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On Logical Fiberings and Automated Deduction in
Many-valued Logics Using Gr öbner Bases

Jochen Pfalzgraf

Abstract. The concept of logical fiberings is briefly summarized. Based on experiences with concrete
examples an algorithmic approach is developed which leads to a represention of a many-valued logic as
a logical fibering. The Stone isomorphism for expressing classical logical operations by corresponding
polynomials can be extended to m-valued logics. On the basis of this, a classical deduction problem can be
treated symbolically as a corresponding ideal membership problem using computer algebra support with
the method of Gr¨obner bases. A logical fibering representation in this context provides a parallelization of
the original problem and leads to (fiberwise) simpler polynomials and thus to a reduction of complexity.

Dedicated to Professor Bruno Buchberger on the occasion of his 60th birthday

Sobre fibrados l ógicos y deducci ón autom ática en l ógicas multi-valuadas
usando bases de Gr öbner

Resumen. En este trabajo se presenta en primer lugar una explicaci´on resumida del concepto de fibrado
lógico. Bas´andonos en nuestra experiencia sobre ejemplos concretos, desarrollamos una aproximaci´on
algorı́tmica que nos lleva a representar la l´ogica multi-valuada como un fibrado l´ogico. El isomorfismo de
Stone que traduce expresiones de la l´ogica clásica a polinomios puede extenderse a l´ogicas m-valuadas.
Basándonos en este ´ultimo hecho, problemas de deducci´on clásicos pueden ser tratados desde la perspec-
tiva del problema de pertenencia a un ideal, bas´andonos en el ´algebra computacional usando Bases de
Gröbner. Una representaci´on como fibrado l´ogico en este contexto proporciona un modelo paralelo al
problema original y lleva a polinomios (fiberwise) m´as simples, y a una reducci´on en la complejidad.

Dedicado al profesor Bruno Bucherger con motivo de su 60 cumpleaños

1. Introduction

The notion of a logical fibering had been introduced in the framework of an industrial case study on ap-
plications of so-called polycontextural logic (PCL). Polycontextural logical systems were part of research
in the Biological Computing Laboratory (Urbana, Illinois) in the sixtieth when an interdisciplinary group
of scientists started an initiative to work on so-called second order cybernetics. The inventor of polycon-
texturality and PCL, Gotthard G¨unther, was a member of that group of researchers. It was the objective to
extend classical cybernetics especially in the direction of modeling complex communication systems - in
particular living systems - and cooperating autonomous agents. The basic idea behind polycontextural logic
was to provide each agent with a local individual logic which was assumed to be a classical 2-valued first
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order logic. All the subsystems are composed in a specific way by describing how they form as a whole
a many-valued system (via a so-called “mediation scheme” which imposes constraints on the collection of
all the classical truth values of local 2-valued systems which are labeled by the index of the corresponding
system).

This typical way to introduce a system of distributed logics forming a PCL, motivated us to interpret
such a system mathematically as a specific type of a fiber bundle. The theory of fiber bundles is a far
developed very powerful mathematical discipline having important applications in physics and systems
theory, among others. Characteristically, the notion of a fiber bundle integrates structures from geometry,
topology and algebra. Generally spoken, a fiber bundle consists of a base space�, a total space� and a
projection map� � � �� �. The set of preimages over a point� in the base space is called the fiber over
�. Thus, the total space is decomposed by all fibers over the base space. In a vector bundle the typical fiber
is a vector space of a given dimension. Influenced by this powerful notion we came to the idea to replace
the typical fiber in a vector bundle by a logical space and this lead us to the introduction of the concept of
a logical fibering. In accordance with PCL systems, in our first definition of a logical fibering the typical
fiber is a classical two valued logical structure. In the beginning of our work on logical fiberings we were
able to show that PCL systems can be modeled as a special class of logical fiberings. More specific, a
given PCL system can be modeled as a logical fibering determined by a specific equivalence relation on
the global set of truth values (which describes the corresponding “mediation scheme”). In this sense the
logical fiberings provide a framework for a systematic construction of many-valued logics. This was pointed
out by Dov Gabbay in interesting discussions (in the frame of the Esprit projects MEDLAR I, II) and he
further stated that they lead to a general semantics for his extended theory of labeled deductive systems
(LDS). He introduced the notion “fibered semantics”. From his very extensive work we only cite here
[9, 8, 10, 11]. Furthermore, he suggested to select special well-known 3-, or 4-valued logical connectives
and try to express them in the framework of a suitable logical fibering.

