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A note about a priori estimates for indefinite problems
in unbounded domains

Jacques Giacomoni

Abstract. In this paper, we are dealing with the following superlinelliptic problem :

—Au = Au+ h(z)uP inQ
(P“){ w=0in 02, u>0

whereQ2 a smooth domain not necessary boundet aC? function fromR” to R changing sign such
thath(z) — —oo when|jz|| — +ooandl < p < S22 We give existence and uniform a priori
estimates for solutions t@Pg).

Una nota sobre estimaciones a priori para problemas indefini dos en
dominios no acotados

Resumen. Consideramos el siguiente problema eliptico superlineal

—Au = Au+ h(z)u? enQ
(P”){ u=0en o, u>0

dondeQ es un dominio regular no necesariamente acota@s, una funciorC? deRY enR cambiando
de signo tal quéx(z) — —oo cuandoljz|| — 4ooy 1 < p < {2£2. Obtenemos la existencia y
estimaciones a priori de las soluciones(de ).

1. Introduction
In this paper, we consider the following superlinear eltiproblem :

—Au = Au+ h(z)u? inQ
u20u|aQ:O

(Pa) {

Our goal is to extend the results in [8] whei&,) is also investigated in the case= RY. Precisely, in
[8] assuming tha®2t = {z € RY /h(z) > 0} is a bounded domain, that := {z € RY /h(z) = 0}
satisfies a nondegeneracy condition :

Ve € T',Vh(z) #0,
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the authors prove that there exist a global branch bifurgdtom the essential spectrum,inx L (RY).
For this, they prove that fox bounded, the solutions {@Pz~ ) obtained by a local approach are uniformly
bounded inL>(R"). The method they use involves studying a “local problet#s,,,), in a bounded
domainQQr O Br whereBpy, is the ball centered at 0 and with radiiis

(Pa,) —Au = Au+ h(z)u? inQp,
25w e HY{Qg), u >0,

and then they pass to the limit whéhgoes to+oc.

The crucial step in this procedure is to get a priori estim&te solutions tq P, . ) independent oR.

Here we prove that on some conditions, we can remove the gendeacy assumptions: vanishes in
a non zero measure set and get the sames results as in [8)yftarga domair2 with smooth boundary.
Furthermore, the a priori estimate we obtain concern alitsmis to (P,). Note that a large class of
unbounded domains are considered.

Here, we suppose thatsatisfies the following assumptions :

(H1) h € C*(RVR), Q" := {z € RN, h(z) > 0} is bounded domain with non zero measure and smooth
boundary.

Supposing that there existy, := {z € RN /h(x) = 0}/0Q2~ U 0N, we assume in addition
(H2) €y is bounded with smooth boundary afit, N 9Q~ N OO+ = 0,
(H3) Forz close todQy N O™, h(x) = C dist(z, Qo NOQT)7 ,v > 0,C > 0.
LetT := 90T N 9N, thenifT" is non emptyl satisfies either
(H4) forz € QT close tal', h(z) = C dist(z,T)" ,~ > 0,C >0
or

(H4bis) foranyz € T, Vh(x) # 0.
Remark 1

1. Clearly (H1) and (H2) imply thaf = Q+ N Q— and it is bounded

2. (H2) implies that), is far fromT".

3. (H3) and (H4) give some flatness conditionfonearo), andI’. We use (H3) and (H4) in a blow up
technique as in [6]. A similar argument is also used in [3].

4. (H4bis) is the nondegeneracy condition as in [Gl

Our purpose is to prove the existence of solutions and tothwestructure of solutions set with respect
to the bifurcation parametex.

Whenh(z) changes sign, the proof of existence of a priori estimatesoie difficult to obtain. Let us
mention some previous works in this direction :

In [6], the authors use a blow up technique combined with sbimeville theorems in cones to obtain
uniform a priori bounds and some existence results for éguéP,,) with 2 a bounded domain far <
p < Z—ﬁ and)\ = 0. (H4bis) is used to get’ = 1 in this paper. The question which follows then is : is it
true for anyp less the critical exponent?

