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Explosive solutions of semilinear elliptic systems with
gradient term

Marius Ghergu and Vicentiu R adulescu

Abstract. We study the existence of boundary blow-up solutions to thelinear elliptic system
Au+ |Vau| = p(|z]) f(v), Av + |Vv| = q(|z])g(u) in Q. HereQ is either a bounded domain &" or

it denotes the whole space. The nonlinearifiemndg are positive and continuous, while the nonnegative
potentialsp and ¢ are continuous and satisfy appropriate growth conditidrigfmity. We show that
boundary blow-up positive solutions fail to existfifandg are sublinear. This result holds both(ifis
bounded, and if2 is the whole space bgtandg have slow decay at infinity. We establish the existence of
infinitely many entire blow-up solutions in the case whendgq are of fast decay and jf andg satisfy

a sublinear type growth condition at infinity.

Soluciones explosivas de sistemas elipticos semilineale s con t érminos
gradientes

Resumen.  Estudiamos la existencia de soluciones del sistema @iptd linealAu + |Vu| =
p(|z|) f(v), Av + |Vo| = ¢(|z])g(u) en€) que explotan en el borde. Aqfiies un dominio acotado de
RY o el espacio total. Las nolinealidadgy ¢ son funciones continuas positivas mientras que los poten-
cialesp y ¢ son funciones continuas que satisfacen apropiadas condgide crecimiento en el infinito.
Demostramos que las soluciones explosivas en el borde dejexistir sif y g son sublineales. Esto se
tiene o bien sk es acotado o cuand® es el espacio total pegy ¢ decaen lentamente en el infinito.
Mostramos la existencia de infinitas soluciones enterabsivps cuandg y ¢ decaen rapidamente y
cuandof y g satisfacen una condicion de tipo sublineal en el infinito.

1. Introduction and the main results

Existence and nonexistence of solutions of the semilinkiptie system

Au = f(z,u,v) inQ,
{ Av =g(z,u,v) inQ (1)

have received much attention recently. See, for examplenGmd Lu [2], Cirstea and Radulescu [4],

Clément, Manasevich and Mitidieri [5], Dalmasso [6], Dgieiredo and Jianfu [7], Lair and Shaker [14],

Serrin and Zou [18, 19], Yarur [20], Wang and Wood [21], arel tbferences therein. Most of these results
have to do with the nonexistence of positive solutions, thstence of radial solutions, or the asymptotic
behavior of solutions.
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We are concerned in this paper with the study of positivetswig to the following class of semilinear
elliptic systems with gradient term

Au+|Vu| =p(lz)f(v) in, @
Av+|Vo| = q(lz])g(u)  inQ,

whereQ) ¢ RY (N > 1) denotes either a bounded open seRih or the whole ofRY. Throughout this
paper we assume thatg £ 0 are nonnegative Holder functions. We also assumeftltaaidg are Holder,
positive and non-decreasing functions(@noo).

We are mainly interested in finding propertieslafge (explosive, blow-up) solutiorsf (2), that is
positive solutiongu, v) satisfyingu(z) — +oo andv(z) — +oo asdist (z, 9Q) — 0 (if Q is bounded), or
u(z) — +oo andv(z) — +oo as|z| — oo (if 2 =RYN). In the latter case such solutions are catiedre
large (explosive, blow-up) solutiond geometric motivation in that sense can be found in [3, B2, We
also point out the pioneering work of Keller [10] and Ossemrfi®g].

The corresponding equation that leads us to the system (2) is

Au+|[Vul* =p(x)f(u), r€Q,0<a<?2,

which was treated in [1, 8] (in the case whefeis bounded) and in [9, 13] (fof2 = RY). Problems
of this type arise in stochastic control theory and have Hgsnhstudied in Lasry and Lions [11]. The
corresponding parabolic equation was considered in Quiftt’]. In terms of the dynamic programming
approach, an explosive solution of (2) corresponds to aevainction (or Bellman function) associated to
an infinite exit cost (see [11]).

