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Hypersequents and Fuzzy Logic

Dov Gabbay, George Metcalfe and Nicola Olivetti

Abstract. Fuzzy logics based on t-norms and their residua have been investigated extensively from a
semantic perspective but a unifying proof theory for these logics has, until recently, been lacking. In this
paper we survey results of the authors and others which show that a suitable proof-theoretic framework
for fuzzy logics is provided byhypersequents, a natural generalization of Gentzen-style sequents. In
particular we present hypersequent calculi for the logic of left-continuous t-norms��� and related
logics, and for logics based on the three fundamental continuous t-norms, G¨odel logic�, Łukasiewicz
logic Ł , and Product logic�.

Hypersecuentes y l ógica borrosa

Resumen. Aunque se han investigado de forma extensiva las l´ogicas borrosas basadas en t-normas
y sus residuos desde una perspectiva sem´antica, hasta ahora se carec´ıa de una teor´ıa unificadora de de-
mostración para estas l´ogicas. En este trabajo se estudian los resultados de los autores y de otros inves-
tigadores que muestran que los hipersecuentes, una generalizaci´on natural de los secuentes al estilo de
Gentzen, proporcionan un marco te´orico adecuado para su demostraci´on. En particular, se presentan los
cálculos de los hipersecuentes para la l´ogica de t-normas continuas por la izquierda��� y otras lógicas
relacionadas, as´ı como para las l´ogicas que se basan en las tres t-normas continuas fundamentales: la
lógica de G¨odel�, la lógica de ŁukasiewiczŁy la lógica de Producto�.

1. Introduction

Fuzzy logicsare many-valued logics that form a suitable basis for logical systems reasoning under uncer-
tainty or vagueness. In recent years they have been identified in particular with logics where truth values
are taken from the real unit interval��� ��, and conjunction and implication connectives are interpreted by
t-norms1 and their residua. Within this framework logics based both on fundamental t-norms, e.g. G¨odel
logic�, Łukasiewicz logicŁ and Product logic�, and also basic classes of t-norms such as Monoidal
t-norm logic��� and Basic logic��, the logics of left-continuous and continuous t-norms respectively,
are considered. Algebraic and axiomatic aspects of these logics have received a great deal of attention, e.g.
in the monographs [22, 13, 20].

In this paper we present aproof-theoreticperspective on fuzzy logics. Analytic proof calculi for logics
are not only an important theoretical tool, useful for understanding relationships between logics and proving
metalogical properties like decidability, complexity, admissibility of rules and interpolation, but also the
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representation and decision making. A detailed overview of results and applications is given in the monograph [25].
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key to potential applications. Proof search algorithms can be used as the basis for “inference engines”
in Artificial Intelligence for (fuzzy) knowledge representation, and reasoning in contexts of uncertainty
and vagueness e.g. for tasks such as query-answering, consistency checking, abduction or revision. For
such applicationsanalyticproof methods are crucial, being not only good candidates for automated proof-
search, but also, since they proceed by a stepwise decomposition of formulae, facilitating anunderstanding
of proofs and allowing the extraction of explanatory information.

Analytic proof methods should be developed within a suitableframework, ideally one easy to understand
and flexible enough to handle a wide range and diversity of logics. The best candidates for such a framework
arecut-free sequent calculi, which deal with structures, calledsequents, of the form:

��� � � � � �� � ��� � � � � ��

usually understood intuitively as “�� and� � � and�� implies�� or � � � or��”, where the�� and�� are
formulae of the logic in question. Sequent calculi have been provided for a wide range of logics, including
classical, intuitionistic, modal and substructural logics, but have proved harder to come by for fuzzy logics,
the main problem being that sequents do not cope well withlinearity i.e. the fact that for truth values
�� � � ��� ��, either� � � or � � �. A solution to this problem was provided by Avron [2] and Pottinger
[30] who independently introduced a generalization of sequents calledhypersequents, which are just a
multiset (or set or sequence) of ordinary sequents, written:

�� � ��� � � � ��� � ��

where the� symbol is interpreted as a meta-level “or”, and intuitively a hypersequent is read as “one of
the�� � �� holds”.2 In addition to rules operating on individual sequents, it is then possible to define
rules which allows components tointeract, e.g. the following “communication rule”, where� represents
an arbitary hypersequent:

������� � ����� ������� � �����

������� � ����������� � �����

In this paper we argue that the communication rule is a key ingredient in characterizing fuzzy logics proof-
theoretically assubstructural logicsi.e. logics lacking certain structural rules (see e.g. [31] for a substantial
treatment). A variant of this rule was first used in the context of fuzzy logic by Avron in [3] to provide a
hypersequent calculus for G¨odel logic�, essentially by adding the communication rule to a hypersequent
version of Gentzen’s calculus for intuitionistic logic. Calculi were subsequently developed in the same
framework for��� by Baaz et al. [6] following work in e.g. [10] on the relatedC logics of Urquhart,
and for���� and related t-norm based logics by Ciabattoni et al. in [9]. The problem of finding calculi
for Łukasiewicz and Product logics was solved by the current authors in [29] and [28] (see also [26]) by
adopting non-standard interpretations of hypersequents.

In this survey we present an overview of hypersequent calculi for all the major propositional3 t-norm
based fuzzy logics except��. We begin in Section 2 by introducing these logics algebraically and ax-
iomatically, collecting completeness results from the literature, then in Section 3 we describe hypersequent
calculi with a “standard” interpretation for fuzzy logics including���, ���� and�. Finally, in Sec-
tions 4 and 5 we show that by defining alternative interpretations for hypersequents, calculi may also be
obtained forŁ ,� and related logics.

2Avron [3] has also suggested interpreting a hypersequent as amultiprocesswhere hypersequent rules may be viewed e.g. as
creating new processes, removing old ones, or exchanging information between processes. In the case of� this has led to an
intepretation by Ferm¨uller and Ciabattoni in terms ofdialogue games[19].

3First-order calculi can be defined for several of these logics (for the case of G¨odel logic see for example [8]) but this remains an
area requiring further investigation.
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2. T-Norm Based Fuzzy Logics

In this section we cover the main essentials4 of the t-norm based approach, defining fuzzy logics in three
ways: as logics based on (classes of) t-norms and their residua, as logics of residuated lattices, and as
axiomatic systems.Formulaefor all these logics are built inductively in the usual way from a set of propo-
sitional variables VAR with typical members�� �� 	 etc., binary connectives�, �,� and�, and a constant
�; we also define	� ���� �� �,
 ���� 	� and��� ���� 			� �	�
.

In the t-norm based approach we make two fundamental assumptions or (following H´ajek [22]) “design
choices”: we take our set of truth values to be the real unit interval��� ��, and we considertruth-functional
interpretations of connectives, that is, where the truth value of a compound formula is a function of the truth
values of its subformulae. By then imposing some further intuitive restrictions to interpretconjunctioni.e.
commutativity, associativity and monotonicity, we obtain the following class of functions:

Definition 1 A t-normis a function� � ��� ��� � ��� �� such that for all�� �� 
 � ��� ��:

1. � � � � � � � (Commutativity)
2. 	� � �
 � 
 � � � 	� � 

 (Associativity)
3. � � � implies� � 
 � � � 
 (Monotonicity)
4. � � � � � (Identity)

A natural (but not the only) way of obtaining a truth function� for implication given aleft-continuous
t-norm� is “residuation”, which at an intuitive level equates to insisting that� � 	� � �
 be no more true
than�, and that subject to this restriction�� � should be maximal.

Definition 2 Theresiduumof a t-norm� is an operation��� � ���� ���

 � � � 
 � ��.

Proposition 1 ([20]) The residuum of a t-norm� exists iff� is left-continuous.

