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Scattering problems in a domain with small holes

V. Chiad ò Piat and M. Codegone

Abstract. In this paper, we consider a family of scattering problems inperforated unbounded domains
Ωε. We assume that the perforation is contained in a bounded region and that the holes have a ‘critical’
size. We study the asymptotic behaviour of the outgoing solutions of the steady-state scattering problem
and we prove that an extra term appears in the limit equation.Finally, we obtain convergence results for
scattering frequencies and solutions.

Problemas de difracci ón en un dominio con peque ños agujeros.

Resumen. En este artı́culo consideramos una familia de problemas de difracción en un dominioΩε

no limitado y perforado. Suponemos que las perforaciones están contenidas en una región limitada y
que los agujeros tengan una talla crı́tica. Estudiamos el comportamiento asintótico de las soluciones
que emergen del problema estacionario de difracción y probamos que en la ecuación lı́mite, aparece un
término nuevo. Finalmente, obtenemos algunos resultadosde convergencia para las frecuencias y las
soluciones de difracción.

1. Introduction

In this paper we study the limit behaviour of a family of scattering problems(Pε), defined in perforated
domainsΩε, whereε → 0+. The domainΩε = R3 \ Tε, whereTε = ∪kT k

ε is the union of the sets
T k

ε (the so-called ‘holes’ ), that are assumed to be contained ina bounded regionB independent ofε. We
consider homogeneous Dirichlet boundary conditions on theboundary of the holes∂Tε and the Sommerfeld
radiation condition at infinity (see formula (3)). Our aim isto prove that, under specific assumptions on
the asymptotic behaviour ofTε, the scattering frequencies and the corresponding scattering solutions (see
Section 4) converge to the ones related to a limit problem on the whole ofR3, where an extra-term appears
in the differential operator, and the Sommerfeld radiationcondition at infinity is preserved.

The behaviour of Dirichlet boundary-value problems for theLaplace operator onboundedperforated
domainsBε = B ∩ Ωε is well-known and it is deeply analyzed in the paper [2]. The appearance of the
extra-term for this situation is proved by Cioranescu and Murat under the assumption that the holesTε have
the so called ‘critical size’, while the cases where the holes are ”too small” or ”too large” exhibit a different
behaviour.

In the present paper we are concerned with setsT k
ε that are homothetic to a given setT , have diameter

proportional to a small parameterrε, and are evenly distributed along a periodic network of period ε.
Different phenomena occur in dependence of the limit ofrε/ε3, asε → 0. More precisely, ifrε ∼ ε3,
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we say thatTε have the ‘critical size’, and we show that the phenomenon of the appearance of the extra-
term extends to the case of scattering problems. The same problem for the cases whererε/ε3 → 0 and
rε/ε3 → ∞ was studied in [8]. A general reference about scattering theory is [6]. Other results connected
with perforated domains can be found in [1] and [12]. The planof the paper is the following: in Section 2 we
introduce problem(Pε), and recall the main properties concerning existence and uniqueness of solutions;
in Section 3 we deal with the limit problem(P0) and the study of the convergence of the solutions of the
above problems(Pε); finally, in Section 4 we introduce the concept of scatteringfrequency and scattering
solution, and study the corresponding limit behaviour.

2. Statement of the problem

Let Y = (0, 1)3 and letT ⊂⊂ Y be a closed set with Lipschitz boundary. Given two real parameters
ε, rε, with 0 < rε < ε, we denote therε-homothetic contraction ofT by rεT , and for each integer vector
k ∈ Z

3 we denote theε-translations byT k
ε = rεT + εk (see figure 1). Given a bounded open setB ⊂ R

3,
we consider the set of integer vectorsIε(B) = {k ∈ Z3 : T k

ε ⊂ B} and we denote byΩε the perforated
domainΩε = R3 \ Tε, whereTε = ∪k∈Iε(B)T

k
ε .
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Figure 1. The reference period Y and the periodical reproduction of T k
ε .

Note thatΩε is an unbounded perforated domain where the ‘holes’T k
ε are distributed in the bounded

regionB along a periodic lattice of side-lengthε, and have diameter proportional torε (see figure 2).
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Figure 2. The perforated domain Ωε.

In the sequel we use the standard notation for Lebesgue and Sobolev spaces. We shall deal with func-
tions that, a priori, may take values in the complex planeC, but, for the sake of simplicity, we shall not
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indicateC3 in the notation for the function spaces. Hence, for instance, L2(A) stands forL2(A; C), and so
on. The scalar product inL2(A) is denoted by

(u, v) =

∫

A

uv̄dx.

