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A note about a priori estimates for indefinite problems
in unbounded domains

Jacques Giacomoni

Abstract. In this paper, we are dealing with the following superlinearelliptic problem :

(PΩ)

{

−∆u = λu + h(x)up in Ω
u = 0 in ∂Ω,, u ≥ 0

whereΩ a smooth domain not necessary bounded,h is aC2 function fromR
N to R changing sign such

that h(x) → −∞ when‖x‖ → +∞ and1 < p < N+2

N−2
. We give existence and uniform a priori

estimates for solutions to(PΩ).

Una nota sobre estimaciones a priori para problemas indefini dos en
dominios no acotados

Resumen. Consideramos el siguiente problema elı́ptico superlineal

(PΩ)

{

−∆u = λu + h(x)up enΩ
u = 0 en ∂Ω,, u ≥ 0

dondeΩ es un dominio regular no necesariamente acotado,h es una funciónC2 deR
N enR cambiando

de signo tal queh(x) → −∞ cuando‖x‖ → +∞ y 1 < p < N+2

N−2
. Obtenemos la existencia y

estimaciones a priori de las soluciones de(PΩ).

1. Introduction

In this paper, we consider the following superlinear elliptic problem :

(PΩ)

{

−∆u = λu+ h(x)up in Ω
u ≥ 0 u |∂Ω = 0

Our goal is to extend the results in [8] where(PΩ) is also investigated in the caseΩ = R
N . Precisely, in

[8] assuming thatΩ+ = {x ∈ R
N / h(x) > 0} is a bounded domain, thatΓ := {x ∈ R

N / h(x) = 0}
satisfies a nondegeneracy condition :

∀x ∈ Γ , ∇h(x) 6= 0,
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the authors prove that there exist a global branch bifurcating from the essential spectrum, inR×L∞(RN ).
For this, they prove that forλ bounded, the solutions to(PRN ) obtained by a local approach are uniformly
bounded inL∞(RN ). The method they use involves studying a “local problem”,(PΩR

), in a bounded
domainΩR ⊃ BR whereBR is the ball centered at 0 and with radiusR

(PΩR
)

{

−∆u = λu+ h(x)up in ΩR,
u ∈ H1

0 (ΩR), u ≥ 0,

and then they pass to the limit whenR goes to+∞.
The crucial step in this procedure is to get a priori estimates for solutions to(PΩR

) independent ofR.
Here we prove that on some conditions, we can remove the nondegeneracy assumption :h vanishes in

a non zero measure set and get the sames results as in [8] for any large domainΩ with smooth boundary.
Furthermore, the a priori estimate we obtain concern all solutions to(PΩ). Note that a large class of
unbounded domains are considered.

Here, we suppose thath satisfies the following assumptions :

(H1) h ∈ C2(RN
R), Ω+ :=

{

x ∈ R
N , h(x) > 0

}

is bounded domain with non zero measure and smooth
boundary.

Supposing that there existsΩ0 := {x ∈ R
N / h(x) = 0}/∂Ω− ∪ ∂Ω+, we assume in addition

(H2) Ω0 is bounded with smooth boundary and∂Ω0 ∩ ∂Ω− ∩ ∂Ω+ = ∅,

(H3) Forx close to∂Ω0 ∩ ∂Ω+, h(x) ≡ C dist(x,Ω0 ∩ ∂Ω+)γ , γ > 0, C > 0.

Let Γ := ∂Ω+ ∩ ∂Ω−, then ifΓ is non empty,Γ satisfies either

(H4) for x ∈ Ω+ close toΓ, h(x) ≡ C dist(x,Γ)γ′

, γ′ > 0, C > 0

or

(H4bis) for anyx ∈ Γ, ∇h(x) 6= 0.

Remark 1

1. Clearly (H1) and (H2) imply thatΓ = Ω+ ∩ Ω− and it is bounded.

2. (H2) implies thatΩ0 is far fromΓ.

3. (H3) and (H4) give some flatness condition onh near∂Ω0 andΓ. We use (H3) and (H4) in a blow up
technique as in [6]. A similar argument is also used in [3].

4. (H4bis) is the nondegeneracy condition as in [8].�

Our purpose is to prove the existence of solutions and to givethe structure of solutions set with respect
to the bifurcation parameterλ.