In [12] Chen and Li answer positively to that question they obtain some a priori bounds for positive
solutions whem is subcritical {.e. p < %). Precisely they consider the following problem

—Au = h(x)uP inQ,
u € HI(Q)u>0,
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whereh satisfies (H1),(H4bisX)y = § andT’ C Q. They prove that every solution is uniformly bounded
and that the a priori bound depends only on the geometfy; pfandh.

The proof of this result is carried out dividing the domaittiree regions and then solving the following
steps:

1. boundedness of solutions in the region whefre) < —4, for a fixeds > 0,
2. boundedness of solutions in the region wHé(e’)| is small,
3. boundedness of solutions in the region whgte) > 4.

Each step involves different techniques :

1. Inthe region wheré(z) is strictly negative, the uniform estimate is obtained bydannack inequal-
ity and an integral estimate.

2. In the region wheré(z)| is small, the a priori bound results from the moving plan&iggue (here
(H4bis) plays a crucial role) and from the above estimate.

3. Inthe last region, a classical blow up analysis (see [ik6]5ed.

In [3], the authors remove the nondegeneracy conditiorgu$ia same blow-up technique as in [6] but
they keep some restrictions priue to the restriction in Liouville’s theorem they apply[19], the authors
prove that if we restrict to some type of solutions (with #nilorse index solutions precisely) the restriction
of p can be removed also in the degenerate case.

In the present work, combining different techniques, sofmiem booked from [6], [12] and [3], we
get uniform a priori estimates in inbounded domains casé 6! (s bounded) independent of the measure
of the domain considered and independent bbunded. Precisely, we prove the following main results :
Theorem 1 . Suppose that (H1), (H2), (H3) are satisfied, that p < % and that(2 is large enough
thatT" U 9Qy C Q anddQ C supph~. Let A (QT) (resp. A1(£2)) be the first eigenvalue te A in Q+
(resp. inQ2). We also assume th& is nonzero measure set. Then,

(i) 1f A > inf (A (27), A\1(Q0)), there are no non trivial solutions ¢#,).

(ii) Assume in addition thaF' is nonempty and (H4). Let such thatl < p < XH4f09)  por
any\g < Ay < inf(A(27),A1(Q)), there is a constant’ (= C(\o, A2)) such that if(\, u) is a
solution of(Py) and g < A < Ag then

fullL~ < C 1)
andC depends only oRg, A2, QT, Qg, p andh.
(i) 1If 9Q¢ N 9T = 0 and (H4bis) holds, then (1) is also true for apgubcritical.

(iv) If I" is empty or if (H4bis) holds instead of (H4), then (1) is trae®f < p < % andC depends
also onl.

Remark 2

1) Theorem 1 concern the case wh&gis non zero measure set.{l, is empty and if (H4bis) holds,
then we can apply results in [8].

2) Theorem 1 handle unbounded domaas bounded domains. For unbounded domains, the dirichlet
conditions are replaced by a limit condition at infinity.
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Next, we show that ifi has radial symetry properties afi2™ has only one piece component then no
restriction orp subcritical and no nondegeneracy condition are necesaaiyilar observation was previ-
ously made in [3] for bounded domainsll

Proposition 1 . Assume that is radial symmetric continuous function and ti§&t is a ball. Then, (1)is
also true for radial symmetric solutions.

Remark 3 If Q™ has two pieces component and if (H4bis) holds then Proposttiis also true. B

Finally, in the next result we show that the asymptotic béhavof 7 is relevant to determine the behaviour
of solutions to( P).

Proposition 2 . Assume thak is continuous function oR” such that lim h(z) = a < 0 and finite.

|z| =00

LetA > 0. Then, for any nontrivial solution to (P), we have

liminf u(z) > 0. 2

|| —+oc0
Remark 4

1. Proposition 2 is also valid in the case whérsatisfiesh(z) < 0 for |z| large and lim h(z) = 0.

|z|—+o0
2. We can extend easily Proposition 2 in the case whéns replaced by (u), g C*(R*) satisfying
5— @ nonincreasing,lim @ =0and lim @ =+4oc0. N
S S

s—0t S s—oot

Using the above a priori estimates and the global bifurcaRabinowitz (see [18]) Theorem, we get
existence of solutions toP) and the behaviour of solutions with respect to the bifuoraparametes.
Considerpg > 0 the eigenfunction associated to the first eigenvalu&?) which satisfies :

{ —A(bg =\ (Q)¢Q in Q
¢ >0.

ande ¢q = 1. LetIIr denote the projection ont®. We will prove as application of a priori estimates the
following results :

Theorem 2 .

