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A Geometric Proof of the Perron-Frobenius
Theorem

ALBERTO BOROBIAY and UJUE R. TRIAS

ABSTRACT. We obtain an elementary geometrical proof of the classical Perron-
Frobenius theorem for non-negative matrices A by using the Brouwer fixed-point
theorem and by studying the dynamics of the action of A on convenient subsets of B,

1. INTRODUCTION

In this note A stands for a matrix, an endomorphism of R”, which has
non-negative entries. Moreover, A will be irreducible (indecomposable), i.c.,
A cannot be put in the form

M| O . .
(* (T’?) with M and N square matrices

by a re-ordering of the members of the canonical basis in R~

A ray in R” (in the direction of v R"™\{0}) will be the set r[v]={uv/u>>0}.
We identify the collection of rays in R” with §7-,

Theorem I (Perron-Frobenius).—ZLet A be a nxn non-negative and
irreducible matrix. Then there exists a simple positive eigenvalue \ of A
which has an associated positive eigenvector (i.e., all of whose coordinates are
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positive),-and which has the highest value among the moduli of the other
eigenvalues of A.

Written in this form, the theorem has some applications in geometry (for
instance Vinberg in [V], section 2, uses it to obtain a description of acute-
angled polytopes in Euclidean space and on the sphere). Based on this fact we
decided to elabarate the following elementary geometrical proof (section 2)
which should be well-known, though we were unable to find it in the
literature. In section 3 we will complete the original version of the theorem
with a hint of the proof of those parts not included above. Section 4 contains
a historical note. We are indebted to professor J. M. Montesinos for
proposing that we try to obtain such a proof, to professor Pierre de la Harpe
for his helpful comments and to Pablo del Val for his assistance.

2. PROOF OF THEOREM 1

N (i) A acts on the set R of non-negative rays, i.e., rays which emanate
from the origin and lie in the quadrant

:{(x] ’"7xn)E‘Rnfxr'205 i=1 5-',n}-

In ‘fact, no ray in R* can be sent to zero. Other\mse since A is non-
negative, it must have a column of zeros, which is not possible since A is
irreducible.

(i1). No ray in IR™ is left invariant by A. Indeed, suppose there is a ray
r=r[v] lying in dC* for which A (r)=r. Then, there exists k, 0 <"k <#, such
that precisely the first & coordinates of v are zero (after a re-ordering of the
basis if necessary). The condition A (r} = r now implies that A has the form (*)
where M is kxk, and so A is not irreducible.

tas |

(111) Since A(RY)CRY, the Brouwer’s fixed point theorem asserts that
there is an invariant ray r in R* which, by (i), must be positive.

Suppose 77 is-an invariant plane containing r. A acts in the circle S of rays
lying in =. R%N S is an arc L containing r and by (i) A(L)C L:

(l) "By (ii), S is not pointwise fixed under A.
(2) The set of points fixed by the action of A?in §' does not consist only

of r and —r. Otherwise, the dynamics of the action of A? over §! would be as
follows



A. Geometric Proof of the Perron-Frobenius Theorem 59

and then AZ(L) would not be included in L, which is not possible,

From (1} we deduce the peometrical simplicity of the eigenvalue A
corresponding to r, and from (2) the algebraic one.

Therefore, the eigenvalue N corresponding to r is simple, positive and has
an associated positive eigenvector v,.

(iv) It only remains to show that A= |u| for any other eigenvalue p. We
argue by ‘redutio ad absurdum’ and, assuming that there is a u such that
A<|ul, we distinguish two cases:

Case 1.—yu is real

Let v, be an eigenvector of eigenvalue u such that its ray r, ¢ R*. Then A2
acts in the circle 5" of rays lying in the plane generated by v, and v,, and fixes
the set {xr,, +r,}. Since A <|u|, the dynamics of the action of A% on §! has
two attracting points, {+7,}, and two repulsing points, {+r,}. Then #, attracts
one of the two points of IRt M §' out of R*, which is not possible.

Case 2.—pu is complex.

Let P be an invariant plane corresponding to the eigenvalue u. Then P
does not contain any ray of R*. For otherwise the collection of rays of Rt in
P would be an arc L in the circle S' consisting of rays lying in P. Since A is
a rotation in 8, A(L) would not be contained in L which contradicts that
A(RT)CR*. Now, consider the 3-space E? generated by P and v,. As |u| > A,
the dynamics of the action of A in E? shows a repulsing line generated by vy,
and an attracting plane P. This implies that the rays of R™\r, in E? approach
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P as much as we want by repeated application of A, and therefore we
conclude that every such ray leaves Rt after a number of applications of A,
which again is not possible because A(R*) C R* (a formal proof of this is the
following: let r[x] be a ray of E? in R"\r, with x=v, +w, where we P and
w0, Then

X Ar(vi))+ Ar(w) Al u”
A"( ) = = v, T+ w,
[} ] ik Ik

When n— e then —0, and hence the ray A”(r[x]) can come as close

[p]”

to P as we want, because the modulus of weP is constant) m

Nk

3. A SKETCH OF THE PROOF OF THE ORIGINAL STATEMENT
OF PERRON-FROBENIUS THEOREM

Frobenius in [F2] proved a generalization of Perron’s theorem for
irreducible matrices. One part of his theorem is our theorem I. In what
follows we state the rest of the original version (theorem II below) and give
a sketch (also of elementary nature) of its proof.