Whenh(x) changes sign, the proof of existence of a priori estimates ismore difficult to obtain. Let us
mention some previous works in this direction :

In [6], the authors use a blow up technique combined with someLiouville theorems in cones to obtain
uniform a priori bounds and some existence results for equation (PΩ) with Ω a bounded domain for1 <
p < n+2

n−1 andλ = 0. (H4bis) is used to getγ′ = 1 in this paper. The question which follows then is : is it
true for anyp less the critical exponent?

In [12] Chen and Li answer positively to that questioni.e. they obtain some a priori bounds for positive
solutions whenp is subcritical (i.e. p < N+2

N−2 ). Precisely they consider the following problem

{

−∆u = h(x)up in Ω,
u ∈ H1

0 (Ω) u ≥ 0,
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whereh satisfies (H1),(H4bis),Ω0 = ∅ andΓ ⊂ Ω. They prove that every solution is uniformly bounded
and that the a priori bound depends only on the geometry ofΩ, p andh.

The proof of this result is carried out dividing the domain inthree regions and then solving the following
steps :

1. boundedness of solutions in the region whereh(x) ≤ −δ, for a fixedδ > 0,

2. boundedness of solutions in the region where|h(x)| is small,

3. boundedness of solutions in the region whereh(x) ≥ δ.

Each step involves different techniques :

1. In the region whereh(x) is strictly negative, the uniform estimate is obtained by anHarnack inequal-
ity and an integral estimate.

2. In the region where|h(x)| is small, the a priori bound results from the moving plane technique (here
(H4bis) plays a crucial role) and from the above estimate.

3. In the last region, a classical blow up analysis (see [16])is used.

In [3], the authors remove the nondegeneracy condition using the same blow-up technique as in [6] but
they keep some restrictions onp due to the restriction in Liouville’s theorem they apply. In[19], the authors
prove that if we restrict to some type of solutions (with finite Morse index solutions precisely) the restriction
of p can be removed also in the degenerate case.

In the present work, combining different techniques, some of them booked from [6], [12] and [3], we
get uniform a priori estimates in inbounded domains case or (if Ω is bounded) independent of the measure
of the domain considered and independent ofλ bounded. Precisely, we prove the following main results :

Theorem 1 . Suppose that (H1), (H2), (H3) are satisfied, that1 < p < N+2
N−2 and thatΩ is large enough

that Γ ∪ ∂Ω0 ⊂ Ω and∂Ω ⊂ supph−. Letλ1(Ω
+) (resp. λ1(Ω0)) be the first eigenvalue to−∆ in Ω+

(resp. inΩ0). We also assume thatΩ0 is nonzero measure set. Then,

(i) If λ ≥ inf (λ1(Ω
+), λ1(Ω0)), there are no non trivial solutions of(PΩ).

(ii) Assume in addition thatΓ is nonempty and (H4). Letp such that1 < p < N+1+inf (γ,γ′)
N−1 . For

anyλ0 < λ2 < inf(λ1(Ω
+), λ1(Ω0)), there is a constantC (= C(λ0, λ2)) such that if(λ, u) is a

solution of(PΩ) andλ0 ≤ λ ≤ λ2 then

‖u‖L∞ ≤ C (1)

andC depends only onλ0, λ2, Ω+, Ω0, p andh.

(iii) If ∂Ω0 ∩ ∂Ω+ = ∅ and (H4bis) holds, then (1) is also true for anyp subcritical.

(iv) If Γ is empty or if (H4bis) holds instead of (H4), then (1) is true for 1 < p < N+1+γ
N−1 andC depends

also onΓ.

Remark 2

1) Theorem 1 concern the case whereΩ0 is non zero measure set. IfΩ0 is empty and if (H4bis) holds,
then we can apply results in [8].

2) Theorem 1 handle unbounded domainsΩ as bounded domains. For unbounded domains, the dirichlet
conditions are replaced by a limit condition at infinity.
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Next, we show that ifh has radial symetry properties and∂Ω+ has only one piece component then no
restriction onp subcritical and no nondegeneracy condition are necessary.A similar observation was previ-
ously made in [3] for bounded domains.�

Proposition 1 . Assume thath is radial symmetric continuous function and thatΩ+ is a ball. Then, (1)is
also true for radial symmetric solutions.

