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Abstract. Fuzzy logics based on t-norms and their residua have been investigated extensively from a
semantic perspective but a unifying proof theory for these logics has, until recently, been lacking. In this
paper we survey results of the authors and others which show that a suitable proof-theoretic framework
for fuzzy logics is provided byhypersequentsa natural generalization of Gentzen-style sequents. In
particular we present hypersequent calculi for the logic of left-continuous t-ndTd. and related

logics, and for logics based on the three fundamental continuous t-nowdg] ®gic G, Lukasiewicz

logict, and Product logid@I.

Hypersecuentes y | Ogica borrosa

Resumen. Aunque se han investigado de forma extensivadggchHs borrosas basadas en t-normas

y sus residuos desde una perspectivass#itd, hasta ahora se cagede una teod unificadora de de-
mostracoh para esta®fjicas. En este trabajo se estudian los resultados de los autores y de otros inves-
tigadores que muestran que los hipersecuentes, una geneaalipatiiral de los secuentes al estilo de
Gentzen, proporcionan un marcteo adecuado para su demosteaci En particular, se presentan los
calculos de los hipersecuentes paralgi¢a de t-normas continuas por la izquieMAr'L y otras Bgicas
relacionadas, agomo para lasdgicas que se basan en las tres t-normas continuas fundamentales: la
logica de @del G, la logica de tukasiewick y la logica de Product®I.

1. Introduction

Fuzzy logicsare many-valued logics that form a suitable basis for logical systems reasoning under uncer-
tainty or vagueness. In recent years they have been identified in particular with logics where truth values
are taken from the real unit intervgl, 1], and conjunction and implication connectives are interpreted by
t-norms and their residua. Within this framework logics based both on fundamental t-norms,@lgl G~
logic G, tukasiewicz logict. and Product logidl, and also basic classes of t-norms such as Monoidal
t-norm logicMTL and Basic logidBL, the logics of left-continuous and continuous t-norms respectively,
are considered. Algebraic and axiomatic aspects of these logics have received a great deal of attention, e.g.
in the monographs [22, 13, 20].

In this paper we presentmoof-theoretigperspective on fuzzy logics. Analytic proof calculi for logics
are not only an important theoretical tool, useful for understanding relationships between logics and proving
metalogical properties like decidability, complexity, admissibility of rules and interpolation, but also the
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IT-norms are are widely used to combine uncertain or vague information in applications for approximate reasoning, knowledge
representation and decision making. A detailed overview of results and applications is given in the monograph [25].
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key to potential applications. Proof search algorithms can be used as the basis for “inference engines”
in Artificial Intelligence for (fuzzy) knowledge representation, and reasoning in contexts of uncertainty
and vagueness e.g. for tasks such as query-answering, consistency checking, abduction or revision. For
such applicationanalyticproof methods are crucial, being not only good candidates for automated proof-
search, but also, since they proceed by a stepwise decomposition of formulae, facilitatirdpestanding

of proofs and allowing the extraction of explanatory information.

Analytic proof methods should be developed within a suitédal@mework ideally one easy to understand
and flexible enough to handle a wide range and diversity of logics. The best candidates for such a framework
arecut-free sequent calcuhvhich deal with structures, callegquentsof the form:

Al,...,AnﬁBl,...,Bm

usually understood intuitively as4', and. .. andA,, impliesB; or... or B,,”, where the4; andB; are
formulae of the logic in question. Sequent calculi have been provided for a wide range of logics, including
classical, intuitionistic, modal and substructural logics, but have proved harder to come by for fuzzy logics,
the main problem being that sequents do not cope well livigarity i.e. the fact that for truth values

z,y € [0,1], eitherz < y ory < z. A solution to this problem was provided by Avron [2] and Pottinger
[30] who independently introduced a generalization of sequents clajipdrsequeniswvhich are just a
multiset (or set or sequence) of ordinary sequents, written:

Iy = A T = A,

where the| symbol is interpreted as a meta-level “or”, and intuitively a hypersequent is read as “one of
theT; = A; holds”? In addition to rules operating on individual sequents, it is then possible to define
rules which allows components tateract e.g. the following “communication rule”, wher@ represents

an arbitary hypersequent:

G|F1,H1 = Al,El G|F2,H2 = AQ,EZ
GII1,Ty = Ay, AsII L II = X4, 5

In this paper we argue that the communication rule is a key ingredient in characterizing fuzzy logics proof-
theoretically asubstructural logics.e. logics lacking certain structural rules (see e.g. [31] for a substantial
treatment). A variant of this rule was first used in the context of fuzzy logic by Avron in [3] to provide a
hypersequent calculus ford@él logicG, essentially by adding the communication rule to a hypersequent
version of Gentzen’s calculus for intuitionistic logic. Calculi were subsequently developed in the same
framework forMTL by Baaz et al. [6] following work in e.g. [10] on the relat€dlogics of Urquhart,

and forIMTL and related t-norm based logics by Ciabattoni et al. in [9]. The problem of finding calculi
for Lukasiewicz and Product logics was solved by the current authors in [29] and [28] (see also [26]) by
adopting non-standard interpretations of hypersequents.

In this survey we present an overview of hypersequent calculi for all the major proposttienatm
based fuzzy logics exce@L. We begin in Section 2 by introducing these logics algebraically and ax-
iomatically, collecting completeness results from the literature, then in Section 3 we describe hypersequent
calculi with a “standard” interpretation for fuzzy logics includidgTL, IMTL andG. Finally, in Sec-
tions 4 and 5 we show that by defining alternative interpretations for hypersequents, calculi may also be
obtained fot, IT and related logics.

2Avron [3] has also suggested interpreting a hypersequentrasliprocesswhere hypersequent rules may be viewed e.g. as
creating new processes, removing old ones, or exchanging information between processes. In thésc#isis bhs led to an
intepretation by Fermiler and Ciabattoni in terms afialogue game§l9].

SFirst-order calculi can be defined for several of these logics (for the casedd| @igic see for example [8]) but this remains an
area requiring further investigation.
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2. T-Norm Based Fuzzy Logics

In this section we cover the main essential$ the t-norm based approach, defining fuzzy logics in three
ways: as logics based on (classes of) t-norms and their residua, as logics of residuated lattices, and as
axiomatic systemdrormulaefor all these logics are built inductively in the usual way from a set of propo-
sitional variables VAR with typical membeysq, r etc., binary connectives, v, ® and—, and a constant
1;wealsodefined =g.; A— L, T =4y ~LandA & B =45 ~(—A ® -B).

In the t-norm based approach we make two fundamental assumptions or (follogjielg[22]) “design
choices”: we take our set of truth values to be the real unit int¢dyal, and we consideruth-functional
interpretations of connectives, that is, where the truth value of a compound formula is a function of the truth
values of its subformulae. By then imposing some further intuitive restrictions to intequgmctioni.e.
commutativity, associativity and monotonicity, we obtain the following class of functions:

Definition 1 ~ At-normis a function : [0,1]? — [0, 1] such that for allz, y, z € [0, 1]:

1. z xy = y x x (Commutativity)

2. (z*xy)*z =z x* (y* z) (Associativity)

3. x < yimpliesz x z < y * z (Monotonicity)
4. 1 xx = z (Identity)

A natural (but not the only) way of obtaining a truth functien for implication given aleft-continuous
t-norm= is “residuation”, which at an intuitive level equates to insisting that(z = y) be no more true
thany, and that subject to this restrictian=- y should be maximal.

