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Scattering problems in a domain with small holes

V. Chiad ¢ Piat and M. Codegone

Abstract. In this paper, we consider a family of scattering problemgarforated unbounded domains
Q.. We assume that the perforation is contained in a boundedregd that the holes have a ‘critical’
size. We study the asymptotic behaviour of the outgoingt&wia of the steady-state scattering problem
and we prove that an extra term appears in the limit equakorally, we obtain convergence results for
scattering frequencies and solutions.

Problemas de difracci 6n en un dominio con peque fios agujeros.

Resumen. En este articulo consideramos una familia de problemasfidecion en un dominid.

no limitado y perforado. Suponemos que las perforaciongs) eontenidas en una region limitada y
gue los agujeros tengan una talla critica. Estudiamos rapoaamiento asintotico de las soluciones
que emergen del problema estacionario de difraccion ygmaols que en la ecuacion limite, aparece un
termino nuevo. Finalmente, obtenemos algunos resultddasonvergencia para las frecuencias y las
soluciones de difraccion.

1. Introduction

In this paper we study the limit behaviour of a family of seattg problemg P, ), defined in perforated
domains(2., wheree — 0. The domain). = R?\ 7., whereT. = U,TF is the union of the sets
Tk (the so-called ‘holes’ ), that are assumed to be containediiounded regiof independent of. We
consider homogeneous Dirichlet boundary conditions obthendary of the hole87. and the Sommerfeld
radiation condition at infinity (see formula (3)). Our aimtgsprove that, under specific assumptions on
the asymptotic behaviour @f., the scattering frequencies and the corresponding sicafteolutions (see
Section 4) converge to the ones related to a limit problenhemthole ofR?, where an extra-term appears
in the differential operator, and the Sommerfeld radiationdition at infinity is preserved.

The behaviour of Dirichlet boundary-value problems for tizglace operator oboundedperforated
domainsB. = B N (. is well-known and it is deeply analyzed in the paper [2]. Thpearance of the
extra-term for this situation is proved by Cioranescu anddflunder the assumption that the hdlgshave
the so called ‘critical size’, while the cases where the siale "too small” or "too large” exhibit a different
behaviour.

In the present paper we are concerned with ggtthat are homothetic to a given sEt have diameter
proportional to a small parametey, and are evenly distributed along a periodic network of qukei.
Different phenomena occur in dependence of the limit.gt3, ase — 0. More precisely, ifr. ~ &3,
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we say thafl. have the ‘critical size’, and we show that the phenomenohefappearance of the extra-
term extends to the case of scattering problems. The sanbéeprdor the cases where /e3> — 0 and

r. /e — oo was studied in [8]. A general reference about scatteringrihis [6]. Other results connected
with perforated domains can be found in [1] and [12]. The itthe paper is the following: in Section 2 we
introduce problen{P.), and recall the main properties concerning existence amglianess of solutions;

in Section 3 we deal with the limit proble(#,) and the study of the convergence of the solutions of the
above problemsP;); finally, in Section 4 we introduce the concept of scattefiegluency and scattering
solution, and study the corresponding limit behaviour.

2. Statement of the problem

LetY = (0,1)% and letT CcC Y be a closed set with Lipschitz boundary. Given two real pataens
e,re, With 0 < r. < g, we denote the.-homothetic contraction df by ».T, and for each integer vector
k € 72 we denote the-translations byl’* = r.T + ¢k (see figure 1). Given a bounded openBet R?,
we consider the set of integer vectdi$B) = {k € Z3 : T* C B} and we denote bf. the perforated
domainQ. = R3\ T, whereT. = Uyc;.(5)T7.

Q] drT

Y 5 Yo
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OO0 |0 0O
OO0 ]0]|0O

Figure 1. The reference period Y and the periodical reproduction of 7.

Note that(). is an unbounded perforated domain where the ‘hcﬂé‘sare distributed in the bounded
regionB along a periodic lattice of side-lengthand have diameter proportionahto(see figure 2).
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Figure 2. The perforated domain ..