Our first result asserts that(if is bounded and if botlf andg are sublinear at infinity, then problem (2)
has no positive boundary blow-up solution. More precistblg,following hold

Theorem 1 Suppose? C RV is a bounded domain and, g satisfy

max{sup &, sup @} < +o00. (A1)

>1 b g>1 T
Then problem (2) has no positive large solution.

The same conclusion holds(¥ = R”, but under natural additional assumptions related to tha\der
of p andgq at infinity. In order to state the result in this case, let & filefine, for any: > 0,

/T etV Ip(t)dt /T et "lg(t)at
P(T)ZOQTTa Q(T)ZOeTT- )

Theorem 2 LetQ = RY™. Assume that4;) holds and
/ P(r)dr < o0, / Q(r)dr < +oo. 4)
1 1

Then problem (2) has no positive entire large solution.

Theorem 3 LetQ = RY. Assume that

/1 " P(r)dr = 4o, /1 " O(r)dr = +oo. )

0),
t

t—o0o

then problem (2) has infinitely many positive entire larglisons.

=0, forallconstantsa > 1, (A2)
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We point out that ConditiofiA2) has been introduced in [4].
Remark 1 Using the fact that

k

/ e"thdt = kle” Z(—l)’“_st—' for all integers k > 1, (6)
0 — St

we observe that the following functions verify (4) or (5):

(i) condition (4) holds provided that(t) = H—Lﬂ’ ~v>1landg(t) = ﬁ, 0 > %

(ii) condition (5) holds provided thap(t) = 7, q(t) =t%, v,6 >0. W

Remark 2 We give in what follows some examples of nonlinearitfesndg that satisfy( As):

() f(t) = Zé.:lajt%', g(t) = Y0 byt t > 0 with a;,bg,v;,0, > 0 andvy60 < 1, wherey =
maxi<;<i Vj» 0= maxi<k<m Gk

(i) f(t) = (1 4+t7)2, g(t) = (1 4 t91)%2, where~y, y2, 01,02 > 0 and y;y20105 < 1.

(iiiy f(t) =In(1+17), g(t) =In(1 +1t%), ~,0> 0.

(iv) f(t) =In(1+ 1), g(t) =€’ 7 > 0,0 € (0,1). W

2. Proof of Theorem 1

Suppose thatu, v) is a positive large solution of (2) and let(z) = In(1 + u(z) + v(x)), = € Q. Then
w is a positive function andv(z) — oo as dist (x,0Q) — 0. A simple calculation yields

N

Z(uwl + Uﬂci)z

A’LL + A’U i=1

Aw = —
1+u+w (I1+u+v)?

in Q.

Taking into account the assumptidr; ) we have

Aw < Au + Av

T l4+u+vw

Il f(v) + gl L= (@)g(u)
1+u+ov
< (I llzeeqe) + lla lLeey)

< (I ooy + la lz~co)
for some constank’ > 0. Hence
A(w(z) — K|z|*) <0, forall z € Q.
Let z(z) = w(z) — K|z|?, z € Q. Then
Az<0 inQ @)

and
z(xz) — oo as dist(z,00Q) — 0. (8)

Fix zo € Q and M > 0. At this point, to reach a contradiction we will show thatry) > M. Suppose
z(zo) < M. Forall § > 0, we set

Qs = {z € Q] dist(x, 00) > §}.
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Since z(z) — oo as dist(x,0Q) — 0, we can choosé > 0 such thatz(xz) > M forall z € 2\ Qs.
Obviously, o € Qs. Moreover,M — z(zg) > 0 and(M — z) |aq; < 0. Therefore we can find € Qs
such that

max(M — z(z)) = M — 2(z) <0.
Qs

It follows that A(M — z)(z) < 0, thatis Az(z) > 0 which contradicts (7). Hence (2) has no positive
large solutions. This completes the proo