Some experimental studies in this direction (cf. [28]) were very successful in the sense that they are
suggesting to think at a general representation approach for many-valued logics by an associated logical
fibering such that corresponding bivariate operations of a specific many-valued system can be decomposed
into classical operations (corresponding to classical systems as fibers, respectively) and possibly some tran-
sjunctions. The advantage of such a representation theory would be a “parallelization” of a many-valued
system and the reduction of corresponding operations to “fiberwise” classical ones and some elementary
non-classical operations (so-called transjunctions), respectively.

Finally, concerning general semantical modeling aspects the previous considerations are also connected
with other work which deals with semantical models for relational structures (using the language of category
theory) where sheaf semantics appear in a natural way (cf. [21] for a proposed program of work in this
direction).

After these introductory remarks, we come to the main topic of work in this article which we briefly
describe as follows. The decomposition approach for many-valued logics can be exploited to simplify
deduction problems in a many-valued logic in the sense that reduction of complexity is achievable in an
automated deduction problem. Important basis for doing this are interesting results developed in [5] con-
cerning the polynomial representation of many-valued logical operations - generalizing the classical Stone
isomorphism. We point to the interesting article [30] being closely related to that work. Thus, methods
from symbolic computation (computer algebra power) can be applied to automated deduction problems in
many-valed logic. Actually, a deduction problem can be translated into a corrsponding ideal membership
problem which then is tractable using Buchberger’s algorithm (Gr¨obner bases method). With the help of
the representation of a many-valued system as a logical fibering, an original deduction problem can be
parallelized leading to (fiberwise) simpler polynomials and thus to an overall reduction of complexity.

Concluding, we give some prospective comments on the role of logical fiberings as systems of dis-
tributed logics suitable for logical modeling of multiagent systems and, especially, cooperating robots sce-
narios. First steps in this directions were part of our work in the MEDLAR project mentioned above. These
aspects form the basis of a fruitful cooperation contact with our colleague Bernhard Mitterauer, director of
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the institute of forensic neuropsychiatry at the university of Salzburg. He is an expert in brain research and
cybernetics. Currently, our cooperation work focuses on developing mathematical models for some notions
from his brain research being of basic relevance for agent models and multiagent system behaviour and for
modeling connectionist networks and learning systems (cf. our work [25]). B.Mitterauer has a profound
knowledge of G.G¨unther’s theory of polycontexturality. Based on this, he proposed a new brain theory
with the aim of technical implementations in robotics, cf. his work [18]. This brain model may also be
explanatory for so-called mental disorders, like schizophrenia (cf. [19].

Besides these rather far reaching aspects of future work, we see immediate applications of the results
subsequently presented concerning symbolic computation treatment of consequence relation problems us-
ing computer algebra techniques. This will give us technical support to construct a logical reasoning module
for an agent exploiting computational power.

2. Logical Fiberings: Origins and Basic Notions

In this section we briefly recall some remarks on the origins of the concept of logical fiberings and we
provide the basic notions and notation. Subsequently, we recall some comments concerning basic ideas and
principles in PCL and point to references (cf. for example, the corresponding sections in [20], cf. also [24]).

The original motivation for introducing the concept of logical fiberings grew up in a case study on
so-called “Polycontextural Logic” (PCL) where two university groups and an industrial company were
involved. PCL with all the original ideas was introduced by Gotthard G¨unther and later studied and con-
tinued in some directions by Rudolf Kaehr and coworkers. The work of G.G¨unther was strongly based on
philosophical ideas and he was always interested in technical applications (cybernetics) of his ideas. An
important aim of his so-called “transclassical logic” was to form a suitable logical basis for modeling living
communicating systems. Actually, G.G¨unther developed parts of his theory at the Biological Computing
Laboratory (BCL), Urbana Ill., in the sixties (he held a research position there) with the intention (among
others) to establish a new logical basis for 2nd order cybernetics. Published material on PCL can be found,
among others, in [13], [12], [14], [15].

Subsequently, we include some comments taken from PCL literature, for the convenience of reading.
Basic principles are among others: Distribution of classical (2-valued) logics (“loci”). At least 3 loci
are involved; the individual spaces are pairwise isomorphic (“locally”). “Transition” (“communication”)
between subsystems is of essential structural importance. The global system will always be a many-valued
logical system. As we shall see later, it can be interpreted as a “fibered system” where a single fiber
corresponds to the local system of an idividual “agent”.

“The world has infinitely many logical places, and it is representable by a two-valued system in each
of the places, when viewed isolately. However, a coexistence of such places can only be described in a
many-valued system — if we intend to work with values in the first place.” (cf. G¨unther, [13], Vol.2,
p.199).