In the sequel we use the standard notation for Lebesgue dmalesspaces. We shall deal with func-
tions that, a priori, may take values in the complex pl&héut, for the sake of simplicity, we shall not
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indicateC? in the notation for the function spaces. Hence, for instahééA) stands for.?(A; C), and so
on. The scalar product ih?(A) is denoted by

(u,v)z/AuT)dw.

Finally, we denote by = B(0, R) = {z € R? : |z| < R} the open ball oR3, centered a, with radius
R >0.

We now consider the reduced wave equatioftirwith the outgoing radiation condition (see [10]). The
dependence in time is supposed of the type exp(). The problem P.(w)) for a fixede > 0 reads: find
uf such that

—Auf — %t =f in D(QF) Q)
=0 on 9T, (2
1 9 < e iw|my|) aus(y) e iw|my|) )
ul(x) = — —uf + : ds with | >R 3
=5/, (a1 () + ot ) 4 e > &G

wheref € L?(R?) is such thakupport f C B(0, R) andw € C satisfies—7/2 < argvw? < 7/2. The
properties of the solutions® to the problen{P.(w)) for a given value ofv € C will be addressed at the end
of this Section. Moreover the asymptotic behaviot.dfise — 0 will be presented at the end of Section 3.
The problem considered in this paper is related in some genserturbation or homogenization problems
studied in [5], [7] and [9].

Remark 1 Since
—Auf —wuf =0 4)

for |z| > R, then by the interior regularity of the solution of the eliipequationsy® € H?(Bry1 \ Bg).
Hence, by the trace theorem, we have thdbz, € H3/?(0Bgr) and (0u®/on)|op, € H'/?(0Bgr),
wherefi = (n1, ng, n3) is the unitary outer normal tdBg. Therefore the integral expression (3)h(w)
makes sense and shows the behaviourdadt infinity. W

Remark 2 If w € R, the requested decay in (3) does not guaranteeuthat L?(R3). Moreover, in this
case the expression (3) is equivalent to the outgoing Sofetdeadiation condition

a £
‘ v iwu®

el — -2 €| — -1
e O(R™™) and |u°|=0(R™")

asR — +oo. For this reason we call the expression (3) the outgoingatixti condition in integral form;
this condition is valid both fow real andv complex (see [10]). &

Remark 3 If, in the integral expression in (3), we take ' “|*—¥l in place ofe i*l*~¥| we get theéncom-
ing radiation condition W

Remark 4 In this paper we work in the spa@, but we may present the problem& with NV > 3. In
this case the radiation condition at infinity would be

u(z) = uf 0G,(z,y) _ Ous (y) N
o /IyI—R( Ayl aly] G ,y)) ds,
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whereG,,(z, y) is the Green'’s function given by

w

-2/
) H(]V)72)/2(w|x - y|)

1
Gw(xvy) - Z (27T|£C — U|

andH™) is the Hankel function of the first kind.
It is known (see for instance [10], [13]) that, if the imagingart ofw is greater than or equal to zero,
the problem( P.(w)) has a unique solution. More precisely, we have the following

Proposition 1  For everye > 0, the problem(P.) has one and only one solutiaif € H'(Bg \ T¢),
(R > 0 such thatB c Bpg) for any complexw except from a discrete set of complex numbers Withy <
0. N

For the proof see in particular [10], Chapter 15, Theorem 2.3

Remark 5 Starting from Proposition 1, it is proved that the solutidpmblem(P.) depends analytically
onw (see [10], [11]). Then we can emphasize the dependence @md onf, writing «*(f,w) as the

solution of problenP.(f,w). Moreover, in the reference [10] it is proved that f,w) is meromorphic in

w, and its poles have imaginary part less then zel.

3. A priori estimates and convergence of solutions with re ~ &3

Let us denote byi¢ the extension by zero, to the wholeRf, that is:

u® in Qf
u° =
0 in T..

