
RAC�� �
Rev. R. Acad. Cien. Serie A. Mat.
VOL. 98 (1), 2004, pp. 95–111
Ciencias de la Computaci´on / Computational Sciences

Cocktail: A Tool for Deriving Correct Programs

Michael Franssen and Harrie de Swart

Abstract. Cocktail is a tool for deriving correct programs from their specifications. The present version
is powerful enough for educational purposes. The tool yields support for many sorted first order predicate
logic, formulated in a pure type system with parametric constants (CPTS), as the specification language,
a simpleWhile- language, a Hoare logic represented in the same CPTS for deriving programs from their
specifications and a simple tableau based automated theorem prover for verifying proof obligations.

Cocktail: Una herramienta para obtener programas correctos

Resumen. Cocktail es una herramienta para la obtenci´on de programas correctos a partir de sus es-
pecificaciones. La versi´on actual de la herramienta tiene una potencia suficiente para su uso con fines
educativos. La herramienta proporciona soporte a la l´ogica de predicados de primer orden multivariada,
formulada en un sistema puro de tipos con constantes param´etricas (CPTS), como el lenguaje de especifi-
cación, un sencillo lenguaje While, una l´ogica de Hoare representada en el mismo CPTS para la obtenci´on
de programas a partir de sus especificaciones, y un demostrador autom´atico de teoremas sencillo, basado
en tableaux para la verificaci´on de obligaciones de prueba.

1. Introduction

At present, most tools for correct programming support functional or logical programming paradigms.
However, in practice, most programs are written using procedural languages (including object-oriented
languages) like Pascal, C/C++ or Java. Tools for procedural languages usually provide only syntactical
support.

The essence of algorithms in procedural languages can be expressed in Dijkstra’s guarded command
language (GCL), for which there is a formal basis that allows semantical support. In fact, programs written
in GCL can bederived from their specification, as is shown in [6, 13]. So far, there are no tools that support
this approach to programming.

The goal of Cocktail is to provide semantical support for deriving programs from their specifications
by stepwise refinement, generating proof obligations on the fly. The system is intended for programmers in
an educational setting. Cocktail is mainly practice-oriented to increase its usability for the intended users.
Also, the system is set up to be extensible, flexible and easy to experiment with.

Cocktail is written entirely in Java and provides a modern graphical user interface. Proofs are graphi-
cally represented in Fitch-style natural deduction and can be manipulated by drag-and-drop operations.

Presentado por Luis M. Laita.
Recibido: November 26, 2003.Aceptado: October 13, 2004.
Palabras clave / Keywords: program derivation, Pure Type System, theorem proving, Hoare logic
Mathematics Subject Classifications: 68-02, 68-04, 68T15.
c� 2004 Real Academia de Ciencias, Espa˜na.

95

M. Franssen and H. de Swart

1.1. Logical foundation

To ensure a firm logical foundation of the system, we use a typed lambda calculus for the logical parts
of our system. Typed lambda calculi are suitable for interactive theorem proving, as is shown by systems
like Coq, LEGO and Yarrow (see [5]). Instead of using a fixed calculus, we use a logical framework of
typed lambda calculi: the framework of Pure Type Systems (PTSs). This approach has several advantages.
Firstly, it allows us to easily increase the expressive power of the logical foundation of the system at a later
stage, without having to re-implement the entire logic. Secondly, we can use a type checking algorithm
to verify the correctness of constructed proofs, thereby avoiding errors being introduced when the theorem
prover gets large. Thirdly, we can communicate our proofs to other proof systems, since lambda terms are
standardized proof objects. So, the requirement of communicable proofs, called the De Bruijn criterion, is
satisfied.

On the other hand, typed lambda calculi are usually used for higher order logics, which are not (yet)
needed for our system. During the derivation of a program, many first order theorems have to be proved,
most of which are relatively simple. Since for first order theorems good automation is possible, it is de-
sirable to include an automated theorem prover (ATP) in the system. However, ATPs are usually based on
other formalisms and use other techniques to prove theorems than interactive theorem provers.

1.2. Embedding first order tableaux in a pure type system

In Cocktail, automated and interactive theorem proving are combined as follows. Firstly, an extension,
introduced in [14], to the standard PTSs is used to faithfully model first order logic. Secondly, a tableaux
based theorem prover is implemented that directly uses the formulas from the extended PTS. Since we use
a faithful model of first order logic, no problems will occur during the construction of the semantic tableau.
Thirdly, the tableau constructed by the ATP is translated into a lambda-term of the underlying logic. A
precise description of the translation algorithm and the resulting system can be found in [10, 11].

1.3. Linking Hoare logic with a pure type system

Our aim was to build a tool that assists programmers in constructing correct programs. However, to decide
whether a program is correct, the programmer must provide a formal specification of what the program is
supposed to do. The programmer will be interested mainly in the program itself and less in its correctness
proof. To accommodate the programmer, the tool needs to represent programs as directly as possible and
has to construct proofs automatically whenever possible.

Roughly speaking, there are three approaches to correct programming:

� Constructing the program first. In this approach, the correctness of the program is verified after it has
been written.

� Constructing the proof first. In this method, the programmer first has to prove constructively a theo-
rem which indirectly states that there exists a program that meets the specification. The program is
then extracted from the proof of the theorem. See e.g. [17].

� Simultaneous construction of program and proof. In this method, the program and its correctness
proof are constructed hand in hand. It is based on a Hoare logic, which directly links the program to its
semantics. From Dijkstra-Hoare calculus and the works of Gries, Feijen and Kaldewaij ([12, 7, 13])
it becomes clear that programs can actually bederived from their specifications. When finished, the
program and its correctness proof are both available.