Definition 2 Theresiduumof a t-norms is an operation: = .. y =4.y maz{z |z * z < y}.
Proposition 1 ([20]) The residuum of a t-norm exists iffx is left-continuous

The following are important examples odntinuoug-norms and their residua:

T-norm Residuum
tukasiewicz xx y = max(0,z+y—1) e =y =min(l,1 -z +y)
: ' 1 ifz<y
Godel T *g Yy = min(z,y) T=ey = { y otherwise
1 ifzx <y
Product TR Yy =Y Ty = { y/x otherwise

In fact any continuous t-norm is locally isomorphic to one of these three (see e.g. [22] for detalls).
Residuation also provides suitable truth functionsrfegationas we can definex =4.p ¢ =. 0,
giving tukasiewicz negationz = 1 — x and Gdel (Product) negation0 = 1, -z = 0 for x > 0. Other
truth functions considered important in fuzzy logic aveak conjunction: A y = min(x,y) andweak
disjunctionz V y = max(x,y), which for a continuous t-norm with residuum=- . may equivalently be
defined asc Ay =ger x * (x = y) andz Vy =acf (2 =4 ¥) = Y) A ((y =+ ) =4 ).
We now place such interpretations in a more general algebraic setting.

Definition 3 AnML-algebrais abounded integral commutative residuated lattieean algebra( L, A, V,
©®, —, L, T) with universeL, binary operations\, v, ® and—, and constantd. and T, such that:

1. (L, A, V) is a bounded lattice with ordex, top element and bottom element.
2. (L,®, T) is a commutative semigroup with unit elemant
3. ® and— form an adjointpairi.ez <z — yiffr © 2z <yforall z,y, 2z € L.

We also definesz =4,y v — L andz @ y =405 — (- © —y).

4For greater detail we refer the reader to [22, 20].
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To define validity in ML-algebras we exploit our use of the same symbol for an algebraic operation and the
corresponding logical connective.

Definition 4 A valuationfor an ML-algebraA is a functionv : VAR— L extended to formulae by:
v(#(A41,...,An)) = #w(41),...,v(A,,)) where# € {A,V,®,—, L, T}andm is the arity of#.
A formulaA is valid in A iff v(A) = T for all valuationsuv for A.

Refinements of ML-algebras suitable for fuzzy logics are defined as follows:

Definiton 5 An ML-algebra{L,A,V,®,—, L, T) is:
e dualizingiff -——z = z for all z € L.
e idempotentff x © x = x forall z € L.
e prelineaiff T = (v — y) V (y — ) forall z,y € L.
e divisibleiff Ay =z © (z — y) forall z,y € L.
e weakly contractingff z A -z = L forall z € L.
o weakly cancellativéff ~—z < (z — (z ©y)) — yforall z,y € L.

Name Class of Residuated Lattices

AMALL-algebra Dualizing ML-algebra

MTL-algebra Prelinear ML-algebra

IMTL-algebra Dualizing MTL-algebra

SMTL-algebra Weakly contracting MTL-algebra

BL-algebra Divisible MTL-algebra

t-algebra Dualizing BL-algebra

G-algebra Idempotent BL-algebra

II-algebra Weakly contracting weakly cancellative BL-algebra

We write=,, A iff Ais valid in all L-algebras.

In fact we have already encountered some notable members of these classes.

Proposition 2 ([16]) Letx be aleft-continuoug-norm with residuuns- ., then:
A = ([0,1], min, max, *,=.,0,1)

is an MTL-algebra, called astandard MTL-algebraf A is an IMTL-algebra (SMTL-algebra) thed is
called astandard IMTL-algebra (SMTL-algebra)

Proposition 3 ([22]) Letx* be acontinuoud-norm with residuum= ., then:
A = ([0,1], min, max, *,=.,0,1)

is a BL-algebra, called atandard BL-algebraf * is the Lukasiewicz, @del or Product t-norm thenl is
an t-algebra, G-algebra oll-algebra respectively, called tretandard t-algebra, G-algelwall-algebra

Remarkably, these standard algebras turn out whieacteristicfor their respective classes.

Theorem 1 ([24, 15, 14, 22]) For L € {MTL,IMTL, SMTL, BL, t, G, II} a formulaA is valid
in all L-algebras iffA is valid in all standard L-algebras.

