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Explosive solutions of semilinear elliptic systems with
gradient term

Marius Ghergu and Vicenţiu R ădulescu

Abstract. We study the existence of boundary blow-up solutions to the nonlinear elliptic system
∆u + |∇u| = p(|x|)f(v), ∆v + |∇v| = q(|x|)g(u) in Ω. HereΩ is either a bounded domain inRN or
it denotes the whole space. The nonlinearitiesf andg are positive and continuous, while the nonnegative
potentialsp andq are continuous and satisfy appropriate growth conditions at infinity. We show that
boundary blow-up positive solutions fail to exist iff andg are sublinear. This result holds both ifΩ is
bounded, and ifΩ is the whole space butp andq have slow decay at infinity. We establish the existence of
infinitely many entire blow-up solutions in the case wherep andq are of fast decay and iff andg satisfy
a sublinear type growth condition at infinity.

Soluciones explosivas de sistemas elı́pticos semilineale s con t érminos
gradientes

Resumen. Estudiamos la existencia de soluciones del sistema elı́ptico no lineal∆u + |∇u| =
p(|x|)f(v), ∆v + |∇v| = q(|x|)g(u) enΩ que explotan en el borde. Aquı́Ω es un dominio acotado de
R

N o el espacio total. Las nolinealidadesf y g son funciones continuas positivas mientras que los poten-
cialesp y q son funciones continuas que satisfacen apropiadas condiciones de crecimiento en el infinito.
Demostramos que las soluciones explosivas en el borde dejande existir sif y g son sublineales. Esto se
tiene o bien siΩ es acotado o cuandoΩ es el espacio total perop y q decaen lentamente en el infinito.
Mostramos la existencia de infinitas soluciones enteras explosivas cuandop y q decaen rápidamente y
cuandof y g satisfacen una condición de tipo sublineal en el infinito.

1. Introduction and the main results

Existence and nonexistence of solutions of the semilinear elliptic system
{

∆u = f(x, u, v) in Ω,

∆v = g(x, u, v) in Ω
(1)

have received much attention recently. See, for example, Chen and Lu [2], Cı̂rstea and Rădulescu [4],
Clément, Manásevich and Mitidieri [5], Dalmasso [6], De Figueiredo and Jianfu [7], Lair and Shaker [14],
Serrin and Zou [18, 19], Yarur [20], Wang and Wood [21], and the references therein. Most of these results
have to do with the nonexistence of positive solutions, the existence of radial solutions, or the asymptotic
behavior of solutions.

Presentado por Jesús Ildefonso Dı́az.
Recibido: 4 de Octubre de 2002.Aceptado: 7 de Agosto de 2003.
Palabras clave / Keywords: semilinear elliptic system, explosive solution, existence and nonexistence results, multiplicity of solu-

tions.
Mathematics Subject Classifications: 34B15, 34B18, 35B40, 35B50, 35J45.
c© 2003 Real Academia de Ciencias, España.

467



We are concerned in this paper with the study of positive solutions to the following class of semilinear
elliptic systems with gradient term

{

∆u + |∇u| = p(|x|)f(v) in Ω,

∆v + |∇v| = q(|x|)g(u) in Ω,
(2)

whereΩ ⊂ R
N (N ≥ 1) denotes either a bounded open set inR

N or the whole ofRN . Throughout this
paper we assume thatp, q 6≡ 0 are nonnegative Hölder functions. We also assume thatf andg are Hölder,
positive and non-decreasing functions on(0,∞).

We are mainly interested in finding properties oflarge (explosive, blow-up) solutionsof (2), that is
positive solutions(u, v) satisfyingu(x) → +∞ andv(x) → +∞ asdist (x, ∂Ω) → 0 (if Ω is bounded), or
u(x) → +∞ andv(x) → +∞ as|x| → ∞ (if Ω = R

N ). In the latter case such solutions are calledentire
large (explosive, blow-up) solutions. A geometric motivation in that sense can be found in [3, 12, 15]. We
also point out the pioneering work of Keller [10] and Osserman [16].