Then we have that, for af, a* € H\ (R3).
The limit analysis depends on the behaviour; as 0, of r. /=3, and three different situations occur:

(i) whenr. < €2, thenu® — u, whereu solves the equation
—Au—wu=f in D'(R?),
with the Sommerfeld radiation condition at infinity (3);
(i) whenr, = £3, an extra term appears in the limit problem;
(iii) whenr, > &3, thena® — 0in L2(B).

Afterwards we consider the more interesting c&g® where an extra term appears in the limit equation.
Some information about the cagg and (i) may be found in [8].

Lemmal Forr. ~ ¢ and forw real and positive, the extensian of the solution:® of the problen{ P.)
satisfies the estimate

Ha5||H1(BR+5) <M (5)

whereM is a constant independent of
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PrROOFE By contradiction, we suppose that

||’ELEHH1(BR+5) :AE_>+OO €—>0,
and normalize .
u
W' = A_; ||w8||H1(BR+5) =1 Ve. (6)
€

Then we have a subsequencewf(still denoted withw®) such that
w® — wg weakly in H'(Bgrys) € — 0. @)

We study the properties afy in the regionR < |x| < R + 5 where Ve, w* satisfies (see (4))

2

—Auw® —w w® =0.

By the interior regularity theory for elliptic equationsdaby the normalization condition we obtain

well i (B By < €1+ 1w]?)

with the constant depending only or. By the fact thaWw. — Vg strongly inL?(Bgr.s \ Br) and
by the trace theorem, we have

We||g)=R+2 — Wol|z|=R+2 strongly in H3/2(8BR+2) (8)

ow, Jwy
770
on on
wheren is the outer unit normal. By multiplying formula (3) bﬁ— and by taking the limit ag — 0,
using the formulae (8) and (9) we get the radiation conditaynu, in {R < |z| < R + 5}. By analytical
continuation, the same radiation condition is satisfiedh@dxterior domain.
We now study the properties af, for {|z| < R + 2}, we have:

strongly in H/? (0BRr+2), (9)

—Aw® = Ai + w?w® in  D'(Q°) (10)

€

By the results of Cioranescu and Murat [2] the limit equat@se — 0 becomes:
—Auw? + xppw® — w?uw® =0 in D'(Brys) (11)

wherey g is the characteristic function @ andy is a positive constant depending only on theTset
Finally, by equation (11) and by the radiation condition #meluniqueness theorem (see [10] cap.XVI,
Theorem 1.1) we get’ = 0.
To get a contradiction it is enough to notice tRat° converges td even strongly inL?(Br.5). This
is due to the convergence of the energies

Joes) IV = Jonis) fw50—2w2 Jp(ass) [w°F? - Jpres) 10" =@ [p(res) [0
= fB(R+5) |Vuw?| +fB(R+5) XBpw’[*.

(see [2], proof of Theorem 3.4).1

Proposition 2 The extended solutionis of problemg P;) given by equations (1),(2), and (3) converge,
in the distribution sense, to the solution of the followimglgem (P ):

—Au® + yppu® — i = f in D'(R?) (12)

1 o e iwlz—y| 6u0(y) e iwlz—y|
uox:—/ (—uo—( )—i— )dS 13
vy T e v e e o I i vy I a3

with |z] > R
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PROOF By Lemma 1, we can extract a subsequence, still denoted hat converges ta® weakly in
H} _(R3). Reasoning as far® in the preceding lemma we obtain th&tsatisfies problenir). B

4. Convergence of the scattering frequencies

We may consider the proble(®.) and the solution:® as functions depending on the complex parameter
w and on the functiorf (see (1)):

Pfw)  w(fw)

and the same notation we use féy andu® (see(12)):

Po(f,w) uo(fvw)'

When f = 0 andw is complex, we will use the symbols, +° ands in place ofu®, v° andw. In the
preceding sections we have recalled (see Remark 5)fiféts) is a meromorphic function of € C
with values inH,. .(R?). The poles of*(0, s) are the scattering frequencies of problén{0, s) and the
corresponding solutions (0, s) # 0 are the scattering solutions. In the analogous way we canedtfe
scattering frequencies and the scattering solutions dfleno 7, (0, s). A problem related to the perturba-
tion of scattering frequencies and solutions, in the fraorévef homogenization theory, is studied in [3]

and [4].