Remark 1 Of course there can also be said to exist standard ML-algebras and AMALL-algebras (in fact
just the standard MTL-algebras and IMTL-algebras respectively); the point being that these algebras are
not characteristi¢or ML-algebras and AMALL-algebras.
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We now define axiomatizations for t-norm based fuzzy logics as extensiorehtd’siVionoidal logicM L
[23] and theAffine multiplicative additive fragment of linear logM A LL (see e.g. [31] for details), the
key axiom for fuzziness being the prelinearity axiOMRL):

Definition 6 HML consists of the following axioms and rules:

(A1) L - A (A8) ((C = A)AN(C—=B))— (C—(AAB))
(A2) A— (B— A) (A9) A—> (AVDB)

(A3) A= (B—-C)—>(B—=>(A—>C) (A10) B— (AVDB)

(A44) (A-B)—»(C—-A) —(C—-DB)) (All) (A=-B)—=((C—-B)—=((Av(C)— D))
(A5) (AAB)— A (A12) A— (B— (A®B))

(A6) (AAB)— B (A13) (A->(B—-C))—=((AeB)—=C0()

(A7) A— (B— (AAB))

Axiomatizations for fuzzy logics are defined as follows:

(INV) =—mA— A (PRL) (A— B)V (B — A)
(G) A= (AcA) (DIV) (A®(A— B)) - (Bo (B — A))
(S) —(An-4) (1) -—-A—((A— (A®B))— B)
HAMALL is HML plus(INV) HBL is HMTL plus(DIV)
HMTL is HML plus(PRL) HG is HBL plus(G)
HIMTL is HMTL plus(INV) Ht is HBL plus(INV)
HSMTL is HMTL plus(S) HII is HBL plus(S) and(II)

Remark 2 Many of these axiomatizations can be simplified, in some cases dramatically so; eBJL for
we can remove (A5)-(A11) and use a language withoahd Vv, definingA A B = 4. A © (A = B) and
AVB =4y ((A—=B)—= B)A((B— A) = A).

It is straightforward to show that these calculi match the appropriate algebras, and therefore also standard
algebras (where defined).

Theorem 2 ([23, 31, 16, 22]) ForL € {ML, AMALL, MTL, IMTL, SMTL, BL, t, G, IT} afor-
mula A is derivable inHL iff A is valid in all L-algebras.

Corollary 1 For L € {MTL, IMTL, SMTL, BL, t, G, IT} a formulaA is derivable inHL iff A is
valid in all standard L-algebras.

The weakest t-norm based fuzzy logidM®noidal t-norm logicM TL introduced by Esteva and Godo in
[16] and confirmed to be the logic of left-continuous t-norms in [24]. Also defined in [16]&f& L and
SMTL, proved in [15] to be the logics of left-continuous t-norms with an involutive negation (i.e. where
——z = z) and weak contraction (i.e. wheseA -z = L) respectivelyBL is Hajek’s Basic fuzzy logic
proved in [14] to be the logic of continuous t-norms, which has as extensions the famous many-valued
logics tukasiewicz logi¢. and Gidel logicG, plus the more recently introduced Product Ioicall these
logics being studied extensively in the monograph [22].

We end this section with a diagrammatic representation of the relationships between these and some
other well-known logics.

5Note that a more complete diagram of the hierarchy of t-norm based logics is presented in [17].
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Godel Logic G) Product Logic IT) tukasiewicz Logic )
A
(S) (INV) (DIV)
(PRL) Basic Logic BL) Involutive MTL (IMTL )
SMTL (G)
) (DIV) (INV) (PRL)

Intuitionistic Logic () Monoidal T-Norm Logic MTL)  Affine MA Linear Logic (AMALL )

(G) (PRL) (INV)

Monoidal Logic (ML)

Figure 1. Relationships between fuzzy logics

3. Hypersequent Calculi

Hypersequents were introduced independently by Avron in [2] and Pottinger in [30] as a natural and easily
understood generalization of Gentzen sequents, defined as follows:

Definition 7 A hypersequeris a multiset of the form:
Iy = A T = Ay

where fori = 1,...,n, I'; = A, is an ordered pair of multisets of formulae (i.e. a sequent) called a
componenbf the hypersequent. I£; contains at most one formula for= 1, . .., n then the hypersequent
is said to besingle-conclusionotherwisemultiple-conclusion

The symbo| may be read as a kind afeta-level disjunctiorinspiring the following interpretation:

Definition 8 Thestandard interpretatioof a hypersequer® = T'; = Aq]...|T', = A, is the formula:
0% =4y (OT) = ®A) V...V (O, = ©A,)
wherex{A;,..., A,y = A1 x...x A, forx € {o,0},00 = T,ad = L, and= G iff | ¢“.