The corresponding equation that leads us to the system (2) is

∆u + |∇u|a = p(x)f(u), x ∈ Ω, 0 < a ≤ 2,

which was treated in [1, 8] (in the case whereΩ is bounded) and in [9, 13] (forΩ = R
N ). Problems

of this type arise in stochastic control theory and have beenfirst studied in Lasry and Lions [11]. The
corresponding parabolic equation was considered in Quittner [17]. In terms of the dynamic programming
approach, an explosive solution of (2) corresponds to a value function (or Bellman function) associated to
an infinite exit cost (see [11]).

Our first result asserts that ifΩ is bounded and if bothf andg are sublinear at infinity, then problem (2)
has no positive boundary blow-up solution. More precisely,the following hold

Theorem 1 SupposeΩ ⊂ R
N is a bounded domain andf, g satisfy

max

{

sup
t≥1

f(t)

t
, sup

t≥1

g(t)

t

}

< +∞. (A1)

Then problem (2) has no positive large solution.

The same conclusion holds ifΩ = R
N , but under natural additional assumptions related to the behavior

of p andq at infinity. In order to state the result in this case, let us first define, for anyr ≥ 0,

P (r) =

∫ r

0

ettN−1p(t)dt

errN−1
, Q(r) =

∫ r

0

ettN−1q(t)dt

errN−1
. (3)

Theorem 2 LetΩ = R
N . Assume that(A1) holds and

∫ ∞

1

P (r)dr < +∞,

∫ ∞

1

Q(r)dr < +∞. (4)

Then problem (2) has no positive entire large solution.

Theorem 3 LetΩ = R
N . Assume that

∫ ∞

1

P (r)dr = +∞,

∫ ∞

1

Q(r)dr = +∞. (5)

If

lim
t→∞

f(ag(t))

t
= 0, for all constantsa ≥ 1, (A2)

then problem (2) has infinitely many positive entire large solutions.
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We point out that Condition(A2) has been introduced in [4].

Remark 1 Using the fact that

∫ r

0

ertkdt = k!er

k
∑

s=1

(−1)k−s ts

s!
for all integersk ≥ 1, (6)

we observe that the following functions verify (4) or (5):

(i) condition (4) holds provided thatp(t) =
1

1 + tγ
, γ > 1 and q(t) =

1

(1 + t2)θ
, θ >

1

2
.

(ii) condition (5) holds provided thatp(t) = tγ , q(t) = tθ, γ, θ ≥ 0. �

Remark 2 We give in what follows some examples of nonlinearitiesf andg that satisfy(A2):
(i) f(t) =

∑l
j=1 ajt

γj , g(t) =
∑m

k=1 bktθk , t ≥ 0 with aj , bk, γj, θk > 0 and γ θ < 1, whereγ =
max1≤j≤l γj , θ = max1≤k≤m θk.

(ii) f(t) = (1 + tγ1)γ2 , g(t) = (1 + tθ1)θ2 , whereγ1, γ2, θ1, θ2 > 0 and γ1γ2θ1θ2 < 1.

(iii) f(t) = ln(1 + tγ), g(t) = ln(1 + tθ), γ, θ > 0.

(iv) f(t) = ln(1 + tγ), g(t) = etθ

, γ > 0, θ ∈ (0, 1). �

2. Proof of Theorem 1

Suppose that(u, v) is a positive large solution of (2) and letw(x) = ln(1 + u(x) + v(x)), x ∈ Ω. Then
w is a positive function andw(x) → ∞ as dist (x, ∂Ω) → 0. A simple calculation yields

∆w =
∆u + ∆v

1 + u + v
−

N
∑

i=1

(uxi
+ vxi

)2

(1 + u + v)2
in Ω.

