Explosive solutions of semilinear elliptic systems with gradient term

Marius Ghergu and Vicențiu Rădulescu

Abstract

We study the existence of boundary blow-up solutions to the nonlinear elliptic system $\Delta u+|\nabla u|=p(|x|) f(v), \Delta v+|\nabla v|=q(|x|) g(u)$ in Ω. Here Ω is either a bounded domain in \mathbb{R}^{N} or it denotes the whole space. The nonlinearities f and g are positive and continuous, while the nonnegative potentials p and q are continuous and satisfy appropriate growth conditions at infinity. We show that boundary blow-up positive solutions fail to exist if f and g are sublinear. This result holds both if Ω is bounded, and if Ω is the whole space but p and q have slow decay at infinity. We establish the existence of infinitely many entire blow-up solutions in the case where p and q are of fast decay and if f and g satisfy a sublinear type growth condition at infinity.

Soluciones explosivas de sistemas elípticos semilineales con términos gradientes

Resumen. Estudiamos la existencia de soluciones del sistema elíptico no lineal $\Delta u+|\nabla u|=$ $p(|x|) f(v), \Delta v+|\nabla v|=q(|x|) g(u)$ en Ω que explotan en el borde. Aquí Ω es un dominio acotado de \mathbb{R}^{N} o el espacio total. Las nolinealidades f y g son funciones continuas positivas mientras que los potenciales p y q son funciones continuas que satisfacen apropiadas condiciones de crecimiento en el infinito. Demostramos que las soluciones explosivas en el borde dejan de existir si f y g son sublineales. Esto se tiene o bien si Ω es acotado o cuando Ω es el espacio total pero p y q decaen lentamente en el infinito. Mostramos la existencia de infinitas soluciones enteras explosivas cuando p y q decaen rápidamente y cuando f y g satisfacen una condición de tipo sublineal en el infinito.

1. Introduction and the main results

Existence and nonexistence of solutions of the semilinear elliptic system

$$
\begin{cases}\Delta u=f(x, u, v) & \text { in } \Omega \tag{1}\\ \Delta v=g(x, u, v) & \text { in } \Omega\end{cases}
$$

have received much attention recently. See, for example, Chen and Lu [2], Cîrstea and Rădulescu [4], Clément, Manásevich and Mitidieri [5], Dalmasso [6], De Figueiredo and Jianfu [7], Lair and Shaker [14], Serrin and Zou [18, 19], Yarur [20], Wang and Wood [21], and the references therein. Most of these results have to do with the nonexistence of positive solutions, the existence of radial solutions, or the asymptotic behavior of solutions.

[^0]We are concerned in this paper with the study of positive solutions to the following class of semilinear elliptic systems with gradient term

$$
\begin{cases}\Delta u+|\nabla u|=p(|x|) f(v) & \text { in } \Omega, \tag{2}\\ \Delta v+|\nabla v|=q(|x|) g(u) & \text { in } \Omega,\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ denotes either a bounded open set in \mathbb{R}^{N} or the whole of \mathbb{R}^{N}. Throughout this paper we assume that $p, q \not \equiv 0$ are nonnegative Hölder functions. We also assume that f and g are Hölder, positive and non-decreasing functions on $(0, \infty)$.

We are mainly interested in finding properties of large (explosive, blow-up) solutions of (2), that is positive solutions (u, v) satisfying $u(x) \rightarrow+\infty$ and $v(x) \rightarrow+\infty$ as $\operatorname{dist}(x, \partial \Omega) \rightarrow 0$ (if Ω is bounded), or $u(x) \rightarrow+\infty$ and $v(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$ (if $\Omega=\mathbb{R}^{N}$). In the latter case such solutions are called entire large (explosive, blow-up) solutions. A geometric motivation in that sense can be found in [3, 12, 15]. We also point out the pioneering work of Keller [10] and Osserman [16].

The corresponding equation that leads us to the system (2) is

$$
\Delta u+|\nabla u|^{a}=p(x) f(u), \quad x \in \Omega, 0<a \leq 2
$$

which was treated in $[1,8]$ (in the case where Ω is bounded) and in $[9,13]$ (for $\Omega=\mathbb{R}^{N}$). Problems of this type arise in stochastic control theory and have been first studied in Lasry and Lions [11]. The corresponding parabolic equation was considered in Quittner [17]. In terms of the dynamic programming approach, an explosive solution of (2) corresponds to a value function (or Bellman function) associated to an infinite exit cost (see [11]).