Like sequent calculi, hypersequent calculi consist of axioms, logical rules and structural rules, the latter
being divided however into two categoriefternal rules deal with formulae within components as in
sequent calculi, and may include a distinguished “cut” rule corresponding to the transitivity of deduction.
Externalrules manipulate whole components; for example the external weakening and contraction rules
(EW) and(EC) add and remove components as follows:

(EW) G (EC) dG'=Al'=>A
GI'= A GI'= A

We begin here by introducing a hypersequent calculudMar, usingG, G 1, G, etc. as metavariables to
denote (possibly empty) hypersequents cadliel-hypersequentandC, C', C, etc. to denote multisets

with at most one element. Note also that since we have defined hypersequents as multisets of components,
and components as pairs of multisets of formulae, multiplicity but not order are important in these rules.
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Definition 9 GML has the following axioms and rules:

Axioms
(ID) A=A (L) L= (T)y =T
Structural Rules
(EW)and(EC)

(WL) GI'=C (WR) GI' =
G, A=C Gl =C
Logical Rules
(—=,10) GI' = A GII'y,B=C (—,7) GI'A=B
G|F1,F2,A—)B$C G|F$A—)B
(®,10) GI'A,B=C (®,r) GI'i=AGl'x=1B
(Aiy Di=1,2 GIl'A; = C (A1) Gl'=AGr=28B
Gl AINA = C GI'=AAB
(v, 1) GI'N'A=C GII',B=C (Vi,r)i=1,2 GII' = A;
Gl AVvB=C Gl = A1V Ay
(=,10) GIl= A (—,r) GI',A=
GII',-A = GI' => -A

Cut Rule
(CUT) G, A=C Gla= A
G|F1,F2 =C

In this calculus the use of hypersequents is in fact unnecegdally; and(EC) only apply to one compo-

nent at a time and hence do not increase the expressive power of hypersequent calculi over sequent calculi.
To prove the key prelinearity axioff? RL) however, we require a rule permittimgteractionsbetween
components; the most generally useful being the following (single-conclusion) “communication” rule:

(COM]) G|F1,H1 = A G|F2,H2 = B
G|F1,F2 = A|H1,H2 = B

A hypersequent calculus usiti¢'O M ;) has been defined f&\I'TL by Baaz et al. in [6] (see also [10] for
connections with calculi for Urquhart@ logics).

Definition 10 GMTL consists of the same rules and axiom<sIL together with(COM ).

Example 1 (COMj) allows us to prové PRL) as follows:

A=A B=2B
A= B|B=A

A=B|=B— A (=)

>A-B|=B— A (=)

= A—-B|=(A—=>B)V(B— A)

= (A—=>B)V(B—=>A)|=(A—=>B)V(B—A)
=(A—->B)V(B—A)

(COMy)

(V,r)

(EC)

A calculus forAMALL is obtained as a multiple-conclusion versiof@ML, noting once again that the
extra expressive power of hypersequents is unnecessary for this logic.
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Definition 11 GAMALL has the following axioms and rules:
Axioms
(ID) A=A (L) L= (T)y =T

Structural Rules
(EW)and(EC)