Definition 1 A complex numbes, is an accumulation point of scattering frequencies if, f@rg neigh-
bourhoodU (s, §) of so of radiusd, there existg and a complex numbet. such thats. is a scattering
frequency of the probler®. (0, s. ).

Remark 6 Let sg be an accumulation point of scattering frequencies, here exists:., scattering fre-
qguency of problen?,, such thats. — sg. Let v® be the corresponding scattering solution that we may
assume normalized, i.e.,

||v5||L2(BR+5) =1 N (14)

Then, the following Lemma holds.

Lemma 2 The normalized scattering solution introduced in Remarkeéounded inH*(Bg.s), i.e.,
there exists a constaitsuch that

Hvs||H1(BR+5) S k (15)
forall e > 0.

PROOF We obtain the statement integrating by parts B, 5, the equation of probler®. (0, s), multi-
plied byw*, and using trace theorems and interior estimates for ielliggfuations. B

Lemma 3 Under the assumptions of Lemma 2,
v® — g weaklyin  H'(Bprys) (16)
ase — 0, whereuy is a solution of the problen® (0, s).

PrRooOF By formula (15) we can extract a subsequence such thatgMgrified. As in Proposition 2 we
obtain thatu, satisfies the problerfi;(0,s). W

Proposition 3 Let sy be an accumulation point of scattering frequencies of tlublgmsP- (0, s), then
so is a scattering frequency of the limit problefy (0, s).
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PROOF The lemmas 2 and 3 show that solves problent; (0, s), then, to prove tha, is a scattering
frequency, we have only to verifyy # 0. Taking the limit, ag \, 0, in the equation (13) for the problem
P.(0, s), we have that the convergence is uniform in every ann{iRis< |z| < R+ S} forall S > 0, then
ve — vp iN L?(Br \ Brys) strongly. Then, by (16), we deduce that— vg in L?(Bg.5) strongly, as
e \\ 0. But, by the hypothesis (14), this means:

U()#O

and the proofis achieved.l

Proposition 4 Let sy be a scattering frequency of the limit problefi(0, s), then, for every > 0, there
exists at least a frequeney of the problemP. (0, s) such thats. — sg ase — 0.

PROOF We takes € C different from a scattering frequency of the probl&yt f, s), with f fixed element
of L%(|z| < R), then a unique solutiom, (s) exists for problen (£, s). But, if sq is a scattering frequency
for the problemP,, uo(s) has an isolated singularity (pole) fer= s;. LetT be a circle centered at
andD its interior; we assumg be sufficiently small such that no further scattering fraguies, excepty,
belongs to the closur® of D. If the statement is not true, for al) the corresponding problef ( f, s) has
not scattering frequencies id = D U T'. Then we can consider the unique solutigrs) of the problem
P.(f,s), with s € T'. Reasoning as in Lemma 2, we can prove th&ts), with s € T, are bounded in
L?(Brys), independently with respect to But the solutionuq(s) of the problemPy ( f, s) has an isolated
singularity (pole) fors = so. We can take the the Laurent’s series and we obtain that thene entire
m > 0 such thai(s — sg)™uo(s) has a residu®, = 0 in so. Moreover we can calculate:

/(s —50)"ue(s)ds = R, a7
T
and by the hypothesis thatc T" and thatu. (s) has not singularity irD, Ve, we have:

R.=0 Ve. (18)
Sinceu. are bounded il?(Br.ys), then for any fixeds € T', we take the limit, as “\, 0, and following

Lemma 3 we obtain that. — wug strongly in L?(Bg.5), whereug(s) is solution of the limit problem
Py(f,s). Moreover, by Lebesgue dominated convergence theoremamwtake the limit in equation (17):

/(s — 50)"uc(s)ds = R — /(s — 50)"ug(s)ds = Ry (29)
r r

thenR. — Ry # 0 and we have a contradiction with relation (18) and the stateris achieved. B
Remark 7 With the same methods, one obtains the convergence of tttersimg solutions (see [4]). &
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