Our first result asserts that if Ω is bounded and if both f and g are sublinear at infinity, then problem (2) has no positive boundary blow-up solution. More precisely, the following hold

Theorem 1 Suppose $\Omega \subset \mathbb{R}^{N}$ is a bounded domain and f, g satisfy

$$
\begin{equation*}
\max \left\{\sup _{t \geq 1} \frac{f(t)}{t}, \sup _{t \geq 1} \frac{g(t)}{t}\right\}<+\infty \tag{1}
\end{equation*}
$$

Then problem (2) has no positive large solution.
The same conclusion holds if $\Omega=\mathbb{R}^{N}$, but under natural additional assumptions related to the behavior of p and q at infinity. In order to state the result in this case, let us first define, for any $r \geq 0$,

$$
\begin{equation*}
P(r)=\frac{\int_{0}^{r} e^{t} t^{N-1} p(t) d t}{e^{r} r^{N-1}}, \quad Q(r)=\frac{\int_{0}^{r} e^{t} t^{N-1} q(t) d t}{e^{r} r^{N-1}} . \tag{3}
\end{equation*}
$$

Theorem 2 Let $\Omega=\mathbb{R}^{N}$. Assume that $\left(A_{1}\right)$ holds and

$$
\begin{equation*}
\int_{1}^{\infty} P(r) d r<+\infty, \quad \int_{1}^{\infty} Q(r) d r<+\infty \tag{4}
\end{equation*}
$$

Then problem (2) has no positive entire large solution.
Theorem 3 Let $\Omega=\mathbb{R}^{N}$. Assume that

$$
\begin{equation*}
\int_{1}^{\infty} P(r) d r=+\infty, \quad \int_{1}^{\infty} Q(r) d r=+\infty \tag{5}
\end{equation*}
$$

If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(a g(t))}{t}=0, \quad \text { for all constants } a \geq 1 \tag{2}
\end{equation*}
$$

then problem (2) has infinitely many positive entire large solutions.

We point out that Condition $\left(A_{2}\right)$ has been introduced in [4].
Remark 1 Using the fact that

$$
\begin{equation*}
\int_{0}^{r} e^{r} t^{k} d t=k!e^{r} \sum_{s=1}^{k}(-1)^{k-s} \frac{t^{s}}{s!} \quad \text { for all integers } k \geq 1 \tag{6}
\end{equation*}
$$

we observe that the following functions verify (4) or (5):
(i) condition (4) holds provided that $p(t)=\frac{1}{1+t^{\gamma}}, \gamma>1$ and $q(t)=\frac{1}{\left(1+t^{2}\right)^{\theta}}, \theta>\frac{1}{2}$.
(ii) condition (5) holds provided that $p(t)=t^{\gamma}, q(t)=t^{\theta}, \gamma, \theta \geq 0$.

Remark 2 We give in what follows some examples of nonlinearities f and g that satisfy $\left(A_{2}\right)$:
(i) $f(t)=\sum_{j=1}^{l} a_{j} t^{\gamma_{j}}, g(t)=\sum_{k=1}^{m} b_{k} t^{\theta_{k}}, t \geq 0$ with $a_{j}, b_{k}, \gamma_{j}, \theta_{k}>0$ and $\gamma \theta<1$, where $\gamma=$ $\max _{1 \leq j \leq l} \gamma_{j}, \theta=\max _{1 \leq k \leq m} \theta_{k}$.
(ii) $f(t)=\left(1+t^{\gamma_{1}}\right)^{\gamma_{2}}, g(t)=\left(1+t^{\theta_{1}}\right)^{\theta_{2}}$, where $\gamma_{1}, \gamma_{2}, \theta_{1}, \theta_{2}>0$ and $\gamma_{1} \gamma_{2} \theta_{1} \theta_{2}<1$.
(iii) $f(t)=\ln \left(1+t^{\gamma}\right), g(t)=\ln \left(1+t^{\theta}\right), \quad \gamma, \theta>0$.
(iv) $f(t)=\ln \left(1+t^{\gamma}\right), g(t)=e^{t^{\theta}}, \gamma>0, \theta \in(0,1)$.