Assume that the assumptions of Theorem 1 are satisfied. Weheafollowing :

If A1 (27) < A1(€o), then there is a global branch of nontrivial solutions(@?), C, connected iR x
L>(RY), bifurcating from(0, 0) such that

(i) TIrC =] — 00, Ao[ Where0 < Ao < A1 (QF).
(i) Let(A,,u,) € Csuchthat\,, — —ocoasn — +oo. Then, up to subsequencgs,, || 1 - — +o0.
Finally, if QT is empty, then we have :

Theorem 3 .
Assume tha™ = () andQ, bounded.

(i) if Qo is a nonzero measure set, then there exists a global branobmfivial solutions of( P), C,
connected iR x L>°(R¥), bifurcating from(0, 0) such that

a) IIrC =]0, A1(Q)],
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b) Let(A,,un) € Csuchthat\, — A1(Qp) asn — +oo. Then, up to subsequencés,, || L~ —
+00.

(i) If Qg is empty, then (i) is also valid replacing (o) by +co.

The outline of the paper is as follows :
In Section 2, We prove the results concerning a priori egésiarheorem 1, Proposition 1, Propositon 2.
In Section 3, we prove Theorems 2 and 3.

2. A Priori Estimates.
First, we prove Theorem 1 :
PROOF OFTHEOREM 1.

Let us prove (i). We use a standard argument for superlifati@problems. Multiply (7n) by ¢o+ and
integrate by parts if2 ™, we obtain :

0
@) [ ot [ 20— [ hwsns + A [ udor @
Q+ a0+ n Q+ Q+

From (3), and Hopf lemma :

(@ - [

Q

upo+ > / h(z)uP g+ > 0,
+ Q-+

which implies that\ < \;(27). Repeating the argument witfy, , (i) is proved. Let us prove (ii). For this,
we divide the proof in several parts :

1. Local Estimates if2; := {z € QN supph~ /d(z,T Uy) > §}. The estimate is obtained as in [8]
by a uniform localL?-estimate + the Harnack inequality (see proof of Propasitid step 1 in [8]).

2. Estimates if2*. We use a blow up technique as in [6] and [3].
3. Estimates if2g. We use a super and sub solutions argument.
4. L°°-bound for|z| large, obtained by the construction of a supersolution.

Step 1 A priori estimates ir);. See [8] or [14] (Proposition 5.1 and step 1 in the proof ofgesition
5.2). Note that sincéf) C supph~ and by maximum principle we get a priori bounds négr
Step 2 A priori estimates if2*. For this, suppose by contradiction that there exists aes@ep{\x, ux)

solution to(P) with A\g < A\p < A andsupuy — +oo. Letzy such thatuy(xy) = supug. Upto a
Q+ ot

subsequence, we can suppose ihat> zo € Q+.

We now deal with two cases :
First, suppose that, € QT then we can conclude using [16] and get the contradictiopp8se now that
zo € Q. Then, eithery € 90+ N OQ, or zo € 9N+ N OQ~. Now following the same blow up analysis
in [3] (see theorem 4.3) and using (H3) in the cage= QT N Q) (resp. (H4) in the case, € I') we get
a contradiction by a Liouville theorem in cones (see Thea2elin [6]).
Step 3 A priori estimates inf). Let 2} one of the connected component@f. By (H2), 992} belongs to
00~ or9Q™. Suppose that) belongs tad2~, then we construct a supersolution ia-aeighborhood of
Q}, denoted by, : Let A such that\s < . < A\1(Q0) and¢, the solution to

—Ad = Ao in Q
¢ = M in 99..
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The existence and uniquenes<pfs provided by the fact that. < A1(€Qg) ande small enough such that
Ae < A\t (QE)

Next, we choosé/ = sup u which do not depend oa since in Step 1 we have proved uniform local a
00

priori estimates irf2; (note thato(2. belongs td); for an appropriated). Then, by maximum principle,
we haveu < &..