The following are important examples ofcontinuoust-norms and their residua:

T-norm Residuum
Łukasiewicz � �Ł � � ���	�� �� � � �
 ��Ł � � �
�	�� �� �� �


Gödel � �� � � �
�	�� �
 ��� � �

�
� if � � �
� otherwise

Product � �� � � ��� ��� � �

�
� if � � �
��� otherwise

In fact any continuous t-norm is locally isomorphic to one of these three (see e.g. [22] for details).
Residuation also provides suitable truth functions fornegationas we can define	� � ��� � �� �,

giving Łukasiewicz negation	� � �� � and Gödel (Product) negation	� � �, 	� � � for � � �. Other
truth functions considered important in fuzzy logic areweak conjunction� � � � �
�	�� �
 andweak
disjunction� � � � ���	�� �
, which for a continuous t-norm� with residuum� � may equivalently be
defined as� � � ���� � � 	��� �
 and� � � ���� 		��� �
�� �
 � 		� �� �
�� �
.

We now place such interpretations in a more general algebraic setting.

Definition 3 AnML-algebrais abounded integral commutative residuated latticei.e. an algebra�������
������
� with universe�, binary operations�, �,� and�, and constants� and
, such that:

1. ������� is a bounded lattice with order�, top element
 and bottom element�.
2. �����
� is a commutative semigroup with unit element
.
3. � and� form an adjoint pair i.e.
 � �� � iff �� 
 � � for all �, �, 
 � �.

We also define:	� ���� �� � and�� � ���� 			� �	�
.
4For greater detail we refer the reader to [22, 20].
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To define validity in ML-algebras we exploit our use of the same symbol for an algebraic operation and the
corresponding logical connective.

Definition 4 A valuationfor an ML-algebra� is a function� � VAR� � extended to formulae by:

�	
	��� � � � � ��

 � 
	�	��
� � � � � �	��

 where
 � 
����������
� and� is the arity of
�

A formula� is valid in � iff �	�
 � 
 for all valuations� for �.

Refinements of ML-algebras suitable for fuzzy logics are defined as follows:

Definition 5 An ML-algebra�������������
� is:

� dualizingiff 		� � � for all � � �.
� idempotentiff �� � � � for all � � �.
� prelineariff 
 � 	�� �
 � 	� � �
 for all �� � � �.
� divisible iff � � � � �� 	�� �
 for all �� � � �.
� weakly contractingiff � � 	� � � for all � � �.
� weakly cancellativeiff 		� � 	�� 	�� �

� � for all �� � � �.

Name Class of Residuated Lattices
AMALL-algebra Dualizing ML-algebra
MTL-algebra Prelinear ML-algebra
IMTL-algebra Dualizing MTL-algebra
SMTL-algebra Weakly contracting MTL-algebra
BL-algebra Divisible MTL-algebra
Ł-algebra Dualizing BL-algebra
G-algebra Idempotent BL-algebra
�-algebra Weakly contracting weakly cancellative BL-algebra

We write��� � iff � is valid in all L-algebras.

In fact we have already encountered some notable members of these classes.

Proposition 2 ([16]) Let� be aleft-continuoust-norm with residuum��, then:

� � ���� ����
������ ����� �� ��

is an MTL-algebra, called astandard MTL-algebra; if � is an IMTL-algebra (SMTL-algebra) then� is
called astandard IMTL-algebra (SMTL-algebra).

Proposition 3 ([22]) Let� be acontinuoust-norm with residuum��, then:

� � ���� ����
������ ����� �� ��

is a BL-algebra, called astandard BL-algebra; if � is the Łukasiewicz, G̈odel or Product t-norm then� is
an Ł-algebra, G-algebra or�-algebra respectively, called thestandard Ł-algebra, G-algebraor �-algebra.

Remarkably, these standard algebras turn out to becharacteristicfor their respective classes.

Theorem 1 ([24, 15, 14, 22]) For � � 
���, ����, ����,��, Ł ,�,�� a formula� is valid
in all L-algebras iff� is valid in all standard L-algebras.