(WL) Gl=A (WR) GIl= A
GIA= A GII' = A A
Logical Rules
(—),l) G|F1 = A,A1 G|F2,B = Az (—),T‘) G|F,A = B7 A
G|F1,F2,A—>B=>A1,A2 G|F:>A—)B,A
(@,l) G|F,A,B = A (@,T) G|F1 = A A G|F2 = B, A»
G|F,A®B$A G|F1,F2$A®B,A1,A2
(@,0)  GIl'1, A= A; G2, B= Ay (@,7) Gl = A,B,A
G|F1,F2,A@B:>A1,A2 G|F=>A@B,A
(NiyD)i=12 GIIA; = A (A1) GII'= A/A GI' = B,A
GI'AINA = A GII' = AAB,A
(v, 1) GIbA=A GI',B= A (Vi,r)i=1,2 GII' = A;, A
G, AVB = A Gl = A1V Az, A
(=,0) GID = 4,A (=, 7) GID, A= A
GII'-A= A GII' = -4, A
CutRule

(CUT) G|F1,A$ Al G|F2 ﬁA,Az
G, T2 = A1, A

A hypersequent calculus fAMMTL has been obtained by Ciabattoni et al. [9] by adding a multiple-
conclusion communication rule 8 AMALL.

Definition 12 GIMTL has the same rules and axioms@AMALL and also:

(OOMO) G|F1,H1 = Al,El G|F2,H2 = A2,E2
G|F1,F2 = Al,A2|H1,H2 = 21,22

An elegant hypersequent calculus @r(the first for a fuzzy logic) was defined by Avron in [3].
Definition 13 GG has the same rules and axioms@3ITL and also:

(CL) GII A, A=C
GT,A=C

Remark 3 GG can be viewed as a calculus for intuitionistic logic extended by the communication rule.

Hypersequent calculi have also been provided by Ciabattoni and Ferrari [TitjifervaluedGddel logics
G, i.e. logics with the same connectives @sbut truth value sefo, -, ..., 2=2 1], by adding the
following rule to GG:
(Gn) G|F1,F2 =>A1 G|F2,F3 =>A2 G|Fn71,1—‘n :>An71
G|F1 = A1| . |Fn_1 = An_1|Fn =
An in-depth survey of hypersequent calculi food#l logics including also first-order and propositional
guantifier versions, is provided in [5].
The flexibility of the hypersequent formulation means that calculi can be defined for various other fuzzy
logics defined in the literature, for examgle:
SHypersequent calculi for logics obtained by adding bounded contractiMi®L, andIMTL are also defined in [9].
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Definition 14 GSMTL has the same rules and axioms@3TL and also:

(@) GIl', Ty =
G|F1 = |F2 =

We now collect soundness and completeness results for these hypersequent calculi.
Theorem 3 ForL € {ML, AMALL, MTL, IMTL, SMTL, G}, G is derivable inGL iff =1, G.

The key result here isut-elimination proved forML and AMALL in e.g. [31], forMTL by Baaz et al.
[6], IMTL by Ciabattoni et al. [9]SMTL by Ciabattoni (unpublished proof) al& by Avron [3].

Theorem 4 ([31, 6,9, 3]) ForL € {ML, AMALL, MTL,IMTL,SMTL, G}, (CUT) can be elim-
inated fromGL.

An important by-product of cut-elimination is that all these calculi (with@/7")) enjoy thesubformula
property, i.e. all formulae occurring in a cut-free proof are subformulae of the hypersequent to be proved,
and are thereforanalytic

4. ‘tukasiewicz Logic

In this section we define a very natural hypersequent calculus,ftire catch being that to do so we have
to abandon the standard interpretation of hypersequents. We begin by considering an alternative standard
algebra fott-, obtained by knocking down the set of truth values fifomi] to [—1, 0].

Proposition 4 ([29]) Let[—1,0] =4¢r ([—1, 0], min, maz, ®, —, —1,0) wherez®y =4,y maz(—1,z+
y) andz = y =qcp min(0,y — x). Ais valid in[—1,0] iff A is valid in[0, 1];.

We use this algebra to give a non-standard reading of hypersequents as follows:

Definition 15 |=f 'y = Aq|... Ty, = A, iff forall [-1, 0], valuationsv:
> () <Y w(A;) for somei, 1 < i < n, wherev(I') = {v(A) : A €T},

Forformulaethis interpretation gives us the usual notion of validity fgri.e. we have that a formuld is
valid in [0, 1] iff = = A. Alternatively, we get the same reading by using the standard interpretation of
hypersequents for Meyer and Slaneiiselian logicA, a logic with a characteristic model in the reals, and
embedding. into A (see [29] for details).