Now, consider the case) c 9Q*. Therefore, by step 2, we have thats uniformly bounded on
0Q%. Let M be the uniform bound aof in 9. Now, considet the unique solution to

—AE = X¢ in Q)
¢ = M in 9.

Therefore, by the maximum principle, < ¢ in Q. Finally, we get an uniform bound if}, since() is
bounded and have only finetely many components.

Step 4 A priori estimates foijz| large. This part concerns the case wh@rés unbounded and we can
suppose here th&t = RY. Let R, be such tha{l’ U 99y} C Bg, and¢ :

Py —A¢ = Xy + h*(z)¢? inRN/Bp,
(P+) ¢ =M in0Bpg, , » — 0when|z| — +o0.

From a priori estimates in step 1, we choddesuch that for any solution, sup w(z) < M andh* a

Br,
continuous function such that > h we fix later. Then, by the maximum principle,< ¢. Next, thanks
to lim h(z) = —oo we prove thai(z) tends to0 when|z| — +oo. For this, we choosg* negative,

|z|— 00
radial symmetric, decreasing for large= |z| andh* (r) — —oco whenr — +oo.
To prove the existence gf, we consider the following problem :

(P *) —Agb = Ao+ h*(I)¢p in BR/BRo
R ¢ = M in dBp, and¢ = 0indBp.

For R large, we claim that there exists a unique solutiofifg=). For this, considet,, a smooth contin-
uation of M with compact support and the following minimization prahble

1 v 23\ (w 2
e =g [ (Vv e+ van?)

1

P+ 1 JRy<lz|<R

Ir = min
vE€ H} (Ro<|z|<R)

|h* (v + ¢ar)PH!

By Sobolev imbeddings, we get easily > —oo then, a global minimizer solutiofr to (Prx*) exists.
The uniqueness is a standard argument using the concauhy ofonlinearity (see appendix Il in [9]). By
uniqueness ofr and doingR — +oco, we get a minimal solutiop to (Px) and¢ is radial. Note that

is bounded and it is a local maximum, thep(zy) < (m)f’*l. Therefore, sincé * (r) — —oo
whenr — +o0, either¢ is decreasing fofz| large eitherp(x) — 0 when|z| — +o00. Assume that the
first possibility holds therm(z) — [ when|z| — +oo. If I # 0 then the O.D.E satisfied by shows
that¢”(r) — 400 whenr — +oo which is impossible since is bounded. Note that we need here the
local approach. Indeed, using that, has a compact support, fé¥ large we claim thalp — —oco when

R — +o00. For this, define i as follows :

0iflz] <& —1orlz|>R+1
22)55T jf B < o] <

= { BT ME<pl <R )
(E)7 T2 =5 + 1) if 5 —1<|a| <3
(#2)7 7 (ja| = R) if R<|z| <R+1
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Now, observing that by a simple computation

Ao 1 _
E(wr —m) < Ol(R—i)P’lRN L — Oy

which implies that (vg — ¥) — —oo whenR — +o0, we have forR large enough
E(vr) = E(vr — Yar) + £(0) — —oo whenR — +oo.

This completes the proof of assertion (ii).
(i) and (iv) are a direct application of step 2 in [8] to get a priori bound in a neighborhood of
instead of the blow up analysis whep € T'. The proof of Theorem 1 is now completell

Now, let us deal with the case wherés radial symmetric.

PROOF OFPROPOSITIONT :

Note first that if2" is a ball Bg,, then by the maximum principle, for any solutiarto (P,), we have
for r < Ry, ming, u(z) is attained or9B,. Furthermore, using théP-estimate in [8] (see p 23-24 or
Proposition 5.1 in [14]), we have :

/ up S C = O(Tv lélf h’a qsl(BRl)v)\la AQap)' (4)
Br s

which implies that

min u(z) < néinu(:c) < C:=C(r, iélfh, $1(BR,), A1, A2, D).