Remark 1 Of course there can also be said to exist standard ML-algebras and AMALL-algebras (in fact
just the standard MTL-algebras and IMTL-algebras respectively); the point being that these algebras are
not characteristicfor ML-algebras and AMALL-algebras.
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We now define axiomatizations for t-norm based fuzzy logics as extensions of H¨ohle’sMonoidal logic��
[23] and theAffine multiplicative additive fragment of linear logic����� (see e.g. [31] for details), the
key axiom for fuzziness being the prelinearity axiom	���
:

Definition 6 	�� consists of the following axioms and rules:

	��
 �� � 	��
 		� � �
 � 	� � �

� 	� � 	� � �


	��
 �� 	� � �
 	��
 �� 	� � �

	��
 	�� 	� � �

� 	� � 	�� �

 	���
 � � 	� � �

	��
 	�� �
� 		� � �
� 	� � �

 	���
 	�� �
� 		� � �
� 		� � �
� �


	��
 	� ��
� � 	���
 �� 	� � 	���


	��
 	� ��
� � 	���
 	�� 	� � �

� 		���
� �

	��
 �� 	� � 	� ��



	��
 �� � �
�

Axiomatizations for fuzzy logics are defined as follows:

	��� 
 		�� � 	���
 	�� �
 � 	� � �

	�
 �� 	���
 	��� 
 	�� 	�� �

� 	� � 	� � �


	�
 		� � 	�
 	�
 		�� 		�� 	���

� �


	����� is 	�� plus	��� 
 	�� is 	��� plus	��� 

	��� is 	�� plus	���
 	� is 	�� plus	�

	���� is 	��� plus	��� 
 HŁ is 	�� plus	��� 

	���� is 	��� plus	�
 	� is 	�� plus	�
 and	�


Remark 2 Many of these axiomatizations can be simplified, in some cases dramatically so; e.g. for��

we can remove (A5)-(A11) and use a language without� and�, defining� � � � ��� � � 	� � �
 and
� � � ���� 		�� �
� �
 � 		� � �
� �
.

It is straightforward to show that these calculi match the appropriate algebras, and therefore also standard
algebras (where defined).

Theorem 2 ([23, 31, 16, 22]) For� � 
��,�����,���, ����, ����,��, Ł ,�,�� a for-
mula� is derivable in	� iff � is valid in all L-algebras.

Corollary 1 For � � 
���, ����, ����,��, Ł ,�,�� a formula� is derivable in	� iff � is
valid in all standard L-algebras.

The weakest t-norm based fuzzy logic isMonoidal t-norm logic��� introduced by Esteva and Godo in
[16] and confirmed to be the logic of left-continuous t-norms in [24]. Also defined in [16] are���� and
����, proved in [15] to be the logics of left-continuous t-norms with an involutive negation (i.e. where
		� � �) and weak contraction (i.e. where� � 	� � �) respectively.�� is Hájek’sBasic fuzzy logic,
proved in [14] to be the logic of continuous t-norms, which has as extensions the famous many-valued
logics Łukasiewicz logicŁ and Gödel logic�, plus the more recently introduced Product logic�, all these
logics being studied extensively in the monograph [22].

We end this section with a diagrammatic representation of the relationships between these and some
other well-known logics.5

5Note that a more complete diagram of the hierarchy of t-norm based logics is presented in [17].
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Monoidal Logic (ML )

Gödel Logic (G)

Basic Logic (BL )

Product Logic (�)

Involutive MTL (IMTL )

Łukasiewicz Logic (Ł )

Intuitionistic Logic (I ) Monoidal T-Norm Logic (MTL ) Affine MA Linear Logic (AMALL )

SMTL

(G)

(G)

(INV)

(INV)

(INV)

(PRL)

(PRL)

(PRL)(DIV)

(DIV)(S)(G) (�)

(S)

(G)