We now present aut-freehypersequent calculus farbased on this interpretation, takinrg and L as
primitive connectives and definingd =g.y A = L, AOB =40 (A = =B), AAB =4,y A®(A — B)
andAvV B =def (A — B) — B.

Definition 16 GL has the following axioms and rules:

Axioms
(ID) A=A A = (L) L=A4

Structural rules
(EW),(EC) and(W L)

(S) G|F1,F2 = Al, Az (M) G|F1 = Al G|F2 = Ag
G|F1 = A1|F2 = A2 G|F1,F2 = Al, A2
Logical Rules
(—=,0) GII''B= A A (=,r) GI'=>A G A= BA
GI,A—=B=A GI' = A— B,A

121



D. Gabbay, G. Metcalfe and N. Olivetti

Although several of the axioms and structural rule§ef are familiar from previous calculi (note that the
standard rules fon andV are also derivable), there are certain non-standard aspects to this calculus. In
particular weakening is only allowed on the left, and the ax{dmis only applicable when there is exactly

one formula on the right. Also the logical rulés»,l) and(—, ) run contrary to expectation in that the
former has one premise and the latter two, the exact opposite of the standard rules. However notice that of
the two “new” structural ruleg,S) is just a simplification of the communication r(l€ OM ) using the
axiom(A), while (A1) is a “weaker” version of the weakening rulg$’ L) and(WW R).

Example 2 We illustrateGt. with the following proof:

B=B A=A B=B A=A

B,A= AB (M)l B,A= AB (MI)/VL

BBoasi ) BB 44548 E_} ))
, T

= B,B—>A=AA—B
(A—-B)—> B= (A-B)—-B,B—>A=A
= (A-B)-»B=(B—A) - A
S (A5 B) 5 B) = (B A) - A4) (=)

(WL)

(=,0)

(=7)

Soundness and completeness result&horare proved in [29] by relatingt. to a hypersequent calculus
for Abelian logic, and then proving the soundness and completeness for this latter calculus semantically.

Theorem 5 ([29]) G is derivable inGt iff = G.

Alternatively, we can use the completeness of an axiomatizatioh famd prove cut-elimination foGt
extended with one of the following (inter-derivable) rules:

(CUT) G, A=A, G2 = A, A, (GCUT)  GII,A= A,A
G|F1,F2 $A17A2 G|F$A

Theorem 6 ([12]) Cut-elimination holds foGt + (CUT') andGL + (GCUT).

We end this section by remarking that a hypersequent calculus fdrainededt.ukasiewicz logictB ,,
which characterizes the intersection of k-valued tukasiewicz logicé farn, has been obtained in [12]
by adding the following rule t&+t :

n—1 n—1

—— ——
n0) GLI,... OL=%...5A
GII=Xr=A

We also conjecture that by adding further rules we can obtain calcdlnfte-valuedt.ukasiewicz logics.

5. Product Logic

To obtain a hypersequent calculus fdrwe again use a non-standard reading of hypersequents, although
in this case (unlike fot.) we able to give an interpretation as a formula of the logic.

Definition 17 Given a hypersequett =I'; = A,]|... |, = A,, we define:
whereo{A;,..., A} =4, 0...0 A, ©0 = T, and we write=y; G iff =51 ¢“.