2. Proof of Theorem 1

Suppose that (u, v) is a positive large solution of (2) and let $w(x)=\ln (1+u(x)+v(x)), x \in \Omega$. Then w is a positive function and $w(x) \rightarrow \infty$ as $\operatorname{dist}(x, \partial \Omega) \rightarrow 0$. A simple calculation yields

$$
\Delta w=\frac{\Delta u+\Delta v}{1+u+v}-\frac{\sum_{i=1}^{N}\left(u_{x_{i}}+v_{x_{i}}\right)^{2}}{(1+u+v)^{2}} \quad \text { in } \Omega
$$

Taking into account the assumption $\left(A_{1}\right)$ we have

$$
\begin{aligned}
\Delta w & \leq \frac{\Delta u+\Delta v}{1+u+v} \\
& \leq \frac{\|p\|_{L^{\infty}(\Omega)} f(v)+\|q\|_{L^{\infty}(\Omega)} g(u)}{1+u+v} \\
& \leq\left(\|p\|_{L^{\infty}(\Omega)}+\|q\|_{L^{\infty}(\Omega)}\right) \frac{f(v)+g(u)}{1+u+v} \\
& \leq\left(\|p\|_{L^{\infty}(\Omega)}+\|q\|_{L^{\infty}(\Omega)}\right)\left(\frac{f(1+v)}{1+v}+\frac{g(1+u)}{1+u}\right) \leq K
\end{aligned}
$$

for some constant $K>0$. Hence

$$
\Delta\left(w(x)-K|x|^{2}\right)<0, \quad \text { for all } x \in \Omega
$$

Let $z(x)=w(x)-K|x|^{2}, x \in \Omega$. Then

$$
\begin{equation*}
\Delta z<0 \quad \text { in } \Omega \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
z(x) \rightarrow \infty \quad \text { as } \operatorname{dist}(x, \partial \Omega) \rightarrow 0 \tag{8}
\end{equation*}
$$

Fix $x_{0} \in \Omega$ and $M>0$. At this point, to reach a contradiction we will show that $z\left(x_{0}\right)>M$. Suppose $z\left(x_{0}\right) \leq M$. For all $\delta>0$, we set

$$
\Omega_{\delta}=\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\delta\} .
$$

Since $z(x) \rightarrow \infty$ as $\operatorname{dist}(x, \partial \Omega) \rightarrow 0$, we can choose $\delta>0$ such that $z(x)>M$ for all $x \in \Omega \backslash \Omega_{\delta}$. Obviously, $x_{0} \in \Omega_{\delta}$. Moreover, $M-z\left(x_{0}\right) \geq 0$ and $\left.(M-z)\right|_{\partial \Omega_{\delta}} \leq 0$. Therefore we can find $\bar{x} \in \Omega_{\delta}$ such that

$$
\max _{\bar{\Omega}_{\delta}}(M-z(x))=M-z(\bar{x}) \leq 0 .
$$

It follows that $\Delta(M-z)(\bar{x}) \leq 0$, that is $\Delta z(\bar{x}) \geq 0$ which contradicts (7). Hence (2) has no positive large solutions. This completes the proof.

Remark 3 We can employ the same method as above to show that the system

$$
\begin{cases}\Delta u+|\nabla v|=p(|x|) f(v) & \text { in } \Omega, \\ \Delta v+|\nabla u|=q(|x|) g(u) & \text { in } \Omega,\end{cases}
$$

has no positive large solutions if f and g satisfy $\left(A_{1}\right)$.

3. Proof of Theorem 2

Arguing by contradiction, let us assume that the system (2) has the positive entire large solution (u, v). Consider the spherical average of u and v defined by

$$
\begin{align*}
& \bar{u}(r)=\frac{1}{c_{N} r^{N-1}} \int_{|x|=r} u(x) d \sigma_{x}, \quad r \geq 0 \tag{9}\\
& \bar{v}(r)=\frac{1}{c_{N} r^{N-1}} \int_{|x|=r} v(x) d \sigma_{x}, \quad r \geq 0 \tag{10}
\end{align*}
$$

where c_{N} is the surface area of the unit sphere in \mathbb{R}^{N}. Since u and v are positive entire large solutions it follows that \bar{u}, \bar{v} are positive and $\lim _{r \rightarrow \infty} \bar{u}(r)=\lim _{r \rightarrow \infty} \bar{v}(r)=+\infty$. By the change of variable $x \rightarrow r y$, we have

$$
\bar{u}(r)=\frac{1}{c_{N}} \int_{|y|=1} u(r y) d \sigma_{y}, \quad r \geq 0
$$

and

$$
\begin{equation*}
\bar{u}^{\prime}(r)=\frac{1}{c_{N}} \int_{|y|=1} \nabla u(r y) \cdot y d \sigma_{y}, \quad r \geq 0 \tag{11}
\end{equation*}
$$

