
RAC�� �
Rev. R. Acad. Cien. Serie A. Mat.
VOL. 98 (1), 2004, pp. 127–152
Ciencias de la Computaci´on / Computational Sciences

Z Specification of Object Oriented Constraint Programs

Laurent Henocque

Abstract. Object oriented constraint programs (OOCPs) emerge as a leading evolution of constraint
programming and artificial intelligence, first applied to a range of industrial applications called configu-
ration problems. The rich variety of technical approaches to solving configuration problems (CLP(FD),
CC(FD), DCSP, Terminological systems, constraint programs with set variables,. . . ) is asource of dif-
ficulty. No universally accepted formal language exists for communicating about OOCPs, which makes
the comparison of systems difficult. We present here a Z based specification of OOCPs which avoids
the falltrap of hidden object semantics. The object system is part of the specification, and captures all of
the most advanced notions from the object oriented modeling standard UML. The paper illustrates these
issues and the conciseness and precision of Z by the specification of a working OOCP that solves an
historical AI problem : parsing a context free grammar. Being written in Z, an OOCP specification also
supports formal proofs. The whole builds the foundation of an adaptative and evolving framework for
communicating about constrained object models and programs.

Especificación en Z de programas orientados a objetos con restricciones

Resumen. Los programas orientados a objetos con restricciones (OOCPs) surgen como una evoluci´on
trascendental de la programaci´on con restricciones y de la inteligencia artificial, aplicados, en primer
lugar, a una variedad de aplicaciones industriales que se denominan problemas de configuraci´on. La
dificultad reside en la rica variedad de aproximaciones t´ecnicas para la resoluci´on de problemas de confi-
guración (CLP(FD), CC(FD), DCSP, sistemas terminol´ogicos, programas con restricciones con variables
sobre conjuntos,...). No existe ning´un lenguaje formal universalmente aceptado para la comunicaci´on
acerca de los OOCP, lo que dificulta la comparaci´on entre sistemas. En este trabajo se presenta una
especificaci´on de OOCPs basada en Z, que evita caer en la trampa de la sem´antica de objetos ocultos. El
sistema objeto forma parte de la especificaci´on y capta todas las nociones m´as avanzadas de la modeli-
zación orientada a objetos est´andar UML. Este trabajo ilustra estas cuestiones y la concisi´on y precisión
de Z al especificar un OOCP operativo que resuelve un problema hist´orico de la IA, concretamente, el
análisis sintáctico de una gram´atica libre de contexto. Al estar escrito en Z, una especificaci´on OOCP
también soporta demostraciones formales. El trabajo forma la base de un marco adaptativo y evolutivo
para la comunicaci´on de modelos y programas de objetos con restricciones.

Presentado por Luis M. Laita.
Recibido: December 14, 2003.Aceptado: October 13, 2004.
Palabras clave / Keywords: constraint programming, constraint modeling, formal specification, Z language, configuration, knowl-

edge representation.
Mathematics Subject Classifications: 68T27, 68T30, 68Q60, 68Q65, 08A02, 03C13.
c� 2004 Real Academia de Ciencias, Espa˜na.

127



L. Henocque

Introduction

From Configuration to Object Oriented Constraint Programs

Rule based systems, logic programming, and a recent evolution of constraint programming have been ap-
plied to a category of problems calledconfiguration problems. Configuring means simulating the construc-
tion of a composite and complex product, based on a library of elementary components. Components are
subject to relations (this is thepartonomic information), and participate to inheritance relationships (this is
called thetaxonomic information). Given an input in the form of a partial product and specific constraints,
the goal of configuration is to pick up or generate, then interconnect the necessary components, for finally
deciding upon their exact type and attribute values. Configuration output is a complex interconnected prod-
uct respecting well formedness rules stated by various constraints. This combinatorial problem is explicitly
formulated as a finite model generation problem.

PC Monitor

Mouse

Storage

Memory

AGP

Keyboard

IDE

Port

MainBoard

Processor

Supply

1

1..4

11

1

1
1

1

1

1

1..*

1

1

1

1
1..*

1 11

1..*

Figure 1. A simplified object model for a personal computer

The UML class design [14] in figure 1 illustrates this with a classical example. Configuring a personal
computer (PC) consists in picking components from a catalog of component parts (e.g. processors, hard
disks in a PC), using known relations between types (motherboards can connect up to four processors), and
instantiating object attributes (selecting the ram size, bus speed,. . . ). Constraints apply to such configura-
tion problems that define which products are valid, or well formed. For example in a PC, the processors on
a motherboard all have the same type, the ram units have the same wait times, the total power of a power
supply must exceed the total power demand of all the devices. Configuration applications deal with such
constraints, that bind variables occurring in the form of variable object attributes deep within the object
structure.

We suggest to abandon the term configuration, bound to a very specific application area (even if it is
broadly distributed in the economy), in favor of a more general purpose and AI related denomination : object
oriented constraint programs (OOCP for short). OOCP has many potential AI applications, ranging from
context free language parsing (we use this example), to image recognition, or distributed agent intelligence
and planning.

Existing approaches

The industrial need for configuration is widespread, and has triggered the development of many applica-
tions, as well as generic configuration tools or configurators, built upon all available technologies. For

128



Z specification of Object Oriented Constraint Programs

instance, configuration is a leading application field for rule based expert systems. As an evolution of R1
[19], the XCON system [5] designed in 1989 for computer configuration at Digital Equipment involved
31000 components, and 17000 rules. The application of configuration is experimented or planned in many
different industrial fields, electronic commerce (the CAWICOMS project [12]), software [32], computers
[23], electric engine power supplies [17] and many others like vehicles, electronic devices, customer rela-
tion management (CRM) or even software [32, 13].

The high variability rate of configuration knowledge (parts catalogs may vary by up to a third each year)
makes configuration application maintenance a challenging task. Rule based systems like R1 or XCON lack
modularity in that respect, which encouraged researchers to use variants of the CSP formalism (like DCSP
[20, 26, 2], structural CSP [21], composite CSP [24]), constraint logic programming (CLP [16], CC [13],
stable model semantics for logic programs with disjunctions [27]), or description logics/object oriented
approaches [29, 31, 18, 22].

Because of the variety of approaches to this problem (CLP(FD), CC(FD), CP and extensions, Expert
Systems), no common language is available for researchers to exchange problem statements and compare
their results. Each of the above cited articles uses an ad-hoc description of its working example. Some UML
[14] models are presented from time to time, which never allow to overcome the ambiguities inherent to this
exercise, even though the UML is far more formal than people usually think. The usefulness of (a subset
of) UML plus the constraint language OCL as a language of choice for the specification of configuration
problems has been advocated in [11, 10] and used for instance in [30].

Paper objectives

The main objective of this paper is to propose to the growing community working on configuration problems
and applications a common language having more formal grounds but potentially higher expressive power
than the UML for exchanging models and problems. To those ends, this paper presents a general use object
oriented constraint system for the specification of object oriented constraint problems. The object system
is not predefined, or provided as an object oriented extension to some specification language. Instead, we
have chosen to make the object system specification explicit, using the Z language [28]. There are several
reasons for both the choice of Z and this approach:

� we feel that in order to be widely accepted, the underlying semantics of an object system must be
questionable, commented, improved, and formally established,

� the Z language has very simple and clear semantics, and offers an extremely rich range of relational
operations, a crucial issue in object oriented constraint programming,

� the Z language was shown to have the favor of the industry over other specification languages [4],
essentially because of its structure (the grouping concept introduced byschemas),

� we have succeeded in specifying in Z the most advanced class modeling constructs from the UML
[14], which has become the standard in object oriented modeling. This guarantees that modeling
cannot be biased, or tweaked by arbitrary limitations in the object language, and that any object
oriented model can be specified

� Z specifications can be type checked (we usedf UZZ 1 extensively to type check this paper), which
offers a first level of formal verification,

� Z specifications are subject to formal proofs, possibly assisted or automatized by theorem provers,

� Z offers built in extensibility features, that allow to formally define, then use, any operator or relation
using any possible syntax (prefix, infix, postfix). We exploit this feature to improve the readability of
constraints.

