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Rough set data representation
using binary decision diagrams

Alex Muir, Ivo Düntsch and Günther Gediga

Abstract. A new information system representation, which inherently represents indiscernibility is
presented. The basic structure of this representation is a Binary Decision Diagram. We offer testing re-
sults for converting large data sets into aBinary Decision Diagram Information System representation,
and show how indiscernibility can be efficiently determined. Furthermore, a Binary Decision Diagram
is used in place of a relative discernibility matrix to allow for more efficient determination of the dis-
cernibility function than previous methods. The current focus is to build an implementation that aids in
understanding how binary decision diagrams can improve Rough Set Data Analysis methods.

Representación de datos de conjuntos aproximados mediante diagramas de
decisión binarios

Resumen. Se expone una nueva representaci´on de sistema de informaci´on, que incorpora inherente-
mente la indiscernibilidad. La estructura b´asica de esta representaci´on es un diagrama de decisi´on binario.
Se ofrecen los resultados de unas pruebas llevadas a cabo para convertir grandes conjuntos de datos en
una representaci´on de sistema de informaci´on de diagrama de decisi´on binario, y se muestra c´omo se
puede determinar, de forma eficaz, la indiscernibilidad. Adem´as, se utiliza un diagrama de decisi´on bi-
nario en lugar de una matriz de discernibilidad relativa para permitir que la determinaci´on de la funci´on
de discernibilidad sea m´as eficaz que en los m´etodos anteriores. Actualmente, el inter´es se centra en
la construcci´on de una implementaci´on que ayude a entender c´omo los diagramas de decisi´on binarios
pueden mejorar los m´etodos de an´alisis de datos de los conjuntos aproximados.

1. Introduction

As one of the most referenced data structures in Computer Science the uses of Binary Decision Diagrams
(BDD) [5, 15] are too numerous to mention. R.E. Bryant [13] popularized BDD when he observed that
reduced ordered BDD (ROBDD) are a canonical representation of Boolean functions. More recently, the
work of Berghammer et al. [3] has shown “how relations and their operations can efficiently be imple-
mented by means of BDD� � � by demonstrating how they. . . can be applied to attack computationally hard
problems”.

Rough Set Data Analysis (RSDA), developed by Z. Pawlak [11] and his co–workers in the early 1980s
has become a recognized and widely researched method with over 2500 publications to date1. As part of the
RSDA process, indiscernibility among objects and attributes within an information system are determined
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in order to perform rule dependency generation. Previously methods of RSDA were not feasible with
large data tables (e.g. with over 10,000 objects)even on powerful workstations. Nguyen and Nguyen [9].
Demonstrating more efficient reduct determination than previous methods, we offer testing results using
UCI data sets with more than 10,000 objects.

2. Rough set data analysis

2.1. Basics

The basic idea of RSDA is that objects are only discernable up to a certain granularity. For example, if we
only know that a hit and run car was a red BMW, then, within this framework, all red BMWs are the same
to us. It is the aim of the police to increase the granularity of the information so that, finally, the culprit’s
car is distinguishable from all others. The mathematical tool of RSDA areindiscernibility relations, which
are simply equivalence relations, i.e. they are reflexive, antisymmetric and transitive. Data representation
in RSDA is done viainformation systems, which can be described as tables of

Object �� Feature–vector

relationships. More formally, an information system is a structure� � ����� ��� � � � ���, where

� � is a finite non–empty set of objects.

� � is a finite set of mappings� � � � ��, calledattributes.

Throughout the rest of the paper we will use� � ����� ��� � � � ��� as a generic information system
with 	� 	 � � and	�	 � �. We can think of��� ����� as a descriptor which assigns value���� to object
� for attribute�. Since both� and� are finite, we can picture an information system as a table where
the rows are labeled by the objects and the columns are labeled by the attributes. An example is shown in
Table 1. In terms of measurement theory, RSDA operates on a nominal scale, where only (in-)equality is

Table 1. A simple information system

� � � 	 

�� �� �� 	� �

�� �� �� �� ��
�� �
 	
 �� 
�
�� �
 	
 �� 
�

recognized. Each set� of attributes determines an indiscernibility relation�� on� by setting