The above relation may be rewritten as

$$
\bar{u}^{\prime}(r)=\frac{1}{c_{N}} \int_{|y|=1} \frac{\partial u}{\partial r}(r y) d \sigma_{y}=\frac{1}{c_{N} r^{N-1}} \int_{|x|=r} \frac{\partial u}{\partial r}(x) d \sigma_{x}
$$

that is

$$
\begin{equation*}
\bar{u}^{\prime}(r)=\frac{1}{c_{N} r^{N-1}} \int_{|x|=r} \Delta u(x) d \sigma_{x}, \quad \text { for all } r \geq 0 \tag{12}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\bar{v}^{\prime}(r)=\frac{1}{c_{N} r^{N-1}} \int_{|x|=r} \Delta v(x) d \sigma_{x}, \quad \text { for all } r \geq 0 \tag{13}
\end{equation*}
$$

Due to the presence of the gradient term in (2), we cannot infer that $\Delta u \geq 0$ in \mathbb{R}^{N} and so we do not know if $\bar{u}^{\prime} \geq 0\left(\right.$ or $\left.\bar{v}^{\prime} \geq 0\right)$ in $[0, \infty)$. In order to overcome this lack of monotonicity, set

$$
\begin{equation*}
U(r)=\max _{0 \leq t \leq r} \bar{u}(r), \quad V(r)=\max _{0 \leq t \leq r} \bar{v}(r) . \tag{14}
\end{equation*}
$$

Now it is easy to see that U, V are positive and non-decreasing functions. Moreover $U \geq \bar{u}, V \geq \bar{v}$ and $U(r), V(r) \rightarrow+\infty$ as $r \rightarrow \infty$.

By $\left(A_{1}\right)$, that there exists $M>0$ such that

$$
\begin{equation*}
\max \{f(t), g(t)\} \leq M(1+t), \quad \text { for all } t \geq 0 \tag{15}
\end{equation*}
$$

Now (11), (12) and (15) lead to

$$
\begin{aligned}
\bar{u}^{\prime \prime}+\frac{N-1}{r} \bar{u}^{\prime}+\bar{u}^{\prime} & \leq \frac{1}{c_{N} r^{N-1}} \int_{|x|=r}[\Delta u(x)+|\nabla u|(x)] d \sigma_{x} \\
& =p(r) \frac{1}{c_{N} r^{N-1}} \int_{|x|=r} f(v(x)) d \sigma_{x} \\
& \leq M p(r) \frac{1}{c_{N} r^{N-1}} \int_{|x|=r}(1+v(x)) d \sigma_{x} \\
& =M p(r)(1+\bar{v}(r)) \\
& \leq M p(r)(1+V(r))
\end{aligned}
$$

for all $r \geq 0$. It follows that

$$
\left(r^{N-1} e^{r} \bar{u}^{\prime}\right)^{\prime} \leq M e^{r} r^{N-1} p(r)(1+V(r)) \quad \text { for all } r \geq 0
$$

So, for all $r \geq r_{0}>0$,

$$
\begin{aligned}
\bar{u}(r) & \leq \bar{u}\left(r_{0}\right)+M \int_{r_{0}}^{r} e^{-t} t^{1-N} \int_{0}^{t} e^{s} s^{N-1} p(s)(1+V(s)) d s d t \\
& \leq \bar{u}\left(r_{0}\right)+M \int_{r_{0}}^{r} e^{-t} t^{1-N}(1+V(t)) \int_{0}^{t} e^{s} s^{N-1} p(s) d s d t \\
& \leq \bar{u}\left(r_{0}\right)+M(1+V(r)) \int_{r_{0}}^{r} e^{-t} t^{1-N} \int_{0}^{t} e^{s} s^{N-1} p(s) d s d t
\end{aligned}
$$

that is

$$
\begin{equation*}
\bar{u}(r) \leq \bar{u}\left(r_{0}\right)+M(1+V(r)) \int_{r_{0}}^{r} P(t) d t, \quad \text { for all } r \geq r_{0} \geq 0 \tag{16}
\end{equation*}
$$