1available at http://spivey.oriel.ox.ac.uk/ mike/fuzz/

129



L. Henocque

To summarize this, we found that Z is the simplest logic offering both structure (via schemas) and support
for the formal definition of complex structural constraints or expressions. This last issue is crucial to object
oriented constraint programs, for instance to allow the statement of a constraint relating, in a personal
computer, the sum of powers used by all elementary electrical devices, to the power made available by the
supply. It was furthermore argued [15] that coalgebras support most of the notions required to deal with
object state and class invariants. Relational algebraic languages like Z provide the capacity of specifying
both algebras (types and their operations) and coalgebras (states and their transitions).

There have been many attempts to capture object orientation within specification languages, either
viewed as Z extensions (Object Z [25], OOZE [1]) or based upon other mathematical grounds (the FOOPS
[6] extension to OBJ). A logical approach to object orientation is also put to work in terminological knowl-
edge representation languages [7, 3]). Also, constraint programming has been introduced in object oriented
knowledge representation languages (as e.g in CLAIRE [8]).

We are not presenting the latest object oriented language, or system, or extension to whichever existing
approach. Our aim is to capture rich enough object oriented semantics in a simple and unmodified logic
(hence Z), rather than to rely upon the inherent semantics of an object oriented extension of some logic.
By doing so, we cirvumvent both the potential expressiveness limitations of any given object system, and
the possibility that its semantics are improperly defined, or questionable. Our approach allows to document
an object oriented constraint program, by simultaneously specifying both the object system semantics,
and the problem itself. This task is made simpler because we do not need to specify state transitions
(coalgebra operations), but reason exclusively about state. Essential issues in object orientedprogramming
like polymorphism, or concurrency are irrelevant here. Our goal is to express valid object system states,
using constraints, which altogether describe an object oriented constraint program. This simplifies the use
we make of Z, because in our case decorations are useless.

The paper is organized as follows : section 1 briefly introduces essential aspects of Z. Section 2 speci-
fies the class and type features of an object system, illustrating how all essential object oriented modeling
concepts can be captured. Section 3 specifies relations and roles. Section 4 details how object structure
constraints can be formulated, and introduces useful auxiliary constructs. Section 5 presents the specifica-
tion of an artificial intelligence application of object oriented constraint programs to context free grammars
parsing. Section 6 is the conclusion. It can be a possible reading strategy to first take a glance at section 5,
since it illustrates the essential motivation of this work.

1. Introducing Z

For space reasons, it is impossible to make this paper self contained, since this would suppose a thorough
presentation of both the UML notation [14], and the Z specification language [28]. The reader, if novice
in these domains, is kindly expected to make his way through the documentation, which is electronically
available. For clarity however, we provide a brief description of several useful Z constructs. More advanced
notations or concepts will be introduced when necessary.

1.1. Data types as named sets

Z data types are possibly infinite sets, either uninterpreted :

�DATE�

or axiomatically defined as finite sets:

dom � ��

or declared as explicitly initialized free types.

colors ��� red � green � blue

From now on, all possible relation types can be built from cross products of other sets.

130



Z specification of Object Oriented Constraint Programs

1.2. Axiomatic definitions

Axiomatic definitions allow to define global symbols having plain or relation types. For instance, a finite
group is declared as

zero � dom
inverse � dom� dom
sum � dom� dom� dom

� x � dom � sum�x� inverse�x�� � zero
� x � dom � sum�x� zero� � x
� x� y � dom � sum�x� y� � sum�y� x�
� x� y� z � dom � sum�x� sum�y� z�� � sum�sum�x� y�� z�

The previous axiomatic definition illustrates cross products and function definitions as means of typing Z
elements. Now axioms or theorems are expressed in classical math style, involving previously defined sets.
For instance, we may formulate that the inverse function above is bijective (this is a theorem) in several
equivalent ways as e.g.:

inverse � dom� dom

where the� operator defines a bijection, or explicitly using an appropriate axiom :

� y � dom � �
�

x � dom � inverse�x� � y

1.3. Schemas

The most important Z construct,schemas, occur in the specification in the form of named axiomatic defini-
tions. A schema�D � P� combines one or several variable declarations (in the declaration partD) together
with a predicateP stating validity conditions (or constraints) that apply to the declared variables.

SchemaOne
a � �
b � � � � ��

b � a

The schema name hides the inner declarations, which are not global. A schema name (asSchemaOne
above) is used as a shortcut for its variable and predicate declarations that can be universally or existentially
quantified at will. Schemas aretrue or false under a givenbinding. For instance,SchemaOne is true under
the binding��� a� 	� b� andfalse under the bindings�	� a� 
	�� b� or �	� a� �� b�. The latter
violates the explicit constraint stated in the predicate part of the schema, while the former also violates the
implicit constraint carried by the interval definition� � ��� (a subset of�). In some contexts, a schema name
denotes the set of bindings under which it is true.

Z allows Boolean schema composition. Two schemas can be logically combined (e.g. ”anded”) by
merging their declaration parts provided no conflict arises between the types of similarly called variables,
and by applying the corresponding logical operator (e.g. the conjunction) to the predicates. For instance,
given the schemaSchemaOne above, and another schema calledSchemaTwo �� �b � �� c � � � b � c� 2, we
may form the schemaSchemaThree, as

SchemaThree �� SchemaOne � SchemaTwo

2This illustrates another syntax for simple schema declarations

131



L. Henocque

Incidentally, the variable declarationsb in both schemas collide, but not for their types sinceb is a member
of � in both cases. The first declaration ofb bears a built in constraint, which can be moved to the predicate
part. Hence the schemaSchemaThree would list as :

SchemaThree
a� b� c � �

� � b � ��
b � a
b � c

2. Classes

We wish to describe Z specified object oriented constructs so as to reach an expressive power comparable to
that allowed by the UML [14] class (and state) diagrams, hence allowing to model in a purely formal way
the static properties of an object constraint system. In order to sit our definitions on clean formal grounds,
we propose a generic Z specification that captures all required concepts. In defining classes, we specially
need to cover two essential notions : multiple inheritance and multiple discriminator specialization. While
the former is attained by existing object oriented Z extensions, the latter is not, which partly justifies this
work. An essential contribution of this work is that the object system specification is explicit, and can be
discussed, adapted, or extended at will. Essential in this respect is the clarity and soundness of the notion
of ”object references”, made explicit here.

Theschema notation can be understood as an heterogeneous aggregate of mathematical variables, sub-
ject to built in constraints. In other words, schemas can be seen as mathematical variables representing all
the possible states of Pascal records, or of C structs. From an object oriented point of view, the predicate
part of a schema forms the essence of what is called in OO programming aclass invariant : a property that
must be true of object instances at all times (i.e. before and after any method call).

2.1. Preliminary definitions

The object oriented vocabulary involves common and rather vague words. We wish to make things precise,
and to avoid difficulties in the sequel. Aclass definition holds the description ofclass specific attributes
andclass specific invariant together withinheritance relationships. Accounting for inheritance yields a
description of the(full) class structure and(full) class invariant which together form theclass specification.
A classinstance, or object, is a binding of values to all attributes in the class structure that satisfies the class
invariant. Such a binding is often referred to asstate. The set of all object instances bijectively maps to a
set of objectreferences. The bijection between object references and class instances allows for a precise
definition ofclass andtype. We callclass the set of object references mapped to all the instances of a given
class structure. Atype recursively defines as the union of a given class, and of all its subclass types down the
inheritance directed acyclic graph. By defining types as sets, we stay respectful of Z’s terminology, which
identifies sets and types. All these definitions will be illustrated and made understandable by examples in
the sequel. Z provides enough constructs to account for classification mechanisms. We first define a set
ObjectReference of object references as an uninterpreted data type.