Remark 3 If ∂Ω+ has two pieces component and if (H4bis) holds then Proposition 1 is also true. �

Finally, in the next result we show that the asymptotic behaviour ofh is relevant to determine the behaviour
of solutions to(P ).

Proposition 2 . Assume thath is continuous function onRN such that lim
|x|→+∞

h(x) = a < 0 and finite.

Letλ > 0. Then, for any nontrivial solutionu to (P ), we have

lim inf
|x|→+∞

u(x) > 0. (2)

Remark 4

1. Proposition 2 is also valid in the case whereh satisfiesh(x) < 0 for |x| large and lim
|x|→+∞

h(x) = 0.

2. We can extend easily Proposition 2 in the case whereup is replaced byg(u), g C2(R+) satisfying

s→
g(s)

s
nonincreasing,lim

s→0+

g(s)

s
= 0 and lim

s→∞+

g(s)

s
= +∞. �

Using the above a priori estimates and the global bifurcation Rabinowitz (see [18]) Theorem, we get
existence of solutions to(P ) and the behaviour of solutions with respect to the bifurcation parameterλ.
ConsiderφΩ > 0 the eigenfunction associated to the first eigenvalueλ1(Ω) which satisfies :

{

−∆φΩ = λ1(Ω)φΩ in Ω
φ ≥ 0.

and
∫

Ω
φΩ = 1. Let ΠR denote the projection ontoR. We will prove as application of a priori estimates the

following results :

Theorem 2 .
Assume that the assumptions of Theorem 1 are satisfied. We have the following :
If λ1(Ω

+) < λ1(Ω0), then there is a global branch of nontrivial solutions of(P ), C, connected inR ×
L∞(RN ), bifurcating from(0, 0) such that

(i) ΠRC =] −∞ , λ0[ where0 < λ0 < λ1(Ω
+).

(ii) Let (λn, un) ∈ C such thatλn → −∞ asn→ +∞. Then, up to subsequences,‖un‖H1,L∞ → +∞.

Finally, if Ω+ is empty, then we have :

Theorem 3 .
Assume thatΩ+ = ∅ andΩ0 bounded.

(i) if Ω0 is a nonzero measure set, then there exists a global branch ofnontrivial solutions of(P ), C,
connected inR × L∞(RN ), bifurcating from(0, 0) such that

a) ΠRC =]0 , λ1(Ω0)[,
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b) Let(λn, un) ∈ C such thatλn → λ1(Ω0) asn→ +∞. Then, up to subsequences,‖un‖L∞ →
+∞.

(ii) If Ω0 is empty, then (i) is also valid replacingλ1(Ω0) by+∞.

The outline of the paper is as follows :
In Section 2, We prove the results concerning a priori estimates. Theorem 1, Proposition 1, Propositon 2.
In Section 3, we prove Theorems 2 and 3.

2. A Priori Estimates.

First, we prove Theorem 1 :
PROOF OFTHEOREM 1.
Let us prove (i). We use a standard argument for superlinear elliptic problems. Multiply (PΩ) by φΩ+ and
integrate by parts inΩ+, we obtain :

λ1(Ω
+)

∫

Ω+

uφΩ+ +

∫

∂Ω+

∂φΩ+

∂n
u =

∫

Ω+

h(x)upφΩ+ + λ

∫

Ω+

uφΩ+ . (3)

From (3), and Hopf lemma :

(λ1(Ω
+) − λ)

∫

Ω+

uφΩ+ ≥

∫

Ω+

h(x)upφΩ+ > 0,

which implies thatλ < λ1(Ω
+). Repeating the argument withφΩ0

, (i) is proved. Let us prove (ii). For this,
we divide the proof in several parts :

1. Local Estimates inΩ−
δ := {x ∈ Ω ∩ supph−/d(x,Γ ∪ Ω0) ≥ δ}. The estimate is obtained as in [8]

by a uniform localLp-estimate + the Harnack inequality (see proof of Proposition 1.1 step 1 in [8]).