A non-negative matrix B is primitive if there exists a natural number j=1
such that B/ is positive (i.e., all entries of B/ are positive).

Let {ey, €3, .., €,} be the canonical basis of R%, and let r; be the ray r[e] for
i=1,2, .,n {r,ry, .., r,} are the vertices of the simplex R*. In the next
definition the term «coordinates» means barycentric coordinates with respect
to the vertices of the simplex R*: if r€ R has exactly ¢ positive coordinates
we will say that r has dimension ¢, dim [r]=1.

‘Theorem 11 (Frobenius 1912).—Let A be a nxn non-negative and
irreducible matrix, then by a re-ordering of the members of the canonical
basis of R", A can be put in the form

0 0 ... 0:A,
Ay 0 .. 0, 0
A=

0 Ay .. 0 0
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where the blocks on the diagonal are square zero matrices of possibly
different sizes and A4 is a direct sum of d primitive matrices.

A sketch of the proof: We suppose that rang A=n (otherwise the
argument is slightly more elaborated), then the lemmas below give the proof:

Lemma 1: Let r be a ray in R*, then dim [A{r)]=dim[r]. Hence there
exists an integer s= 1 such that ¥s'=s and Vre Rt dim[A* (r)] =dim[As ().

Proof of lemma 1: Since rang A—=n; if dim[A()]<<dim[r] then a
neighbourhood of r in RY leaves RY under the action of A, which is not
possible. For instance, suppose R* is a triangle, dim[r]=2 and dim[A (r)]=1.
Then e¢ach neighbourhood of r in R* contains a half disk of small radius that,
under the action of A, necessarily leaves Rt. Moreover, for any integer j= 1
the function that associates the integer dim[A/(r)] to the ray reR* is
constant in the interior of each face of RY. Since dim[r]<n ¥rcRt we
deduce the last sentence in lemma 1 a

Lemma 2: There exists an integer =1 such that dim [A*(r;)]=7¢ for
i=1,.,n.

Proof of lemma 2: Otherwise we would have a partition of the set {r; ,.., #,,}
depending on the dimension of As(r), and A would be irreducible »

Lemma 3; The (¢-1)-dimensional faces of R contain in their interior
either zero or ¢ elements of {AS(r)), As(ry), .., A*(r,)}. The faces that contain
t clernents are disjoint.

Proof of lemma 3; Assume there are two (¢-1)-dimensional faces of R*
such that the number of elements of {A%(r,},.., A*{r,)} in each are both greater
than zero but different. Then arguing like in lemma 2 A would be irreducible.
Thus each (z-1)-dimensional face in R* contains either zero or v elements. If
v>t then rang A <p; but v<t contradicts lemma 1. Then v=1¢ and we again
use rang A=n to finish = -

Let D be the set of these d=n/¢ faces. From lemma | and lemma 3 we
deduce that as A is irreducible then A acts in R" producing a cyclic
permutation of the 4 vectorial subspaces of dimension ¢ that contain some
element of D. That is, re-ordering the members of |e;, e;,..,€,} the matrix A
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is replaced by A. A4 will be the direct sum of d ¢ x¢ non-negative matrices, and
they are primitives by lemma 2

4, HISTORICAL NOTE

The first proot of this theorem, for positive matrices, is the analytic one
given by Perron [P] in 1907. Shortly afterwards, Frobenius, in series of
papers [F]] and [F2), extended the result for non—negatlve matrices and
proved it in a purely algebraic way. Alexandroff and Hopf [A- H) in 1935 and
Debreu and Herstein [D-H] in 1953 published new topological proofs of parts
of the classical theorem, using the fixed-point theorem of Brouwer in a
similar way that we use here. Samelson [Sa] in.1956 gave, for positive
matrices, a proof of the,existence of exactly one. positive eigenvector defining
a metric in the interior of Rt and then showing that A contracts R*. Different
constructions are those of Wieland [W] and Brauer {B], who again employ
algebraic and analytic techniques. Nowadays some of these. proofs are
reproduced with slight modifications in some -books: see, for instance, [G]
and [Pu]. o . ‘ .
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