�ObjectReference�

ObjectReference would be interpreted on the set of natural numbers (or a finite subset) by an automated
theorem proving approach based on finite model generation. Practical implementations of object systems
typically use pointers or integers as object references. We defineReferenceSet as an abbreviation for finite
sets of object references, later used to model objecttypes.

132



Z specification of Object Oriented Constraint Programs

ReferenceSet �� �ObjectReference

We define class names as global names using Z’s free type declaration syntax. For practical reasons, if a
class should have the nameEngine, we reserve the symbolEngine to denote the corresponding type. The
global symbol denoting the class definition is obtained by prepending the string ”Class” to the actual name.
In our example, the class name thus writes asClassEngine. Depending upon the context, the declaration of
class names may look like :

CLASSNAME ��� ClassPC � ClassPrinter � ClassMonitor � � � �
CLASSNAME ��� ClassCar � ClassWheel � ClassEngine � � � �

We now declareObjectDef as a predefined super class for all future classes. Object definitions will be used
to bijectively map each object to a unique individual from the setObjectReference. Object references are
needed in addition to object state since in object oriented modeling two distinct objects may share the same
attribute values (whereas in Z two ”bitwise equal” bindings represent the same logical entity). Also, since
two distinct Z schemas may have the same Z type, we need to integrate the actual class name in objects.

ObjectDef
ref � ObjectReference
class � CLASSNAME

We define a functioninstances mapping class names to the set of instances of that class.

instances � CLASSNAME� ReferenceSet

2.2. Defining class structures using inheritance

An essential aspect of object oriented modeling is that objects are associated withstate. On the one hand,
inheritance relations allow to restrict the possible values of attributes declared in superclasses (this phe-
nomenon is called inheritance forspecialization). On the other hand, classes may extend the list of attributes
defined in superclasses by their own (this is called inheritance for extension). Most situations where inher-
itance occurs combine both cases in a single inheritance relation. Z offers built in representation of state in
the form of schemas. We now show a way to associate such schemas to individual types in a standardized
way, so as to bind state to the types as declared previously. We illustrate this through a simple three class
example : classB inheritsA, extending it with an extra attribute, and classC specializesA with an extra
constraint.

CLASSNAME ��� ClassA � ClassB � ClassC

Each classX is implemented via two constructs. First, the class definition occurs as a schema called
ClassDefX (we prepend ”ClassDef” to the desired class name to form the schema name). This schema
defines both the class attributes and inheritance relationships, as would any class definition do in object
oriented modeling or programming languages. The predicate part of the schema offers room for the speci-
fication of class invariants.

ClassDefA
a � � � � ��

ClassDefB
ClassDefA
b � ��

133



L. Henocque

ClassDefC
ClassDefA

a 	 �

Class definitions as seen above account for inheritance by simply copying the definition schemas of the
inherited (super) classes. Doing so allows to state constraints involving attributes pertaining to super classes
(this is specialization). All the predicates present in the inherited classes are conjoined (i.e. logically
”anded”) to the predicate part of the resulting schema. This formulation hence adequately accounts for both
types of inheritance : extension and specialization.

2.3. Multiple inheritance

Multiple inheritance is achieved simply by importing the schema definitions of all inherited superclasses
into a new one.

ClassDefD
ClassDefA
ClassDefB

b � �

Note that the types of all inherited attributes must match. If attributes having the same name are inherited
from two distinct superclasses, either or both can be renamed to prevent clashes, as e.g. in :

ClassDefE
ClassDefB�d�b�

d � �

where the constraintd � � actually binds the attribute originally declared asb in ClassDefB. A Z type
checker can detect errors in the formulation of such class definitions, specially when type conflicts occur
for attributes having the same name.

2.4. Object and class references

To implement a working object system, we need to add some extra technical information to class definition
schemas : object and class references. Like before, schema composition with the logical operator� offers
the expected semantics of extension by combining the schema types of the two schemas and of specializa-
tion by conjoining their predicate parts. Assuming the same toy example as before, (A is a toplevel class
thatB andC inherit), we write the following :

ClassSpecA �� ClassDefA � �ObjectDef � class � ClassA �
ClassSpecB �� ClassDefB � �ObjectDef � class � ClassB �
ClassSpecC �� ClassDefC � �ObjectDef � class � ClassC �

It must be understood that the schema types corresponding toClassSpecA andClassSpecC are the same
(this schema type is noted�i � ObjectReference� a � �� class � CLASSNAME� in Z), even though the
schema names differ, because classC specializesA but does not extend it. Hence a specific workaround
is needed to make sure that the set of bindings that satisfyClassSpecC is not included inClassSpecA, and
more generally that no two sets of bindings satisfying two distinct class definition schemas can intersect.
This goal is achieved thanks to theclass attribute inserted via the schemaClassDef , that takes a distinct
value for each class.

134



Z specification of Object Oriented Constraint Programs

2.5. Defining class types

We can now make our toyABC model more complete, and define what the typesA� B� C represent. We use
an axiomatic definition of three setsA� B� C as finite sets of object references:

A�B�C � ReferenceSet

A � instances�ClassA� 
 B 
 C
B � instances�ClassB�
C � instances�ClassC�

instances�ClassA� � �o � ClassSpecA � o�class � ClassA � o�i�
instances�ClassB� � �o � ClassSpecB � o�class � ClassB � o�i�
instances�ClassC� � �o � ClassSpecC � o�class � ClassC � o�i�

� i � instances�ClassA� � ��
�

x � ClassSpecA � x�ref � i�
� i � instances�ClassB� � ��

�
x � ClassSpecB � x�ref � i�

� i � instances�ClassC� � ��
�

x � ClassSpecC � x�ref � i�

The declaration part in this axiomatic definition declares the type sets corresponding to all the classes in our
toy model. The properties of these sets are stated by several axioms :

� The types of sub classes are subsets of a class type. A type is the union of (the object references
of) all the corresponding class instances, and of the types of its subclasses. Note that by making our
example more complete the typesB andC might intersect, because of multiple inheritance.

� The setinstances�ClassX� holds the schema bindings having the ”class” attribute set toClassX. These
sets are pairwise disjoint by construction

� The other set,X, corresponds to the classical notion of a type.

� The same object reference cannot be used for two distinct objects in the same class.

These axioms ensure that each object reference is used at most once for an object. Alternatively stated, no
two distinct ”object” bindings share the same object reference. The preceding type definitions make the set
ObjectReference the most general type in the model. Based upon these definitions, any class located in the
middle of the inheritance tree isconcrete : in an interpretation, we may have an instance ofA that is neither
an instance ofB norC. Finally, this specification makes clear the distinction between :

� a classdefinition : this is the schemaClassDefX, which declares inheritance,

� a classspecification : this isClassSpecX, which accounts inheritance, and for object and class refer-
ences,

� a class : this is represented by the setinstances�ClassX�,

� an object’stype : any setX to which the object’s reference belongs (if an object is an instance of class
B, and B inherits A, it is accepted to say that this object is a ”B”, and also that it is an ”A”).

2.6. Semantics, interpretations, objects

An interpretation of a Z specification is a set of bindings with types corresponding to the schema types
that occur in the specification. Amodel in the logical sense is an interpretation that satisfies all the ax-
ioms. Anobject is a binding satisfying the schema type and properties of some class specification schema
(ClassSpecX). Note that such a binding may satisfy the schema types and properties of several distinct class
specification schemas, because in Z the schema name isn’t part of the schema type). This does no harm

135



L. Henocque

however, since theclass attribute in class specification schemas sorts things apart. Also note that the final
axioms in the axiomatic definition of types (� i � instances�ClassX� � ��

�
x � ClassSpecX � x�i � i�� � � �

) constrain the valid interpretations so that each object reference occurs only once among the whole set of
object bindings, which to the best of our knowledge cannot be formulated more concisely.

