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Towards the Automated Synthesis
of a Gr öbner Bases Algorithm

Bruno Buchberger

Abstract. We discuss the question of whether the central result of algorithmic Gr¨obner bases theory,
namely the notion of S–polynomials together with the algorithm for constructing Gr¨obner bases using
S–polynomials, can be obtained by “artificial intelligence”, i.e. a systematic (algorithmic) algorithm
synthesis method. We present the “lazy thinking” method for theorem and algorithm invention and apply
it to the “critical pair / completion” algorithm scheme. We present a road map that demonstrates that,
with this approach, the automated synthesis of the author’s Gr¨obner bases algorithm is possible. Still,
significant technical work will be necessary to improve the current theorem provers, in particular the ones
in the Theorema system, so that the road map can be transformed into a completely computerized process.

Hacia la s ı́ntesis autom ática de un algoritmo de bases de Gr öbner

Resumen. Se aborda la cuesti´on de si el resultado central de la teor´ıa algor´ıtmica de bases de Gr¨obner,
es decir, la noci´on de S–polinomio, junto con el algoritmo de construcci´on de bases de Gr¨obner basado en
S-polinomios, puede obtenerse mediante la “inteligencia artificial”, es decir, por un m´etodo sistem´atico
de s´ıntesis algor´ıtmica. En concreto, se presenta el m´etodo “lazy thinking” para la invenci´on de teoremas
y algoritmos, que se aplica al esquema algor´ıtmico de “par cr´ıtico/completitud”. Se presenta una “hoja de
ruta” que demuestra que este enfoque permite la s´ıntesis autom´atica del algoritmo de bases de Gr¨obner
del autor. No obstante, ser´a necesario mejorar los actuales demostradores de teoremas y, sobre todo, los
del sistema “Theorema”, para que esa “hoja de ruta” se pueda transformar en un proceso completamente
computerizado, lo que a´un supondr´a un trabajo t´ecnico importante.

1. Introduction

In [7, 8] we proposed a method (the “lazy thinking” method) for the automated invention of theorems and
algorithms. This method is embedded into a general research plan for automating or, at least, computer-
supporting the process of mathematical theory exploration (“mathematical knowledge management”) and
the implementation of this research plan in the form of the Theorema software system, see [10]. The auto-
mated synthesis of simple theorems and algorithms by the lazy thinking method in the frame of Theorema
has been demonstrated to be possible, see [7, 8, 11]. The question is how far this approach can carry us. As
a kind of non-trivial benchmark, we propose the algorithm in [3] for the construction of Gr¨obner bases. By
now, this algorithm is routinely available in all current mathematical software systems like, for example,
Mathematica, see [20], and its theoretical foundation, implementation details, and numerous applications
are well documented in the literature, see for example [6, 1], and [15]. However, automatic invention
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(synthesis) of this algorithm seems to be far beyond the current capabilities of automated theorem proving
and algorithm synthesis techniques although significant progress has been made in the automated verifica-
tion of the proof of my Gr¨obner bases algorithm by proof checkers, see [19] and [16]. In this paper, we
will demonstrate that an automated synthesis of this (and similar) algorithms along the lines of our “lazy
thinking” synthesis methodis possible. Hence, this is the first time in the literature that a Gr¨obner bases
algorithm is synthesized automatically. Some technical work still has to be done in order to make our con-
crete automated proving systems, which are an important ingredient in our approach to algorithm synthesis,
sufficiently powerful.

2. The Fundamental Problem of Gr öbner Bases Theory

We first present the essential ingredients of the Gr¨obner bases theory introduced in [3]. We present the
theory of Gröbner basis in a top-down style starting with the fundamental problem of constructing Gr¨obner
bases, which is the main subject of this paper: We want to find an algorithm�� such that

�� ���-������-��	
����-�������� ���� ����

Here and in the sequel,� , � range over sets of multivariate polynomials in a fixed number of indeter-
minates over a fixed coefficient field. Furthermore,� , �, � range over polynomials,�, �, 	 range over power
products,
, �, � range over coefficients, and
, �, � range over integers.� � etc. range over finite sequences
of polynomials, etc. (All formulae in this paper are given in Theorema notation, i.e. they can be processed
by the Theorema system, see [10].)

