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On the existence of multiple principal eigenvalues for some
indefinite linear eigenvalue problems

J. Fleckinger, J. Hern ández and F. de Th élin

Abstract. We study the existence of principal eigenvalues for differential operators of second order
which are not necessarily in divergence form. We obtain results concerning multiplicity of principal
eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-
Rutman theorem and fixed point arguments for the inverse of the spectral radius of some associated
problems. We also use a variational characterization for both the self-adjoint and the general case.

Sobre la existencia de valores propios principales múltip les para algunos
problemas lineales indefinidos de valores propios

Resumen. Estudiamos la existencia de valores propios principales para operadores diferenciales de
segundo orden que no están necesariamente en forma de divergencia. Obtenemos resultados sobre la
multiplicidad de valores propios principales tanto en el caso variacional como en el general. Usamos
el teorema de Krein-Rutman y argumentos de punto fijo para el inverso del radio espectral de algunos
problemas asociados. Utilizamos también la caracterización variacional, tanto en el caso autoadjunto
como en el general.

1. Introduction

If Ω is a regular bounded domain inRN , with boundary∂Ω, and ifa0 andm are positive onΩ and smooth
enough, it is well known that the eigenvalue problem:

{

−∆u + a0(x)u = λm(x)u in Ω
u = 0 on∂Ω

(1)

possesses an infinite sequence of positive eigenvalues :

0 < λ1 < λ2 ≤ . . . λk ≤ . . . ; λk → ∞, ask → ∞

with finite multiplicity. Moreoverλ1 is simple and its associate eigenfunctionϕ1 is positive inΩ and
∂ϕ1/∂n < 0 on the boundary. In the following we also writeλ1, the first eigenvalue of the above problem,
asλ1(−∆ + a0, m, Ω).
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Here we consider the case of (1) when the coefficientsa0 andm change sign.
We use the following notations:

Ω+ = {x ∈ Ω | m(x) > 0}, Ω− = {x ∈ Ω | m(x) < 0}, Ω0 = {x ∈ Ω | m(x) = 0}. (2)

We assume thatΩ+ andΩ− (which are actually defined up to a set of measure zero) are smooth enough
subdomains ofΩ such that both have positive measure.|A| is the Lebesgue measure of the setA.
The classical result in [6] for continuous coefficients and self-adjoint operators was extended by Manes
and Micheletti [14] (see also [9], [5]) in the sense of Theorem 1 below. A similar result was obtained by
Hess and Kato [11] for operators in general form by using the Krein-Rutman Theorem ([12], [1]). All these
results correspond to the caseλ1(−∆ + a0, 1, Ω) > 0 in our notation.
The situation is more involved ifλ1(−∆ + a0, 1, Ω) < 0 and interesting results were given in [13] for
operators in general form. Here we give a much more general and unified view of the problem, providing
a description of the number of principal eigenvalues depending on a parameter introduced in the weightm.
Our approach uses systematically a reformulation in terms of fixed points for (the inverse of) the spectral
radius of an associated eigenvalue problem. We use a more general version of the Krein-Rutman Theorem
in [8] (see also [15]) and rely heavily on the variational characterization of the first eigenvalue and on a
result by Dancer ([7], see also [2]) which is only available for operators in divergence form in this context.
Results not using Dancer’s theorem are still valid for general operators and this allows us to extend results
in [11] and [3]. Detailed statements and proofs are given in [10].

2. The variational case for unbounded indefinite coefficients.

We assume that

a0, m ∈ Lr(Ω), r >
N

2
. (3)

We can rewrite equation (1) as

−∆u + a+
0 (x)u + λm−(x)u = (λm+(x) + a−

0 (x))u, x ∈ Ω,

and we are led to study the following eigenvalue problem
{

−∆u + (a+
0 (x) + 1)u + λm−(x)u = r(m+(x) +

a
−

0
(x)+1
λ

)u, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(4)

By using Krein-Rutman Theorem [8], we can show the existenceof a positive eigenvaluer(λ) > 0 to prob-
lem (4); moreover, since the coefficients in (4) are positive, we have also the variational characterization:

r(λ) = inf
φ∈H1

0
(Ω);φ 6≡0

∫

Ω
| ∇φ |2 +

∫

Ω
(a+

0 (x) + 1)φ2 + λ
∫

Ω
m−(x)φ2

∫

Ω
m+(x)φ2 + 1

λ

∫

Ω
(a−

0 (x) + 1)φ2
. (5)

It can be seen easily thatr(λ) is increasing inλ, depends monotonically on the domain and is continuous
([14], [9]). Moreover by continuity,r(0) = 0, and

r′(0) = lim
λ→0+

r(λ)

λ
= λ1(−∆ + a+

0 + 1, a−
0 + 1, Ω).