(DIV)(�)

Figure 1. Relationships between fuzzy logics

3. Hypersequent Calculi

Hypersequents were introduced independently by Avron in [2] and Pottinger in [30] as a natural and easily
understood generalization of Gentzen sequents, defined as follows:

Definition 7 A hypersequentis a multiset of the form:

�� � ��� � � � ��� � ��

where for
 � �� � � � � �, �� � �� is an ordered pair of multisets of formulae (i.e. a sequent) called a
componentof the hypersequent. If�� contains at most one formula for
 � �� � � � � � then the hypersequent
is said to besingle-conclusion, otherwisemultiple-conclusion.

The symbol� may be read as a kind ofmeta-level disjunction, inspiring the following interpretation:

Definition 8 Thestandard interpretationof a hypersequent� � �� � ��� � � � ��� � �� is the formula:

�� ���� 	��� � ���
 � � � � � 	��� � ���


where�
��� � � � � ��� � �� � � � � ��� for � � 
����,�� � 
,�� � �, and�� � iff �� ��.

Like sequent calculi, hypersequent calculi consist of axioms, logical rules and structural rules, the latter
being divided however into two categories.Internal rules deal with formulae within components as in
sequent calculi, and may include a distinguished “cut” rule corresponding to the transitivity of deduction.
External rules manipulate whole components; for example the external weakening and contraction rules
	�� 
 and	��
 add and remove components as follows:

��� � �

���� �

���� ���� ���� �

���� �

We begin here by introducing a hypersequent calculus for��, using�, � �, �� etc. as metavariables to
denote (possibly empty) hypersequents calledside-hypersequents, and�, � �, �� etc. to denote multisets
with at most one element. Note also that since we have defined hypersequents as multisets of components,
and components as pairs of multisets of formulae, multiplicity but not order are important in these rules.
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Definition 9 ��� has the following axioms and rules:

Axioms
���� �� � ��� � � ��� � �

Structural Rules
��� � and����

���� ���� �

���� �� �

��	� ����

���� �

Logical Rules

��� 
� ���� � � ����� � � �

�������� �� � � �

��� �� ���� �� �

���� �� �

��� 
� ���� ��� � �

���� ��� � �

��� �� ���� � � ���� � �

������� � ���

���� 
������ ���� �� � �

���� �� � �� � �

��� �� ���� � ���� �

���� � ��

��� 
� ���� �� � ���� � � �

���� � � � � �

���� ������� ���� ��

���� �� ���

��� 
� ���� �

�������

��� �� ���� ��

���� ��

Cut Rule
��
� � ����� �� � ���� � �

������� � �

In this calculus the use of hypersequents is in fact unnecessary;	�� 
 and	��
 only apply to one compo-
nent at a time and hence do not increase the expressive power of hypersequent calculi over sequent calculi.
To prove the key prelinearity axiom	���
 however, we require a rule permittinginteractionsbetween
components; the most generally useful being the following (single-conclusion) “communication” rule:

������ ������� � � ������� � �

������� � ������� � �

A hypersequent calculus using	���	
 has been defined for��� by Baaz et al. in [6] (see also [10] for
connections with calculi for Urquhart’sC logics).

Definition 10 ���� consists of the same rules and axioms as��� together with	���	 
.

Example 1 	���	 
 allows us to prove	���
 as follows:

�� � � � �

�� ��� � �
������

�� �� � � � �
��� ��

� �� �� � � � �
��� ��

� �� �� � ��� �� � �� � ��
��� ��

� ��� �� � �� � ��� � ��� �� � �� � ��
��� ��

� ��� �� � �� � ��
����

A calculus for����� is obtained as a multiple-conclusion version of���, noting once again that the
extra expressive power of hypersequents is unnecessary for this logic.
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Definition 11 ������ has the following axioms and rules:

Axioms
���� �� � ��� � � ��� � �

Structural Rules
��� � and����

���� ���� �

���� �� �

��	� ���� �

���� ���

Logical Rules

��� 
� ���� � ���� ����� � � ��

�������� �� � � �����

��� �� ���� �� ���

���� �� ���

��� 
� ���� ��� � �

���� ��� � �

��� �� ���� � ���� ���� � ����

������� � ���������

�	� 
� ����� �� �� ����� � � ��

�������� �	� � �����

�	� �� ���� �����

���� �	���

���� 
������ ���� �� � �

���� �� ��� � �

��� �� ���� ��� ���� ���

���� � ����

��� 
� ���� �� � ���� � � �

���� � �� � �

���� ������� ���� ����

���� �� �����

��� 
� ���� ���

������� �

��� �� ���� �� �

���� ����

Cut Rule
��
� � ����� �� �� ���� � ����

������� � �����

A hypersequent calculus for���� has been obtained by Ciabattoni et al. [9] by adding a multiple-
conclusion communication rule to������.

Definition 12 ����� has the same rules and axioms as������ and also:

������ ������� � ����� ������� � �����

������� � ����������� � �����

An elegant hypersequent calculus for� (the first for a fuzzy logic) was defined by Avron in [3].

Definition 13 �� has the same rules and axioms as���� and also:

���� ���� ���� �

���� �� �

Remark 3 �� can be viewed as a calculus for intuitionistic logic extended by the communication rule.

Hypersequent calculi have also been provided by Ciabattoni and Ferrari [11] forfinite-valuedGödel logics
�� i.e. logics with the same connectives as� but truth value set��� �

���
� � � � � ���

���
� ��, by adding the

following rule to��:

���� ������� � �� ������� � �� � � � ��������� � ����

���� � ��� � � � ����� � ������� �

An in-depth survey of hypersequent calculi for G¨odel logics including also first-order and propositional
quantifier versions, is provided in [5].

The flexibility of the hypersequent formulation means that calculi can be defined for various other fuzzy
logics defined in the literature, for example:6

6Hypersequent calculi for logics obtained by adding bounded contraction to��� and���� are also defined in [9].
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Definition 14 ����� has the same rules and axioms as���� and also:

��� ������� �

���� � ��� �

We now collect soundness and completeness results for these hypersequent calculi.

Theorem 3 For � � 
��,�����,���, ����, ����,��,� is derivable in�� iff ��� �.

The key result here iscut-elimination, proved for�� and����� in e.g. [31], for��� by Baaz et al.
[6], ���� by Ciabattoni et al. [9],���� by Ciabattoni (unpublished proof) and� by Avron [3].

Theorem 4 ([31, 6, 9, 3]) For� � 
������������� ������������, 	� ! 
 can be elim-
inated from��.

An important by-product of cut-elimination is that all these calculi (without	� ! 
) enjoy thesubformula
property, i.e. all formulae occurring in a cut-free proof are subformulae of the hypersequent to be proved,
and are thereforeanalytic.

4. Łukasiewicz Logic

In this section we define a very natural hypersequent calculus forŁ , the catch being that to do so we have
to abandon the standard interpretation of hypersequents. We begin by considering an alternative standard
algebra forŁ , obtained by knocking down the set of truth values from��� �� to ���� ��.

Proposition 4 ([29]) Let���� ��Ł ���� ����� ����
������������� ��where��� ���� ���	��� ��
�
 and�� � ���� �
�	�� � � �
. � is valid in ���� ��Ł iff � is valid in ��� ��Ł.

We use this algebra to give a non-standard reading of hypersequents as follows:

Definition 15 ���

Ł �� � ��� � � � ��� � �� iff for all ���� ��Ł valuations�:

�
�	��
 �

�
�	��
 for some
, � � 
 � �, where�	�
 � 
�	�
 � � � ��.

For formulaethis interpretation gives us the usual notion of validity forŁ , i.e. we have that a formula� is
valid in ��� ��Ł iff ���

Ł � �. Alternatively, we get the same reading by using the standard interpretation of
hypersequents for Meyer and Slaney’sAbelian logic�, a logic with a characteristic model in the reals, and
embeddingŁ into� (see [29] for details).