Br,

[V

Sincew is radial symmetric, them is uniformly bounded odQ2*. Therefore doing again the blow up
analysis as in step 2 of the proof of Theorem 1, we haveitha Q* and results in [16] are sufficient to
get the contradiction. This completes the proof of Propmsit. W

Finally, let us prove Proposition 2
PROOF OFPROPOSITIONZ :
Let (A, «) a non trivial solution to P) and R, such that)+ Uy C Bpg,. By Harnack inequality (see p.
199in [17]),151111 u(x) = m, > 0. For R >> Ry, consider the following problem :
Ro

—A¢r = A\pr — b, in Br
(Pr) { 6 = 0indBp,

whereb satisfiesh > sup,> g, [h(7)] and(%)p_il < m,. Then, by maximum principle, for aR large

enough, it is easy to prove thak < w in Bg/Bg, (Sincesup ¢r < (%)ﬁ). Now, we will show that

or — (i)p—il in L2 (RN) whenR — +oco which completes the proof of Proposition 2. For this, note

b loc
that ¢ is the unique nontrivial solution t6Pr) (see [5]) forR large. From [15] resultsyr is radial

symmetric and decreasing. Thery is also the global minimizer to

1 1
Ir= min €&(v):= —/ Vo2 — \? + —— boPtt
ve HY (BR) 2 /g p+1 /g,

and&(¢r) — —oo whenR — +o0. For this, consider the following testing function :
0ifjz] >R—-1
kr(z) = { (%)P_ll if R—1< |z
(3)7 7 (|z = R+1) if R—1<[z] <R.

=
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Then,

£(0r) < £(kr) < C1 ()T RN — Co(N)7 RY — —o0 when R — +oc. )
If R < R/, then¢gr < ¢r < (%)ﬁ. Consequentlypr — v whenR — +ooin L2 (RV). v > 0 is

. ) . L loc
also radial symmetric and decreasing and satisfies :

—Vpr — (N — 1)1;—T = v —b? in (0,4+00)

Suppose that # (%)p_il, then using the above equation, it is easy to showdfiabo) = 0 and since
or < v, ¢ tends uniformly ta@) when|z| — +o00. Then for alle, there existsR. such thatpr(z) < e if
|z| > R.. Therefore, sincér, is a solution ta Pr)

1 1

fon) = ~(G==p) [ bonl™!

v

(R - / bl

Br

> —C(R.) —ep—l(%)%RN.

But, from (5) and frome small enough, we get the contradiction for lad@e This completes the proof of
Proposition 2. B

Remark 5 Note that the result is not valid ik < 0. Indeed, forK large, the functionK|:c|% is a
supersolution td Px) (see proof of Theorem 1 step 4). In [13], the authors investithe decay of weak
solutions of such problems.l

3. Applications

In this section, we prove Theorems 2 and 3.

PROOF OFTHEOREM 2 :

Sinceinf A1 (20), A1 (21) = A1 (271), we get from Theorem 1 that any nontrivial solutior{0) (resp(Px,))

is uniformly bounded in.>(RY) (resp. inL>°(9)). Then, we can proceed exactly as in [8] and get the
same results. Note that the compactness of solutioh&i(R” ) is provided by the uniform decay of solu-
tions at infinity (see step 4 in the proof of Theorem 11

Now, let us consider the case whéteg = ().

PROOF OFTHEOREM 3 :

Let us prove (i). The existence of a global unbounded brafieblations to(P), C, is obtained exactly as
in Theorem 2. So we don't repeat the arguments (see [8] faildet To prove the global behaviour 6f
note that if(\, u) € C,then0 < A < A1(€p). Indeed, suppose by contradiction that there exists) € C
with 0 > A, then since: — 0 when|z| — +oo, by the maximum principley = 0.

Therefore,C has asymptotic bifurcation points. Using the a priori eatiés in Theorem 1, we have
that for A £ A1(€y), the solutions: are uniformely bounded. Consequently, there is one and amdy
bifurcation pointh = A\1(€g). This completes the proof of assertion (i).

Finally, to prove (ii), we should remark that , = @, then\;(Qy) = +oo. Furthermore, when
A — 400, u(A) — +oo in any compacK C R¥Y. For this, note that if\; < Ao thenu(A1) < u(X2).
This completes the proof of theorem 3l
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Remark 6 In Assertion (ii) of Theorem 3, the branchis a smooth curve. Indeed, it is easy to prove that
for A fixed, there is a unique non trivial solution (&) (the proof is the same as in bounded domain, see

[5D).

Then using results in [10], we can prove tias C'. W
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