Remark 3 We can employ the same method as above to show that the system

{ Au+ Vol = plla))f(v) i,
Av +|Vu| = qll2))glu) i,

has no positive large solutionsffandg satisfy(A4;). B

3. Proof of Theorem 2

Arguing by contradiction, let us assume that the system é8)the positive entire large solutig, v).
Consider the spherical averagewfand v defined by

a(r) = cm"% / u(x)doy, >0 9)
|z|=r

o(r) = CNT% / v(z)doy, r>0 (20)
|z|=r

wherecy is the surface area of the unit sphereifY. Sincew and v are positive entire large solutions it
follows that @, v are positive andlim @(r) = lim 9(r) = +oc0. By the change of variable — ry, we

™ —00 T—00
have

a(r) = 1 u(ry)doy, r>0
CN
lyl=1
and )
w(r) =— Vu(ry) - ydoy, r>0. (12)
CN
lyl=1
The above relation may be rewritten as
_ 1 ou 1 ou
a'(r) = o 5, (ry)doy = W / 5, (@) dog,
lyl=1 |z|=r
that is )
a = — > 0.
a'(r) PR / Au(z)do,, forall »>0 (12)
|z|=r
Similarly we have
_ 1
v'(r) = Y / Av(z)do,, forall r>0. (13)
|z|=r
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Due to the presence of the gradient term in (2), we cannot thé¢ Au > 0 in RV and so we do not
know if @’ > 0 (or @ > 0)in [0, 00). In order to overcome this lack of monotonicity, set

U(r) = max a(r), V(r)= max o(r). (14)

Now it is easy to see thdf, V are positive and non-decreasing functions. More@ver «, V' > v and
U(r),V(r) — +oo0 asr — oc.
By (A1), that there exists\/ > 0 such that

max{f(t),g(t)} < M(1+t), forall t>0. (15)

Now (11), (12) and (15) lead to

N-1_, 1
u +u <

'’ + <
T CN

A
5
=

/ (14+v(z))doy
|z|=r
Mp(r) (1 +o(r))
Mp(r) (1+V(r)),

IA

forall » > 0. It follows that
(erleTﬁ/)/ < Me"rNTlp(r) (1 +V(r) forall » > 0.

So, forallr > rq > 0,
T t
u(r) <u(ro) + M/ e—ftl—N/ e*sNUp(s)(1+ V(s))dsdt
To 0
T t
< u(ro) + M/ e N1+ V(t))/ e*s™N p(s)dsdt
To 0

<a(ro) + M1+ V(r)) /T e N /t e*sN " lp(s)dsdt,

To 0

thatis ,
a(r) <a(rg) + M(1+ V(r))/ P(t)dt, forall r>ry>0. (16)

To

Since/ P(r)dr < oo and/ Q(r)dr < oo, we can choose, > 1 such that
1 1

oo oo 1
P(r)d d —. 17
wasc{ [~ poyin, [~ yirf < o a7)
From (14) and the fact thatim @(r) = lim o(r) = oo, we can findr; > ry such that
= U = U >
U(r) T[?%%%(Tu(r), V(r) Tgrgl%gcrv(r), forall r > ry. (18)

Thus (16) and (18) yield

U(r) < a(ro) + M(1+V(r)) /T P(t)dt, forall r>ry.

To
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Furthermore, by (17) we obtain

U <atro) + VT forall >,
and so )
U(r) < Cy + 5V(r) forall r > rq, (19)
where(C = % + @(ro) > 0. In a similar way we get

V(r) <Cy+ %U(r) forall r >y, (20)
By addition, (19) and (20) lead to
U(r) +V(r) <2(Cy+ Cy) forall r>ry. (21)

This means that/ and V' are bounded and so and v are bounded which is a contradiction. It follows
that (2) has no positive entire large solutions and the pigoodéw complete. B

4. Proof of Theorem 3

We start by showing that (2) has positive radial solutions tlds purpose we fixx. > 0 andb > 0 and we
show that the system