We now present acut-freehypersequent calculus forŁ based on this interpretation, taking� and� as
primitive connectives and defining	� ���� �� �,��� ���� 		�� 	�
,��� ���� ��	�� �

and� � � ���� 	�� �
� �.

Definition 16 GŁ has the following axioms and rules:

Axioms
���� �� � ��� � ��� �� �

Structural rules
��� �� ���� and����

��� ������� � �����

���� � ����� � ��

��� ���� � �� ���� � ��

������� � �����

Logical Rules

��� 
� ���� � � ���

���� �� � � �

��� �� ���� � ���� �� ���

���� �� ���
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Although several of the axioms and structural rules ofGŁ are familiar from previous calculi (note that the
standard rules for� and� are also derivable), there are certain non-standard aspects to this calculus. In
particular weakening is only allowed on the left, and the axiom	�
 is only applicable when there is exactly
one formula on the right. Also the logical rules	�� "
 and	�� 	
 run contrary to expectation in that the
former has one premise and the latter two, the exact opposite of the standard rules. However notice that of
the two “new” structural rules,	�
 is just a simplification of the communication rule	���

 using the
axiom	�
, while 	�
 is a “weaker” version of the weakening rules	��
 and	��
.

Example 2 We illustrateGŁ with the following proof:

�

�
��� ��� � �

����

� � � �� �

���� ���
���

��� � �� �
��� 
�

� � � �� �

���� ���
���

��� � ���� ���
����

��� � �� ���� �
��� ��

��� ��� ��� � �� �
��� 
�

��� ��� � � �� � ��� �
��� ��

� ���� ��� ��� ��� � ��� ��
��� ��

Soundness and completeness results forGŁ are proved in [29] by relatingGŁ to a hypersequent calculus
for Abelian logic, and then proving the soundness and completeness for this latter calculus semantically.

Theorem 5 ([29]) � is derivable inGŁ iff ���

Ł �.

Alternatively, we can use the completeness of an axiomatization forŁ and prove cut-elimination forGŁ
extended with one of the following (inter-derivable) rules:

��
� � ����� �� �� ���� � ����

������� � �����

���
� � ���� �� ���

���� �

Theorem 6 ([12]) Cut-elimination holds forGŁ + 	� ! 
 andGŁ + 	�� ! 
.

We end this section by remarking that a hypersequent calculus for theboundedŁukasiewicz logicŁB �

which characterizes the intersection of k-valued Łukasiewicz logics for# � �, has been obtained in [12]
by adding the following rule toGŁ :

	��
 ����

���� �� �
�� � � � ���� �

���� �� �
�� � � � ����

���� ���� �

We also conjecture that by adding further rules we can obtain calculi forfinite-valuedŁukasiewicz logics.

5. Product Logic

To obtain a hypersequent calculus for� we again use a non-standard reading of hypersequents, although
in this case (unlike forŁ ) we able to give an interpretation as a formula of the logic.

Definition 17 Given a hypersequent� � �� � ��� � � � ��� � �� we define:

�� ���� 	��� � ���
 � � � � � 	��� � ���


where�
��� � � � � ��� � �� � � � ����,�� � 
, and we write��� � iff ��� �
�.

A hypersequent calculus based on this interpretation has been defined in [28], taking�, �, 	 and� as
primitive, and defining��� ���� �� 	�� �
 and��� ���� 		�� �
� �
� 		� � �
� �
.
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Definition 18 �� consists of the following axioms and rules:

Axioms
���� �� � ��� � ��� ���� �

Structural rules
��� �� ����� ���� ��� and����

Logical rules

��� 
� ���� � � ��� ������� �

���� �� � � �

��� �� ���� � ���� �� ���

���� �� ���

��� 
� ���� ��� � �

���� ��� � �

��� �� ���� �����

���� �����

��� 
� ���� �

������� �

��� �� ���� � ���� �� �

���� ����

Note that this calculus has much in common withGŁ , i.e. the axioms	��
, 	�
, all of the structural rules,
and the logical rule	�� 	
. Moreover, the extra premise in the	�� "
 rule, and the axioms and rules for�
and	 may be viewed as dealing with the special case of multiplication by zero in�.