In the Hoare logic or axiomatic semantics of the guarded command language supported by Cocktail, pro-
grams are annotated with proofs and specifications. The proofs in the annotation provide enough infor-
mation to check a posteriori if a constructed program does indeed meet its specification. Just as a simple
type checking algorithm can ensure that a constructed proof (lambda-term) is correct, a simple program

96

Cocktail: A Tool for Deriving Correct Programs

checking algorithm ensures an annotated program is correct. In this way the soundness of Cocktail depends
only on this checking algorithm, and not on the whole system, which may get quite large.

1.4. Result

Cocktail is an experimental system for deriving correct programs, aimed at students. The simultaneous
construction of a program and its correctness proof is based on the Dijkstra-Hoare calculus (see [6]). The
main advantage of this approach is that the programmer is guided to a correct program by the specification
during the program’s construction. The underlying logic can easily be extended and changed, since a
logical framework - a pure type system - is used rather than a fixed logic. Many of the simple theorems are
proved automatically. The graphical user interface provides a clear view of the proofs and allows intuitive
construction of proofs.

1.5. Design

The Cocktail tool has been designed roughly in three parts, each extending the previous one.

� The symbolic engine, consisting of the representation of terms of the different formal systems and the
type checkers. For (many-sorted) first order logic we use a simple Pure Type System (PTS). To safely
support Hoare logic, we design a specific version that conforms to the De Bruijn criterion. Also,
we design this Hoare logic in such a way that it has the same structure and properties as the PTS.
This allows us to re-use code of the PTS type checker for the program checker. Hence, the symbolic
engine remains small, comprehensible and can therefore be trusted to be correct. Also, having both
systems - first order logic and the Hoare logic - represented by a uniform structure is more satisfying
aesthetically.

� The tactic system, being a layer on top of the symbolic engine, which enables the user to use larger
steps in the proof than those allowed by the formal system. We want the tactic system to support
at least the following: backward reasoning, forward reasoning, Automated Theorem Proving (ATP),
and equational reasoning.

� The user interface, which enables the user to interact with the system by sending commands to the
tactic system.

2. Many sorted first order predicate logic

A weakness of the familiar definition of terms of first order logic in the literature is that all terms are treated
equally. In practice, we often want to distinguish between terms of different types (for instance, booleans
and integers). Therefore we introduce a many sorted first order logic.

Definition: Many sorted first order formulas
Let� be a set of function symbols, each with a fixed arity� �. Furthermore, let� be a set of predicate sym-
bols, each with a fixed arity� �. For convenience, we assume a special predicate symbolFalsum to exist in
� with arity 0. In addition to� and� we have a parameter��� that represents a set of basic types. Finally,
we assume the existence of an infinite set� of variables. The sets� , � , ��� and� are disjoint. With
every function symbol� � � with arity �, we associate a unique tuple of types�� �� � � � � ��� ��, where
��� � � � �� and� are elements of���. We denote this as� � ���� � � � ��� �� � � . With every predicate
symbol	 � � with arity �, we associate a unique tuple of types���� � � � � ���, where��� � � � � �� � ���.
This is denoted as	 � ���� � � � � ��� � � . Since the arity of function and predicate symbols can now be
derived from its unique associated tuple of types it will no longer be stated explicitly. The set� of variables
in the extended framework contains variables which each have a unique associated type� , where� � ���.

97

M. Franssen and H. de Swart

We assume that for every type there are infinitely many variables. The definition of the set
 of typed terms
is:

1. � � � �
 for every variable� with associated type� .

2. If � � ���� � � � � ��� �� � � and�� � ��� � � � � �� � �� �
 , then���� � � � ��� � � �
 .

The set Prop of formulas for many sorted first order logic is now defined as:

1. If 	 � ���� � � � � ��� � � and�� � ��� � � � � �� � �� �
 , then�	�� � � � ��� � Prop.

2. If 	�� � Prop, then�	 ��� � Prop,�	 ��� � Prop and�	 � �� � Prop.

3. If 	 � Prop, then��	 � � Prop.

4. If 	 � Prop and
 � � � � , then�	
 � ��	 � � Prop and�

 � ��	 � � Prop.

We will only consider substitutions of terms for variables which have the same associated type.

3. The pure type system ���

The PTS framework is used to describe several different logics in a uniform way. We use such a PTS to
construct correctness proofs for imperative programs. By using a PTS as the basis of our tool instead of a
single fixed logic, we enable future extensions of the logical system. Also, PTSs have proved suitable for
constructing interactive theorem provers like COQ [5] and Yarrow [18].

�	� is a Pure Type System with parametric constants (CPTS) that exactly models many sorted first
order predicate logic (see [14]).

Definition: �	�
�	� is the CPTS specified by:

� �
��� ��������� is the set of sorts
� �
�������� �������� is the set of axioms
� �
���� ��� ���� ���� ��� ���� is the set of rules
�� �
���� ���� �������� is the set of parametric rules

A regular Pure Type System (PTS) has no parametric rules. Given a specification of a CPTS, say
(��������), the terms, contexts and type judgement relation of the CPTS are defined as follows.

Definition: Parametric Terms
Given a set� of variables and a set� of constants (which is empty in the case of a regular PTS), the set

� of CPTS terms is defined by the following abstract syntax:

� ��� � �� ��� �
� �
� ��� �
� �
� �
�
� � �����
�� ��� � �� �� �
� �

The lists of terms produced by�� are usually denoted as� ��� � � � � �� � or ��� � � � � �� instead of
� � � � �� ���� ���� � � � � �� �.