With these notations we have that:






λ1(−∆ + a+
0 + 1, a−

0 + 1, Ω) > 1 ⇔ λ1(−∆ + a0, 1, Ω) > 0,
λ1(−∆ + a+

0 + 1, a−
0 + 1, Ω) = 1 ⇔ λ1(−∆ + a0, 1, Ω) = 0,

λ1(−∆ + a+
0 + 1, a−

0 + 1, Ω) < 1 ⇔ λ1(−∆ + a0, 1, Ω) < 0.
(6)
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Using the monotone dependence with respect to both the coefficients and the domain we obtain the first
estimate:

r(λ) < λ1(−∆ + a+
0 + 1, m+, Ω+), (7)

and we deduce

Theorem 1 Assume thata0 andm satisfy(3), and that|Ω+| > 0, |Ω−| > 0.
If λ1(−∆+ a0, 1, Ω) > 0, then problem(1) possesses a unique positive (resp. negative) eigenvalueλ+

1

(resp. λ−
1 ); this eigenvalue is such that

0 < λ+
1 < λ1(−∆ + a0, m

+, Ω+), (resp. 0 > λ−
1 > −λ1(−∆ + a0, m

−, Ω−));

moreoverλ+
1 (resp. λ−

1 ) is algebraically simple and is the unique positive (resp. negative) eigenvalue
associated with a positive eigenfunction.

If λ1(−∆ + a0, 1, Ω) = 0, then problem(1) has a positive (resp.negative)principal eigenvalue if and
only if

∫

Ω

mφ2
0 < 0 (resp. > 0),

whereφ0 is the (positive) principal eigenfunction associated withλ1(−∆ + a0, 1, Ω). In this case it is
unique. �

Remark 1 In the second case, if
∫

Ω
mφ2

0 = 0, then0 is the only possible principal eigenvalue to prob-
lem (1). �

We consider now the case
λ1(−∆ + a0, 1, Ω) < 0. (8)

From (8), (6), we havelimλ→0
r(λ)

λ
< 1 and we need further estimates. More relevant results can be

obtained if we have an estimate of the slope at infinity ofr(λ) which is a consequence of the following
proposition due to Dancer [7]. (See also [2]).

Proposition 1 Let D be a regular bounded domain inRN . Let b, q, g in Lr(D), r > N/2, be such that
b ≥ 0, q ≥ 0, g > 0 onΩ. We defineD0 := {x ∈ D / q(x) = 0}. Assume that

(H) D0 = int(D0), |int(D0)| > 0 and

int(D0) satisfies the cone property except may be for a set of capacityzero.
Then we have

lim
α→+∞

λ1(−∆ + b + αq, g, D) = λ1(−∆ + b, g, D0). �

We study first the particular casem+ ≡ 0 and rewrite the problem as
{

−∆u + (a+
0 (x) + 1)u + λm−(x)u = ρ(

a−

0
(x)+1

λ
)u, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(9)

The first eigenvalue is given by the expression

r̄(λ) = λ inf
φ∈H1

0
(Ω);φ 6≡0

∫

Ω
| ∇φ |2 +

∫

Ω
(a+

0 (x) + 1)φ2 + λ
∫

Ω
m−(x)φ2

∫

Ω(a−
0 (x) + 1)φ2

. (10)

Thus r̄(λ) is convex and̄r(0) = 0. If (H) is satisfied, it follows from Proposition 1, that its ”slope at
infinity” is given by

lim
λ→+∞

r̄(λ)

λ
= λ1(−∆ + a+

0 + 1, a−
0 + 1, Ω0).
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It turns out that, ifλ1(−∆+ a+
0 + 1, a−

0 + 1, Ω0) ≤ 1, or what is equivalentλ1(−∆+ a0, 1, Ω0) ≤ 0, r̄(λ)
will never intersect the diagonal and the problem has no solution. On the opposite side, ifλ1(−∆ + a+

0 +
1, a−

0 + 1, Ω0) > 1, or equivalently
λ1(−∆ + a0, 1, Ω0) > 0, (11)

then, sincēr(λ) is strictly convex, it will intersect exactly once the diagonal. Thus we have proved

Theorem 2 Assume thata0 andm satisfy(3), m+ ≡ 0, |Ω0| > 0, and(H) and (8) are satisfied. Then
there is a unique positive principal eigenvalue to(1) if and only if(11)holds. �

Finally, we will consider the problem for a weight function which changes sign onΩ. The second estimate
is derived from (5):

0 < r(λ) < r2(λ), (12)

where

r2(λ) = λ inf
φ∈H1

0
(Ω);φ 6≡0

∫

Ω | ∇φ |2 +
∫

Ω(a+
0 (x) + 1)φ2 + λ

∫

Ω m−(x)φ2

∫

Ω
(a−

0 (x) + 1)φ2
. (13)

We also have thatr2(λ) is convex, sinceλ → r2(λ)
λ

is strictly increasing. Hencer2(λ) will intersect the
straight liner = λ1(−∆ + a+

0 , m+, Ω+) in a unique point which will be denoted byλ∗.

Proposition 2 If we have
λ1(−∆ + a+

0 , m+, Ω+) ≤ λ∗,

then there is no positive principal eigenvalue to(1). �

Hence we have obtained the necessary condition

λ1(−∆ + a+
0 , m+, Ω+) > λ∗, (14)

for the existence of a positive eigenvalue.
Now we assume that (14) holds and consider a family of eigenvalue problems

{

−∆u + a0(x)u = λ(tm+(x) − m−(x))u, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(15)

wheret ≥ 0 plays the role of a parameter and we rewrite the equation as

−∆u + (a+
0 (x) + 1)u + λm−(x)u = ρ(tm+(x) +

a−
0 (x) + 1

λ
)u, x ∈ Ω. (16)

Using again Proposition 1 and perturbation and continuity arguments , exploiting the associated variational
characterization, we derive

Theorem 3 Suppose thatΩ is a regular bounded domain inRN such that|Ω+| > 0, |Ω−| > 0 and
moreoverΩ+∪Ω0 satisfies condition(H) in Proposition 1. Assume also that conditions(3), (14), λ1(−∆+
a0, 1, Ω) < 0, λ1(−∆+a0, 1, Ω+∪Ω0) > 0 are satisfied . Then there exists at̄ > 0 such that the eigenvalue
problem(15) has two positive principal eigenvalues for anyt ∈ (0, t̄), exactly one fort = t̄, and none if
t > t̄. �

Proposition 3 Assume that the hypotheses of Theorem 3 are satisfied and letφ0 > 0 be the eigenfunction
associated toλ1(−∆+a0, 1, Ω) < 0. Then, for anyt > 0 such that(15)has a positive principal eigenvalue,
we have

t <

∫

Ω
m−φ2

0
∫

Ω m+φ2
0

. �

Corollary 1 If
∫

Ω mφ2
0 ≥ 0, then there is no positive principal eigenvalue to problem(1). �
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3. The case of a general operator

3.1. Smooth domains

We consider here the case of a differential operator in general form on a bounded domainΩ in R
N . The

corresponding eigenvalue problem can be written as

{

Lu = λm(x)u, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(17)

where

Lu = −
∑

i,j

aij(x)
∂2u

∂xi∂xj

+
∑

i

bi(x)
∂u

∂xi

+ a0(x)u (18)

is a second order uniformly elliptic differential operator. We assume that bothΩ and the coefficients inL
are such that theLp-regularity theory applies; in particular we have

a0 ∈ L∞(Ω). (19)

Moreover we assume that
m− ∈ L∞(Ω), (20)

m+ ∈ Lr(Ω), r >
N

2
, (21)

are satisfied.
As above (17) can be written equivalently as







Lu + λ(m−(x) + χΩ−∪Ω0
)u = λ(m+(x) + χΩ−∪Ω0

)u, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

and the associated eigenvalue problem is now

{

Lu + λ(m−(x) + χΩ−∪Ω0
)u = ρ(m+(x) + χΩ−∪Ω0

)u, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

By using again the Krein-Rutman Theorem in [8] we prove

Theorem 4 Suppose that the above assumptions, as well as(19) to (21) are satisfied. Then there exists a
unique positive (resp. negative) eigenvalueλ+

1 (L, m, Ω) (resp. λ−
1 (L, m, Ω)) to (17); moreover

0 < λ+
1 (L, m, Ω) < λ1(L, m+, Ω+) (resp.−λ1(L, m−, Ω−) < λ−

1 (L, m, Ω) < 0).

Moreover,λ+
1 (L, m, Ω) (resp.λ−

1 (L, m, Ω)) is algebraically simple and it is the only positive (resp. nega-
tive) eigenvalue having a positive eigenfunction.�

Remark 2 Again similar arguments allow to extend some of the results in [3] and [4] for non-smooth
domains in the same direction.�
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