The binary predicate��-������-��	
����-����� is defined as follows:
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(For ”��-������-��	
����-�������� ��” read ”� is a finite Gröbner basis for� ”.)
Now we define the ingredient concepts: First,
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(For ”�� �� ��” read ”�� is congruent to�� modulo� ”. Here, � � and�� denote finite sequences of
polynomials.�� �� denotes the length of� � and����� is the
�� element of� �.)

Second,

��-��	
����-���������� ��-������-�
���������

(For “��-��	
����-��������” read “� is a Gröbner basis”. Note that, in this paper, following the syntactic
conventions in Theorema, see [10], a predicate or function constant like��-��	
����-����� may occur
with various different arities).

Here,�� is the “reduction relation induced by�”, which is defined as follows:
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where
��� � is “the leading monomial of� ”, 
��� � is “the leading power product of� ”, ��� is “the quotient
of the two power products� and�”, and� � � stands for “� divides�”. Note that
��� � and
��� � are defined
w.r.t. a fixed “admissible” total ordering	 of the power products - e.g. the lexical ordering or the total
degree lexical ordering - which can then be extended to a partial ordering on the polynomials in a natural
way. Admissible orderings are always Noetherian.

Finally, we recall the definition of the Church–Rosser property for binary relations� in any domain:

��-������-�
������� ��� ���� �� ��� 

� �� � �� �

� ����

Here�� is the reflexive, transitive closure of�, 
� is the reflexive, symmetric, transitive closure of�,
and�� is defined as follows:

�� �� �� ��� �� �� �� ��� ���

(For “� �� �” read “� and� have a common successor”.)

3. An Algorithm for the Construction of Gr öbner Bases

In [3] an algorithm�� that meets the specification

�� ���-������-��	
����-�������� ���� ���

was introduced. This algorithm is based on the following theorem in [3]: Let G be finite, then
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Here,
����� �� is the least common multiple of� and�. Furthermore, for finite F,
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� otherwise�

F is supposed to be represented as finite sequence, so that�� refers to the�th element of� . The
algorithm�� reduces a polynomial� modulo a polynomial� to a polynomial
 � iff 
��� ��
����. For
“����� � �” read “the result of reducing� modulo� in one step”. The algorithm��� applies the step
�� iteratively modulo all polynomials in� until it arrives at a polynomial that cannot be further reduced
modulo� . Note, also, that this algorithm always terminates because the ordering	 is Noetherian. For
“������ � �” read “the result of totally reducing� modulo� ”.

Note that the above criterion for deciding the Gr¨obner basis property isalgorithmic (in case� is finite):
Just consider the finitely many pairs��, �� of polynomials in� and check whether or not the two reductions
described in the criterion yield identical results.

(Usually, the criterion is given in the following form:

��-��	
����-���������� �������� ����������� ���� �� � ���
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where
������ ��� � where�� � 
���
������ 
������� ����� ���� ����� �����

������ ��� is called the “S–polynomial of�� and��”, whereas the two polynomials����� ��� and����� ���
are called the “critical pair of�� and��”. In this paper, we use the criterion in the first form because it
lends itself better to the generalization to an “algorithm scheme” that is applicable in many domains, even
in domains in which we do not have a zero and a substraction operation.)

The transition from thisalgorithmic criterion to analgorithm �� for constructing Gröbner bases (for
finite inputs� ) is not difficult any more and was also introduced in [3]:
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Here, pairs[� ] is the tuple of all pairs of elements in� . The overbarred variables like�, in Theorema
notation, stand for arbitrarily many elements, see [10].� � � is � with � appended and� is the notation
for concatenation. Roughly, the algorithmGb checks for all pairs of polynomials� �, �� in � whether
the results�� and�� of the total reduction of���
���
������ 
������� ��� and���
���
������ 
������� ���,
respectively, are identical. If�� �� �� then the difference�� � �� is added to the basis and the process is
repeated. (Termination is guaranteed by Dickson’s lemma, see [13].)