Previously, we mentioned 2nd order cybernetics and we would like to point here to the interesting article
by Daniel Dubois, [6], where he discusses first order cybernetics, second order cybernetics, and a third order
cybernetics proposed by himself in 1996.

Some Basic Notions from PCL follow. We use L or�� (if an index is necessary) to denote a classical
2-valued logical space (a 1st order language or in the simplest case just a set of two truth values). Following
the PCL literature, we introduce some basic notions; for more details and motivating comments we refer
to the literature. The classical logical places (loci) within a PCL are denoted by� �, � � �� �� � � � � �,
where� �

�
�
�

�
and�� �� � � � �	 is an enumeration of the set of (global) truth values, thus leading to an

	-valued PCL system with� classical subsystems��. The total (global) system is denoted by����, The
two (classical) truth values within�� are denoted by
�, �� (with total order
� � ��). In addition to these
basic constituents of a PCL the following so-calledmediation scheme - MS, for short - represents basic
information of a PCL system. In the following figure we present such a scheme for the case	 � � (hence
� � �), we denote it byMS3.
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It contains the following information: The arrow
 � � �� expresses an ordering of the two values
within the subsystem L�, and� � expresses that an� -value in one system (L�) becomes a
 -value in
another (L�) (a “change” of truth values when changing the corresponding subsystems)- i.e. a “semantical
change”. The vertical lines have to be interpreted as identifications. Thus, aMS describes the global
relations between the local values and represents information about the passages from one subsystem to
another. Themediation scheme describes how thelocal 
 -, � -values of the individual subsystems relate to
each otherglobally, or how the collection of the� � � �
�� ��� (local truth values of an individual L�) form
the global set of values��� �� ��, respectively. In logical fibering notation (as introduced below) we shall
express this by an equivalence relation on the union� of all the local value sets� � � �
�� ���: 
� 	 
�,
�� 	 
�, �� 	 ��� As we will see, from the set of all local values one obtains the global values as set
of equivalence classes. Exactly this information is encoded in a mediation scheme. Since every subsystem
is a classical�-valued system bivariate operations can be defined componentwise, for example in� ���:

 
 � 
 � has to be interpreted as the operation where a conjunction is performed in subsystem� � , a
disjunction in�� and a conjunction in��. Analogously, the operation
 
 � � � has to be understood.

In vector notation:
 
 � 
 � =

�
�
�� 
 ��
�� � ��
�� 
 ��

�
�,
 
 � � � =

�
�

�� 
 ��
�� � ��
�� � ��

�
�.

2.1. Fiber Bundles, Logical Fiberings

As previously mentioned, the development of logical fiberings originates in work on a case study in PCL.
It has been strongly motivated and influenced by the classical theory of fiber bundles, a powerful modeling
language from geometry and topology, where typical local-global interaction of different structures can
be integrated in one concept. Thus, for example, in a vector bundle the fibers of such a fiber bundle are
vector spaces of a fixed dimension. Roughly spoken, vertically one does algebra and horizontally (across
the fibers) one is doing geometry/topology.

Concerning the (notion of)logical fiberings, as introduced in [20], the idea was to replace the fibers
of a fiber bundle by a logical space (e.g. a 2-valued logic) and try to preserve all the expressive power of
the classical fiber bundle notion as good as possible. A typical aspectarising here is that we are going to
mix discrete with continuous structures in one integrated concept, but this is part of the challenge. More
generally, our aim is to extend this logical fiberings approach to a generic modeling principle which allows
to mix various logics in the sense that we take various different logical spaces as fibers, putting them together
(as a bundle of fibers) over a base space manifold that serves as an index system with its own structure. The
development of such logical fiberings in terms of a flexible logical operational modeling tool is a difficult
task.

To safe space we use a short notation for the truth tables of logical connectives. For example, the truth
table of a classical 2-valued conjunction will be abbreviated by the� � ��matrix that is, we just list the
images corresponding to the four input pairs of the conjunction.


 �
� �

.
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Transjunctions A new nonclassical type of bivariate logical operation arises in PCL, and more gen-
eral, in logical fiberings. We introduce the notion of a so-calledtransjunction (we adopt this name from
PCL).. Apart from the possibility of forming (bivariate)�-valued logical connectives in each subsystem� �

another, more general, non-classical operation arises naturally. Considering a “local” bivariate operation as
a mapping� � �� � �� � �� , we can distribute the images of different input pairs�� �� ��� 
 �� � ��
under� over different subsystems�� , ��, . . . in theimage space�� . The following picture shows the

basic structure of such a bivariate operation:

�: L� � L�

L�

L�

L�

LÆ

�
�
�
�
�
�
�
���

��
��
��
��
��

�
����������

More explicitly, semantically there can be up to four different subsystems for the images of the four
possible local input pairs�����. For example, for the four image truth values we could obtain��
 �� 
�� �

�, ��
�� ��� � �� , ����� 
�� � �� , ����� ��� � �Æ , as displayed in the truth value matrix below.
In other words, such bivariate operations can distribute images over several subsystems - this is a new
situation. In [20], a classification of all such bivariate operations, calledtransjunctions, is given. For

example, the truth value matrix of a“conjunctional” transjunction looks like:

� ��
�� �Æ

� First simple

demonstrations how transjunctions can be applied for “logical control” of cooperating robots were presented
in [29], [22]. This was the basis for a generalization of this logical modeling principle to more general
cooperating agent systems (cf. [16], [17]).

2.2. Free and Derived Logical Fiberings

The simplest form of a fibering or bundle is the ”trivial fibering”� � ��� ���� � � with � � � � � , � the
first projection; the fiber over� 
 � is: ������ � ����� . In our considerations of logical fiberings such a
trivial fibering is aparallel system of (classical) logics �� over an index set� as base space�. We can think
of reasoning processes running in parallel and independently within each fiber� � � ������. Transition
(”communication”) between fibers (loci) is described by suitable maps (cf. [20]). We call such a logical
fibering a“(free) parallel system” denoted by�� . We shall make a difference betweenlocal truth values
�� � �
�� ��� in each 2-valued subsystem��� � 
 � , and the set ofglobal values �� of the whole fibering.
Parallel systems are characterized by the fact that there are no relations between different local values, i.e.
the set of global values is just the mere coproduct (disjoint union)� � �

�
��� ��. We are using the notation

�� �� �� , for � � ��� � � � � ��, � a natural number. In this case�� � �� � �
�� ��� 
�� � � � � ���. In a free

parallel system�� many bivariate operations can be introduced without any problem combining various
bivariate operations defined independently on each component (subsystem)� �, � 
 � . More generally, in a
(free) parallel system logical formulas can be formed independently in each fiber in parallel. In this sense,
we interpret a global deduction as a parallel process of local, fiberwise deductions running in parallel.

Starting with a free logical fibering, aderived logical fibering is obtained as a system where a nontrivial
equivalence relation	 is defined on�� , we denote it by����, with ���� �� ��� 	 . In this sense the PCL
system���� can be derived from the free parallel system�� by introducing the equivalence relation	
(given byMS3) on the set of global values�� yielding���� � ��� �� ��.

All considerations are motivated by the main idea to use free parallel systems as basic objects from
which we derive all other logical fiberings by introducing suitable equivalence relations on the global value
set. Furthermore, our emphasis is on functional notation, i.e. to express logical operations by corresponding
mappings and, accordingly, manipulate formulas in an operational way. We recall that in a derived logical
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fibering���� all operations which we consider are induced by corresponding operations in the free paral-
lel system�� where we define the logical expressions and operations componentwise (in parallel, in the
subsystems).

The technical process of passing from�� to a new system����, w.r.t. a certain equivalence relation on
�� is discussed in more detail in [20].

At this stage of our initial work in the development of logical fiberings we were able to state that a given
PCL system is a special instance of a derived logical fibering determined by a corresponding	-relation
imposed on a suitable free logical fibering.

3. Decomposition, Representation Based on Logical Fiberings

The subsequent considerations concerning decompositions are taken from an experimental case study where
many examples were examined (cf. [28]) suggesting a general algorithmic decomposition procedure and
general representation of many-valued logics by logical fiberings (cf. also [24]). We use the same notation
as in [20]. Recalling notation, in that work we briefly discussed an example of a bivariate logical function
like 
 
 � 
 � . With that it shall be expressed that the whole bivariate logical function (operation) is
formed by “putting together” local components defined in a��valued classical logical space (subsystem) –
considered as a “fiber” of the whole system which as a whole forms the underlyinglogical fibering.

Here we are going to interpret the fiberings model exactly in the opposite direction: we intend to use this
approach todecompose a given	�valued bivariate logical function into a number of��valued components
based on a corresponding underlying logical fibering which has to be constructed. Such a decomposition
procedure might be of interest at least with respect to the following aspects which arise naturally.

� Decomposing	�valued operations into components as mentioned above results in aparallelization
of logical operations where one can work with classical operations in the components in parallel
(“fiberwise”), respectively.

� A general representation theory of many valued logics by means of logical fiberings is expected where
it should be possible to represent a many valued space by a fibering of��valued spaces. More gen-
eral, it should be possible also to “mix” logics and to model “carse” and “fine grain” decompositions,
i.e. having also many valued logics as fibers (and not only��valued) – conceptually this is possible,
in principle, with our approach.