Definition: Contexts of CPTSs
A context is a list of the form
� � ��� � � � �
� � ��, such that every�� is a term and either
� � � or

� has the form���� � ��� � � � � �� � ���, where� � �, ��� � � � � �� � � and��� � � � � �� are terms. A
constant� is called�-fresh if it does not occur in�.

Definition: �-reduction
On the terms of PTSs, we define a reduction relation���
 �
 as the smallest relation such that

��
 � ������� ��
 �� ��

98

Cocktail: A Tool for Deriving Correct Programs

start �� � �	��
 ��	� �
� � �

intro
� � ���

��
�� �
��

 is �-fresh

weaken
� � � � � � � � � �

��
�� � ���

 is �-fresh

�-form
� � ���	 ��
�� � ���

� � ��
��� �����
��	� �
� ��� � �

�-intro
��
�� � ��� � � ��
��� ����

� � ��
��� �����
��� ��

�-elim
� � � ���
��� �� � � ���

� � �����
 �� ��

conversion
� � ��� � � ���� ����

�

� � ����

Figure 1. The type judgment derivation rules of a PTS.

and that is closed under

if ��� �� then ��
 � ��������
 � �����
��
 � ��������
 � ������
��
 � ��������
 � ������
��
 � ��������
 � ������

��������
���

and ���������
��

�� denotes the reflexive and transitive closure of�� . �� denotes the symmetric, reflexive and transitive
closure of�� . � �� �� is read as ”� is �-equal to� �”, which means that there exists a� �� such that�
and�� can both be reduced to� �� by �-reduction.

Definition: Type judgment relation of a regular PTS
The type judgment relation describes the actual PTS. A judgment always has the form� � � � �, where�
and� are terms and� is a context.� � � � � should be read as: ’� has type� in context�’. The type
judgment relation� is defined by the rules in figure 1.

We give a brief description of each type judgment rule in figure 1:

����� This is the only rule without premises in a PTS. It supplies, starting from the axioms in�, basic
typing judgments from which all the other typing judgments are derived.

����� Intro is used in a much more general sense than the�����-rule in natural deduction. In natural
deduction intro allows one to add assumptions to the context. In a PTS intro allows one to add
assumptions, constants (which in a PTS are equal to variables), functions and propositional variables
(including predicates) to the context. This depends on the form of�. The type of the introduced item

 depends on�, which is the type of the type of
.

��� �� Weaken is needed to preserve existing derivations in extended contexts. It states that everything
that can be derived in a certain context can also be derived in a more extended context.

99

M. Franssen and H. de Swart

�-���! This rule allows the construction of function types, predicates, universal quantifications, etc. The
set of rules� of a PTS determines the ways in which�-���! can be used. Actually, the set� states
which abstractions are allowed.

�-����� One needs this rule to actually construct terms of a type built with the previous rule. Without this
rule, we could only assume that there are terms of this type by using�����.

�-�"�! Once a term with a�-type is constructed or assumed, it can be used to create a term with a more
concrete type. The�-�"�! rule, also referred to as the application rule, instantiates the body of an
abstract�-type by substituting a term for the bound abstract variable.

���#������ This rule states that we don’t distinguish�-equal types. In several PTSs a term� can have
type� where� can be rewritten to� � by �-reduction. In the propositions-as-types isomorphism,
� and�� then represent the same propositional formula (we will come back to this in our example
below) and hence,� is a proof of� � just as well as it is a proof of�. To support this switch of
representation the���#������ rule is needed.

Definition: Valid (or legal) contexts
A context is called valid or legal, if it can occur in a derivation using only the axioms of the Pure Type
System. This notion is also used for extended PTSs, where additional rules may also be used.

For many PTSs one can automatically compute an entire derivation of� � $ � 	 for a given context�, a
proof term$ and a formula	 provided that at least one derivation exists (see e.g. [1]). Hence the proof-term
can be checked for correctness (type-checked). This has two advantages:

1. Even if a large tool is used to construct a proof-term$, correctness of the proof is assured by type-
checking. This algorithm is relatively simple and can be proved to be correct.

2. Communicating proofs corresponds to communicating a syntactical proof term. This proof term can
then be checked by another proof system based on�-calculus.

Definition: Type judgment relation of a CPTS
The type judgment relation of a CPTS consists of all rules of a regular PTS (see figure 1) and two additional
rules to make use of parametric constants. Let� denote
� � ��� � � � �
� � �� and let�� denote

� � ��� � � � �
��� � ����. Then the additional rules are:

C-weaken

� � ���
���� � ����� for � � 	� � � � � �
��� � ���

�� ������ � ���

���� �� � �
� is �-fresh

C-application
��� ��������� � ������
� �� �� �

���
���

��� ��������� � ���

for � � 	� � � � � �
if � � �

��� ��������� � ����� � � � � ������
� �� �� �
�
���

We give a brief description of the additional rules:

�-��� �� The�-��� �� rule allows us to add a parametric constant to the context. In contrast to other
extensions of the context this rule does not allow us to type the parametric constant itself, while the
intro-rule (used for regular extensions of the context) allows the typing of every newly added item.

�-�$$"������� Since a parametric constant itself cannot be typed in a CPTS it cannot be used with the usual
�-�"�! (sometimes calledapplication) rule. The rule�-�$$"������� allows us to use a parametric
constant, but only if we supply all the required arguments at once. This corresponds to the use

100

Cocktail: A Tool for Deriving Correct Programs

of functions and predicates in first order logic: these too can only be used after all the arguments
have been supplied. The special premise for the case� � � is needed to assure that the context
��� ���� � ���� is a valid one.