A hypersequent calculus based on this interpretation has been defined in [28],taking— and L as
primitive, and definingd A B =4.y A® (A = B)andAV B =45 (A = B) = B)A((B = A) = A).
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Definition 18 GII consists of the following axioms and rules:

Axioms
(ID) A=A A = (1) I'L=A

Structural rules
(EW),(EC),(S), (M) and(WL)
Logical rules

(=) GII''B=AA GI',=-A=A (=,r) GI'=>A GI'A= B,A

GI,A—=B=A GI' = A— B,A
(®,1) GII'A,B = A (©,r) GII'= A, B,A
GIAoB=A GI'= Ao B,A
(=,0) Gl = A (=, 7) GI'=A Gr,A= 1
GII'-A= A Gl = -4,A

Note that this calculus has much in common with, i.e. the axiomgID), (A), all of the structural rules,
and the logical rulé—, r). Moreover, the extra premise in tiie>, ) rule, and the axioms and rules far
and— may be viewed as dealing with the special case of multiplication by zdrh in

Example 3 We illustrateGII with a proof of the axiongII):
A=A B=12B

A,B=AB (EaMl;
AOB=AB ,(WL) A= —A (1
= WL —AAOB= A B -—A,-A= B (:; )
—|—|A=>( ) —|—|A,A—>(A®B):B( ) ’
=, r
= -—A=(A—>(A®B))—> B ’
(A5 @oB) =B

= -4 - ((A—- (A®B)) = B)

The completeness @11 is proved semantically in [28] by first proving the completeness of an extended
calculus, then showing that the extra rules are admissitelin

Theorem 7 ([28]) G is derivable inGII iff =11 G.

Finally in this section we remark that a calculus f@ancellative hoop logi€CHL, defined in [18] as a
logic with product conjunction and implication defined on the half-open intéfdl], is obtained in [28]
by removing the axioni_L) rule fromGt and adding the rules fap of GII.

6. Concluding Remarks

Our aim in this paper has been to show that hypersequents provide an appropriate level of generality for
defining analytic calculi for fuzzy logics. To support this view we have surveyed calculi for logics based on
several important classes of left-continuous t-norms, sudMaL, IMTL andSMTL, and logics based

on the fundamental continuous t-norras,G andIl, the logicBL being the only significant omission.

What these results make very clear is that fuzzy logics are<lbstructural logicsthe key added
ingredient proof-theoretically being variants of the so-called “communication rule”. Bearing this in mind a
natural next step is to investigate related substructural logics such as those obtained by removing structural
rules like weakeningV L) and(W R). Preliminary results in this direction have been obtained in [26]. We
may also considdirst-orderlogics obtained by adding “standard” (e.g. those for intuitionistic or classical
logics) quantifier rules to hypersequent calculi. This has been achievetkith completeness results for
the [0, 1] interval in [8], and forMTL in [6], and should also be possible flM'TL and related logics.
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However, since first-orddr andIl based on thé), 1] interval are not recursively enumerable (see e.g. [22]
for details), systems obtained for these logics will necessarily correspond ofifgtoents and require
further investigation. Back at the propositional level it would clearly also be desirable to find calculi for
other t-norm based logics defined in the literature such as the logics based on (weak) nilpotent minimum
t-normsWNM andINM defined in [16], and in particular Basic logBL. In the case of the latter, the
divisibility axiom (DIV') does not seem to be easy to capture proof-theoretically. Nevertheless it may be
possible to obtain a calculus for this logic, either astfaby considering an alternative interpretation of
hypersequents, or by considering structures more complicated than hypersequents.

We conclude by mentioning some related work in the literature. First notesé¢fuatent calculhave
been provided for some fuzzy logics, includig [4], £ [29] and IT [28], that while typically not as
uniform or elegant as the corresponding hypersequent calculi, may be more suitable for proof search or
for proving properties like interpolation. We also remark that other frameworks may be more suited to
automated reasoning in fuzzy logics, for examp#hHI&'slabelled tableauxalculus fort [21], Baaz and
Fermuller sequent-of-relationsalculus forG [7], and the authorgjoal-directed method®r G, £ andIl
[27, 26]. However, the only other analytic and purely logical systems provided for fuzzy logics have been
themultiple-sequentalculi of Aguzzoli and Gerla [1] which exploit the fact that a formula valid. inG or
IT is valid also in an n-valued logic whereis a function of the number of occurrences of variables in the
formula. Such calculi provide a valuable perspective on the connection between finite and infinite valued
logics, but are not really suitable for proof search, and, being tailored to the semantics of the particular
logic, do not cohere well with calculi for other families of logics.
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