We start with the following motivating example of a 3-valued logic� taken from [31], p.169, as a first
illustration of our method. The bivariate operations AND, OR, IMPLY of that example are given by the
tables (cf. [31], loc.cit.)

AND T * F
T T * F
* * * F
F F F F

�

In the following considerations we shall use a technically shorter notation for displaying the truth table
of such bivariate logical functions just using the� � ��matrix consisting of the image values of such a
function. Fortechnical reasons we rename the symbols for the truth values as follows, setting� �� T,
� �� �, � �� F. Symbolically, we then obtain the set of (“global”) values� � ��� �� ��.

a b c
b b c
c c c

�

Analogously, the OR and IMPLY operation is given by a corresponding matrix (as displayed in the
considerations below).
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Below we are briefly describing the principle how the given 3-valued logic� can be derived from the
free parallel system��, the logical fibering consisting of 3 classical 2-valued subsystems denoted L�, L�,
L� (fibers) — cf.[20] for the details.

Theglobal values of �� are given by the 6local values �T��F��, � � �� �� �, of the threesubsystems,
forming the set�� � �T��F��T��F��T��F���

The procedure of deriving� from�� can be briefly formulated as follows:

� Find a suitable equivalence relation	 on�� such that the set of residue classes� �� ��� 	 yields
the global value set��� �� �� of the given logic�.

� Express each given logical connective AND, OR, IMPLY in terms of a family of local classical
connectives (i.e. triples) defined in each of the three local subsystems L�, L�, L�, respectively.

� These representations have to be compatible with the equivalence relation on� � ([20]).

In some respect this procedure can be considered to be a a construction following thegenerators and
relations principle.

Method of decomposition:
¿From a 3-valued bivariate logical operation represented by a� � �-value matrix consisting of the

image values of a corresponding logical function��� �� �� � ��� �� �� � ��� �� �� we derive three 2-
valued classical operations given by the three�� �-submatrices along the diagonal of the�� �-schema —
interpreted in��.

That means each of the� � �-submatrices belongs to the possible 4 index pairs formed by a selected
pair of indices�� �, namely���� ��� ��� ��� ��� ��� ��� ���, where� � � and�� � is running through�� �� �.

Thus, for a general	-valued bivariate operation we obtain the amount of� ��
�
�
�

�
suboperations

defined in a corresponding��valued “local subsystem” (forming a fiber of the decomposition). For the
logical values of each�� �-submatrix we use the same total ordering which we define on the global values
��� �� ��, here we take� � � � �. For example, the AND operation leads to the first� � �-submatrix

(��� ��-submatrix)
a b
b b

which is interpreted in the first subsystem L� of ��, hence in terms of the local truth values�T��F��
of L�. We obtain locally:� � T�� � � F�. Obviously this represents locally a classical conjunction –
symbolically expressed by�� 
 ��.

Analogously, we derive the��� ��-submatrix and the��� ��-submatrix and obtain the local conjunctions
�� 
 �� and�� 
 ��, respectively.

These are all considered as local logical operations in the free parallel logical system (fibering)� �.

Summarizing, we obtain the bivariate operation:
 
 
 
 � �

�
�
�� 
 ��
�� 
 ��
�� 
 ��

�
� �

In order to find the representation of the originally given OR in� derived from that decomposition

 
 
 
 � in �� we have to define a suitable	-relation on��, to identify the corresponding equivalence
classes and to check whether this is compatible with all the three originally given bivariate operations. We
demonstrate this with the example AND:

The second submatrix w.r.t. the indices��� �� is given by:

b c
c c

This induces the local T,F-scheme

T� F�
F� F�
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w.r.t. the correspondence T� � �, F� � �. This again yields a classical conjunction�� 
 �� in the
subsystem L� of ��.

The (third)��� ��-submatrix which can be derived from the given�� �-matrix is

a c
c c

leading to

T� F�
F� F�

w.r.t. T� � �, F� � � in subsystem L� of ��. This yields�� 
 ��. Altogether we obtain
 


 � in
��.

Noticing that � � ��� �� �� is the set of global values which shall be obtained from� � as a set of
equivalence classes��� 	 we can read off the following equivalence relation on� � from the above
identities:

T� 	 T� leads to class�. Let [T�] denote the equivalence class of T� then [T�] = [T�] = �, analogously
F� 	 T�, F� 	 F� such that [F�] = [T�] = �, and [F�] = [F�] = �.