For properties of CPTSs see [14].

4. Faithful representation of logic in ���

Functions and predicates are now added to the context using the new rule�-��� ��, using parametric rule
���� ��� for functions and������� for predicates. A function or a predicate can only be used to form a
proposition using the rule�-�$$"�������. For instance, a function of arity 2 can only be used when it is
applied to 2 arguments at once.

As mentioned in the handbook of H.P. Barendregt, Berardi gave a representation of first order logic in a
regular PTS without parameters. However,�	� corresponds more closely to first order logic:

1. Constants are now modelled by a parametric constant with zero parameters. For instance, the natural
number 0 is modelled in a context as��� %�� � ��� ��� � %�����. Since the 0 is now a constant
from�, it cannot be confused with a variable from� , like in Berardi’s representation, since it is not
possible to build a term like����� � %���&�.

2. Functions themselves do not have types, while they do have a type in Berardi’s representation. A
binary function� with arguments from sets� and� yielding a value from� occurs in the context
as��
 � �� � � �� � �. Since� is a parametric constant with 2 arguments it cannot be applied to a
single argument� � �, as can be done in Berardi’s representation. The same holds for predicates.

3. A single proposition corresponds to a single type, while in Berardi’s representation a single propo-
sition corresponds to several types. The rule���������� allowing the typing of lambda terms rep-
resenting predicates is no longer available. Therefore, a predicate	 is no longer represented by
��
 � ��	 ��, where� corresponds to a set of first order logic and� � � . Consequently, the rule
���#������ is no longer needed, allowing a simpler and faster implementation.

In order to show that the conversion rule is superfluous in�	�, we formally define what a ’type’ is and
then show that all types in�	� are in�-normal form. The proofs can be found in [15].

Definition: Let� be a context.� is a type in � if � � � or there is� � � such that� � � � �.

Lemma: If � � 	 � � and� � � � �� then	 is in �-normal form.

This lemma shows that the terms that represent objects are always in�-normal form.

Theorem: If 	 is a type in a context� then	 is in �-normal form.

The context, containing the set-, function- and predicate symbols of the logic, is defined as follows:

Definition: ��
Let� be a logic with set symbols��� � � � � ��, function symbols��� � � � � �� and predicate symbols	�� � � � �
	�. Furthermore, let��	� denote the set symbol representing the type of the'’th argument of function� �
and let�� denote the set symbol representing the type of the result of function� �. Finally, let
�	� denote the
set symbol corresponding to the type of the'’th argument of predicate	 �. Then the context��, modelling
this first order logic in�	�, is defined as:

�� � ��� � � � � �� � ���
���
� � ��	�� � � � �
�� � ��	�� � � ��� � � � � ���
� � ��	�� � � � �
�� � ��	��� � ���
	��
� �
�	�� � � � �

� �
�	
�� � ��� � � � � 	��
� �
�	�� � � � �

� �
�	
�� � ��

101

M. Franssen and H. de Swart

�� and�� are the arities of�� and	� respectively.

The close correspondence of logic� to �	� with context�� is given by the following theorems:

Theorem: �� � � � �� if and only if� is a set symbol of�.

Theorem: For any set symbol� of � we have�� � � � � if and only if � is a term in� whose type is
represented by set symbol� .

Theorem: �� � 	 � �� if and only if 	 is a proposition of�.

Theorem: For any proposition	 of � we have�� � $ � 	 for some term$ if and only if ��� 	 .

The converse is also true: if� is a valid context of�	�, then there exists a logic� such that the theorems
above with�� replaced by� hold. Hence,�	� has a one-to-one correspondence with many-sorted first-
order predicate logic (for a proof see [15]).

5. The While programming language

In this section we define a simple imperative language called()�"� (see also [16]).

Definition: ()�"�

Let ���, � and� be a set of type symbols, variables and function symbols, respectively. Assume that a
special symbolbool exists in���. Let
 be the set of terms of many sorted predicate logic. The set* of
pseudo-programs is defined by the following abstract syntax:

* ��� ���� � � ��
 � ��
 ���� * �	��*
 � ���	�
 �
 *
�

� � ���� � � ��� � * � � � *
*

A pseudo-program� is well-formed if and only if:

1. For every subprogram# �� � occurring in�, the associated types of# and� are equal.

2. For every subprogramif + then �� else �� fi andwhile + do �� od occurring in�, the associated
type of+ is bool.

The language()�"� consists of all well-formed programs in* .

	� ��� denotes the set of program variables of program� (i.e., the variables that are possibly altered during
execution of the program, excluding locally defined variables).

Definition: Program Variables
The definition of	� is given by:

	� �skip� � �
	� �
 �� �� �

�
	� �if , then �	 else �
 fi� � 	� ��	� � 	� ��
�
	� �while , do � od� � 	� ���
	� ���var
 � � � ���� � 	� ��� �

�
	� ��	
�
� � 	� ��	� � 	� ��
�

To define what it means for a well-formed program to be executed, we need the concept of a state.

102

Cocktail: A Tool for Deriving Correct Programs

A state is a mapping from program variables to values, just like the mapping of variables to values in an
interpretation of a logical language. Thus, we consider a state to be a part of an interpretation of a logic.

Definition: State
Let - � ��� �� be an interpretation of the logic used to define()�"�. Then� restricted to application on
program variables is called a state.

The definition of While as given above differs a bit from usual language definitions in the literature. Usually,
expressions and types of variables are defined explicitly and not, as above, defined using expressions and
types of a logic. However, by linking the programming language to the logical language we avoid problems
with expressibility (any expression in the programming language must have a corresponding expression
in the specification language). Also, if we use a more powerful logic, we get a more powerful language
automatically.