Finally, we denote byBR = B(0, R) = {x ∈ R3 : |x| < R} the open ball ofR3, centered at0, with radius
R > 0.

We now consider the reduced wave equation inΩε with the outgoing radiation condition (see [10]). The
dependence in time is supposed of the type exp(−iωt). The problem(Pε(ω)) for a fixedε > 0 reads: find
uε such that

−∆uε − ω2uε = f in D′(Ωε) (1)

uε = 0 on ∂Tε (2)

uε(x) =
1

4π

∫

|y|=R

(

−uε ∂

∂|y|

(

e i ω|x−y|

|x − y|

)

+
∂uε(y)

∂|y|
e i ω|x−y|

|x − y|

)

d Sy with |x| > R (3)

wheref ∈ L2(R3) is such thatsupport f ⊂ B(0, R) andω ∈ C satisfies−π/2 < arg
√

ω2 ≤ π/2. The
properties of the solutionsuε to the problem(Pε(ω)) for a given value ofω ∈ C will be addressed at the end
of this Section. Moreover the asymptotic behavior ofuε asε → 0 will be presented at the end of Section 3.
The problem considered in this paper is related in some senseto perturbation or homogenization problems
studied in [5], [7] and [9].

Remark 1 Since
−∆uε − ω2uε = 0 (4)

for |x| > R, then by the interior regularity of the solution of the elliptic equations,uε ∈ H2(BR+1 \ BR).
Hence, by the trace theorem, we have thatuε|∂BR

∈ H3/2(∂BR) and (∂uε/∂n)|∂BR
∈ H1/2(∂BR),

where~n = (n1, n2, n3) is the unitary outer normal to∂BR. Therefore the integral expression (3) inPε(ω)
makes sense and shows the behaviour ofuε at infinity. �

Remark 2 If ω ∈ R , the requested decay in (3) does not guarantee thatuε ∈ L2(R3). Moreover, in this
case the expression (3) is equivalent to the outgoing Sommerfeld radiation condition

∣

∣

∣

∣

∂uε

∂|x| − i ωuε

∣

∣

∣

∣

= O(R−2) and |uε| = O(R−1)

asR → +∞. For this reason we call the expression (3) the outgoing radiation condition in integral form;
this condition is valid both forω real andω complex (see [10]). �

Remark 3 If, in the integral expression in (3), we takee− i ω|x−y| in place ofe i ω|x−y| we get theincom-
ing radiation condition. �

Remark 4 In this paper we work in the spaceR3, but we may present the problem inRN with N > 3. In
this case the radiation condition at infinity would be

uε(x) =

∫

|y|=R

(

uε ∂Gω(x, y)

∂|y| − ∂uε(y)

∂|y| Gω(x, y)

)

d Sy
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whereGω(x, y) is the Green’s function given by

Gω(x, y) =
1

4

(

ω

2π|x − y|

)(N−2)/N

H
(1)
(N−2)/2(ω|x − y|)

andH(1) is the Hankel function of the first kind.�

It is known (see for instance [10], [13]) that, if the imaginary part ofω is greater than or equal to zero,
the problem(Pε(ω)) has a unique solution. More precisely, we have the following

Proposition 1 For everyε > 0, the problem(Pε) has one and only one solutionuε ∈ H1(BR \ T
ε),

(R > 0 such thatB ⊂ BR) for any complexω except from a discrete set of complex numbers withIm ω <
0. �

For the proof see in particular [10], Chapter 15, Theorem 2.3.

Remark 5 Starting from Proposition 1, it is proved that the solution of problem(Pε) depends analytically
on ω (see [10], [11]). Then we can emphasize the dependence onω and onf , writing uε(f, ω) as the
solution of problemPε(f, ω). Moreover, in the reference [10] it is proved thatuε(f, ω) is meromorphic in
ω, and its poles have imaginary part less then zero.�

3. A priori estimates and convergence of solutions with rε ≈ ε
3

Let us denote bỹuε the extension by zero, to the whole ofR
3, that is:

ũε =







uε in Ωε

0 in Tε.

Then we have that, for allε, ũε ∈ H1
loc(R

3).
The limit analysis depends on the behaviour, asε → 0, of rε /ε3, and three different situations occur:

(i) whenrε ≪ ε3, thenũε → u, whereu solves the equation

−∆u − ω2u = f in D′(R3),

with the Sommerfeld radiation condition at infinity (3);

(ii) whenrε ≈ ε3, an extra term appears in the limit problem;

(iii) when rε ≫ ε3, thenũε → 0 in L2(B).