���
 
� ��� � ������� � ��
��� (1)

If � � ���, we usually just write��. Observe that for��� 
 �,

� 
 �� �� 
 �� � (2)

�� �
�
��� � � � ��� (3)

The complexity of determining indiscernibility relations is given by

Lemma 1 [9] If � 
 �, and 	�	 � �, then �� can be found in ��� � � ������� time and ���� space.
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One aim of RSDA is to eliminate features which are superfluous for a reclassification of the data; in other
words, one looks for attribute sets� which give the same classification of the objects as the full set�, and
which are minimal with respect to this property; such sets are calledreducts. Formally, a reduct� is a set
of attributes such that

1. �� � ��.

2. If � � �, then�� � ��.

Reducts correspond to keys of a relational database; consequently; as was pointed out in [12] the problem
of finding a reduct of minimal cardinality is, in general, NP-hard, and finding all reducts has exponential
complexity [17]. Clearly, each� has a reduct; the intersection of all reducts is called thecore.

Let 
 be a new attribute with a set of values�� and information function
 � � � ��, and suppose that
� �� � 
 �. The aim is to relate the values an object has with respect to the attributes of� to its value with
respect to
. The new attribute is called thedependent attribute or decision attribute; the elements of� are
calledindependent or condition attributes. The structure� � ��� 
� is called adecision system; it is called
consistent if

���� 
 � ������ � ������ � ��
� implies
��� � 
�
��� (4)

An example of a decision system is given in Table 2. There we interpret the decision variable as “Demand”.

Table 2. A decision system

Type Price Guarantee Sound Screen d

1 high 24 months Stereo 76 high
2 low 6 months Mono 66 low
3 low 12 months Stereo 36 low
4 medium 12 months Stereo 51 high
5 medium 18 months Stereo 51 high
6 high 12 months Stereo 51 low

A local rule of � is a pair������� where�� is a class of��, �� a class of�� and�� 
 ��. This
is the case just when all elements that have the same attribute vector determined by��, have the same
decision value. In Table 2, we have, for example, the local rule���� 	��� �low���, where� � �Price�.
This rule can be read as

If Price = low, then Demand = low.

Therefore, we usually write�� � �� instead of�������. A class�� of �� is calledd-deterministic
(or justdeterministic, if 
 is understood), if there is some class�� such that�� � ��. The union of all
deterministic classes of�� is called the�-positive region of
, denoted by������ 
�. The characteristic
function of������ 
� is denoted by���� 
�.

If each class of�� is deterministic, i.e. if������ 
� � � , then we say that
 is dependent on �, and
write � � 
. In this case, we call� � 
 a global rule or just arule. A d-reduct now is a set of attributes
which is minimal with respect to�� 
. If it is clear that we are considering decision systems, we will just
speak of reducts.

2.2. Discernibility matrices and Boolean reasoning

Using the fact that RSDA operates on a nominal scale, an alternative way of representing discernibility is to
cross-classify objects by assigning to each pair��� 
� � � � the setÆ��� 
� of all those attributes� for which
���� �� ��
� [17]; the result is called adiscernibility matrix. The discernibility matrix for our example of
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Table 3. A discernibility matrix

� �� �� �� ��
�� � �	� 
� � �
�� �	� 
� � ��� �� 
� ��� �� 
�
�� � ��� �� 
� ��� �� 
� �
�� � ��� �� 
� � �

Table 1 is shown in Table 3. It may be noted that time complexity of finding the indiscernibility matrix from
a given information system is��� � ��� and that the space required to store the matrix is��� � ��� as well.

Associated with a discernibility matrix is adiscernibility function, which is a frequently used tool
to handle reducts [17]. First, we need some preparation from Boolean reasoning: Suppose that� �
���� ��������� �� �� is the two element Boolean algebra. ABoolean function is a mapping� � �� � �,

where� � �, and�� �
� �� �
�� �� � � � � �

��times
. If ��� �
 � �� we say that�� � �
 if �� � 
� for all � � � � �. A

Boolean function� � �� � � is calledmonotone, if �� � �
 implies����� � ���
�.
If � � �
� � � � � � �� is a set of variables, and� 
 � , we call� an implicant of � , if for any

valuation of�
 � ��


� � � for all 
� � � implies���
� � �� (5)