In [10], section 8.5, two important extensions of the languageWhile are introduced. The first extension,
arrays, allows new types to be constructed by the user. The second extension, procedures, allows the user
to introduce (parametric) macros, which can be used in the actual program.

6. Hoare logic

Hoare triples express claims about the final state of a program related to the initial state of these programs.
These claims are formulated by logical formulas rather than explicit states and hence, they deal with groups
of states rather than single states.

The formula describing (properties of) the initial state is called theprecondition. The formula describing
(properties of) the final state is called thepostcondition.

Given a precondition, a postcondition and a program we can denote two kinds of Hoare triples: those
for partial correctness and those for total correctness. The difference is that in total correctness termination
of the program is guaranteed, while partially correct programs may not terminate. We will only consider
Hoare triples for partial correctness.

Definition: Hoare Triples for Partial Correctness
Let� be a logic with the sets���, � and� as used to defineWhile. Let	 and� be formulas of this logic
and let� be aWhile-program. Then
	��
�� is a Hoare triple expressing the partial correctness of�

with respect to	 and�.

This kind of Hoare triple should be read as: if	 holds in a state� and executing� in � yields� �, then�
will hold in ��. Note that it is not claimed that a suitable�� exists, i.e. it is not claimed that� terminates.

A Hoare logic is an axiomatic derivation system to prove the validity of Hoare triples. To present the Hoare
logic for While, we need Leibniz equality. Moreover, we need to express whether a boolean expression is
mapped toTrue or False in an interpretation. Therefore, we assume that there are two constantstrue and
false with �(true) = True and�(false) = False. The Hoare logic forWhile then consists of the following
derivation rules:

Definition: Hoare Logic for While
The Hoare logic forWhile is defined by the derivation rules given in figure 2.
We briefly describe these rules:

skip Sinceskip does not change the state, the state after termination is equal to the one the execution
started in. Hence, the same propositions will hold.

assign If 	 has to hold after the value of
 is changed to the value of�, then	 �
 �� �� had to hold before
this assignment was performed. One is often tempted to write this axiom as
	�
 �� �
	 �
 �� ���;
but then

 � ��
 �� 	
	 � �� and

 � ��
 ��
� 	

� 	 � �� would hold.

103

M. Franssen and H. de Swart

[skip]
	�skip
	�

[assign]
	 �
 �� ���
 �� �
	�

[if]

	 � � � true���
��
	 � � � false���
��

	�if � then �� else �� fi
��

[while]

	 � � � true��
	�

	�while � do � od
	 � � � false�

[block]

	��
��

	���var
 � � � � ��
��
if
 �� �� �	���

[comp]

	���
��
����
.�

	���
��
.�

[cons]
�� 	 � � 	
	��
�� �� �� ��

	 ���
���

Figure 2. The derivation rules of the Hoare logic for While.

if In any state in which	 holds,� evaluates either toTrueof False. Depending on this,� � or �� will
be executed respectively. From the premises we get that if�� is executed in a state in which	 holds
and� evaluates toTrue, then� will hold in the resulting state. Similarly,� will hold after executing
�� from a state in which	 holds and� evaluates toFalse. Hence, regardless of the value of�, � will
hold after execution of the if-statement.

while Operationally, the body� of the while-loop is executed as long as evaluation of the guard� yields
True. The premise of this rule states that if� is executed in a state in which	 holds and� � true,
that	 will still hold upon termination of�. Hence,	 remains true, regardless of the number of
executions of�. The while-loop ends when evaluating� yieldsFalse. Hence, upon termination we
have both	 and� � false.

block The block-statement introduces a local variable
. This variable can be used within� as an auxiliary
variable, but is not used in the specification of�. In case the variable is ill-named one can use the
following (provable) property of programs called/-conversion:

��var
 � � � � �� � ��var � � � � ��
 �� ����

for any variable� � � �� �� ���.

comp The composition statement first executes�� and after that executes��. If � holds after executing
�� from a state in which	 holds and. holds after executing�� from a state in which� holds (i.e.
the final state of��), then. holds after executing��
�� in a state in which	 holds.

cons The logical premises claim that	 holds in all states in which	 � holds and that�� holds in all states
in which� holds. Since� holds after executing� from a state in which	 holds,� � will also hold
after executing� from a state in which	 holds. Hence,� � will also hold after executing� from a
state in which	 � holds. This rule is known as ’the rule of consequence’.

A proof of the soundness of these rules can be found in [16].

104

Cocktail: A Tool for Deriving Correct Programs

7. Combining Hoare logic and ���

The only rule in the Hoare logic ofWhile that refers to theorems, is the rule of consequence:

�� 	 � � 	
	��
�� �� �� ��

	 ���
���

Stated this way, one assumes�� to denote semantical validity of formulas in a logic, which is left implicit.
This logic, however, must be powerful enough to deal with all possible expressions allowed in the language.
This is usually referred to as the expressibility requirement.

Since, in our definition ofWhile, the expressions in the programs are those defined in the logic, we au-
tomatically fulfill the expressibility requirement. In case of first-order logic, one can use�	� to construct
the required proofs. The rule of consequence then becomes:

�� � $�	 � � 	
	��
�� �� � 0��� ��

	 ���
���
�

where� is the logic used to defineWhile and�� is the corresponding context for�	� as defined earlier.

The advantages of this approach are:

� Programs are directly accessible by tools, since they are syntactical terms themselves.