S =), >0,

_l’_
" — N-1 w4+ =q(r)gu(r)), r>0, (22)
v O on [0, 00),

U

( )_a>0 v(0) =b> 0,
has solutions. The®V (z) = u(|z|), V(z) = v(|z|) are positive solutions of (2).
Integrating (22) we have
= a+/ et N/ e*sNp(s)f(v(s))dsdt Vr >0, (23)
0
= b+/ ettt N/ e*sNlq(s)g(u(s))dsdt V1 > 0. (24)
0

Define vp = b and let (ug)r>1, (vk)r>1 given by

a+/0 e N/ s sV p(s) f(vp_1(s))dsdt ¥r >0, (25)

v (r )—b—i—/o ettt N/Ot e*sN1q(s)g(un(s))dsdt Vr > 0. (26)

Since v1(r) > b, it follows that uz(r) > wuy(r) for all » > 0 which yields v3(r) > v1(r) and so
us(r) > uz(r) forall r > 0. Repeating such arguments we deduce that

ug(r) <ugp1(r) and vg(r) < wvgpr(r), forall r >0,k > 1.
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Let us now prove that the non-decreasing sequerfag$.>1 and (v;)r>1 are bounded from above on
bounded sets. We first observe that (25) and (26) yield

up(r) < ugp1(r) < a4+ fog(r)) /OT P(t)dt, Vr>0k>1 (27)

and
ve(r) < b+ glug(r)) /T Q)dt, Yr>0,k>1 (28)
0

Let R > 0 be arbitrary. From (27) and (28) we get

R R
uk(R)Sa—i-f(b—i-g(uk(R))/o Q(t)dt)/o P)dt, Yk > 1.

This imply

R
) f<b+g(uk(R)> /0 Q(t)dt) .
R)

ST Uk( Pt)dt, Vk>1. (29)

0

Taking into account the monotonicity i (R))x>1, there existsL(R) := limy_ o ur(R).

We claim that L(R) is finite. Indeed, if not, we lekt — oo in (29) and the assumptiof4:) leads us
to a contradiction. Thud.(R) is finite. Sincewy,v; are increasing functions, it follows that the map
(0,00) > R — L(R) is non-decreasing of0, co) and

up(r) <ux(R) < L(R), Vrel0,R],Vk <1,

R
vg(r) < b—l—g(L(R))/O Q(t)dt, Vrel0,R],Vk<I.

Furthermore, there existémp_.o, L(R) = L € (0,0c] and the sequence8i),>1 and (vy)r>1 are
bounded from above on bounded sets.

Let u(r) := limp—oo ur(r), v(r) := limg_o vx(r) for all » > 0. By standard elliptic regularity
theory we deduce thatu, v) is a positive solution of (22).

In order to conclude the proof, it is enough to show thatv) is a large solution of (22). Let us remark
that (23), (24) imply

u(r) > a—+ f(b) /OT P(t)dt, Vr>0,

v(r) >b+g(a) /OT Q(t)dt, Vr>0.

Since f, g are positive functions ang, ¢ satisfy (5) we can conclude thét, v) is a large solution of (22)
and so(U, V) is a positive entire large solution of (2). Hence any lardatian of (22) provides a positive
entire large solutionU, V) of (2) with U(0) = a and V(0) = b. Since (a,b) € (0,00) x (0,00)
was chosen arbitrarily, it follows that (2) has infinitely nygpositive entire large solutions. The proof of
theorem is now complete. &

Remark 4 The condition (5) is sufficient but not necessary for thetexise of positive entire large solu-

. . r3 + (N + 2)r? r+N
tions for (2). Indeed, let us considgi(t) = V1, g(t) = t, p(r) = 4W, q(r) =2 S
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o0

Using (6) we get/ P(r)dr = +o0 and/ Q(r)dr < +o0. However, the corresponding system to (2)
. 1 1

IS
3 N +2 2
Au+|Vu|:4|I| + (N +2)ja] Vv inRN,
\N/| z]2+1
Av+|Vv|:2M~u in RY,
|z[4 +1

which has the positive entire large solutign|* + 1, |z|> +1).
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