Observe that we can regard the left hand side of (5) as a conjunction, and we can equivalently write�
� � �� ���
� � �� (6)

Thus, an implicant gives us a sufficient condition for���
� � �. A prime implicant of � is a subset� of �
such that� is an implicant, but no proper subset of� has this property. Suppose that� � �� �� � � � � ���,
and� � ���� � � � � ���. For each�� � �, we let ��� be a variable, and, forÆ���� ��� �� �, we define
Æ����� ��� �

�
���� � �� � Æ���� ����. Now, thediscernibility function of � is the formal expression

����
�

�� � � � � �
�

�� �
�
�Æ����� ��� � � � � � � � �� Æ���� ��� �� ��� (7)

We usually just write� if � is understood. The discernibility function of the matrix of Table 3 is therefore

����� ��� 	�� 
�� � �	� � 
�� � ��� � �� � 
�� � ��� � �� � 	� � 
���

The connection between reducts and the discernibility has been shown by Skowron and Rauszer [17]; for
completeness, we provide a proof.

Proposition 1 � is a reduct of � if and only if � is a prime implicant of �.

PROOF. “�”: Suppose that� is a reduct of�, and let�
 � �� be a valuation of����� � � � � �
�
�� such that


� � � for all �� � �. We first show that� is an implicant of�. Assume that���
� � �. Then, by
definition (7), there are� � � � � � � such that��� �� � �� Æ���� ��� �� � and�	 � � for all �	 � Æ��� �� .
It follows thatÆ���� ��� � � � �, and therefore,� does not distinguish between� � and�� . Since� is a
reduct, we have, in particular,�� � ��, so that, in fact,�� and�� cannot be distinguished by any attribute
in �. Hence,Æ���� ��� � �, contrary to our assumption.

To show that� is prime, suppose that� 
 � is an implicant of�, and assume there are� �� �� � � such
that������ , and� distinguishes�� and�� , i.e. Æ���� ��� �� �. It follows from������ that� �Æ��� � ��� �
�. Let�
 be a valuation such that


� �

�
�� if �� � ��

�� otherwise�
(8)
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Then,
�
�
� � �� � �� � �, while���
� � �, contradicting the assumption that� is an implicant of�.

It follows that�� 
 ��, and the fact that� is a reduct implies� � �.
“
”: Suppose that� is a prime implicant of�, and let������ ; then,� � Æ���� ��� � �. Assume that

� distinguishes�� and�� , and choose a valuation�
 as in (8). By the same argument as above, we arrive at a
contradiction. Since�� � ��, � contains a reduct�, and it is straightforward to see that� is an implicant.
It now follows from the fact that� is prime, that� � � . �

Corollary 1 � 
 � is a reduct of � if and only if � is minimal with respect to the property

� � Æ��� 
� �� � (9)

for all �� 
 � �� Æ��� 
� �� �.

We can define arelative discernibility matrix for a decision system� � ��� 
� in a slightly different way
than for�: First, construct the discernibility matrix�� for the extended attribute set� � �
�. In case of
our TV example, the matrix is given in Table 4.

Table 4. Discernibility matrix ��

2 3 4 5 6
1 Pr,Gu,So,Sc,d Pr,Gu,Sc,d Pr,Gu,Sc Pr,Gu,Sc Gu,Sc,d
2 Gu,So,Sc Pr,Gu,So,Sc,d Pr,Gu,So,Sc,d Pr,Gu,So,Sc
3 Pr,Sc,d Pr,Gu,Sc,d Pr,Sc
4 Gu Pr,d
5 Pr,Gu,d

Next we define arelative discernibility matrix �� by

Æ���� ��� �

	
�

�
Æ���� ��� � �
�� if 
 � Æ���� ��� and��� �� � ������ 
�

or���� 
����� �� ���� 
������

� otherwise.

(10)

The result for the TV example is shown in Table 5; note that������ 
� � � .