� Boolean expressions allowed in programs are defined within the logic, but are separated from the
specification language (e.g. one cannot use�	$ � ����
0 � ����0 � � � $��!��0�� as a guard, since
it is a propositional formula, not a boolean).

� The logic can be restricted to first-order logic and hence, meaningful automatic proof search is pos-
sible.

Even though this ”new” rule of consequence is sufficient to implement a sound and complete Hoare logic,
it still suffers from several drawbacks we encountered in the embeddings:

� Programs cannot be checked after they have been constructed. There is no term representing a cor-
rectness proof of the entire program.

� There is no way to prevent the usage of specification functions in programs. For instance,
 �� ���%�
is a valid, although undesirable, program.

In the following, we show how these drawbacks can be alleviated.

Programs cannot be checked for correctness after they have been constructed, because the proofs used for
application of the rule of consequence are usually not stored within the program and cannot be (re)construc-
ted automatically. Since proofs are syntactically represented in�-calculus, we can easily incorporate those
proofs by extending the program-syntax and change the rule of consequence to something like:

�� � $�	 � � 	
	��
�� �� � 0��� ��

	 ���
�� $ � 0
���

However, during program derivation, one usually alters only the precondition or the postcondition, not both
at once. Also, since program� now has become embedded in���� $ � 0, it is less accessible to the tool. If
one regards the change of	 to	 � as a re-formulation of a state-property, one could consider application of
the rule of consequence to be an application of the theorem	 � � 	 to a state in which	 holds. The same
can be said about� � ��. We denote this application of a theorem by the programfake $, which has the

105

M. Franssen and H. de Swart

same denotational semantics asskip, since the state does not change. The rule of consequence can now be
replaced by the simpler rule:

�� � $�	 � �

	�fake $
��

The original rule of consequence can now be derived as follows: ¿From�� � $�	 � � 	 and�� � 0��� ��

we respectively derive
	 ��fake $
	� and
��fake 0
���. Since
	��
��, we use the composition rule
to conclude

	 ��fake $
�
 fake 0
����

The fake-statement has the advantage that it allows separate treatment of pre- and postconditions. Also, all
proofs are now stored in separate statements, not having other programs as sub-programs.

UsingWhile, extended with fake-statements, yields programs that can be checked once they are constructed.
This is nearly a trivial matter, since every statement can only be derived by a single rule, including the fake-
statement. The premise of the fake-statement could also read� � $�	 � � for any other PTS, as long as
this type judgment can be checked automatically.

However, this ”type-checking” for programs has limited applicability: One could for instance derive a
program

� � ��fake $
 � �� �� 	
� � ���

where$ is a proof of�� � ��� ��� 	 � ��. However, checking

� � ��fake $
 � �� �� 	
� � 	�

would fail, since the proof$ stored in the fake-statement has the wrong type; instead we need a proof0 of
�� � ��� ��� 	 � 	�.

Since our tool only needs to check if programs meet the specification for which they were derived, this
is an acceptable restriction.

Having proofs explicitly stated in programs seems unnatural. However, this is not necessarily true, since
one can consider programs to be proofs of the satisfiability of their specification. From this point of view,
programs are the�-terms of a Hoare logic. Since, in our tool, the Hoare logic is linked to a PTS this view is
also more consistent with the formalism used for proofs. Therefore, we will introduce a different notation
for programs and their specifications.

Definition: Program Specification
Let 	 and� be a pre- and postcondition respectively. Then	 1 � is a program specification. The Hoare
triple
	��
�� can now be denoted as� � 	 1 �, stating that program� satisfies specification	 1 �.

The reason that programs like
 �� ���%� are allowed, is that programs are based on exactly the same
logic as specifications. Therefore, all function-symbols and expressions available in the specification are
also available in programs.

However, in a PTS like�	�, all function symbols of a logic L are explicitly declared within the
context��. If we add contexts to the Hoare logic, we can use a larger context for specifications than for
programs. The context accessible from the program should always be part of the context accessible from
the specification though, since we might get expressibility problems otherwise. For instance, consider a
function �0�, computing the square of a natural number, that only exists in the programming language
context and not in the specification language context. Then the precondition of the assignment
 �� �0��
�
with respect to the postcondition
 � � reads�0��
� � �, but cannot be expressed in the specification.

Therefore, we split contexts for Hoare triples into three parts:

� The first part is accessible from programs as well as specifications. Programs can use this context,
but not alter its variables. Typically, it contains all function symbols, constants and definitions that
are default to the language (e.g. the typebool of booleans). This context is referred to as thelanguage
context.

106

Cocktail: A Tool for Deriving Correct Programs

� The second part contains (locally) defined program variables that can be altered by programs1. This
context can depend on the first context, e.g. a program variable could have pre-defined typebool.
Typically, this context is used to store constants and variables needed to specify a programming
problem, for instance the variable
 from the postconditions
 � ���%�. This context is called the
program context.

� The third context contains all other logical elements needed to specify programs, like abstract data
types or auxiliary functions. This context cannot be used by programs, only by specifications. It may
depend on both previous contexts, since a postcondition may specify that some language expression
must be equal to an auxiliary function (e.g.
 � ���%�, where�� is an element of the third context
and hence, cannot be used by the program). This context is referred to as thespecification context.

The order of these contexts is quite natural: there would be little need for functions and variables accessible
only from programs and not from specifications.

Hence, we will add triples of contexts to Hoare triples in the following manner:

Definition: Hoare Contexts
Let��, �� and�� be contexts of a CPTS as described earlier, then���������� is a Hoare context.

Note the following important differences:

1. ���������� is a triple of contexts, hence a Hoare context.