2.7. Creating objects

Although we do not focus here on the dynamics of the object systems, but rather on the mathematical
properties of their valid states, it is of some interest at this point to mention that we are modeling a system
that could be specified further to model a practically usable application, where object instances can be
created, and destroyed. To achieve this requires to get a hold over the global system state. This is achieved
by placing the type definitions within a schema, instead of keeping them as global axiomatic definitions :

ObjectSystemABC
A�B�C � ReferenceSet
ObjectsA � �ClassSpecA

A � instances�ClassA� 
 B 
 C
B � instances�ClassB�
C � instances�ClassC�

instances�ClassA� � �o � ClassSpecA � o�class � ClassA � o�i�
instances�ClassB� � �o � ClassSpecB � o�class � ClassB � o�i�
instances�ClassC� � �o � ClassSpecC � o�class � ClassC � o�i�

� i � instances�ClassA� � ��
�

x � ClassSpecA � x�ref � i�
� i � instances�ClassB� � ��

�
x � ClassSpecB � x�ref � i�

� i � instances�ClassC� � ��
�

x � ClassSpecC � x�ref � i�

Now, the following schema defines how the system gets updated because of object creation :

NewA

ObjectSystemABC
n� � ClassSpecA

ObjectsA� � ObjectsA 
 �n��

Notice how we added to the schema ObjectSystemABC an attributeObjectsA � �ClassSpecA. This para-
graph and the associated schemas should be taken as a parenthesis since our goal here is just to specify
the global properties of an object system. We will hence continue using axiomatic definitions instead of
schemas for the global object system, which makes most descriptions lighter and easier to read, as long as
we do not plan to model how the system state can change.

2.8. Dereferencing attributes

An essential operation in object systems is to obtain the information held by the data structure pointed at
by an object reference. This operation, called ”dereferencing” can be modeled in our case on a per attribute
basis. We prefix the attribute name by the string ”get”, and promote the first attribute letter to upper case to
name the accessor (”power” becomes ”getPower”). Following is an example in our ABC toy problem :

getA � A��

� i � A �
getA�i� � �� v � �s � ClassSpecA � s�ref � i � s�a� 
 �s � ClassSpecC � s�ref � i � s�a� � v�

136



Z specification of Object Oriented Constraint Programs

This definition uses Z’smu construct�� x � T � C � E� that yields the value ofE on the uniquex from T
matchingC. Again, it can be seen as a little verbose, as a result of Z’s non object orientedness. However, it
is easily specified, and such definitions can be generated automatically from shortcut descriptions.

2.9. Making a class abstract

Now, based on the same example, if we expect the classA to be abstract (i.e. we forbid an individ-
ual to be created as anA) we simply need to add a constraint stating thatinstances�ClassX� is empty :
instances�ClassA� � �o � ClassSpecA � class � ClassA � o�i� � �.

2.10. Unused objects

The specification made so far accepts that elements ofObjectReference are members of none of the sub-
types. Depending upon the situation (e.g. whether a constraint programming tool using the specification
must try giving a type to all the elements inObjectReference or not), we may force objects to belong to
types. This is obtained by adding the axiom

�instances�ClassA�� instances�ClassB�� instances�ClassC�� ��������� ObjectReference

2.11. Specializing across several discriminators

An important concept in object oriented specification is the possibility to specialize a class across two dif-
ferent discriminators, each corresponding to different viewpoints over a class. For instance, a traditional
real life example is the classVehicle. It can be specialized in one discriminator, called ”energy”, related to
the energy used to power the vehicle. We may imagine the subclassesHuman(powered),Wind(powered),
Gas(powered) in that discriminator. Each subclass in this case brings its own data attributes : number of
humans, number of sails, tank capacity. TheVehicle class can also be specialized across another discrimi-
nator : the element it moves on. We can imagine here the classes :Water, Ground, Air. Again, each of these
classes may carry some data, in isolation from the others. In the declaration of types, it suffices to state the
following (where everything irrelevant has been omitted):

Vehicle�Human�Wind�Gas�Water�Ground�Air � ReferenceSet

Vehicle � Human 
 Wind 
 Gas
Vehicle � Water 
 Ground 
 Air

instances�ClassHuman� � �o � ClassSpecHuman � o�class � ClassHuman � o�ref� � � �

� i � instances�ClassHuman� � ��
�

x � ClassSpecHuman � x�ref � i� � � �

The rule in the UML is that whenever such a multiple discriminator specialization occurs, the main class
(hereVehicle) and all its child classes (i.e.Human� � � �Air) are abstract, and that any concrete class under-
neath must inherit at least one class from each discriminator. This is so because since vehicle is partitioned
in two discriminators, any ”Vehicle” must belong to some type among each discriminator. Obtaining this
requires that each subclass inherits a class from each discriminator. The predicate stated in the axiomatic
definition above ensure this: any object reference in a ”sub”subclass of Vehicle must be a member of at
least one set amongHuman�Wind�Gas, and of at least one set amongWater�Ground�Air. Membership to
those sets is acquired through inheritance.

2.12. Shortcut notation for class specifications

Z being non object oriented in any way, the previous class and type declarations are verbose. For simplicity
and readability, although not sacrificing rigor, we propose the following shortcut definition for classes

137



L. Henocque

and types, which makes use of the keywordsclass, abstract, discriminator, inherit. The syntax for this
can be presented using simple examples, which must be understood as a shortcut for the corresponding
specifications, as was previously described.

class 
 A � abstract

discriminators � default
a � �

a � ���

class 
 B � concrete

inherit � A
 default
b � ��

class 
 C � concrete

inherit � A

a 	 ��

A preprocessor can very easily parse such definitions, or take its input from an UML class design, so as to
produce a listing identical to what was built step by step for theABC example in the previous pages. Hence,
a byproduct of these declarations is the declaration in the Z specification of the schemas :ObjectDef ,
ClassDefA, ClassSpecA, ClassDefB, � � �, and of the setsinstances�ClassA�, A, instances�ClassB�, � � �.

In the case of theVehicle class hierarchy, since it has two discriminators, we would declare (all irrelevant
information being hidden):

class 
 Vehicle � abstract

discriminators � powermode� element

class 
 Human � abstract

inherit � Vehicle
 powermode

class 
 Ground � abstract

inherit � Vehicle
 element

class 
 Bicycle � concrete

inherit � Human � Ground

The concreteBicycle class inherits from both theHuman andGround classes.

3. Relations

Z provides a rich toolkit to define relations and reason about them. This feature is inherent in relational
languages, where all common mathematical concepts, like functions, bags, sequences derive from relations
through composition and constraints. For instance, afunction is a relation bound by an axiom of unicity.
Also, asequence is a function from a subset of natural numbers� to a given set.