2. Estimates inΩ+. We use a blow up technique as in [6] and [3].

3. Estimates inΩ0. We use a super and sub solutions argument.

4. L∞-bound for|x| large, obtained by the construction of a supersolution.

Step 1: A priori estimates inΩ−
δ . See [8] or [14] (Proposition 5.1 and step 1 in the proof of Proposition

5.2). Note that since∂Ω ⊂ supph− and by maximum principle we get a priori bounds near∂Ω.
Step 2: A priori estimates inΩ+. For this, suppose by contradiction that there exists a sequence(λk, uk)
solution to(P ) with λ0 ≤ λk ≤ λ2 andsup

Ω+

uk → +∞. Let xk such thatuk(xk) = sup
Ω+

uk. Up to a

subsequence, we can suppose thatxk → x0 ∈ Ω+.
We now deal with two cases :

First, suppose thatx0 ∈ Ω+ then we can conclude using [16] and get the contradiction. Suppose now that
x0 ∈ ∂Ω+. Then, eitherx0 ∈ ∂Ω+ ∩ ∂Ω0 or x0 ∈ ∂Ω+ ∩ ∂Ω−. Now following the same blow up analysis
in [3] (see theorem 4.3) and using (H3) in the casex0 ∈ ∂Ω+ ∩ ∂Ω0 (resp. (H4) in the casex0 ∈ Γ) we get
a contradiction by a Liouville theorem in cones (see Theorem2.1 in [6]).
Step 3: A priori estimates inΩ0. Let Ωi

0 one of the connected component ofΩ0. By (H2),∂Ωi
0 belongs to

∂Ω− or ∂Ω+. Suppose that∂Ωi
0 belongs to∂Ω−, then we construct a supersolution in aǫ-neighborhood of

Ωi
0, denoted byΩǫ : Let λǫ such thatλ2 < λǫ < λ1(Ω0) andξǫ the solution to

{

−∆φ = λǫφ in Ωǫ

φ = M in ∂Ωǫ.
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The existence and uniqueness ofξǫ is provided by the fact thatλǫ < λ1(Ω0) andǫ small enough such that
λǫ < λ1(Ωǫ).

Next, we chooseM = sup
∂Ωǫ

u which do not depend onu since in Step 1 we have proved uniform local a

priori estimates inΩ−
δ (note that∂Ωǫ belongs toΩ−

δ for an appropriatedδ). Then, by maximum principle,
we haveu ≤ ξǫ.

Now, consider the case∂Ωi
0 ⊂ ∂Ω+. Therefore, by step 2, we have thatu is uniformly bounded on

∂Ωi
0. LetM be the uniform bound ofu in ∂Ωi

0. Now, considerξ the unique solution to
{

−∆ξ = λ2ξ in Ωi
0

φ = M in ∂Ωi
0.

Therefore, by the maximum principle,u ≤ ξ in Ωi
0. Finally, we get an uniform bound inΩ0 sinceΩ0 is

bounded and have only finetely many components.
Step 4: A priori estimates for|x| large. This part concerns the case whereΩ is unbounded and we can
suppose here thatΩ = R

N . LetR0 be such that{Γ ∪ ∂Ω0} ⊂ BR0
andφ :

(P∗)

{

−∆φ = λ2φ+ h∗(x)φp in R
N /BR0

φ = M in ∂BR0
, φ→ 0 when|x| → +∞.

From a priori estimates in step 1, we chooseM such that for any solutionu, sup
∂BR0

u(x) ≤ M andh∗ a

continuous function such thath∗ ≥ h we fix later. Then, by the maximum principle,u ≤ φ. Next, thanks
to lim

|x|→∞
h(x) = −∞ we prove thatφ(x) tends to0 when|x| → +∞. For this, we chooseh∗ negative,

radial symmetric, decreasing for larger = |x| andh∗(r) → −∞ whenr → +∞.
To prove the existence ofφ, we consider the following problem :

(PR∗)

{

−∆φ = λ2φ+ h∗(x)φp in BR/BR0

φ = M in ∂BR0
andφ = 0 in∂BR.