We summarize the previously introduced decomposition of AND in the following schematic drawing:

AND

in �

in ��

� � �
� � �
� � �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�


� ��
�� ��

�
� �
� �

in L�


� ��
�� ��

�
� �
� �

in L�


� ��
�� ��

�
� �
� �

in L�

AND leads to


 
 
 
 � �

�
�
�� 
 ��
�� 
 ��
�� 
 ��

�
�

in �� with 	 on�� given by

� � 	T�
 � 	T�
� � � 	F�
 � 	T�
� � � 	F�
 � 	F�
�

We can therefore represent AND by the operation
 
 
 
 � interpreted in� w.r.t. � � �� �� 	� �
��� �� �� corresponding to the above identities on the truth values of� �.

In this setting we haveparallelized AND by the operation



� consisting of 3 conjunctions deduced
from��.

Analogously, we give the presentation of OR and IMPLY following the above method.
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OR

in �

in ��

� � �
� � �
� � �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�


� 
�

� ��

�
� �
� �

in L�


� 
�

� ��

�
� �
� �

in L�


� 
�

� ��

�
� �
� �

in L�

The corresponding identifications are:

� � 	T�
 � 	T�
� � � 	F�
 � 	T�
� � � 	F�
 � 	F�
�

These are the same relations as obtained from AND — in this sense both representations are compatible
with the given equivalence relation	.

OR is thus representable as


 � � � � �

�
�
�� � ��
�� � ��
�� � ��

�
� �

similarly as AND.

IMPLY

in �

in ��

� � �
� � �
� � �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�


� ��

� 
�

�
� �
� �

in L�


� ��

� 
�

�
� �
� �

in L�


� ��

� 
�

�
� �
� �

in L�

In �� we obtain:


 ��� � �

�
�
�� � ��
�� � ��
�� � ��

�
� �

The induced identifications on the value set�� are given by

� � 	T�
 � 	T�
 � 	T�
� � � 	F�
� � � 	F�
 � 	F�
�

This differs from the above	-relation in the class represented by�, namely for imply we have to
identify T� 	 T� in contrast to T� 	 F� in AND and OR.

This yields an incompatibility: with respect to the previous	-relation IMPLY cannot be represented as

 ��� � in the same way as we did this for OR, AND.
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But it is possible to repair this, i.e. to make all 3 connectives compatible with the originally chosen	-
relation on�� if we apply the concept of transjunction (cf. [20] for the definition). Recalling, a transjunc-
tion in subsystem�� is a local bivariate operation, defined on the values of� �, which distributes its image
values over different subsystems. In accordance with our notation it is defined by a value matrix like, e.g.


� ��
�� ��

�

� ��
�� �Æ

The second submatrix
a c
a a

corresponding to
T� F�
T� T�

in subsystem�� leads to an incom-

patibility. But it would be compatible with the	-relation obtained from the AND, OR representation if it

were of the form
b c
b b

.

We can achieve a representation of IMPLY of the form
 �� 	� � deducing it from the parallel
system�� where the second local operation�� �	 �� is a suitable transjunction defined by a bivariate

operation defined as�� � �� � �� � �� given by
T� F�
T� T�

and denoted by�	. Note that this is

a local bivariate operation defined in�� with values distributed over the two subsystems�� and��. As a
T-F-pattern this is of the type of an implication table, we therefore also can describe this transjunction by:
�	� �Æ �, where�� �� � �� � �� is a classical implication and� � �� � �� � �� distributes the
values over 2 subsystems corresponding to
� �� 
�, �� �� ��.

In this way we can express IMPLY by
 ��	� � and this is compatible with the original equivalence
relation.

We verify this only for the local input	
�� ��
 to the second operation�	 since this is the only critical
situation:

Recall that IMPLY is evaluated by the local evaluations of� and� 	 and� corresponding to our
representation, which can be performed in parallel. Note that we must take into account the given	-
relation.

Inputing the four possible pairs formed by� � 	
�
� � � 	��
 we obtain the correct second submatrix
of IMPLY. We point out again that the whole�� �-value matrix that defines IMPLY is represented by the
evaluation procedures of the three bivariate operations��� 	��; this can be done in parallel.

Remark: The compatibility condition with respect to the three suboperations (submatrices) can be
expressed as follows (cf. [20]): The three���-matrices have to be merged to a���-matrix scheme along
the diagonal of the���-matrix such that the corresponding diagonal elements match (i.e. the���-matrices
are the suitable submatrices). In this sense our decomposition method is the reverse process to this merge.

After these “experimental considerations”, in [28] more general cases are considered from Łukasiewicz
Logic Ł�, Bochvar’s system, Kleene’s system, providing further insight into the basic decomposition prin-
ciple. Concluding, we give a brief summary of the algorithmic decomposition procedure which points to a
theory of logical fibering representations of many-valued logics.