Taking into account the assumption(A1) we have

∆w ≤ ∆u + ∆v

1 + u + v

≤ ‖p ‖L∞(Ω)f(v) + ‖q ‖L∞(Ω)g(u)

1 + u + v

≤
(

‖p ‖L∞(Ω) + ‖q ‖L∞(Ω)

) f(v) + g(u)

1 + u + v

≤
(

‖p ‖L∞(Ω) + ‖q ‖L∞(Ω)

)

(

f(1 + v)

1 + v
+

g(1 + u)

1 + u

)

≤ K,

for some constantK > 0. Hence

∆(w(x) − K|x|2) < 0, for all x ∈ Ω.

Let z(x) = w(x) − K|x|2, x ∈ Ω. Then

∆z < 0 in Ω (7)

and
z(x) → ∞ as dist(x, ∂Ω) → 0. (8)

Fix x0 ∈ Ω and M > 0. At this point, to reach a contradiction we will show thatz(x0) > M . Suppose
z(x0) ≤ M . For all δ > 0, we set

Ωδ = {x ∈ Ω | dist(x, ∂Ω) > δ}.
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Since z(x) → ∞ as dist(x, ∂Ω) → 0, we can chooseδ > 0 such thatz(x) > M for all x ∈ Ω \ Ωδ.
Obviously, x0 ∈ Ωδ. Moreover,M − z(x0) ≥ 0 and(M − z) |∂Ωδ

≤ 0. Therefore we can find̄x ∈ Ωδ

such that
max
Ωδ

(M − z(x)) = M − z(x̄) ≤ 0.

It follows that ∆(M − z)(x̄) ≤ 0, that is ∆z(x̄) ≥ 0 which contradicts (7). Hence (2) has no positive
large solutions. This completes the proof.�

Remark 3 We can employ the same method as above to show that the system
{

∆u + |∇v| = p(|x|)f(v) in Ω,

∆v + |∇u| = q(|x|)g(u) in Ω,

has no positive large solutions iff andg satisfy(A1). �

3. Proof of Theorem 2

Arguing by contradiction, let us assume that the system (2) has the positive entire large solution(u, v).
Consider the spherical average ofu and v defined by

ū(r) =
1

cNrN−1

∫

|x|=r

u(x)dσx, r ≥ 0 (9)

v̄(r) =
1

cNrN−1

∫

|x|=r

v(x)dσx, r ≥ 0 (10)

wherecN is the surface area of the unit sphere inR
N . Sinceu and v are positive entire large solutions it

follows that ū, v̄ are positive andlim
r→∞

ū(r) = lim
r→∞

v̄(r) = +∞. By the change of variablex → ry, we

have

ū(r) =
1

cN

∫

|y|=1

u(ry) dσy , r ≥ 0

and

ū′(r) =
1

cN

∫

|y|=1

∇u(ry) · y dσy , r ≥ 0. (11)

The above relation may be rewritten as

ū′(r) =
1

cN

∫

|y|=1

∂u

∂r
(ry) dσy =

1

cNrN−1

∫

|x|=r

∂u

∂r
(x) dσx,

that is

ū′(r) =
1

cNrN−1

∫

|x|=r

∆u(x) dσx, for all r ≥ 0. (12)

Similarly we have

v̄′(r) =
1

cNrN−1

∫

|x|=r

∆v(x) dσx, for all r ≥ 0. (13)
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Due to the presence of the gradient term in (2), we cannot infer that ∆u ≥ 0 in R
N and so we do not

know if ū′ ≥ 0 (or v̄′ ≥ 0 ) in [0,∞). In order to overcome this lack of monotonicity, set

U(r) = max
0≤t≤r

ū(r), V (r) = max
0≤t≤r

v̄(r). (14)

Now it is easy to see thatU , V are positive and non-decreasing functions. MoreoverU ≥ ū, V ≥ v̄ and
U(r), V (r) → +∞ asr → ∞.