2. Since��, �� and�� are contexts of CPTSs,����� (the concatenation of�� and��, denoted without
the triple-brackets) and�������� (concatenation again) are CPTS-contexts too.

Definition: Hoare logic with explicit contexts
Let�� be the type-judgment relation of a CPTS. Then we define�� to be a Hoare derivation system defined
by the rules shown in figure 3.

We briefly comment on the use of the context for each rule:

Spec This rule repeats the definition of a specification. It could be eliminated, but is used for consistency
with the formal definition of PTSs. Note that the pre- and postcondition may depend on the entire
context.

Skip In order forskip � 	 1 	 to hold,	 1 	 must be a well-formed specification.

Assign For
 �� � � 	 �
 �� �� 1 	 to hold, 	 �
 �� �� 1 	 must be a specification and� must be an
expression of the same set-type as variable
. Moreover,
 must occur in the program context and�
may only depend on the language and program context.

If The first premise claims that� is a boolean expression that can be derived from the language and program
context. The other premises are direct translations from the original Hoare logic.

While Similar toIf.

Block Contexts play a main role here. The first premise claims that� is a set-type available to the program
(i.e.� is derived from only language and program context).	 1 � must be a valid specification in
the full context; but without the fresh variable
. � is a program, which may use a fresh variable
 in
its program context and which satisfies	 1�.

Comp This rule is a direct translation of the original rule from the Hoare logic.
1The second context can also contain constants, function symbols etc, but by the definition of the abstract syntax of programs,

these can never be altered by the program.

107

M. Franssen and H. de Swart

�Spec�
�������� � 	 ��� �������� � ����

���������� � 	 1 ��Spec

�Skip�
���������� � 	 1 	 �Spec
���������� � skip�	 1 	

�Assign�

��� ����
 � ����� � � ���
��� ����
 � ����� � ���
���� ����
 � ��������� � 	 �
 �� �� 1 	 �Spec
���� ����
 � ��������� �
 �� ��	 �
 �� �� 1 	

�If �

����� � ��bool
���������� � ���	 � � � true 1 �
���������� � ���	 � � � false 1 �

���������� � if � then �� else �� fi�	 1 �

�While�
����� � ��bool
���������� � ��	 � � � true 1 	

���������� � while � do � od�	 1 	 � � � false

�Block�

����� � � ���
 is ��������-fresh
���������� � 	 1 ��Spec
���� ����
 � ������ � ��	 1 �

���������� � ��var
 � � � � ���	 1 �

�Comp�
���������� � ���	 1 �

���������� � ���� 1 .

���������� � ��
���	 1 .

�Fake�
�������� � $�	 � �

���������� � fake $�	 1 �

Figure 3. A Hoare logic with explicit contexts.

Fake TheFake rule was explained before. Note that since	 � � is a proposition, so are	 and�. Hence,
the program is correctly specified.

The Hoare logic now has a notation and a set of derivation rules similar to those of a pure type sys-
tem. Through the following theorems, we will prove that the Hoare logic also has some important meta-
theoretical properties in common with the PTSs: programs can be checked for correctness once they
are completed. This also enables the communication of those programs: programs which includefake-
statement are self-contained and require no further proof of correctness.

Definition: Given a Hoare logic with explicit contexts as defined above and a context� � �� ��������, we
define the following concepts:

Program synthesis: Given precondition	 and postcondition�, automatically find a program�, such that
� � ��	 1 �.

Backward inference: Given a program� and a postcondition�, automatically find a precondition	 , such

108

Cocktail: A Tool for Deriving Correct Programs

that� � ��	 1 �.

Forward inference: Given a program� and a precondition	 , automatically find a postcondition�, such
that� � ��	 1 �.

Specification inference: Given a program�, automatically find a precondition	 and a postcondition�,
such that� � ��	 1 �.

Program checking: Given precondition	 , postcondition� and program�, automatically verify if
� � ��	 1 �.

Theorem: Program synthesis, Backward inference, Forward inference, Specification inference and Pro-
gram checking are decidable.

For a proof see [10], section 10.

8. Combining tableaux and ���

In [10], section 9, an algorithm is given to convert closed tableaux, generated by a tableau based Automated
Theorem Prover (ATP), into�-terms of�	�. In turn, these�-terms can easily be transformed into�-terms
of other PTSs, provided that these other PTSs are powerful enough. The closed tableau may be produced by
any tableau-based theorem prover. This gives us the capability to use existing theorem provers as a module
in an implementation of�	� and thereby adding powerful automated theorem proving to an interactive
proof system, without the danger of extending our logic in an unforeseen way. If there is enough trust
in the correctness of the implementation of the automatic theorem prover we can also use a special token
to encode that the proof can be constructed using the ATP. We then do not have to actually convert the
tableau and store the large�-term that is the result of converting the tableau. The ATP can then reconstruct
the tableau and convert it into a�-term on request; for instance, if we want to communicate our proof to
somebody using a different theorem prover based on�-calculus. The translation of tableaux into�-terms is
also described in [11].

9. Summary

Because of practical reasons, the present Cocktail tool is not (yet) fully featured. However, it is powerful
enough for educational purposes. The present Cocktail tool yields support for

� Many sorted first order predicate logic, represented by the Pure Type System with parametric Con-
stants (CPTS)�	� as the specification language. This logic is well known amongst programmers
and the PTS formalism allows future extensions. Also, in PTSs, proofs can be verified through type
checking and the system will conform to the De Bruijn criterion.

� A simple()�"�-language instead of a full Pascal-like language. This will suffice for educational
purposes.

� Hoare logic, represented as a PTS, in order to be able to derive programs from their specifications.