The decomposition procedure for� can be stated in meta-language as follows (cf. [28]).
Input: �, the set of truth values of the logical system�, a total order� on�, a set of (bivariate)

logical connectives of�, the truth tables for these logical connectives.
Problem: Find a decomposition of the connectives into a number of�-valued components, based on a

corresponding underlying logical fibering.
Begin

Step 1 Let � � ���� �� � �� � 
 �� � � �� be the set of all possible pairs of distinct elements of�. Let
��
� � �
�
� � ��
�� be the local truth values of the local subsystems corresponding to the elements of� . Let
� �

�
�
� ��
� be the set of global truth values.
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Step 2 Express each given connective on� in terms of a family of local classical connectives defined
on each of these logical subsystems.

Step 3 Find a suitable equivalence relation	 on� (compatible with the operations - cf. the demon-
stration examples above), such that the quotient set�� 	 yields the set� of truth values of the given logical
system�.
End

For a more detailed version with a short proof we refer to [16].

4. Automated Deduction and Buchberger Algorithm (Gr öbner
Bases)

A canonical way to introduce and exploit the computational power of symbolic computation approaches.
especially computer algebra, to treat problems in mathematical logic is the polynomial representation of
logical operations. The Stone isomorphism uses the following polynomial representation of connectives in
classical 2-valued logic.

 
� �� 
�� , 
 � � �� 
� �
 �� , 
 � � �� 
� �
 ��, �
 �� 
 ��. The

polynomials are considered over the coefficient field with two elements�� �� ����.

In [5] the authors applied a clever idea to generalize the Stone isomorphism to m-valued logical connec-
tives. This deals with polynomials over finite fields (Galois fields). A crucial point is that the authors can
translate aproblem of consequence of a formula from a given set of formulas into a correspondingprob-
lem of ideal membership. This naturally leads to the application ofBuchberger’s algorithm for computing
Gröbner bases and thus to the deployment of computer algebra systems allowing automated deduction. We
mention here the interesting work [30] which is closely related to [5].

For the convenience of reading we give a brief summary of some notions and results of the article
following the short presentation of the material by W.Meixl ([16]) - who worked on his thesis under my
supervision. One objective of the thesis was to exploit the logical fibering approach to reduce complexity
in the symbolic computation treatment of logical deduction problems.

4.1. Algebraic Representation of m-valued Operations

As already mentioned, we keep the following summary very short in order to save space. In [5] the authors
consider finite coefficient domains for the multivariate polynomials. For a natural number	 the finite ring
��	� is abbreviated by��. For an	�valued logic the set of variables is denoted by� �� � ���� � � � � ���
and� � � �� �� �� is a valuation. Let� denote the smallest prime number greater than or equal to	
(	 � �), then the coefficient field�� and the polynomial ring� � ��	��� � � � � ��
 are chosen for the
continuation of development and work.

In a very clever way, the authors develop a method to associate to a logical connective� a corresponding
unique multivariate polynomial
� 
 � � ��	��� � � � � ��
. They exploit Lagrange interpolation unsing the
logical values of the truth table of a given logical connective� as points (interpolation nodes) for the
corresponding interpolation polynomial. The approach leads to a mapping
 on formulas with values in te
polynomial ring�, where for the variables it holds
 �� �� � ��.

Heading towards a polynomial ring criterion for a problem of consequence� �� �, the authors define a
set of elementary polynomials�� in � (of type

����
��� ��� � ��) and the polynomial ideal� , generated by

the��, for � � �� ���� �. With the help of this the following polynomial criterion for a consequence relation
can be shown.

Let� � ���� ���� �
� be a set of formulas, then the following equivalence holds:
� �� � � 
 ���� � 
 �
 ����� �� ���� 
 ��
�� �� ��� ���� ���.
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This important theorem shows the formulation of a problem of consequence in terms of a corresponding
ideal membership problem.

Coming back to the logical fiberings decomposition approach for m-valued logical connectives, in the
diploma thesis [16] the following procedure has been established - we can only give a brief description here.

Let ������ denote the local connectives (local components) of the (logical fibering) decomposition of a
given connective�. Then, consequently, the polynomial
� will have an associated “fibered” polynomial
����
�� consisting of those polynomials which we obtain locally for each local subsystem of the decom-
position. These are polynomials corresponding to classical 2-valued connectives (cf. Stone isomorphism)
or special transjunctions. There is a natural unique correspondence between
 � and����
��. This leads
to a fibered version of the Stone isomorphism corresponding to the generalized Stone isomorphism of [5].
Finally, all these considerations lead to a “fibered version” of the polynomial consequence criterion.