138



Z specification of Object Oriented Constraint Programs

3.1. A simple example

Having defined the structure and inheritance relations between classes, we must now describe their relations.
Like before, we will study this through a concrete example, based on two classesPerson andCompany.

class 
 Person

class 
 Company

This specification implicitly defines schemas:

ClassDefPerson �� � � � � � � � � �
ClassDefCompany �� � � � � � � � � �
ClassSpecPerson �� � � � � � � � � �
ClassSpecCompany �� � � � � � � � � �

as well as the appropriate constraints oninstances�ClassPerson�� instances�ClassCompany� and also the
type sets:

Person�Company � ReferenceSet

3.2. Relations and roles

A relation is declared between types, no matter what the creation type of the objects is. In our example, we
may think about these three relations :

worksFor � Person	 Company
owns � Person	 Company
manages � Person	 Company

In standard object oriented modeling [14], relation names are complemented by role names, associated with
each extremity of a class relation. Each role name denotes the target class role wrt. the particular relation.
Role names must be specified by the object model. When not ambiguous (i.e. when only one relation binds
two given classes), the target class name is implicitly accepted as a role name. Roles of binary relations can
be axiomatically defined as follows :

employees � Company��Person
employer � Person��Company

� c � Company � employees�c� � �p � Person � �p �� c� � worksFor�
� p � Person � employer�p� � �c � Company � �p �� c� � worksFor�

Note that the Z syntax allows more compact definitions for the rolesemployer andemployees :

employees�c� � ����worksFor 
 �c��
employer�p� � �����p�� worksFor�

or also

employees�c� � worksFor���c�

employer�p� � worksFor��p�


whereworksFor� denotes the relational inverse ofworksFor, worksFor
 �c� denotes the range restriction
of worksFor wrt. �c� (which is still a relation),�p��worksFor denotes the domain restriction ofworksFor

139



L. Henocque

wrt. �p�, ���R denotes the domain ofR, and � 
 is the relational image operator. We may ease the
pain of declaring roles for all the relations in a model by generically defining thelrole andrrole Boolean
functions as follows.

�C�D�
lrole � ���C	 D�� �D��C��
rrole � ���C	 D�� �C��D��

�R � C	 D� l � D��C � �R� l� � lrole � �� d � D � l�d� � R���d�
�
�R � C	 D� r � C��D � �R� r� � rrole � �� c � C � r�c� � R��c�
�

The previous axiomatic definition isgeneric, parameterized with types (this is the first time we use this).
Now, the declaration of the roles associated to the relationworksFor can be simplified :

employees � Company��Person
employer � Person��Company

�worksFor� employees� � lrole
�worksFor� employer� � rrole

It is also possible to generically (pre)define two roles for any arbitrary binary relation as follows :

�p� c�
leftRole � �p	 c�� c�� p
rightRole � �p	 c�� p�� c

�R � p	 c� vc � c � leftRole�R� vc� � R���vc�

�R � p	 c� vp � p � rightRole�R� vp� � R��vp�


These definitions illustrate the amazing power of Z for defining builtin syntax extensions, as well as the
richness of the relational operator toolkit of Z, later useful for specifying object constraints. It must be
noted that from our viewpoint, Z offers a clear advantage over other object oriented [18], or terminological
languages [3, 29] for object oriented constraints wrt. a potential broad acceptance, since relation definition
is not role centered, but relations, functions and roles can freely coexist.

3.3. Composition, aggregate relations

Object modeling leads to a clear separation between two broad categories of relations. General relations
are unconstrained, meaning that every tuple can be accepted, regardless of the number of times an object
appears on either side. For instance, in modeling a network of PCs and printers, any PC can view any
number of printers (even though it may not see all of them), and any printer can be accessed by any number
of PCs. No limitation stems from the nature of the relation itself.

Other relations are more constrained. For instance, no PC can share its mainboard. This is an example
of acomposition relationship. To distinguish between both just involves changing the type of the relation to
make it a function of a special kind. If a relation stated between the composite type and the component type
(in this sequence) is a composition one, it means that its relational inverse is an injective partial function
(each component occurs in at most one composite). If no component can be left aside, the relational inverse
is injective. Z provides various notations for constrained functions : injections start with an arrow (�,
�), surjections end with a double arrow (�,�), partial functions have a bar in the middle (�,�),
bijections are both injective and surjective (�), whereas unconstrained functions are denoted with a simple
arrow (�) and standard relations have two opposed arrows (	).

140



Z specification of Object Oriented Constraint Programs

uses � PC	 Printer
hasMainBoard � PC	MainBoard

hasMainBoard� � MainBoard� PC

If components cannot be optional, the injection becomes non partial

hasDVDWriter � PC	 DVDWriter

hasDVDWriter� � DVDWriter� PC

In the most constrained case, of a strict one to one relation between types, the relation becomes a bijection,
which can be formulated as follows :

hasMainBoard � PC�MainBoard

More generally, any constraint can be stated upon a relation using general quantified formulas and all of Z’s
constructs. The distinction made in the UML between aggregate and standard relations is conceptual, and
does not relate to constraints in our sense here (aggregate relations model associations where a dynamic,
not structural dependency exists among between objects3).

3.4. Multiplicities

Relation multiplicities can be naturally stated as well. Object models often constrain for a given relation the
number of related target objects for each source object. For instance, a PC has at most four memory units
(the� operator denotes set cardinality) :

hasMemory � PC	Memory

� pc � PC � �� hasMemory��pc�
 � � �

3.5. Ordered relations

Object models sometimes require that the tuple ordering is significant. For instance, should we model the
relation between polygons and points, it is clear that we need a list, not a set, of points to describe the
Polygon. The concept available in Z to model this is thesequence.

builds � Polygon� ����Point�

To restrict the multiplicity in this case (for instance to describe all the pentagons) requires a little different
work than before

builds � Polygon� ����Point�

� p � Polygon � �builds � �

To ensure that an object does not occur twice or more in a sequence, we need to make the sequences
injective:

builds � Polygon� �����Point�

To decide that a Point in our example does not occur in the definition of two or mode different Polygons,
we state :

builds � Polygon� �����Point�

� p�� p� � Polygon � items �builds�p��� � items �builds�p��� � �

3For instance, the relations between a paragraph and a text is of that kind. Translating a paragraph in a text amounts to translating
all its characters

141



L. Henocque

3.6. Reified associations

An important feature in object oriented modeling is the possibility to attach extra information to associations
in the model. This added information is carried by anassociation class, which can be a standard class (i.e.
with a name) or be anonymous. We can however assume the existence of a name since the association class
for a given relationR can be named automatically (e.g. asR DATA)).

We thus expect the association class used in coordination with a given relation to be properly defined
as a class according to the former framework. If we return to theworksFor example, we see that an ob-
vious related information can be the salary (the salary can be different if a person works for two different
companies, hence it cannot be an information carried by the Person itself).

class 
 EnrolmentInfo � concrete
salary � �

a � MIN SALARY�

This definition yields as usual two schemas :ClassDefEnrolmentInfo, ClassSpecEnrolmentInfo, and two
sets :instance�ClassEnrolmentInfo� andEnrolmentInfo. The latter is the type associated with objects built
as members ofEnrolmentInfo itself or subclasses. Binding the enrolment information to theworksFor
relation is the fact of a function fromworksFor to EnrolmentInfo.

mapEnrolmentInfo � worksFor� EnrolmentInfo

If the attached information is optional, the function is partial :

mapOptionalEnrolmentInfo � worksFor� EnrolmentInfo

4. Constraints

4.1. Structural constraints: example

Constrained object oriented problems abound with constraints spanning across the object structure, travers-
ing relations to gather information. The Z notation again offers many possible ways to state such constraints.
Now let’s study an example, classical in the configuration community : the model describes all valid PC’s,
composed from standard components, in a simplified form.

We declare the following classes :PC, PowerSupply, MainBoard, Monitor, Processor. Except for
PowerSupply andPC all the classes inherit an abstraction calledDevice, with an attribute calledpowerUsed.
PowerSupply has an attribute calledpower. We also have the relationsPC PowerSupply, PC MainBoard,
PC Monitor andMainBoard Processor. The shortcut definitions for these classes are :

class 
 Device � abstract
powerUsed � �

class 
 PC � concrete

class 
 PowerSupply � concrete
power � �

class 
MainBoard � concrete

inherit � Device

142



Z specification of Object Oriented Constraint Programs

class 
 Processor � concrete

inherit � Device

class 
Monitor � concrete

inherit � Device

We also declare the composition relations (assuming default role names)PC PowerSupply, PC MainBoard,
PC Monitor andMainBoard Processor4

PC PowerSupply � PC	 PowerSupply
PC Monitor � PC	Monitor
PC MainBoard � PC	MainBoard
MainBoard Processor � MainBoard	 Processor

PC PowerSupply� � PowerSupply� PC
PC Monitor� � Monitor� PC
PC MainBoard� � MainBoard� PC
MainBoard Processor� � Processor�MainBoard

Now, we wish to state the constraint that the total power delivered by a PowerSupply must exceed the total
power demand by all the devices in the PC. This is a classical example of structural constraint. To achieve
this, we must define several utilities.