Since $\int_{1}^{\infty} P(r) d r<\infty$ and $\int_{1}^{\infty} Q(r) d r<\infty$, we can choose $r_{0} \geq 1$ such that

$$
\begin{equation*}
\max \left\{\int_{r_{0}}^{\infty} P(r) d r, \int_{r_{0}}^{\infty} Q(r) d r\right\}<\frac{1}{2 M} \tag{17}
\end{equation*}
$$

From (14) and the fact that $\lim _{r \rightarrow \infty} \bar{u}(r)=\lim _{r \rightarrow \infty} \bar{v}(r)=\infty$, we can find $r_{1} \geq r_{0}$ such that

$$
\begin{equation*}
U(r)=\max _{r_{0} \leq t \leq r} \bar{u}(r), \quad V(r)=\max _{r_{0} \leq t \leq r} \bar{v}(r), \quad \text { for all } r \geq r_{1} . \tag{18}
\end{equation*}
$$

Thus (16) and (18) yield

$$
U(r) \leq \bar{u}\left(r_{0}\right)+M(1+V(r)) \int_{r_{0}}^{r} P(t) d t, \quad \text { for all } r \geq r_{1}
$$

Furthermore, by (17) we obtain

$$
U(r) \leq \bar{u}\left(r_{0}\right)+\frac{1+V(r)}{2} \quad \text { for all } r \geq r_{1}
$$

and so

$$
\begin{equation*}
U(r) \leq C_{1}+\frac{1}{2} V(r) \quad \text { for all } r \geq r_{1} \tag{19}
\end{equation*}
$$

where $C_{1}=\frac{1}{2}+\bar{u}\left(r_{0}\right)>0$. In a similar way we get

$$
\begin{equation*}
V(r) \leq C_{2}+\frac{1}{2} U(r) \quad \text { for all } r \geq r_{1} \tag{20}
\end{equation*}
$$

By addition, (19) and (20) lead to

$$
\begin{equation*}
U(r)+V(r) \leq 2\left(C_{1}+C_{2}\right) \quad \text { for all } r \geq r_{1} \tag{21}
\end{equation*}
$$

This means that U and V are bounded and so u and v are bounded which is a contradiction. It follows that (2) has no positive entire large solutions and the proof is now complete.

4. Proof of Theorem 3

We start by showing that (2) has positive radial solutions. On this purpose we fix $a>0$ and $b>0$ and we show that the system

$$
\begin{cases}u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+u^{\prime}=p(r) f(v(r)), & r>0 \tag{22}\\ v^{\prime \prime}+\frac{N-1}{r} u^{\prime}+v^{\prime}=q(r) g(u(r)), & r>0 \\ u^{\prime}, v^{\prime} \geq 0 \text { on }[0, \infty) \\ u(0)=a>0, v(0)=b>0 & \end{cases}
$$

has solutions. Then $U(x)=u(|x|), V(x)=v(|x|)$ are positive solutions of (2).
Integrating (22) we have

$$
\begin{align*}
& u(r)=a+\int_{0}^{r} e^{-t} t^{1-N} \int_{0}^{t} e^{s} s^{N-1} p(s) f(v(s)) d s d t \quad \forall r \geq 0 \tag{23}\\
& v(r)=b+\int_{0}^{r} e^{-t} t^{1-N} \int_{0}^{t} e^{s} s^{N-1} q(s) g(u(s)) d s d t \quad \forall r \geq 0 \tag{24}
\end{align*}
$$

Define $v_{0} \equiv b$ and let $\left(u_{k}\right)_{k \geq 1},\left(v_{k}\right)_{k \geq 1}$ given by

$$
\begin{array}{cc}
u_{k}(r)=a+\int_{0}^{r} e^{-t} t^{1-N} \int_{0}^{t} e^{s} s^{N-1} p(s) f\left(v_{k-1}(s)\right) d s d t \quad \forall r \geq 0 \\
v_{k}(r)=b+\int_{0}^{r} e^{-t} t^{1-N} \int_{0}^{t} e^{s} s^{N-1} q(s) g\left(u_{k}(s)\right) d s d t \quad \forall r \geq 0 \tag{26}
\end{array}
$$

Since $v_{1}(r) \geq b$, it follows that $u_{2}(r) \geq u_{1}(r)$ for all $r \geq 0$ which yields $v_{2}(r) \geq v_{1}(r)$ and so $u_{3}(r) \geq u_{2}(r)$ for all $r \geq 0$. Repeating such arguments we deduce that

$$
u_{k}(r) \leq u_{k+1}(r) \text { and } v_{k}(r) \leq v_{k+1}(r), \text { for all } r>0, k \geq 1
$$