4.2. Parallelized Automated Deduction

After these technical considerations we conclude with a brief r´esumé of the basic ideas and objectives
concerning the possibility to apply the decomposition method to results presented in [5]. In their work these
authors develop a method to translate logical formulas of an m-valued logic into corresponding polynomials.
This approach generalizes theStone isomorphism in classical 2-valued logic. It is working with multivariate
polynomials over finite fields (Galois fields). A crucial point in that article is that the authors can translate
aproblem of consequence – when a formula� is a consequence of a given set� of formulas (i.e.� �� ��)
– into a correspondingproblem of ideal membership. In a natural way, this leads to the application of
Buchberger’s Gröbner basis algorithm and thus to the deployment of computer algebra systems. As a
selection of references we cite here Bruno Buchberger’s original work [2], and two survey papers [3], [4]
and [1].

This is the point where we argue that our decomposition method can be usefully exploited in the fol-
lowing direction. Assuming that the decomposition of a given many valued space into a fibering can also be
transformed canonically into the polynomial algebra case leads to the following aspects. A given decision
problem then can be fully parallelized, i.e. manipulations can be done fiberwise in parallel, and even more,
in each fiber (component) we have in many cases classical logical formulas to handle that means that the
corresponding polynomials have degree not greater than two (!). If we have to deal with certain transjunc-
tions (as discussed in examples above) we only have to consider a well known restricted class of operations
and, again, the corresponding polynomials have bounded degree (maximally degree four). Having bounded
small polynomial degrees might be a big advantage in Gr¨obner basis applications, because high polynomial
degrees can cause heavy problems to the performance of computer algebra systems. Thus, the possibility
to represent many-valued logics by logical fiberings provides a decomposition, parallelization approach for
many-valued connectives yielding fiberwise simpler expressions. This, consequently, leads to an overall
reduction of complexity, especially in the corresponding symbolic computation applications.

To save space, we conclude these considerations with a simple illustration of the basic idea and principle,
presenting the following short example. We take the 3-valued disjunction ! given by the truth table

 � �
� � �
� � �

, its decomposition consists of three local 2-valued disjunctions, displayed in vector notation as

��� � ��� �� � ��� �� � ���
� .

Following [5], the corresponding polynomial of the 3-valued ! is

�� � �
�

�

�
� �


�
�
� �
�


�
� �
�
� �
� �
�.

Since a classical ! corresponds to the polynomial
� �
 � � , the polynomial
�� corresponds
to the decomposition vector of polynomials�
��� �
� � ��� 
��� �
� � ��� 
��� �
� � ���

� .
This representation clearly demonstrates the decomposition (parallelization) of the original polynomial

into smaller components with lower degree.
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With these considerations, we conclude this section. A more detailed discussion with further examples
will be subject of future work.

5. Conclusions and Prospects

The concept of logical fiberings offers a natural approach to assign a system of distributed logics to a
multiagent system (MAS), where the basic modeling principle is the idea to attach an individual logical fiber
to every agent which models the local logical state space of an agent. The entire logical fiber bundle forms
the global logical state space of the whole MAS. We point to existing work as published (among others) in
the following articles where basic ideas and prospects are presented, cf. [22], [29], [27], [17], [23], [26],
[16], [7]. These publications always provides the basis for further investigations and developments in the
wide area of multiagent systems and, especially, cooperating robots scenarios. First steps in this directions
were part of our work in the MEDLAR poroject mentioned above. Furthermore, these aspects form the
basis of a fruitful cooperation contact with my colleague Bernhard Mitterauer, director of the institute of
forensic neuropsychiatry at the university of Salzburg. He is an expert in brain research and cybernetics.
Our cooperation work focuses on developing mathematical models for some notions from his brain research
being of basic relevance for agent models and multiagent system behaviour and for modeling connectionist
networks and learning systems (cf. our work [25]). B.Mitterauer has a profound knowledge of G.G¨unther’s
theory of polycontexturality. Based on this, he proposed a new brain theory with the aim of technical
implementations in robotics, cf. his work [18]. This brain model may also be explanatory for so-called
mental disorders, like schizophrenia (cf. [19]). Currently, we are working on a mathematical formalization
of the notions “intention” and “rejection” that are relevant to agent and MAS modeling.

Concerning the topics previously discussed in this contribution, we aim at exploiting it in the direction
to devise a “general automated reasoning machine for an agent” in a MAS, using computational power to
provide an agent and a MAS with automated deduction techniques. This point of view would be in the
spririt of the old idea of MEDLAR practical reasoners (cf. the Esprit projects MEDLAR I,II).
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