Table 5. Relative discernibility matrix ��

2 3 4 5 6
1 Pr,Gu,So,Sc Pr,Gu,Sc Gu,Sc
2 Pr,Gu,So,Sc Pr,Gu,So,Sc
3 Pr,Sc Pr,Gu,Sc
4 Pr
5 Pr, Gu

Let�
�
be the Boolean function belonging to��. Then,

Proposition 2 [17] ���� � � � � � ���� is a reduct of � if and only if ��� � � � � � ��� is a prime implicant of
�
�

.

For our example, after absorption laws, we see that the relative discernibility function has the form

�
�
�Pr��Gu��So��Sc�� � Pr� � �Gu� � Sc��� (11)

The prime implicants are�Pr,Gu� and�Pr,Sc�.
Much work has been done on employing methods of Boolean reasoning for reduct determination and

rule finding, and we refer the reader to [7–9, 16, 17].
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3. Binary Decision Diagrams

Given a n-ary Boolean function����� � � � � ���, anordered binary decision diagram (OBDD) [13] is a finite
directed acyclic graph with one root,� � � levels, and exactly two branches at each non-terminal node.
One of these is the� case, denoted by����� and shown as a dashed line, the other the� case, denoted
by ����� and drawn as a solid line. The levels are determined by the (fixed) ordering of the variables
�� � �� � � � � � ��. Each traversal through the tree corresponds to an assignment to the variables, and
the nodes at level� � � give the evaluation of� corresponding through this traversal. Figure 1 shows an
OBDD for the function���� �� 	� � � � �� � 	�.

Figure 1. An OBDD for � � �� � 	�

The following reduction rules do not change the value of the function:

1. Use only one terminal label for� and one terminal label for� and redirect all lines from level� to
the respective node.

2. If two non-terminal nodes�� 
 are on the same level and����� � ���
�� ����� � ���
�, then
eliminate one of them, say,� and redirect all lines into� to 
.

3. If ����� � ����� for some non–terminal node�, then remove� and redirect all lines into� to �����.

The result of applying these rules to an OBDD until none of them can be applied any more is called are-
duced ordered binary decision diagram (ROBDD). Figure 2 shows the ROBDD of the function���� �� 	� �
� � �� � 	�.

A Shared Binary Decision Diagram Figure 3, is a multirooted directed acyclic graph that represents
multiple Boolean functions [14]. Reuse of nodes by more than one Boolean function in the shared BDD
allows for reduced memory use. A quasi-reduced BDD [10] is one that does not apply Rule 3 above
resulting in each node having paths to one or more nodes one level below.

4. Binary Decision Diagram Information System

4.1. Representation

A Binary Decision Diagram Information System(BDDIS) is a quasi-reduced shared BDD which represents
both data and indiscernibility within an information system. A BDDIS has one or more root nodes. Each
unique root node has a subtree that may share nodes with other objects and represents one or more indis-
cernible objects. This level containing root nodes is defined as theobject-top level; a top level element is

202



Rough sets and BDD

Figure 2. An ROBDD for � � �� � 	� Figure 3. Shared Binary Decision Diagram

Figure 4. BDDIS: Shaded Attribute Top Level

referenced by� ���, � � � . The shared nature of the structure provides the mechanism for which indis-
cernibility in inherent. Every unique attribute value is represented by a unique node on one level of the
roots subtrees defined as theattribute-top level. The current implementation has as leaf nodes the unique
characters present within the information system. An alternative more efficient representation is discussed
in Section 7.

From the information system of Table 1 the BDDISs of Figures 4 and 5 are derived. Figure 4 is shaded
to visualize the attribute-top level. Similarly, 5 is shaded to visualize the object-top level.

Each column within the information system is represented by a path composed of a unique series of lo
and/or hi branches arriving at an attribute-top level node. In Figures 4 and 5, the first column is represented
by the path lo-lo, the second a path lo-hi, the third a path hi-lo... Each node is labeled with Lnx for level
number� and node number�.

4.2. Indiscernibility

Two objects�� � � � are in the same equivalence class if� ��� and� ��� reference the same object-top
level node. From Figure 5 we can derive the following object-indiscernible sets:�� ��� ����� ���� ���.
Objects are indiscernible with respect to one attribute if by traversing a unique series of branches from each
object root node the same attribute-top level node is attained. From Figure 4 it is clear that objects 2, 3, 4
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Figure 5. BDDIS: Shaded Object Top Level

have a common path hi-lo to node L25 representing the value 18 for attribute	. Thus the object 2,3,4 are
indiscernible with respect to attribute	.