By (A1) , that there existsM > 0 such that

max{f(t), g(t)} ≤ M(1 + t), for all t ≥ 0. (15)

Now (11), (12) and (15) lead to

ū′′ +
N − 1

r
ū′ + ū′ ≤ 1

cNrN−1

∫

|x|=r

[∆u(x) + |∇u|(x)] dσx

= p(r)
1

cN rN−1

∫

|x|=r

f(v(x))dσx

≤ Mp(r)
1

cN rN−1

∫

|x|=r

(1 + v(x)) dσx

= Mp(r) (1 + v̄(r))
≤ Mp(r) (1 + V (r)) ,

for all r ≥ 0. It follows that
(

rN−1erū′
)′ ≤ MerrN−1p(r) (1 + V (r)) for all r ≥ 0.

So, for all r ≥ r0 > 0,

ū(r) ≤ ū(r0) + M

∫ r

r0

e−tt1−N

∫ t

0

essN−1p(s)(1 + V (s))dsdt

≤ ū(r0) + M

∫ r

r0

e−tt1−N (1 + V (t))

∫ t

0

essN−1p(s)dsdt

≤ ū(r0) + M(1 + V (r))

∫ r

r0

e−tt1−N

∫ t

0

essN−1p(s)dsdt,

that is

ū(r) ≤ ū(r0) + M(1 + V (r))

∫ r

r0

P (t)dt, for all r ≥ r0 ≥ 0. (16)

Since
∫ ∞

1

P (r)dr < ∞ and
∫ ∞

1

Q(r)dr < ∞, we can chooser0 ≥ 1 such that

max

{
∫ ∞

r0

P (r)dr,

∫ ∞

r0

Q(r)dr

}

<
1

2M
. (17)

From (14) and the fact thatlim
r→∞

ū(r) = lim
r→∞

v̄(r) = ∞, we can findr1 ≥ r0 such that

U(r) = max
r0≤t≤r

ū(r), V (r) = max
r0≤t≤r

v̄(r), for all r ≥ r1. (18)

Thus (16) and (18) yield

U(r) ≤ ū(r0) + M(1 + V (r))

∫ r

r0

P (t)dt, for all r ≥ r1.
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Furthermore, by (17) we obtain

U(r) ≤ ū(r0) +
1 + V (r)

2
for all r ≥ r1,

and so

U(r) ≤ C1 +
1

2
V (r) for all r ≥ r1, (19)

whereC1 =
1

2
+ ū(r0) > 0. In a similar way we get

V (r) ≤ C2 +
1

2
U(r) for all r ≥ r1, (20)

By addition, (19) and (20) lead to

U(r) + V (r) ≤ 2(C1 + C2) for all r ≥ r1. (21)

This means thatU and V are bounded and sou and v are bounded which is a contradiction. It follows
that (2) has no positive entire large solutions and the proofis now complete. �

4. Proof of Theorem 3

We start by showing that (2) has positive radial solutions. On this purpose we fixa > 0 and b > 0 and we
show that the system























u′′ +
N − 1

r
u′ + u′ = p(r)f(v(r)), r > 0,

v′′ +
N − 1

r
u′ + v′ = q(r)g(u(r)), r > 0,

u′, v′ ≥ 0 on [0,∞),
u(0) = a > 0, v(0) = b > 0,

(22)

has solutions. ThenU(x) = u(|x|), V (x) = v(|x|) are positive solutions of (2).
Integrating (22) we have

u(r) = a +

∫ r

0

e−tt1−N

∫ t

0

essN−1p(s)f(v(s))dsdt ∀ r ≥ 0, (23)

v(r) = b +

∫ r

0

e−tt1−N

∫ t

0

essN−1q(s)g(u(s))dsdt ∀ r ≥ 0. (24)

Define v0 ≡ b and let (uk)k≥1, (vk)k≥1 given by

uk(r) = a +

∫ r

0

e−tt1−N

∫ t

0

essN−1p(s)f(vk−1(s))dsdt ∀ r ≥ 0, (25)

vk(r) = b +

∫ r

0

e−tt1−N

∫ t

0

essN−1q(s)g(uk(s))dsdt ∀ r ≥ 0. (26)