4.2. Structural constraints utilities

We need several intermediate definitions useful to declare constraints. For instance, some integer arithmetic
functions generalize to the case of bags of natural numbers, or numerals. Some of the properties of object
systems require to gather some information over the structure (like theprice, or thepower used by electrical
units for instance). Such information is best represented in bags, which allow repeated occurrences of the
same value. Given a bag, we may ask for its min, max, or sum for instance. We detail these three functions,
which may serve as a template for possible others. The concept of ”gathering” as implemented by the
forthcoming definitions corresponds to the ”select” and ”collect” operators in the OCL constraint language
defined in the UML ([11] details how OCL can be used to describe configuration constraints).

In the rest of the sub section, we also provide a function that can be used to generate a sequence from a
set. Since converting from bags to sets is immediate, and converting from sequences to bags is predefined
in Z by the functionitems, this allows to convert any structure type into any other.

computing the min and max over a bag of naturals

bagmin � ������
bagmax � ������

� b � ���� � bagmin�b� � min ���� b�
� b � ���� � bagmax�b� � max ���� b�

summing up the elements in a bag of naturals

bagsum � ������

bagsum��� � �
� b � ���� � ���� b� �� � �

���� x �� bagmin�b� � bagsum�b� � b�x� � x � bagsum�b � ��x� b�x�����
4we intentionally continue to read the relations from composite to components to emphasize the fact that composition is a constraint

143



L. Henocque

To understand this definition ofbagsum, it suffices to recall that a bag is a partial function from a set to
strictly positive integers (the number of times an element is counted).

conversion functions

We define a conversion function from totally ordered finite sets to sequences. This functionasSeq converts
a finite set to a sequence, which may be further converted to a bag using theitems operator on sequences.
This provides full possibilities of converting from a container type to another. We need a function to select
a member from a set. This is possible deterministically for totally ordered sets, as are� or the set of rational
numbers. We present the specification of the conversion functionasSeq in the case of natural numbers. This
gives a template for the definition of similar conversion functions applying to totally ordered sets of non
integral elements.

asSeq � ��� ����

asSeq��� � ��
� S � �

�
� � ���� x �� �max S� � asSeq�S� � asSeq�S � �x�� 
 ��S �� x��

building a bag of attribute values

Together with any attribute, we know that we can specify an accessor function which, given an object
referencei, will return the attribute value held by the object structure mapped toi. We have established
the convention of naminggetXyz the accessor function for attributexyz. We generalize this concept to sets
of object references. We want, given a set of object references, to build the bag of corresponding attribute
values. In our example, we expect the following accessor functions to be implicitly defined from the class
declaration as follows :

getPower � PowerSupply��

� i � Device � getPower�i� � �� v � �s � ClassSpecPowerSupply � s�ref � i � s�power� � v�

getPowerUsed � Device��

� i � Device � getPowerUsed�i� �
�� v � �s � ClassSpecMonitor � s�ref � i � s�powerUsed�

�s � ClassSpecProcessor � s�ref � i � s�powerUsed�

�s � ClassSpecMainBoard � s�ref � i � s�powerUsed � � v�

We further make the assumption that the set ObjectReference is totally ordered5, which allows to define a
function calledpickFirst yielding the first element of any finite set of ObjectReferences :

pickFirst � �ObjectReference� ObjectReference

From these accessors and the functionfirst, we may form their generalized counterpart as (we usebag as a
prefix to form the function names) :

bagPower � �PowerSupply� ����

bagPower��� � Æ�
� d � �

�
PowerSupply � ���� x �� pickFirst�d� �

bagPower�d� � �bagPower�d � �x�� � ��getPower�x� �� �����

5This is realistic, since object references generally will be interpreted as integers (machine pointersare integers).

144



Z specification of Object Oriented Constraint Programs

In the same spirit, we could definebagPowerUsed by simply replacingPowerSupply by Device, and
getPower by getPowerUsed in the previous statement.

bagPowerUsed � �Device� ����
� � �

As in the case of association roles, it is possible to elaborate a generic definition for these :

�X�
bagOf � �ObjectReference� X�� ��ObjectReference� ���X�

� f � ObjectReference� X � bagOf �f ���� � Æ�
� f � ObjectReference� X �

� d � �
�
���� f � � ���� x �� pickFirst�d� �

bagOf �f ��d� � �bagOf �f ��d � �x�� � ��f �x� �� �����

The functionbagOf hence maps every function fromObjectReference to X to a function from sets of
ObjectReference to bags ofX.

4.3. Inter relation constraints

The basic constraint existing between relations is the subset constraint. A simple example is given by the
two relationsworksFor andmanages, between the typesPerson andCompany. The manager obviously
works for the company, which is expressed asmanages � worksfor. Hence the proper declaration for these
relations becomes :

worksFor � Person	 Company
manages � Person	 Company

manages � worksFor

4.4. Structural constraints

We wish to state the constraint that the total power delivered by the power supply suffices to feed all of the
PC’s devices. This can be stated as follows :

� p � PC �
���� R �� PC Monitor 
 PC MainBoard 
 MainBoard Processor �

bagsum�bagOf �getPower��PC PowerSupply��p�
�� 	
bagsum�bagOf �getPowerUsed��R���p�
 � Device���

whereR� denotes the transitive closure of the relationR, obtained as the union of three relations, and
R���p�
 denotes the relational image ofp, the PC composite, byR�, hence the component objects ofp, at
any structural level.

4.5. Notational shortcuts for relations and roles

Most often, specifications require to make the structure traversal more explicit. To illustrate the possibilities
offered by Z in that respect, we assume that all previous relations have roles named using a standard prefix
”the” followed by the distant class name (we use nos at the end, even when there can be several), as e.g. :

theMonitor � �PC��Monitor

Now, we define the operators�,�, �,� as shortcuts for the previous explicit definitions.

145



L. Henocque

�X�
� � �ObjectReference� �ObjectReference� X�� ���X
� � �ObjectReference� �ObjectReference� X�� X
� � �ObjectReference� ��ObjectReference��X���X
� � ObjectReference� ��ObjectReference��X���X

� s � �ObjectReference� r � ObjectReference� X � s � r � bagOf �r��s�
� s � �ObjectReference� r � ObjectReference� X � s � r � �� t � bagOf �r��s� � first t�
� s � �ObjectReference� r � �ObjectReference��X � s � r � r�s�
� o � ObjectReference� r � �ObjectReference��X � o� r � r��o��

Given a single object reference, ”�” dereferences a role, hence returning a set of target objects. The ”�” dot
operator does the same, given a set of object references. Hence, to denote the set of all processors connected
to the motherboard of a given PCp, we write : p � theMainBoard � theProcessor. Given a set of object
references and an attribute ”�” produces the bag of attributes values. ”�” does the same, assuming the set
contains a of object references contains a unique element. Now, the previous constraint relating the total
power used to the power available can be reformulated as:

� p � PC �
p� thePowerSupply � getPower 	
p� theMonitor � getPowerUsed�
p� theMainBoard � getPowerUsed�
bagsum�p� theMainBoard � theProcessor � getPowerUsed�

5. An AI Example

We wish to illustrate the use of the specification utilities presented so far with a simple yet very general
artificial intelligence problem. [9] defines the problem of analyzing both the syntax and semantics of a
context free language using a constraint object system. The language chosen is the archetypal language
� � an bn consisting in sequences of a’s followed by the same number of b’s.aaabbb � �, butabbb �� �.
[9] proposes the object model and constraints described below to represent valid sentences of� together
with their semantic. The object model is illustrated in figure 2. The program used to solve the problem
is Ilog JConfigurator, an object oriented configurator. Given an input made of a sequence of words, some
of them not being classified as a’s or b’s, the system can generate all the valid word sequences compatible
with that input together with the correct syntax structure. The system works equally well when chunks of
syntactical structure, or elements of the semantic, are fed in.