Afterwards we consider the more interesting case(ii), where an extra term appears in the limit equation.
Some information about the case(i) and(iii) may be found in [8].

Lemma 1 For rε ≈ ε3 and forω real and positive, the extensioñuε of the solutionuε of the problem(Pε)
satisfies the estimate

‖ũε‖H1(BR+5) < M (5)

whereM is a constant independent ofε.
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PROOF. By contradiction, we suppose that

‖ũε‖H1(BR+5) = Aε → +∞ ε → 0,

and normalize

wε =
ũε

Aε
; ‖wε‖H1(BR+5) = 1 ∀ε. (6)

Then we have a subsequence ofwε (still denoted withwε) such that

wε ⇀ w0 weakly in H1(BR+5) ε → 0. (7)

We study the properties ofw0 in the regionR < |x| < R + 5 where,∀ε, wε satisfies (see (4))

−∆wε − ω2wε = 0.

By the interior regularity theory for elliptic equations and by the normalization condition we obtain

‖wε‖H2(BR+4\BR+2)
≤ c(1 + |ω|2)

with the constantc depending only onR. By the fact that∇wε → ∇w0 strongly inL2(BR+5 \ BR) and
by the trace theorem, we have

wε||x|=R+2 → w0||x|=R+2 strongly in H3/2(∂BR+2) (8)

∂wε

∂n
→ ∂w0

∂n
strongly in H1/2(∂BR+2), (9)

wheren is the outer unit normal. By multiplying formula (3) by1Aε

and by taking the limit asε → 0,
using the formulae (8) and (9) we get the radiation conditionfor w0 in {R < |x| < R + 5}. By analytical
continuation, the same radiation condition is satisfied in the exterior domain.

We now study the properties ofw0 for {|x| < R + 2}, we have:

−∆wε =
f

Aε
+ ω2wε in D′(Ωε) (10)

By the results of Cioranescu and Murat [2] the limit equation, asε → 0 becomes:

−∆w0 + χBµw0 − ω2w0 = 0 in D′(BR+5) (11)

whereχB is the characteristic function ofB andµ is a positive constant depending only on the setT.
Finally, by equation (11) and by the radiation condition andthe uniqueness theorem (see [10] cap.XVI,

Theorem 1.1) we getw0 = 0.
To get a contradiction it is enough to notice that∇wε converges to0 even strongly inL2(BR+5). This

is due to the convergence of the energies

∫

B(R+5) |∇wε|2 =
∫

B(R+5) fwε − ω2
∫

B(R+5) |wε|2 −→
∫

B(R+5) fw0 − ω2
∫

B(R+5) |w0|2
=

∫

B(R+5) |∇w0|2 +
∫

B(R+5) χBµ|w0|2.

(see [2], proof of Theorem 3.4).�

Proposition 2 The extended solutions̃uε of problems(Pε) given by equations (1),(2), and (3) converge,
in the distribution sense, to the solution of the following problem(P0):

−∆u0 + χBµu0 − ω2u0 = f in D′(R3) (12)

u0(x) =
1

4π

∫

|y|=R

(

−u0 ∂

∂|y|

(

e i ω|x−y|

|x − y|

)

+
∂u0(y)

∂|y|
e i ω|x−y|

|x − y|

)

d Sy (13)

with |x| > R
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PROOF. By Lemma 1, we can extract a subsequence, still denoted byuε, that converges tou0 weakly in
H1

loc(R
3). Reasoning as forwε in the preceding lemma we obtain thatu0 satisfies problem(P0). �

4. Convergence of the scattering frequencies

We may consider the problem(Pε) and the solutionuε as functions depending on the complex parameter
ω and on the functionf (see (1)):

Pε(f, ω) uε(f, ω)

and the same notation we use forP0 andu0 (see(12)):

P0(f, ω) u0(f, ω).

Whenf = 0 andω is complex, we will use the symbolsvε, v0 ands in place ofuε, u0 andω. In the
preceding sections we have recalled (see Remark 5) thatvε(0, s) is a meromorphic function ofs ∈ C

with values inH1
loc(R

3). The poles ofvε(0, s) are the scattering frequencies of problemPε(0, s) and the
corresponding solutionsvε(0, s) 6= 0 are the scattering solutions. In the analogous way we can define the
scattering frequencies and the scattering solutions of problemP0(0, s). A problem related to the perturba-
tion of scattering frequencies and solutions, in the framework of homogenization theory, is studied in [3]
and [4].