ForR large, we claim that there exists a unique solution to(PR∗). For this, considerψM a smooth contin-
uation ofM with compact support and the following minimization problem :

IR = min
v∈H1

0
(R0<|x|<R)

E(v) :=
1

2

∫

R0<|x|<R

(

|∇(v + ψM )|2 − λ2(v + ψM )2
)

+
1

p+ 1

∫

R0<|x|<R

|h ∗ |(v + ψM )p+1

By Sobolev imbeddings, we get easilyIR > −∞ then, a global minimizer solutionφR to (PR∗) exists.
The uniqueness is a standard argument using the concavity ofthe nonlinearity (see appendix II in [9]). By
uniqueness ofφR and doingR → +∞, we get a minimal solutionφ to (P∗) andφ is radial. Note thatφ
is bounded and ifx0 is a local maximum, thenφ(x0) ≤ ( λ2

|h∗(|x0|)|
)p−1. Therefore, sinceh ∗ (r) → −∞

whenr → +∞, eitherφ is decreasing for|x| large eitherφ(x) → 0 when|x| → +∞. Assume that the
first possibility holds thenφ(x) → l when |x| → +∞. If l 6= 0 then the O.D.E satisfied byφ shows
thatφ′′(r) → +∞ whenr → +∞ which is impossible sinceφ is bounded. Note that we need here the
local approach. Indeed, using thatψM has a compact support, forR large we claim thatIR → −∞ when
R→ +∞. For this, definevR as follows :

vR(x) =



















0 if |x| ≤ R
2 − 1 or |x| ≥ R+ 1

( λ2

Rα )
1

p−1 if R
2 ≤ |x| ≤ R

( λ2

Rα )
1

p−1 (|x| − R
2 + 1) if R

2 − 1 ≤ |x| ≤ R
2

( λ2

Rα )
1

p−1 (|x| −R) if R ≤ |x| ≤ R+ 1
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Now, observing that by a simple computation

E(vR − ψM ) ≤ C1(
λ2

Rα
)

1
p−1RN−1 − C2(

λ2

Rα
)

2
p−1RN

which implies thatE(vR − ψM ) → −∞ whenR→ +∞, we have forR large enough

E(vR) = E(vR − ψM ) + E(0) → −∞ whenR → +∞.

This completes the proof of assertion (ii).
(iii) and (iv) are a direct application of step 2 in [8] to get an a priori bound in a neighborhood ofΓ

instead of the blow up analysis whenx0 ∈ Γ. The proof of Theorem 1 is now complete.�

Now, let us deal with the case whereh is radial symmetric.
PROOF OFPROPOSITION1 :
Note first that ifΩ+ is a ballBR1

, then by the maximum principle, for any solutionu to (PΩ), we have
for r ≤ R1, minBr

u(x) is attained on∂Br. Furthermore, using theLp-estimate in [8] (see p 23-24 or
Proposition 5.1 in [14]), we have :

∫

B r
2

up ≤ C := C(r, inf
Br

h, φ1(BR1
), λ1, λ2, p). (4)

which implies that

min
BR1

u(x) ≤ min
B r

2

u(x) ≤ C := C(r, inf
Br

h, φ1(BR1
), λ1, λ2, p).

Sinceu is radial symmetric, thenu is uniformly bounded on∂Ω+. Therefore doing again the blow up
analysis as in step 2 of the proof of Theorem 1, we have thatx0 ∈ Ω+ and results in [16] are sufficient to
get the contradiction. This completes the proof of Proposition 1. �

Finally, let us prove Proposition 2
PROOF OFPROPOSITION2 :
Let (λ, u) a non trivial solution to(P ) andR0 such thatΩ+ ∪ Ω0 ⊂ BR0

. By Harnack inequality (see p.
199 in [17]),min

BR0

u(x) = mu > 0. ForR >> R0, consider the following problem :

(PR)

{

−∆φR = λφR − bφp
R in BR

φ = 0 in∂BR,

whereb satisfiesb > sup|x|≥R0
|h(x)| and(

λ

b
)

1
p−1 < mu. Then, by maximum principle, for allR large

enough, it is easy to prove thatφR < u in BR/BR0
(sincesup φR < (λ

b
)

1
p−1 ). Now, we will show that

φR → (λ
b
)

1
p−1 in L∞

loc(R
N ) whenR → +∞ which completes the proof of Proposition 2. For this, note

that φR is the unique nontrivial solution to(PR) (see [5]) forR large. From [15] results,φR is radial
symmetric and decreasing. Then,φR is also the global minimizer to