¿From the perspective of algorithm synthesis, the question now is: By which systematic (and hopefully
algorithmic) methods can one invent a criterion and/or a construction algorithm of the above type? In other
words, can the invention of the essential notion of algorithmic Gr¨obner bases theory, namely the notion
of “S–polynomial” (or, equivalently, “critical pair”) together with the fundamental theorem on the relation
between Gr¨obner bases and S-polynomials, be obtained by a systematic (algorithmic) process on the meta–
level of mathematics? Again in other words, can the invention of the notion of S–polynomial and the
pertinent theorem be obtained by “artificial intelligence”? Before we discuss this question, we provide a
brief summary of our “lazy thinking” method for theorem and algorithm synthesis introduced in [7].

4. The Lazy Thinking Approach for Theorem and Algorithm
Synthesis

The problem consists in synthesizing an algorithm� that satisfies the specification (“correctness theorem”)

�	 ���� ������

where� is the given problem specification. (We assume that we are given a knowledge base, i.e. a collection
of true statements about� and the auxiliary functions and predicates needed for the definition of�.)

In the “lazy thinking” synthesis approach, we first choose an algorithm scheme for� from a library of
algorithm schemes. An algorithm scheme is a formula in which the unknown function� is (recursively)
defined in terms of unknown auxiliary operations and�. Now we substitute the scheme chosen into the
correctness theorem and start an attempt to prove the theorem. Typically, this proof will fail because nothing
is known on the auxiliary operations. Next, we analyze the failing proof and, by some algorithmic heuristics
(which is explained in [8]) generate requirements (specifications) on the auxiliary operations that would
make the proof of the correctness theorem work.

By this, we reduce the synthesis of an algorithm�, that meets the given specification P, to the synthesis of
algorithms for auxiliary operations that meet thegenerated specifications. This recursive synthesis process
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stops when we arrive at specifications for auxiliary operations which are met by operations which are
already available in the knowledge base. This synthesis method is automatic in as much as the proving
process and the requirements generation process are automated. For examples of a completely automated
synthesis of algorithms using this “lazy thinking” approach see [8] and [11].

Mutatis mutandis, this lazy thinking approach can also be applied to the synthesis (invention) of theo-
rems (lemmata): If we want to prove a theorem� from a knowledge base of statements which we presup-
pose on the operations occurring in� we may apply an (automated) proof method until we will be stuck at
a failing proof situation. In such a situation, by a systematic (algorithmic) lemmata invention method, we
conjecture a lemma� whose truth could make the proof of� succeed. An attempt is then started for proving
�, which may either succeed in which case we return to the proof of the main theorem� or it may again be
stuck at a failing proof situation in which case we again call the lemma conjecture algorithm. In this way,
we generate a “cascade” of partial proofs which may finally result in a proof of the initial theorem and, at
the same time, will generate a hierarchy of additional lemmata, see [7] for an example.

5. On the Way to Synthesizing a Gr öbner Bases Algorithm

Applying the lazy thinking algorithm synthesis paradigm to the synthesis of a Gr¨obner bases algorithm,
we could now choose various algorithm schemes from a library of fundamental algorithm schemes, like
“divide–and–conquer”, “interpolation”, “projection” etc. and set up the corresponding correctness proof
attempts. (In fact, it would be an interesting study to investigate which one of these schemes leads to a
feasible algorithm for the Gr¨obner bases problem. This study would be particularly interesting given the
fact that, so far, no algorithm essentially different from the author’s “critical pair / completion” algorithm has
been found for the Gr¨obner bases construction problem.) The most promising algorithm scheme candidate
is the “critical pair / completion scheme”, which was distilled from the author’s Gr¨obner bases algorithm, the
Knuth–Bendix algorithm [14], Robinson’s resolution algorithm [18], and other algorithms and informally
formulated in [5].

Here, we propose the following formal presentation of this scheme, which can be tried in any domain,
in which we have a reduction operation�� that depends on sets� of objects and a Noetherian relation	
which interacts with�� in the following natural way:

�
�� �� � ����� ����

Given a reduction operation��, we can define��� (total reduction) in exactly the way shown above
for the special case of polynomial reduction and, by the above property of��, it is clear that this algorithm
always terminates.