In other words, the system produces the following results (where inputs and outputs are sequences
�string� syntax tree� semantic�) (we use the dot character ”.” do denote an unknown word (a, or b), and the
character ”?” to denote an unknown :

�aaabbb� �� �� �� �aaabbb� S�SA� S�SA� S�SA� null� SB�� SB�� SB�� 	�
�abbb� �� �� �� false
�� a � b� �� �� �� �aabb� S�SA� S�SA� null� SB�� SB�� 
�
��� �� 
� �� �aabb� S�SA� S�SA� null� SB�� SB�� 
�

We propose here a rigorous, type checked specification of the object model and its constraints, that
illustrate the power of the method. We start with the definition of several classes.Word 6 is an abstraction
for SA andSB (representing a and b),Cat is an abstraction for bothWord andS. S is the only syntactic
construct, made of anSA, an optional enclosedS, and anSB in that order. ThePhrase consists of a list of

6Following the terminology of natural language theories, we use ”phrase” to denote a valid sentence for the grammar, called a
”word” or a ”string” in formal language theory

146



Z specification of Object Oriented Constraint Programs

Phrase

Cat

−begin:int

−end:int

Word S

SA SB

Semantic

−n:int

1..*

1

1

1

1

1

1

1

1

1

subSyntax
0..1

0..1
next0..1

0..1

Figure 2. An object model for the anbn parsing problem

Word, a syntaxS, and aSemantic. The semantic chosen is as simple as the example : it describes the count
of a’s and b’s in the sentence.

class 
 Phrase � concrete

class 
 Cat � abstract
begin � �
end � �

class 
Word � abstract

inherit � Cat

class 
 S � concrete

inherit � Cat

class 
 SA � concrete

inherit � Word

class 
 SB � concrete

inherit � Word

class 
 Semantic � concrete
n � �

Several relations exist in this problem. They can be described very naturally by their most used roles.
Whenever the opposite role is needed, the inverse of the relation can be computed. Each phrase maps to a

147



L. Henocque

unique first word. Each word maps to a unique phrase. Each word has an optional next word. Each phrase
bijectively maps to a semantic. It also maps to a unique syntax S. Each SA (and SB) bijectively maps to
an S. Each S has an optional enclosed S (we use a partial injection here). Each S is in a one to one with
its semantic. We also know that the first word is a member of the phrase words. All these elements can be
formulated as :

firstWord � Phrase�Word
phrase � Word� Phrase
next � Word�Word
phraseSemantic � Phrase� Semantic
phraseSyntax � Phrase� S
SASyntax � SA� S
SBSyntax � SB� S
subSyntax � S� S
semantic � S� Semantic

firstWord � phrase�

In some constraints below, we expect the following functions to be implicitly defined :

theSA � � S�� SA
theSB � � S�� SB
theSubS � � S�� S
thePhraseSyntax � �Phrase�� S

The following accessor functions are also implicitly defined :

getBegin � Cat��
getEnd � Cat��
getN � Semantic��

Using these definitions, we may formulate the following axioms, necessarily verified by the object
system. Of course, some or all of these axioms must be implemented as constraints in a working system.
The length of words is one

�w � Word � getBegin�w� � � � getEnd�w�

The start position of the first word in a phrase is 0

� p � Phrase � getBegin�firstWord�p�� � �

The first word in a phrase is the SA of its syntax (S)

� p � Phrase � firstWord�p� � SASyntax��phraseSyntax�p��

Consecutive words have corresponding end/begin

�w � ��� next � getEnd�w� � getBegin�next�w��

All a’s are located left of all b’s

� a � SA� b � SB � getBegin�a� � getBegin�b�

The beginning of an S is the beginning of its SA (and respectively with SB’s and ”ends”).

� s � S � getBegin�s� � s� theSA � getBegin
� s � S � getEnd�s� � s� theSB � getEnd

148



Z specification of Object Oriented Constraint Programs

The enclosed S is between the SA and the SB.

� s � ��� subSyntax � getBegin�s� � s� theSubS � getBegin
� s � ��� subSyntax � getEnd�s� � s� theSubS � getEnd

The end position of the SA plus the length of the enclosed S equals the start position of the SB

� s � ��� subSyntax �
s� theSA � getEnd � s� theSubS � getEnd 
 s� theSubS � getBegin �
s� theSB � getBegin

� s � S � s �� ��� subSyntax � s� theSA � getEnd � s� theSB � getBegin

The semantic of a phrase is the semantic of its syntax

� p � Phrase � phraseSemantic�p� � semantic�phraseSyntax�p��

The ”value” of the semantic of an ”S” is the integer division of the its length by two

� s � S � getN�semantic�s�� � �getEnd�s�
 getBegin�s�� ��� 

� s � S � getN�semantic�s��	�� 
 � �

Not all these axioms are independent of course. However, they formally describe all the valid object con-
figurations that are instances, or solutions, of this object model. Provided the class definitions are properly
expanded, or this expansion is simulated, all the constraints can be fully type checked by a Z type checker.
Furthermore, these axioms can be input to a theorem prover, with the possibility of generating automatic or
user assisted proofs for conjectures about the properties of the problem, or proofs that some constraints are
mutually incompatible.

The same specification may also be converted automatically to a valid input for any practical configu-
rator or object constraint program.

5.1. Formal proofs

All object models so specified naturally allow formal proofs to be made about the axiom set. Essential in that
respect are redundancy proofs. In constraint systems, any axiom that can provably be inferred from the rest
of the axioms can be safely ignored by an implementation, which hence remains correct. Also, redundant
axioms can be added when their implementation as a constraint has a better propagation efficiency than the
axioms it can be derived from. In this case, redundancy ensures that the resulting system remains complete.

We illustrate the possibility to establish formal proofs for our example.� s � S � getN�semantic�s��	��


 � � can be proved by induction on the height of the syntactical structure (or the value of the semantic
”n”). A sequent proof for height� (ie. for an ”S” having no enclosed ”S”, or in other words for the ”S”
corresponding to the central ”AB”) is :

� s � S � s �� ��� subSyntax � s� theSA � getEnd � s� theSB � getBegin
�w � Word � getBegin�w� � � � getEnd�w�

� s � S � s �� ��� subSyntax � getEnd�s�
 getBegin�s� � 


� s � S � s �� ��� subSyntax � getEnd�s�
 getBegin�s� � 

� s � S � getN�semantic�s�� � �getEnd�s�
 getBegin�s�� ��� 


� s � S � s �� ��� subSyntax � getN�semantic�s��	�� 
 � �

Now, we can formally prove that if the induction hypothesis is true for heightn, it holds for heightn � �,
hence for alln. We can first establish as a lemma that the length of anS equals
 plus that of its subSyntax :

149



L. Henocque

� s � ��� subSyntax �
s� theSA � getEnd � s� theSubS � getEnd 
 s� theSubS � getBegin �
s� theSB � getBegin

�w � Word � getBegin�w� � � � getEnd�w�

� s � ��� subSyntax � getEnd�s�
 getBegin�s� �

 � s� theSubS � getEnd 
 s� theSubS � getBegin

which makes the proof of the induction step obvious.