IR = min
v∈ H1

0
(BR)

E(v) :=
1

2

∫

BR

|∇v|2 − λv2 +
1

p+ 1

∫

BR

b vp+1

andE(φR) → −∞ whenR → +∞. For this, consider the following testing function :

kR(x) =







0 if |x| ≥ R− 1

(λ
b
)

1
p−1 if R− 1 ≤ |x|

(λ
b
)

1
p−1 (|x| − R+ 1) if R− 1 ≤ |x| ≤ R.
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Then,

E(φR) ≤ E(kR) ≤ C1(
λ

b
)

2
p−1RN−1 − C2(

λ

b
)

2
p−1RN → −∞ when R→ +∞. (5)

If R < R′, thenφR < φR′ < (λ
b
)

1
p−1 . Consequently,φR → v whenR → +∞ in L∞

loc(R
N ). v > 0 is

also radial symmetric and decreasing and satisfies :

−vrr − (N − 1)
vr

r
= λv − bvp in (0,+∞)

Suppose thatv 6= (λ
b
)

1
p−1 , then using the above equation, it is easy to show thatv(+∞) = 0 and since

φR ≤ v, φR tends uniformly to0 when|x| → +∞. Then for allǫ, there existsRǫ such thatφR(x) < ǫ if
|x| ≥ Rǫ. Therefore, sinceφR is a solution to(PR)

E(φR) = −(
1

2
−

1

p+ 1
)

∫

BR

b|φR|
p+1

≥ −C(Rǫ) − ǫp−1

∫

BR

b|φR|
2

≥ −C(Rǫ) − ǫp−1(
λ

b
)

2
p−1RN .

But, from (5) and fromǫ small enough, we get the contradiction for largeR. This completes the proof of
Proposition 2. �

Remark 5 Note that the result is not valid ifλ ≤ 0. Indeed, forK large, the functionK|x|
2

p−1 is a
supersolution to(P∗) (see proof of Theorem 1 step 4). In [13], the authors investigate the decay of weak
solutions of such problems.�

3. Applications

In this section, we prove Theorems 2 and 3.
PROOF OFTHEOREM 2 :
Sinceinf λ1(Ω0), λ1(Ω

+) = λ1(Ω
+), we get from Theorem 1 that any nontrivial solution to(P ) (resp.(PΩ))

is uniformly bounded inL∞(RN ) (resp. inL∞(Ω)). Then, we can proceed exactly as in [8] and get the
same results. Note that the compactness of solutions inL∞(RN ) is provided by the uniform decay of solu-
tions at infinity (see step 4 in the proof of Theorem 1).�

Now, let us consider the case whereΩ+ = ∅.
PROOF OFTHEOREM 3 :
Let us prove (i). The existence of a global unbounded branch of solutions to(P ), C, is obtained exactly as
in Theorem 2. So we don’t repeat the arguments (see [8] for details). To prove the global behaviour ofC,
note that if(λ, u) ∈ C, then0 ≤ λ < λ1(Ω0). Indeed, suppose by contradiction that there exists(λ, u) ∈ C
with 0 > λ, then sinceu→ 0 when|x| → +∞, by the maximum principle,u ≡ 0.

Therefore,C has asymptotic bifurcation points. Using the a priori estimates in Theorem 1, we have
that forλ 6= λ1(Ω0), the solutionsu are uniformely bounded. Consequently, there is one and onlyone
bifurcation pointλ = λ1(Ω0). This completes the proof of assertion (i).

Finally, to prove (ii), we should remark that ifΩ0 = ∅, thenλ1(Ω0) = +∞. Furthermore, when
λ → +∞, u(λ) → +∞ in any compactK ⊂ R

N . For this, note that ifλ1 < λ2 thenu(λ1) < u(λ2).
This completes the proof of theorem 3.�
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Remark 6 In Assertion (ii) of Theorem 3, the branchC is a smooth curve. Indeed, it is easy to prove that
for λ fixed, there is a unique non trivial solution to(P ) (the proof is the same as in bounded domain, see
[5]). Then using results in [10], we can prove thatC isC1. �
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