Then the critical pair completion algorithm scheme is as follows:

���� � � ����� ������� ��
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���� � ������ ���� �� � � ����� ������ ���� ����������� ��� �� otherwise ��

with unknown auxiliary functions
� and�� where, in addition, we require that
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����� ���� ��� 
 
����� ����
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(A more general scheme that does not include this additional requirement could be formulated but, in this
paper, we don’t want to introduce additional technical complications which we do not have in the case of
the polynomial domain.)

The problem of synthesizing a Gr¨obner bases algorithm can now be also stated by asking whether we
canautomatically arrive at the idea that


����� ��� � 
���
������ 
������

and
������ ��� � �� � ��

are suitable functions that specialize the algorithm scheme to an algorithm that constructs a Gr¨obner basis
for the input� .

Using this scheme, we now go into the correctness proof of

�� ���-������-��	
����-�������� ���� ����

It should be clear that, if the algorithm terminates, the final result is a finite set (of polynomials)� that
has the property

��������

�
where
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We now try to prove that, if� has this property, then

��-���������,

����
�� � � ����
���,

and

��-��	
����-��������, i.e. ��-������-�
��������.

For lack of space in this paper, we only deal with the third, most important, property. (Finiteness of
� can again be proved by Dickson’s Lemmaafter 
� and�� will have been synthesized! The property
����
�� � � ����
��� is of course important but, from the methodological point of view, does not add any
more challenges to the synthesis.)

In principle, Noetherian induction on polynomials w.r.t. the Noetherian ordering	 would be an ap-
propriate proof method for proving��-������-�
��������. However, Newman’s Lemma, [17], for all
Noetherian reduction relations� replaces this induction by showing, once and for all, that the following
equivalence

��-������-�
��������� ��������

���
� � ��
� � ��

�
� �� �

� ��

�

is true. Using Newman’s Lemma, the correctness proof (attempt) now proceeds as follows (using various
elementary properties of the arithmetical operations and the reduction operation on polynomials, which
we cannot repeat in this short paper, see any of the textbooks on Gr¨obner basis or [6]). First, we observe
that, using the elementary properties of reduction, we can simplify the test for checking the Church–Rosser
property further by proving that the first universal quantifier needs only range over all power products, i.e.
by proving
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��-������-�
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Let now the power product� and the polynomials� �� �� be arbitrary but fixed and assume
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We have to find a polynomial� such that
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¿From the assumption we know that there exist polynomials�� and�� in � such that
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¿From the final situation in the algorithm scheme we know that for these� � and��
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Case �� � ��: In this case
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Hence, by elementary properties of polynomial reduction,
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Now we are stuck in the proof.
However, looking at all the temporary assumptions which we have now, and using the requirements con-

jecturing heuristics described in [8], we see that we could proceed successfully with the proof if
��� �� ���
would satisfy the following requirement
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(lc requirement)
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With such an
�, we then would have

��� ����� ��� �

� 
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����� ���� ��� �
�
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and, hence,
�� �

�
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 � �������
����� ���� ���� ���

�� �
�
� 
 � �������
����� ���� ���� ���

i.e. we have found a suitable�.
Note that the (lc requirement) is now completely independent of the Gr¨obner bases construction problem

from which we started! Of course, it is now easy to find an
� that satisfies (lc requirement), namely


����� ��� � 
���
������ 
�������

Eureka! The crucial function
� (the “critical pair” function) in the critical pair / completion algorithm
scheme has been “automatically” synthesized!

Case ������ ��� � �:
In this part of the proof we are basically stuck right at the beginning.

As a new requirement generation technique (which we did not yet consider in [8]), we can try to reduce
this case to the first case, which would generate the following requirement

���� �� �� ��������� ���� �� (df requirement).

Looking to the knowledge base of elementary properties of polynomial reduction, it is now easy to find
a function�� that satisfies (df requirement), namely

������ ��� � �� � ��

because, in fact,
��� � � ��

�f-g� ��

Eureka! The function�� (the “completion” function) in the critical pair / completion algorithm scheme has
been “automatically” synthesized!