Definition 1 A complex numbers0 is an accumulation point of scattering frequencies if, for every neigh-
bourhoodU(s0, δ) of s0 of radiusδ, there existsε and a complex numbersε such thatsε is a scattering
frequency of the problemPε(0, sε).

Remark 6 Let s0 be an accumulation point of scattering frequencies, i.e., there existssε, scattering fre-
quency of problemPε, such thatsε → s0. Let vε be the corresponding scattering solution that we may
assume normalized, i.e.,

‖vε‖L2(BR+5) = 1. � (14)

Then, the following Lemma holds.

Lemma 2 The normalized scattering solution introduced in Remark 6 are bounded inH1(BR+5), i.e.,
there exists a constantk such that

‖vε‖H1(BR+5) ≤ k (15)

for all ε > 0.

PROOF. We obtain the statement integrating by parts, onBR+5, the equation of problemPε(0, s), multi-
plied byuε, and using trace theorems and interior estimates for elliptic equations. �

Lemma 3 Under the assumptions of Lemma 2,

vε −→ v0 weakly in H1(BR+3) (16)

asε → 0, whereu0 is a solution of the problemP0(0, s).

PROOF. By formula (15) we can extract a subsequence such that (16) is verified. As in Proposition 2 we
obtain thatu0 satisfies the problemP0(0, s). �

Proposition 3 Let s0 be an accumulation point of scattering frequencies of the problemsPε(0, s), then
s0 is a scattering frequency of the limit problemP0(0, s).
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PROOF. The lemmas 2 and 3 show thatv0 solves problemP0(0, s), then, to prove thats0 is a scattering
frequency, we have only to verifyv0 6= 0. Taking the limit, asε ց 0, in the equation (13) for the problem
Pε(0, s), we have that the convergence is uniform in every annulus{R < |x| < R + S} for all S > 0, then
vε −→ v0 in L2(BR \ BR+S) strongly. Then, by (16), we deduce thatvε −→ v0 in L2(BR+5) strongly, as
ε ց 0. But, by the hypothesis (14), this means:

v0 6= 0

and the proof is achieved.�

Proposition 4 Lets0 be a scattering frequency of the limit problemP0(0, s), then, for everyε > 0, there
exists at least a frequencysε of the problemPε(0, s) such thatsε −→ s0 asε → 0.

PROOF. We takes ∈ C different from a scattering frequency of the problemP0(f, s), with f fixed element
of L2(|x| < R), then a unique solutionu0(s) exists for problemP0(f, s). But, if s0 is a scattering frequency
for the problemP0, u0(s) has an isolated singularity (pole) fors = s0. Let Γ be a circle centered ats0

andD its interior; we assumeΓ be sufficiently small such that no further scattering frequencies, excepts0,
belongs to the closureD of D. If the statement is not true, for allε, the corresponding problemPε(f, s) has
not scattering frequencies inD = D ∪ Γ. Then we can consider the unique solutionuε(s) of the problem
Pε(f, s), with s ∈ Γ. Reasoning as in Lemma 2, we can prove thatuε(s), with s ∈ Γ, are bounded in
L2(BR+5), independently with respect toε. But the solutionu0(s) of the problemP0(f, s) has an isolated
singularity (pole) fors = s0. We can take the the Laurent’s series and we obtain that thereis an entire
m > 0 such that(s − s0)

mu0(s) has a residueR0 = 0 in s0. Moreover we can calculate:
∫

Γ

(s − s0)
muε(s) ds = Rε (17)

and by the hypothesis thats ∈ Γ and thatuε(s) has not singularity inD, ∀ε, we have:

Rε = 0 ∀ε. (18)

Sinceuε are bounded inL2(BR+5), then for any fixeds ∈ Γ, we take the limit, asε ց 0, and following
Lemma 3 we obtain thatuε → u0 strongly inL2(BR+5), whereu0(s) is solution of the limit problem
P0(f, s). Moreover, by Lebesgue dominated convergence theorem, we can take the limit in equation (17):

∫

Γ

(s − s0)
muε(s) ds = Rε −→

∫

Γ

(s − s0)
mu0(s) ds = R0 (19)

thenRε → R0 6= 0 and we have a contradiction with relation (18) and the statement is achieved. �

Remark 7 With the same methods, one obtains the convergence of the scattering solutions (see [4]). �
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