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Optimal alternative robustness in Bayesian Decision Theor y
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Abstract. In Martin et al (2003), we suggested an approach to gendpabktoess studies in Bayesian
Decision Theory and Inference, based eoontamination neighborhoods. In this note, we generalise
the results considering neighborhoods based on normsfisplg, the supremum norm for utilities and
the total variation norm for probability distributions. V@geovide tools to detect changes in preferences
between alternatives under perturbations of the priorarnté utility and the most sensitive direction.

Robustez de preferencias en Teoria de la Decisi  6n Bayesiana

Resumen. En Martin et al (2003) propusimos una aproximacion a esside robustez en analisis
bayesiano, basada en entoreesontaminados. En esta nota, generalizamos los resultatsglerando
entornos basados en normas, empleando, especificanenimnia del supremo para las utilidades y
la norma de variacion total para las distribuciones de givdidlad. Proporcionamos herramientas para
determinar cuanto podemos perturbar la utilidad o prdiokaii originales sin que cambie la alternativa
optima y la direccion de perturbacion mas sensible.

1. Introduction

We consider the standard Bayesian decision theoreticalfnark, see e.g. French and Rios Insua (2000)
for a review. A decision maker (DM) makes decisians A, the space of alternatives. We associate
a consequence € C with each pair(a, §), wheref denotes the state of nature. We model the DM’s
beliefs about the statése © with a probability distributionr, which is updated to the posteriof-|z) in
presence of additional informatianprovided by an experiment with likelihod¢|6). We also model his
preferences over consequences with a utility functipand we associate to each alternativies posterior

expected utility
/u(a,H)l(UC|9)7T(9)d9 N(u,m,a)
/ ooy PO

The optimal alternative* maximisesI'(u, 7, a) in a. Since the output* of the analysis depends on the
inputsm andu, the DM may demand ways of checking the impact of these inpuitthe output. This is
the motivation for much of the recent work in Bayesian robass, see Ros Insua and Ruggeri (2000) for a
review, and our interest here.

T(u,m,a) = (1)
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Specifically, we are interested here in decision robustneilsin Bayesian decision theory: our ob-
jective is to find which changes in prior distributions orittifunctions produce a change in the optimal
alternative, generalising work in Martin et al (2003). Otartng point is the comparison of the optimal
alternative with possible competitors. We assume thatworalternatives. andb, we have

T(u,m,b) <T(u,m a), (2

suggesting < a (b at most as preferred ag. We are interested in studying whether this preference of
a overb holds when there are changesirandr. a could be the optimal alternative aihda competitor.
Specifically, we address these issues:

e How much can we perturfa, 7) in a certain direction untih(b < a)?

e Is there a specially sensitive direction, so that the pesfee dilutes more rapidly, i andr are
perturbed in such direction?

We view (u, 7) as the initial assessment of preferences and beliefs toiti@sed. Perturbations of
(u, ) are constrained to a cla&sx T' of pairs utility function-prior distribution, which modéhprecision
in beliefs and preferences. For our purposes, the classesthe convex, without loss of generality. We
assume also that utility functions are normalised betweand1. The use of classes for priors and utility
functions is standard in robust Bayesian analysis.

In Section 2 we introduce basic definitions. Sensitivity oéfprences with respect to the utility is
studied in Section 3. Section 4 refers to prior sensitivitgereas joint sensitivity is addressed in Section 5.
We end up with some conclusions.

2. Basic definitions

We shall analyse properties of the operator
T (w, P) = T(w, P,a) — T(w, P,b), we U, Pl

for a andb fixed, since it explains the preference relation betweandb. For example, i (u, 7) > 0,
a is preferred ta, for the current assessmet ), and we aim at criticising such information, when such
assessment is perturbed. We assumelii@) > 0 for any P € I, so we can study

N%®(w,P) = N(w, P,a) — N(w, P,b), we U, PcT.

instead ofl"** (w, P)

The results shown in Martin et al (2003) apply when considgti-contaminations of the current as-
sessmentu, 7). We can extend the notion efrobustness to general classes of priors and utilities iotwh
neighbourhoods ofu, 7) are given by spheres in a metric, topological space. To deveogonsider a
distancel(-, -) in the space of priors and/or utilities and modify, accoglimthe definitions in Martin et al
(2003).

Definition 1 (u, ) is e-robust forb=a within &/ x T, if b=<a for all v € U and @ € T such that
d((u,m), (v,Q)) <e.

e—robustness under changes in either the prior or the uéitigydefined similarly, when we consider only
imprecision in preferences and beliefs. We have also thewalg definition:

Definition 2 Given(u, ), we say thatv, Q) € U x I is e-sensitive fob<a, whenb=<a does not hold for

(v, Q) andd((u, m), (v, Q)) = <.

We aim at finding'v, @) for whiche is minimum. (v, Q) is the perturbation ofu, 7) leading to faster
reductions in7"*. We call itmost sensitive.
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Definition 3 Given(u, ), (v, Q) € U xT'is the most sensitive pair fdora withini/ x T, if it is e-sensitive
and for other:’-sensitive(v’, Q") e U x T', e < ¢&'.