6. Conclusion

We sketched how the author’s Gr¨obner bases algorithm, which hinges on the crucial concept of S–polyno-
mials can be synthesized “automatically”, i.e. how the most essential concept of algorithmic Gr¨obner bases
theory, namely the concept of S–polynomial (or, equivalently, the concept of “critical pair”) can be invented
“automatically”. Here we put “automatically” into quotation marks because a complete automation would
require

a. the complete automation of such proofs (proof attempts) as done in the previous section, and

b. the complete automation of the generation of the requirements for the subalgorithms
� and��.
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We are very optimistic that a. can soon be achieved because similar proofs are already in the reach
of automated theorem proving systems like Theorema. As for b., surprisingly, relatively simple rules can
cope with the requirement generation for subalgorithms and were already implemented in [8, 11]. The new
rule needed in the second case of the above proof attempt is not yet implemented but we foresee no big
difficulties in the implementation.

Thus, summarizing, for the first time, the automated synthesis of the author’s Gr¨obner bases algorithm
(and similar algorithms), which seemed to be far outside the reach of current synthesis methods, seems to
be possible. The “lazy thinking” synthesis method which we use for this purpose is based on two key ideas:

A. the use of algorithm schemes and

B. the automated analysis of failing proof attempts and the automated generation of (lemmata and)
subalgorithm requirements based on these attempts.

Of course, the algorithm schemes already capture essential ideas of the algorithm “invention”. How-
ever, it would be very sillynot to use the condensed expertise for algorithm design contained in algorithm
schemes, which either can be distilled from examples of known successful algorithms or can be built up
systematically by syntactical enumeration of all possible right–hand sides in recursive function definitions.
It is of course a different question how the invention of an algorithm happened at a time when the pertinent
algorithm scheme wasnot yet known as was the case when the author came up with the Gr¨obner bases
algorithm based on S–polynomials in the PhD thesis 1965 (published in [3]).

Anyway, it also should be emphasized that, even if we did not aim at a complete automation of our
lazy thinking approach to algorithm synthesis, we think that the approach gives a good heuristics for the
systematic invention of algorithms byhuman mathematicians or, in other words, it gives a good explana-
tion of how, maybe, invention often happens in human mathematicians. In fact, paraphrasing A. and B.
didactically, one could say that A. suggests to use, “by analogy”, algorithmic ideas which already have
proven useful in other contexts and B. suggests to “learn from failure”. Both suggestions are well known
as “didactic principles”. The point is that, in our lazy thinking approach to algorithm synthesis, we make
these principles concrete and algorithmic.

Note also that the degree of automation achievable in the lazy thinking approach to algorithm synthesis
depends crucially also on the degree of completeness of the available knowledge base on the ingredient
concepts of the theory: The more complete the knowledge base is, the easier is it to find and structure the
attempts of the correctness proof on which the algorithm synthesis is based. For example, of course, New-
man’s lemma as part of the knowledge base in our above synthesis makes the whole proof technicallymuch
easier and focuses our attention on the essential stumbling block of the proof. Therefore, as a fundamental
and natural strategy in systematic theory exploration we postulate that, before one starts with the synthesis
of an algorithm for a non-trivial problem, one should first ”completely” explore the underlying theory, i.e.
one should fill up the knowledge base of properties of the underlying concepts as completely as possible.
Some first ideas about systematic theory exploration are given in [7] and [9].

Note: Among the various other systematic (“artificial intelligence”) approaches to algorithm synthesis,
the approach of [2] seems to be particularly interesting for the Gr¨obner bases construction problem. Given
a problem specification�, this approach starts from a (constructive) proof of the existence formula

�� �� ������

and tries to extract an algorithm from a successful proof. For the Gr¨obner bases case, the inconstructive
proof of the existence of Gr¨obner bases using the contour argument, which has first been given in [4],
seems to be a promising candidate for starting the investigation along this approach. Of course, the crucial
challenge is how to turn the inconstructive proof into a constructive one without already providing the key
idea of the “critical pair” (or, equivalently, the “S–polynomial”) of two polynomials.
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