For a given data set, the size of the BDDIS decreases as the level of indiscernibility increases. The
worst-case data that causes the BDDIS to grow as large as possible – relative to the size of the information
system – is data containing all unique attribute values. The quasi-reduced structure is chosen to reduce
the complexity associated with determining indiscernibility for the initial implementation. Methods which
reduce BDDIS size are discussed in Section 7..

4.3. Construction

A build tree is a two-dimensional array used to convert one row of the information system at a time into one
root node and one subtree within the BDDIS. The bottom row consists of null-padded attribute values as
characters of which each character pair j and j+1 is stored as lo and hi keys within the nodes one level above
the leaf nodes in the BDDIS. The leaf nodes only exist logically within these nodes. The attribute values
are padded to the left with null characters to create attributes values of equal� � character length, allowing
each attribute value to form a subtree of equal height in the BDDIS.

OneAVL tree [1] for each BDDIS level ensures nodes are unique. Each node in the AVL trees is also
a node within the BDDIS as well so that each AVL tree collectively forms the BDDIS. Each node contains
keys, which represent the location of the lo and hi children. The AVL trees use thelo-key as primary key and
thehi-key as secondary key for insertions and rebalancing. Each AVL tree is stored in a two-dimensional
array. The array index is used as the key of each node.

For each level of the build tree, a probing/ insertion operation is performed into the corresponding AVL
tree that returns the node key of either an existing node or a newly inserted node. The returned key is placed
within build tree in the element corresponding to the parent of the lo and hi keys:�next level�� ���

� � ��.
Upon each level of the build tree the same process is performed bottom up resulting with the top element
in the build tree representing an object root node and the completion of the addition of an object into the
BDDIS.

4.4. Order of operation

The conversion process involves AVL probing/insertion operations. For an object with 32 attributes having
16 characters each, there are a total of	� � �� probing operations. Only the last object probes the AVL
trees holding nodes created from the insertion operations of all other objects before it. e.g the third object
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Figure 6. BDDIS as AVL Trees

converted, probes the AVL trees holding nodes created by the insertion operations for the first and the
second objects.

Figure 7 displays the relationship between the size of the AVL trees representing each level and the
number of probe/insertion operations with worst-case data. Note that the number of probe/insertion oper-
ations decreases as the maximum size of the AVL trees increases, and that the size of the levels below the
attribute-top level is much smaller as compared to the number of probe operations.

Figure 7. Exploration of order developed from AVL size and the number of probe operations

It is observed that for each level� � �� � �� � ��num probeoperations���� � ����max AVL size����.
With � objects,� attributes per object,	 characters per attribute,� unique characters, the max AVL size
below the attribute top level is restricted by either the number of possible combinations of digits� �� or
largest number of nodes���	 ���. It is clear that for some large value of� and�, the BDDIS will grow
larger than available memory with worst case data. It is expected that	 will, in general, be small in most
data sets.
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5. BDDIS Testing Results

The success of the representation is currently defined in terms of its speed, and demonstrated using data
sets from the UCI data repository [4] with initial results given in Table 6. Furthermore, tests with random
data, shown in Table 7, illustrate the ability of the method to handle larger data sets.

Table 6. Conversion to BDDIS; UCI Data Sets; Pentium 4 1.8GHz

Objects Attributes Size (KB)
Data set number discernible number unique Text BDDIS Time �!�
Iris 150 147 5 77 5 13 0.00001
Nursery 12960 12960 9 28 1047 440 1
Adult 32561 32537 15 22124 3913 3385 7
Cover Type 30000 30000 55 6399 3811 5626 13
Connect-4 Opening 67557 67557 42 6 5895 2120 5

In Table 6, the size of UCI data as text, and the time required to convert the data into the BDDIS, are
listed. In addition, in order to gain a better understanding of the results, the size of the data along with the
number of indiscernible objects and unique attributes within the information system is listed; in this way,
we can represent the relationship of the level of indiscernibility and the size of the data with the BDDIS size
and conversion time required. As the level of indiscernibility increases or the number of unique attributes
increases, the AVL trees grows larger, and thus, the conversion time required and the memory used by the
BDDIS are increased.