Since v1(r) ≥ b, it follows that u2(r) ≥ u1(r) for all r ≥ 0 which yields v2(r) ≥ v1(r) and so
u3(r) ≥ u2(r) for all r ≥ 0. Repeating such arguments we deduce that

uk(r) ≤ uk+1(r) and vk(r) ≤ vk+1(r), for all r > 0, k ≥ 1.
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Let us now prove that the non-decreasing sequences(uk)k≥1 and (vk)k≥1 are bounded from above on
bounded sets. We first observe that (25) and (26) yield

uk(r) ≤ uk+1(r) ≤ a + f(vk(r))

∫ r

0

P (t)dt, ∀ r ≥ 0, k ≥ 1 (27)

and

vk(r) ≤ b + g(uk(r))

∫ r

0

Q(t)dt, ∀ r ≥ 0, k ≥ 1 (28)

Let R > 0 be arbitrary. From (27) and (28) we get

uk(R) ≤ a + f

(

b + g(uk(R))

∫ R

0

Q(t)dt

)

∫ R

0

P (t)dt, ∀ k ≥ 1.

This imply

1 ≤ a

uk(R)
+

f

(

b + g(uk(R))

∫ R

0

Q(t)dt

)

uk(R)

∫ R

0

P (t)dt, ∀ k ≥ 1. (29)

Taking into account the monotonicity of(uk(R))k≥1, there existsL(R) := limk→∞ uk(R).
We claim thatL(R) is finite. Indeed, if not, we letk → ∞ in (29) and the assumption(A2) leads us
to a contradiction. ThusL(R) is finite. Sinceuk, vk are increasing functions, it follows that the map
(0,∞) ∋ R 7−→ L(R) is non-decreasing on(0,∞) and

uk(r) ≤ uk(R) ≤ L(R), ∀ r ∈ [0, R], ∀ k ≤ 1,

vk(r) ≤ b + g(L(R))

∫ R

0

Q(t)dt, ∀ r ∈ [0, R], ∀ k ≤ 1.

Furthermore, there existslimR→∞ L(R) = L̄ ∈ (0,∞] and the sequences(uk)k≥1 and (vk)k≥1 are
bounded from above on bounded sets.

Let u(r) := limk→∞ uk(r), v(r) := limk→∞ vk(r) for all r ≥ 0. By standard elliptic regularity
theory we deduce that(u, v) is a positive solution of (22).

In order to conclude the proof, it is enough to show that(u, v) is a large solution of (22). Let us remark
that (23), (24) imply

u(r) ≥ a + f(b)

∫ r

0

P (t)dt, ∀ r ≥ 0,

v(r) ≥ b + g(a)

∫ r

0

Q(t)dt, ∀ r ≥ 0.

Sincef, g are positive functions andp, q satisfy (5) we can conclude that(u, v) is a large solution of (22)
and so(U, V ) is a positive entire large solution of (2). Hence any large solution of (22) provides a positive
entire large solution(U, V ) of (2) with U(0) = a and V (0) = b. Since (a, b) ∈ (0,∞) × (0,∞)
was chosen arbitrarily, it follows that (2) has infinitely many positive entire large solutions. The proof of
theorem is now complete. �

Remark 4 The condition (5) is sufficient but not necessary for the existence of positive entire large solu-

tions for (2). Indeed, let us considerf(t) =
√

t, g(t) = t, p(r) = 4
r3 + (N + 2)r2

√
r2 + 1

, q(r) = 2
r + N

r4 + 1
.
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Using (6) we get
∫ ∞

1

P (r)dr = +∞ and
∫ ∞

1

Q(r)dr < +∞. However, the corresponding system to (2)

is














∆u + |∇u| = 4
|x|3 + (N + 2)|x|2

√

|x|2 + 1
·
√

v in R
N ,

∆v + |∇v| = 2
|x| + N

|x|4 + 1
· u in R

N ,

which has the positive entire large solution(|x|4 + 1, |x|2 + 1). �
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