� A simple tableau based automated theorem prover for verifying proof obligations. In order to achieve
this, we convert closed tableaux into�-terms of the PTS to allow them to be checked.

To keep the tool extendable, we have to implement it in a transparent manner. Therefore, we have chosen
to design the tool modularly, such that parts of it can be studied, maintained and replaced independently of
each other.

109

M. Franssen and H. de Swart

We now have a formal system combining interactive theorem proving with both automated theorem
proving and program derivation. Moreover, the entire system is based on the semantics of first-order logic.
Also, the correctness of both proofs and programs can be verified, even if parts of the proof were generated
automatically.

�	� was designed to accurately describe first-order logic in a PTS, hence enabling the combination
of interactive and automated theorem proving. Yet, since it is a PTS, proofs can be communicated to
other PTS-based systems. Even the additional features are easily converted, provided that the target PTS is
powerful enough to express the features axiomatically.

Translating tableaux into�-terms showed some advantages: the automated theorem prover can be ex-
tended without extending the logic unexpectedly, provided that its result will remain an ordinary closed
tableau. However, to incorporate Leibniz-equality, more work needs to be done. Although tableau methods
dealing with equality are known (see [9, 8, 3]), we have not yet investigated how these tableaux can be
translated into�-terms.

The Hoare logic was designed to have properties similar to those of a PTS, which eased the combination
of the two formalisms. Also, this enabled us to use a simple logic, rather than the higher order logics
required to embed the entire Hoare logic. However, it is desirable to extend the Hoare logic with more
advanced features like records, sub-typing, classes and pointers. Some of these features require an extension
of the logic and hence, of�	�. For instance, in [19] Jan Zwanenburg discussed PTSs with records and
sub-typing. Richard Bornat is currently using JAPE to verify pointer semantics for Hoare Logic based on
an idea of Rod Burstal (see [2, 4]).

Our goal was to create an educational tool as a proof of concept. Hence, we will not discuss further
extensions of the formal basis of the system.

For the actual design and implementation of Cocktail we refer to part III of [10].

References

[1] Benthem Jutting, L.S. van and McKinna, J. and Pollack, R. 1994,Checking Algorithms for Pure Type Systems.
In: Barendregt, H. and Nipkow, T. (eds.), Types for Proofs and Propositions: International Workshop TYPES’93,
Springer, LNCS 806, 19–61.

[2] Bornat, R., 2000,Proving Pointer Programs in Hoare Logic. In: Proceedings of the fifth international conference
on the Mathematics in Program Construction 2000, Springer, to appear.

[3] Bibel, W. and Schmitt, P. H. (eds.), 1998,Automated Deduction - A Basis for Applications, Kluwer Academic
Publishers, Volume I : Foundations - Calculi and Methods, Applied Logic Series.

[4] Burstall, R.M., 1972,Some techniques for proving correctness of programs which alter data structures, Machine
Intelligence7, 23–50.

[5] Coq, 1997,The Coq Proof Assistant, URL: http: //coq. inria.fr/

[6] Dijkstra, Edsger W., 1976,A Discipline of Programming, Prentice-Hall International.

[7] Dijkstra, Edsger W. and Feijen, W.H.J., 1998,A Method of Programming, Addison-Wesley.

[8] D’Agostino, M. and Gabbay, D. and H¨ahnle, R. and Posegga, J. (eds.), 1999,Handbook of Tableau Methods,
Kluwer Academic Publishers.

[9] De Kogel, E., 1995,Equational Proofs in Tableaux and Logic Programming, Ph.D.thesis, Tilburg University.

[10] Franssen, M., 2000,Cocktail: A Tool for Deriving Correct Programs, Ph.D. thesis, Eindhoven University of
Technology.

[11] Michael Franssen, 2000,Embedding First-Order Tableaux into a Pure Type System. In: Galmiche, D., (ed.),
Electronic Notes in Theoretical Computer Science,17, Elsevier Science Publishers.

110

Cocktail: A Tool for Deriving Correct Programs

[12] Gries, D., 1981,The Science of Programming, Springer.

[13] Kaldewaij, A., 1990,Programming: the derivation of algorithms, Prentice-Hall international series in Computer
Science.

[14] Laan, T., 1997,The Evolution of Type Theory in Logic and Mathematics, Ph.D. thesis, Eindhoven University of
Technology.

[15] Laan, T., and Franssen, M., 2001,Embedding First-Order Logic in a Pure Type System with Parameters, Journal
of Logic and computation,11, 545–557.

[16] Nielson, Hanne Riis and Nielson, Flemming, 1992,Semantics with Applications: A Formal Introduction, Wiley,
Professional Computing series.

[17] Paulin-Mohring, C., 1989,Extracting F�’s Programs from Proofs in the Calculus of Constructions. In: Sixteenth
Annual ACM symposium on Principles of Programming Languages, ACM press, Austin, Texas, 89–104.

[18] Zwanenburg, J., 1997,The (Y)arrow Home Page, URL: http: //www.cs.kun.nl/ ˜janz/yarrow/

[19] Zwanenburg, J., 1999,Object-Oriented Concepts and Proof Rules: Formalization in Type Theory and Implemen-
tation in Yarrow, Ph.D. thesis, Eindhoven University of Technology.

Michael Franssen Harrie de Swart
Department of Computer Science Faculty of Philosophy
Eindhoven University of Technology Tilburg University
P.O. Box 513 P.O. Box 90153
5600 MB Eindhoven 5000 LE Tilburg
The Netherlands The Netherlands
m.franssen@tue.nl H.C.M.deSwart@uvt.nl

111