Table 7 displays results of the conversion into BDDIS representation on a Pentium 4 1.8GHz system
using random 10-digit data sets of eight attributes and eight characters each. Random data cause the quasi-
reduced BDDIS to grow unreasonably large as there is little opportunity for the BDDIS to reuse nodes
because, in general, classes are small, and the large majority of attribute values are unique.

Table 7. Conversion to BDDIS; Random data sets; Pentium 4 1.8GHz

Number of objects BDDIS (MB) Time �!�
100000 24.4 40
200000 48.6 136
300000 72.6 281

6. Discernibility functions using BDD

In this Section we shall describe a method to determine a Boolean discernibility function without the re-
quirement to create a discernibility matrix. The current implementation uses the Buddy BDD package [6]
to represent the Boolean discernibility function as a BDD.

Instead of creating a set of disjunctions for pairs of each object in the information system, the relative
discernibility matrix can be created using pairs ofdiscernible object classes. Each discernible object class
is represented by a top node within the BDDIS. i.e each root node represents an object discernible from all
other objects.

A depth first traversal of the BDDIS for every two discernible objects classes that are indiscernible with
respect to their decision attributes is performed from top node to attribute top level node in order to create
each set of disjunctions in turn. An AND operation is performed with each new set of disjunctions into
what will eventually become the final BDD representing the discernibility function; the BDD is always
in a reduced form. Figure 8 represents the Boolean function for Table 2. A reduct is derived from each
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possible set of unique paths leading to the leaf node�, which for Figure 8 are��� �� and��� 	�. Buddy
codes attributes using integers; in Figure 8, attribute� represents price, and� represents guarantee.

Figure 8. Discernibility function as a BDD for Table 2

6.1. Order of the operation

In the worst case, the operation requires������
� traversals of the BDDIS and AND operations into the

BDD discernibility function. The Buddy package uses a hash table to represent the BDD discernibility
function. The AND operation of each set of disjunctions into the Boolean discernibility function as well
as the creation of the disjunctions is done in constant time [2] . The order of operation is�� ����

�	
��� �. As
an outlook a method of creating a temporary reverse threaded BDDIS in order to derive the discernibility
function more efficiently is explored.

6.2. Time behavior of reduct search in selected UCI data sets

Table 8 displays results for deriving the discernibility function along with the number of reducts attained
and the time required. The results show that as the number of object gets large the time required gets
unreasonably large.

Table 8. Discernibility function derivation from BDDIS; UCI Data Sets; Pentium 4 1.8GHz

Objects
Data set number discernible Attr. Num Reducts. Time �!�
Iris 150 147 9 4 1
Nursery 12960 12960 9 1 371
Adult 32561 32537 15 2 2489
Cover Type 30000 30000 55 1969 5526
Connect-4 Opening 67557 67557 42 547 24990

It should be mentioned that the adult data set has missing values. Currently, there is no extra missing
data treatment in our system, and we just use a code for missing as an extra value. Missing data handling
within the BDDIS is one of the next steps after the feasibility of the representation is proven.
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Table 9. A coded information system

Type Price Guarantee Sound Screen d

1 0 0 0 0 0
2 1 1 1 1 1
3 1 2 0 2 1
4 2 2 0 3 0
5 2 3 0 3 0
6 0 2 0 3 1

7. Outlook

7.1. Reduced BDDIS

Two methods can be taken to reduce the size of the BDDIS. One can reduce the BDDIS by applying the
ROBDD rules described in Section 3. which were used to reduce Figure 1to Figure 2. The BDDIS would
then be a fully reduced BDD and no longer simply quasi-reduced.

Alternatively, one can create the BDDIS using a coded information system in which every attribute
value�� of the original information system is coded to the values�� ���� �� � �; here, each unique coded
value represents a unique attribute value. An additional hash table is used to map the codes to the original
values. Using the same codings for different entries will reduce the size of the BDDIS, whereas the cost
of the hash table is negligible. Table 9 represents a coded decision system for Table 2. A coded decision
system can be efficiently derived by creating a temporary BDDIS representing only one attribute. The top
nodes will represent the object indiscernibility with respect to one attribute and derive a coding for the
column.