Example 3 We illustrate�� with a proof of the axiom	�
:

�

�
����

����

�� � � � �

��� � ���
���

��� � ���
��� 
�

������� � ���
����

��� ��
������� �

��� 
�

������ ������ �
��� 
�

���� ��� ������� �
��� ��

� ���� ���� ������� ��
��� ��

The completeness of�� is proved semantically in [28] by first proving the completeness of an extended
calculus, then showing that the extra rules are admissible in��.

Theorem 7 ([28]) � is derivable in�� iff ��� �.

Finally in this section we remark that a calculus forCancellative hoop logic
	�, defined in [18] as a
logic with product conjunction and implication defined on the half-open interval	�� ��, is obtained in [28]
by removing the axiom	�
 rule fromGŁ and adding the rules for� of��.

6. Concluding Remarks

Our aim in this paper has been to show that hypersequents provide an appropriate level of generality for
defining analytic calculi for fuzzy logics. To support this view we have surveyed calculi for logics based on
several important classes of left-continuous t-norms, such as���, ���� and����, and logics based
on the fundamental continuous t-norms,Ł ,� and�, the logic�� being the only significant omission.

What these results make very clear is that fuzzy logics are alsosubstructural logics, the key added
ingredient proof-theoretically being variants of the so-called “communication rule”. Bearing this in mind a
natural next step is to investigate related substructural logics such as those obtained by removing structural
rules like weakening	��
 and	��
. Preliminary results in this direction have been obtained in [26]. We
may also considerfirst-order logics obtained by adding “standard” (e.g. those for intuitionistic or classical
logics) quantifier rules to hypersequent calculi. This has been achieved for� with completeness results for
the ��� �� interval in [8], and for��� in [6], and should also be possible for���� and related logics.
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However, since first-orderŁ and� based on the��� �� interval are not recursively enumerable (see e.g. [22]
for details), systems obtained for these logics will necessarily correspond only tofragments, and require
further investigation. Back at the propositional level it would clearly also be desirable to find calculi for
other t-norm based logics defined in the literature such as the logics based on (weak) nilpotent minimum
t-norms��� and�� defined in [16], and in particular Basic logic��. In the case of the latter, the
divisibility axiom 	��� 
 does not seem to be easy to capture proof-theoretically. Nevertheless it may be
possible to obtain a calculus for this logic, either as forŁ by considering an alternative interpretation of
hypersequents, or by considering structures more complicated than hypersequents.

We conclude by mentioning some related work in the literature. First note thatsequent calculihave
been provided for some fuzzy logics, including� [4], Ł [29] and� [28], that while typically not as
uniform or elegant as the corresponding hypersequent calculi, may be more suitable for proof search or
for proving properties like interpolation. We also remark that other frameworks may be more suited to
automated reasoning in fuzzy logics, for example H¨ahnle’slabelled tableauxcalculus forŁ [21], Baaz and
Fermüller sequent-of-relationscalculus for� [7], and the authors’goal-directed methodsfor�, Ł and�
[27, 26]. However, the only other analytic and purely logical systems provided for fuzzy logics have been
themultiple-sequentcalculi of Aguzzoli and Gerla [1] which exploit the fact that a formula valid inŁ ,� or
� is valid also in an n-valued logic where� is a function of the number of occurrences of variables in the
formula. Such calculi provide a valuable perspective on the connection between finite and infinite valued
logics, but are not really suitable for proof search, and, being tailored to the semantics of the particular
logic, do not cohere well with calculi for other families of logics.
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