Let us now prove that the non-decreasing sequences $\left(u_{k}\right)_{k \geq 1}$ and $\left(v_{k}\right)_{k \geq 1}$ are bounded from above on bounded sets. We first observe that (25) and (26) yield

$$
\begin{equation*}
u_{k}(r) \leq u_{k+1}(r) \leq a+f\left(v_{k}(r)\right) \int_{0}^{r} P(t) d t, \quad \forall r \geq 0, k \geq 1 \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{k}(r) \leq b+g\left(u_{k}(r)\right) \int_{0}^{r} Q(t) d t, \quad \forall r \geq 0, k \geq 1 \tag{28}
\end{equation*}
$$

Let $R>0$ be arbitrary. From (27) and (28) we get

$$
u_{k}(R) \leq a+f\left(b+g\left(u_{k}(R)\right) \int_{0}^{R} Q(t) d t\right) \int_{0}^{R} P(t) d t, \quad \forall k \geq 1
$$

This imply

$$
\begin{equation*}
1 \leq \frac{a}{u_{k}(R)}+\frac{f\left(b+g\left(u_{k}(R)\right) \int_{0}^{R} Q(t) d t\right)}{u_{k}(R)} \int_{0}^{R} P(t) d t, \quad \forall k \geq 1 \tag{29}
\end{equation*}
$$

Taking into account the monotonicity of $\left(u_{k}(R)\right)_{k \geq 1}$, there exists $L(R):=\lim _{k \rightarrow \infty} u_{k}(R)$.
We claim that $L(R)$ is finite. Indeed, if not, we let $k \rightarrow \infty$ in (29) and the assumption $\left(A_{2}\right)$ leads us to a contradiction. Thus $L(R)$ is finite. Since u_{k}, v_{k} are increasing functions, it follows that the map $(0, \infty) \ni R \longmapsto L(R)$ is non-decreasing on $(0, \infty)$ and

$$
\begin{gathered}
u_{k}(r) \leq u_{k}(R) \leq L(R), \quad \forall r \in[0, R], \forall k \leq 1 \\
v_{k}(r) \leq b+g(L(R)) \int_{0}^{R} Q(t) d t, \quad \forall r \in[0, R], \forall k \leq 1
\end{gathered}
$$

Furthermore, there exists $\lim _{R \rightarrow \infty} L(R)=\bar{L} \in(0, \infty]$ and the sequences $\left(u_{k}\right)_{k \geq 1}$ and $\left(v_{k}\right)_{k \geq 1}$ are bounded from above on bounded sets.

Let $u(r):=\lim _{k \rightarrow \infty} u_{k}(r), v(r):=\lim _{k \rightarrow \infty} v_{k}(r)$ for all $r \geq 0$. By standard elliptic regularity theory we deduce that (u, v) is a positive solution of (22).

In order to conclude the proof, it is enough to show that (u, v) is a large solution of (22). Let us remark that (23), (24) imply

$$
\begin{aligned}
& u(r) \geq a+f(b) \int_{0}^{r} P(t) d t, \quad \forall r \geq 0 \\
& v(r) \geq b+g(a) \int_{0}^{r} Q(t) d t, \quad \forall r \geq 0
\end{aligned}
$$

Since f, g are positive functions and p, q satisfy (5) we can conclude that (u, v) is a large solution of (22) and so (U, V) is a positive entire large solution of (2). Hence any large solution of (22) provides a positive entire large solution (U, V) of (2) with $U(0)=a$ and $V(0)=b$. Since $(a, b) \in(0, \infty) \times(0, \infty)$ was chosen arbitrarily, it follows that (2) has infinitely many positive entire large solutions. The proof of theorem is now complete.

Remark 4 The condition (5) is sufficient but not necessary for the existence of positive entire large solutions for (2). Indeed, let us consider $f(t)=\sqrt{t}, g(t)=t, p(r)=4 \frac{r^{3}+(N+2) r^{2}}{\sqrt{r^{2}+1}}, q(r)=2 \frac{r+N}{r^{4}+1}$.