From Figure 7, when using worst case data, the attribute top level representing all unique attribute values
in the decision system, contains�� � �� nodes. A coded decision system reduces the number of unique
attribute values to�. This can represent a huge reduction is the number of nodes required to represent the
decision system when� is large. In a BDDIS	 created from a coded decision system the attribute top level
becomes the leaf nodes level. Leaf nodes are represented logically as lo and hi keys within the leaf parent
nodes. A BDDIS	 removes�� ��� nodes plus all nodes below which formed the attribute top level subtrees.
The BDDIS	 also has the property of allowing further reductions to occur above the attribute top level as
the ROBDD rules described in Section 3. are more frequently satisfied. For example: The number of nodes
per level for the BDDIS derived by the random data test of 100.000 objects described within Table 7 is
displayed in Figure 10. The BDDIS	 will remove levels 3, 4 and 5 resulting in the reduction of 1,506,819
nodes to 700,000 nodes. As well some number of further reductions will occur as reduction rules will be
more likely to apply.

Table 10. BDD nodes per level: 100,000 Objects from random data

Level Number Nodes

0 - Top 100,000
1 200,000
2 400,000
3 796,719
4 10,000
5 100

A rule is derived from this process in that the larger the number of characters that exist in a string the
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more nodes that are removed from the BDDIS	 as compared to the BDDIS. A further random test with
100,000 objects was performed using 16 characters per attribute with again 8 attributes resulting in a total
of 3,096,790 nodes within the BDDIS. In this case the BDDIS	 representation removes levels 3, 4, 5, 6,
resulting again in a 700,000 node structure.

It may be worthy of mention that worst-case data becomes near-best case data when using a fully
reduced BDDIS derived from a coded decision system. If an decision system contained all unique attribute
values in each column, for each row�� � � � � � � � the coded information system would be composed
completely of the integer value�.11.

Each row is converted into a subtree into the BDDIS and following the reduction rules, each root node�
is also it’s only leaf node�. Thus a series of nodes�� � � � �� � exists, regardless of the number of attributes.
Of course a new worst case exists for the fully reduced BDDIS. This would be a coded decision system
where each row of attribute values creates as many permutations from coded attribute values as possible
which limit as much as possible the reduction rules from reducing the BDDIS. The best case represented
by one root node is a coded information system where every attribute value is�.

Table 11. Worst case coded information system

� � � 	 

�� � � � �
�� � � � �
�� � � � �
�� 	 	 	 	

7.2. Temporary Reverse-Threaded BDDIS.

The time required to create the discernibility function can be greatly reduced by creating atemporary
reverse-threaded BDDIS we denote as BDDIS". The BDDIS" would contain the contain the same nodes as
the BDDIS, but each node would contain two arrays; One for references to parents coming via hi paths, and
one to parents coming via low paths within the BDDIS. The BDDIS" can be created using one complete
traversal of the BDDIS.

The process to create a discernibility matrix then becomes as follows: For each attribute� of each
object-top level root node�, traverse down a unique path of the BDDIS to an attribute-top level node. Then
traverse up the BDDIS" following the reverse unique path to zero or more object-top level root nodes. This
finds all objects that are indiscernible with� with respect to�.

Discernibility of� with every other object-top level root node is then implied with respect to� and stored
as disjunctions within a temporary array of� length. A BDD representing a discernibility function for�
with respect to all other objects is derived using this array.

� � � traversals must be performed down the BDDIS. Some number# traversals up the BDDIS", that
is greater or equal to the number of objects indiscernible with respect to�, must also be performed; Some
small number of incorrect partial paths up the BDDIS" will occur. ����# ������� is derived which is much
less that the current����� ������� discussed in 6.1..

8. Concluding remarks

The quasi-reduced non reverse threaded implementation described in Section 4.1. is used in order to reduce
complexity of the initial implementation in order to gain an understanding of how BDDs can be used
to improve Rough Set Methods. Larger data sets then previously and even very large data with random
structure can be treated as a basis for rough set data analysis with the chosen BDDIS representation, the
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initial results described have proven to be encouraging and will result in a continued focus on using BDD
for rough set data analysis.
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