6. Conclusion

We have presented the entire specification of an object oriented constraint system, which can be used to
document and exchange constrained object models. We used Z as an underlying formal system which
offers many advantages:

� Z has very simple and clean first order semantics.

� as a relational language, Z offers the richest possible ways of reasoning about relations, which is an
essential aspect of constrained object systems.

� Z is freely extensible by introducing new operators, always backed by rigorous axiomatic definitions.
This allows to attain the flexibility and readability of existing object oriented approaches.

� the Z language comes with a freely available type checkerf UZZ, that allows to control both the syntax
and the type conformance of specifications (this article is fully type checked usingf UZZ).

Our goal was to capture as much of object oriented modeling as possible, using as a basis the widely
accepted standard UML, while avoiding to produce a new avatar of an object oriented language. We also
rejected the idea of using an existing one, since all existing formal object languages have their pros and their
cons, which might have interfered with the general objective of producing a tool for communicating and
discussing constrained object systems. Even though some of our choices may still be discussed, this can
be made formally. Furthermore, the Z language being formally extensible at will, all the proposed generic
operators can be viewed as a template, rather than a rule.

References

[1] Antonio Alencar and Joseph Goguen. Ooze: An object-oriented Z environment. InPierre America,
editor, European Conference on Object Oriented Programming, Springer, Lecture Notes in Computer
Science, Volume 512, pages 180–199, 1991.

[2] Jérôme Amilhastre, H´elène Fargier, and Pierre Marquis. Consistency restoration and explanations in
dynamic csps–application to configuration.Artificial Intelligence, 135(1-2):199–234, 2002.

[3] F. Baader and B. Hollunder. A terminological knowledge representation system with complete in-
ference algorithms. InProceedings of the First International Workshop on Processing Declarative
Knowledge, volume 572, pages 67–85, Kaiserslautern (Germany), 1991. Springer–Verlag.

[4] Rosalind Barden, Susan Stepney, and David Cooper. The use of Z. In J. E. Nicholls, editor,Proceed-
ings of the 6th Z User Meeting, York, UK, 1991, Workshops in Computing, pages 99–124. Springer,
1992.

[5] Virginia Barker, Dennis O’Connor, Judith Bachant, and Elliot Soloway. Expert systems for configu-
ration at digital: Xcon and beyond.Communications of the ACM, 32:298–318, 1989.

150



Z specification of Object Oriented Constraint Programs

[6] P. Borba and J. Goguen. An operational semantics for FOOPS. In R. Wieringa and R. Feenstra,
editors,Working Papers of the International Workshop on Information Systems - Correctness and
Reusabilility, IS-CORE’94. Technical Report IR-357, Amsterdam, 1994.

[7] R. J. Brachman and J. G. Schmolze. An overview of the kl-one knowledge representation system.
Cognitive Science, 9(2):171 – 216, 1985.

[8] Yves Caseau. Constraint satisfaction with an object-oriented knowledge representation language.
Applied Intelligence, 4(2):157–184, 1994.

[9] Mathieu Estratat and Laurent Henocque. Parsing languages with a configurator. Inproceedings of the
European Conference for Artificial Intelligence ECAI 2004, pages 591–595, Valencia, Spain, August
2004.

[10] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Markus Stumptner, and Markus Zanker.
Transforming uml domain descriptions into configuration knowledge bases. InKnowledge Transfor-
mation for the Semantic Web, pages 154–168, 2003.

[11] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker. Configuration knowl-
edge representation using uml/ocl. InProceedings of the conference UML 2002, pages 49–62, 2002.

[12] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker. Semantic con-
figuration web services in the cawicoms project. InProceedings of the Configuration Work-
shop, 15th European Conference on Artificial Intelligence, pages 82–88, Lyon, France, 2002.
http://www.cawicoms.org/.

[13] Markus P. J. Fromherz, Vijay A. Saraswat, and Daniel G. Bobrow. Model-based computing: Devel-
oping flexible machine control software.Artificial Intelligence, 114(1-2):157–202, October 1999.

[14] Object Management Group.UML v. 1.5 specification. OMG, 2003.

[15] B. Jacobs. Coalgebras in specification and verification for objectoriented languages, 1999.

[16] Joxan Jaffar and Jean Louis Lassez. Constraint logic programming. Inin ACM Symposium on Princi-
ples of Programming Languages, pages 111–119, 1987.

[17] Ulrich John and Ulrich Geske. Reconfiguration of technical products using conbacon. InProceedings
of AAAI’99-Workshop on Configuration, pages 48–53, Orlando, Florida, July 1999.

[18] Daniel Mailharro. A classification and constraint-based framework for configuration.AI in Engineer-
ing, Design and Manufacturing, (12), pages 383–397, 1998.

[19] John P. McDermott. R1: A rule-based configurer of computer systems.Artificial Intelligence, 19:39–
88, 1982.

[20] Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction problems. InProceedings of
AAAI-90, pages 25–32, Boston, MA, 1990.

[21] Alexander Nareyek. Structural constraint satisfaction. InPapers from the 1999 AAAI Workshop on
Configuration, Technical Report, WS-99-0, pages 76–82. AAAI Press, Menlo Park, California, 1999.

[22] Harald Meyer nauf’m Hofe. Construct: Combining concept languages with a model of configuration
processes. InPapers from the 1999 AAAI Workshop on Configuration, Technical Report, WS-99-0,
pages 17–22, 1999.

[23] Kevin R. Plain. Optimal configuration of logically partitionned computer products. InProceedings of
the Configuration Workshop, 15th European Conference on Artificial Intelligence, pages 33–34, Lyon,
France, 2002.

151



L. Henocque

[24] Daniel Sabin and Eugene C. Freuder. Composite constraint satisfaction. InArtificial Intelligence and
Manufacturing Research Planning Workshop, pages 153–161, 1996.

[25] Graeme Smith.The Object-Z Specification Language. Kluwer Academic Publishers, in Advances in
Formal Methods, 2000.

[26] Timo Soininen, Esther Gelle, and Ilkka Niemela. A fixpoint definition of dynamic constraint satisfac-
tion. In Proceedings of CP’99, pages 419–433, 1999.

[27] Timo Soininen, Ilkka Niemela, Juha Tiihonen, and Reijo Sulonen. Representing configuration knowl-
edge with weight constraint rules. InProceedings of the AAAI Spring Symp. on Answer Set Program-
ming: Towards Efficient and Scalable Knowledge, pages 195–201, March 2001.

[28] J. M. Spivey.The Z Notation: a reference manual. Prentice Hall originally, now J.M. Spivey, 2001.

[29] Markus Stumptner. An overview of knowledge-based configuration.AI Communications, 10(2), June
1997.

[30] Markus Stumptner. Configuring web services. InWorkshop notes of the Configuration Workshop,
European Conference on Artificial Intelligence ECAI’04, 2004.

[31] Markus Stumptner, Gerhard Friedrich, and Alois Haselbck. Generative constraint-based configuration
of large technical systems.Artificial Intelligence in Engineering, Design, Analysis and Manufacturing
(AI EDAM), 12(4), Special Issue on Configuration, December 1998.

[32] Katariina Ylinen, Tomi Mnnist, and Timo Soininen. Configuring software products with traditional
methods - case linux familiar. InProceedings of the Configuration Workshop, 15th European Confer-
ence on Artificial Intelligence, pages 5–10, Lyon, France, 2002.

Laurent Henocque
Laboratoire des Sciences de l’Information et des Syst`emes
LSIS (UMR CNRS 6168)
Campus Scientifique de Saint J´erôme
Avenue Escadrille Normandie Niemen
13397 MARSEILLE Cedex 20
laurent.henocque@lsis.org

152