Using (6) we get $\int_{1}^{\infty} P(r) d r=+\infty$ and $\int_{1}^{\infty} Q(r) d r<+\infty$. However, the corresponding system to (2) is

$$
\begin{cases}\Delta u+|\nabla u|=4 \frac{|x|^{3}+(N+2)|x|^{2}}{\sqrt{|x|^{2}+1}} \cdot \sqrt{v} & \text { in } \mathbb{R}^{N} \\ \Delta v+|\nabla v|=2 \frac{|x|+N}{|x|^{4}+1} \cdot u & \text { in } \mathbb{R}^{N}\end{cases}
$$

which has the positive entire large solution $\left(|x|^{4}+1,|x|^{2}+1\right)$.

References

[1] Bandle, C. and Giarrusso, E. (1996). Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Adv. Differential Equations, 1, 133-150.
[2] Chen, S. and Lu, G. (1999). Existence and nonexistence of positive solutions for a class of semilinear elliptic systems, Nonlinear Anal., 38, 919-932.
[3] Cheng, K.-S. and Ni, W.-M. (1991). On the structure of the conformal gaussian curvature equation in \mathbb{R}^{2}, Duke Math. J., 62, 721-737.
[4] Cîrstea, F. and Rădulescu, V. (2002). Entire solutions blowing up at infinity for semilinear elliptic systems, J. Math. Pures Appl., 81, 827-846.
[5] Clément, P., Manásevich, R. and Mitidieri, E. (1993). Positive solutions for a quasilinear system via blow up, Comm. Partial and Differential Equations, 18, 2071-2106.
[6] R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal., 39 (2000), 559-568.
[7] De Figueiredo, D. G. and Jianfu, Y. (1998). Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal., 33, 211-234.
[8] Giarrusso, E. (2000). On blow up solutions of a quasilinear elliptic equation, Math. Nachr., 213, 89-104.
[9] Ghergu, M., Niculescu, C. and Rădulescu, V. (2002). Existence solutions of elliptic equations with absorption and nonlinear gradient term, Proc. Indian Acad. Sci. (Math. Sci.), 112, 441-451.
[10] Keller, J. B. (1957). On solution of $\Delta u=f(u)$, Comm. Pure Appl. Math., 10, 503-510.
[11] Lasry, J. M. and Lions, P.-L. (1989). Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints; the model problem, Math. Ann., 283, 583-630.
[12] Loewner, C. and Nirenberg, L. (1974). Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis (L. Ahlfors et al., Eds.), Academic Press, New York, 245-272.
[13] Lair, A. V. and Shaker, A. W. (1996). Entire solution of a singular semilinear elliptic problem, J. Math. Anal. Appl., 200, 498-505.
[14] Lair, A. V. and Shaker, A. W. (2000). Existence of entire large positive solutions of semilinear elliptic systems, J. Differential Equations, 164, 380-394.
[15] Nirenberg, L. (1976). Nonlinear differential equations invariant under certain geometric transformations, Sympos. Math. vol. 18, Academic Press, New York, 399-405.
[16] Osserman, R. (1957). On the inequality $\Delta u \geq f(u)$, Pacific J. Math., 7, 1641-1647.
[17] Quittner, P. (1991). Blow-up for semilinear parabolic equations with a gradient term, Math. Meth. Appl. Sci., 14, 413-417.
[18] Serrin, J. and Zou, H. (1996). Nonexistence of positive solutions of Lane-Emden systems, Differential Integral Equations, 9, 635-653.
[19] Serrin, J. and H. Zou, H. (1998). Existence of positive entire solutions of elliptic Hamiltonian systems, Comm. Partial Differential Equations, 23, 577-599.
[20] Yarur, C. (1998). Existence of continuous and singular ground states for semilinear elliptic systems, Electron. J. Differential Equations, 1, 1-27.
[21] Wang, X. and Wood, A. W. (2002). Existence and nonexistence of entire positive solutions of semilinear elliptic systems, J. Math. Anal. Appl., 267, 361-368.

M. Ghergu and V. Rădulescu
Department of Mathematics
University of Craiova
200585 Craiova, Romania
radulescu@inf.ucv.ro

[^0]: Presentado por Jesús Ildefonso Díaz.
 Recibido: 4 de Octubre de 2002. Aceptado: 7 de Agosto de 2003.
 Palabras clave / Keywords: semilinear elliptic system, explosive solution, existence and nonexistence results, multiplicity of solutions.

 Mathematics Subject Classifications: 34B15, 34B18, 35B40, 35B50, 35J45.
 (C) 2003 Real Academia de Ciencias, España.

