We claim that condition (ii) of
Theorem 2 is verified. Indeed, let A€ ¥ and £>>0 be given. For any g€ M we
have, for f=(eAHV(-¢) and xeT:

fa(x) =@EAREEDV(—e)
=(EA—hIPV(—¢)
= (~((—e)VA(XDYV (—¢)
=—(((—e)Vh(x))re
= —f{x%).

Hence f€ ¥, and Theorem 2, part (2) applies.

Notice that F may fail to be a lattice, in the case p=—1. For example,
take T=[—1, 1], and let M consist of the single function g{x)=—x. When
p=1 we get the even functions and p=—~1 we get the odd functions. In the
case p=—1, F'is not a lattice, as f{x)= x shows: fA0 and f V0 do not belong
to ¥. So Fis not even a lower or an upper semi-lattice.

Example 9. Let 7 be a non-empty locally compact topological space.
For f€ G, (T) we say that

}i_m f=v

if, given £>>0 there exists a compact subset K C T such that | f(1)—v| <e for
all.t€T, ¢t ¢ K. Following Amir and Deutsch [1], Cx(7) denotes the closed
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vector subspace of C,(T) of all functions that have limit at infinity. It is easy
to see that ¥’ = Cy(7) verifies the hypothesis of Theorem 2, part (2). If T=T,
then V=c¢, the closed vector subspace of 4. of all sequences such that
lm, . X, exists. Note that

Co(D={fe Cx(T% lim £()=0)

also satisfies the hypothesis of Theorem 2, part (2). When T=1, V=q¢,.
Hence for both ¥'=¢ and V=, and for E=4, all conclusions (1) —(5) of
Theorem 1 are true. In the special case of approximation in 4, by the subspace
¢g, Amir and Deutsch [1, Proposition 4.1] proved that in part (4) of Theorem
1, the constant 2 is hest possible.

Example 10. Let¢: 4. (7)— R be a linear lattice homomorphism. Then
¢ 1s a monotonic linear functional, hence ¢ is order-bounded. By Corollary
3.5.6 of Jameson [11],¢ is continuous. Let ¥ be its kernel. Then ¥ is a closed
linear subspace. Notice that ¥ is solid, i.e., feV and |g| =|f] imply g V.
Indeed,

0=le@l=elgh=e(/D=le(Nl=0.

Henceq (g)=0, and g V. Now, for every solid subset ¥ C 4. (7) one has
heVe=s(e Ah)v(—e)& V. Indeed, let f=(eAh)v(—e). Then |f]<|A|, and
therefore fe V. By Theorem 2, part (2), the closed subspace V has property
(O) in £ (7). For example, if s&€ T, then §,(f)=f(s) is a linear lattice
homomorphism. Now if « is a monotoni¢c linear functional such that
0=<¢ =4, then ¢ is a lincar lattice homomorphism.
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