Similarly, we defines-sensitive and most sensitive utility functions and priors

Areasonable choice fatis given by the norms: ity, the supremum norm, i.¢ju|| = sup,cc|u(c); in
M, the total variation norm, i.e|||| = sup 4¢50(A)[; INU x M, [[(m, d)]|cc = max{[|ml]l,||d]}, where
U is the space of utilities and is the space of signed measures, which includes the pridrapitity
measures. We should notice that neighbourhoods of theyutilinder the supremum norm ovgrcontain
functions which do not fulfill the assumptions of convexitydanormalisation betwedhand1 of the utility.
At the same time, neighbourhoods of a probability measutander the norm inM contain measures
which are not probabilities. We will restrict the neighbbaods, to get normalised utilities and probability
measures and illustrate some results about the most sensitity/prior under this more general definition.

3. Utility Sensitivity

We consider the important clagsof all utility functionsv such that(a,8) = v(0 — a), forall a, 6 € R.
This includes the standard utility functions in statistidecision theory, related with the quadratic loss, the
absolute loss and others. As stated, we look for the largeest ®f a neighbourhood arounda, §) which
does not reverse the rankihg= a, together with the most sensitive utility. We start with esiricted,
topological neighbourhoods.

Proposition 1  The most sensitive utility &1, under the above conditions, is given by

| u(e,0)—¢, if A@B)>0
w(c,9)—{ u(e,0) + ¢, if A) <0’
N (u) . .
whereA(0) = I(z]0 +a)m(0 + a) — I(x]|0+b)m (6 + b) andé = TIA®d which is the size of the largest

neighbourhood of: in which the ranking is preserved.

PROOF Letl(§) = I(z|f). Consider|[u(a,8) — u(b,8)]l(8)7(0)dd > 0, and look for the smallest
such that
inf/[v(a,@) —v(b,0))l(@)7(0)d0 <0, veld,d(u,v) <e.

v

A change of variable leads to

/ [w(a, 0) — v(b, 0)]1(0)m(9)d6 = / ()it + )t +a) — 1(t + b)(t + b))dt — / (D) A(t)dt.

As a consequence, we have

i = u(t) — U = N%®(y) —
mf/v(t)A(t)dt—/A>0[ (t) a]A(t)dt+/A<O[ (t) + e]A(t)dt = N*°(u) €/|A(t)|dt, 3)

v

and (3) is equal t® when considering. Therefore¢ is the threshold neighbourhood size: we have
robustness only for values efnot greater thaé and the corresponding is the most sensitive utility. B

We provide an example in which the thresheli$ computed.

Example 1 Suppose that(t) = e~ I*, () = %‘9‘ andi(f) = 1 (there is no additional information).

We have that
o—l0+al _ o—0+b|

2

AB) =m0+ a)—m(0+0b) =
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Figure 1. a) ¢ for different values of b, with a = 0 in Example 1. b) Representation of function ¥ (6)
in Example 3.

Without loss of generality, assume that a < b. Then,A(9) > 0ifand only if¢ > —(a+b)/2. Moreover,

2N (u) = / (e‘le_al - ele_b‘) e l9dg = e % a4+1)—e(b+1)

and2 [ |A(6)[d6 = 4(1 — ele=/2), Thens = £ -l—e 101} ang

el g if 0> —(a+D)/2
w(cae)—{e|ecl+g, if 6<—(a+b)/2

Suppose, for example, that= 0 andb = 1. Then, it follows that = .1679. Figure 1 a) represents the
values of when we compare = 0 with b > 0. O

Frequently, we want utilities normalised between 0 and Wefdesignate by’ the subset of utilities
in U bounded betweeand1, we have that equation (3) becomes

inf/v(t)A(t)dt = /A>0 max{0, u(t) — e }A(t)dt + /A min{1, u(t) + e }A(¢)dt

v <0

ab — min{u(t), e min{l —u(t), e
N () /Q>O (o). }A0d+ [ mind1 —u(e). SJA@)r

<0

Example 2 (Continuation of Example 1)  Considera = 0 andb = 1. Using numerical methods to
solve the optimisation problem, we fiad= 0.1739. Note that we have found a valddarger than before.
It was expected since we are considering a subset of the ptasented earlier. ]

4. Prior Sensitivity

We turn now our attention to changes in the prior and searckthilargest neighbourhood of a prier
preserving the ranking < a, under the topology induced by the total variation norm.

Proposition 2 a) Let¥(0) = [u(a, ) —u(b, 8)]i(x|0). If there isf* : U (0*) = infy ¥(6), then the most
sensitive prior in, under the above conditions, is given®y = £dg- + (1 — &)wl4., whered,, is a
Dirac measure atr, A is a measurable subset afmeasure with the largest values of (9) and
€ is the smallest such that

Ner) - [ (o)~ nf W @)n(E)d(6) <0, (4)
AC

&
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b) If there is no such¥*, for the defined ina), there is a sequendg?); }$2, such thatvéd > 0 there
is ns such thatQ),,, is t-sensitive, witht € (e,e + ) and@,, is at most(e. + §)-sensitive.

C) 7 is é-sensitive.

PROOF &) We search for the smallestsuch that
inf [ [u(a.6) ~ u(s.0)=10)Q(d0) = inf [ W(O)Q(aB) < 0. d(m.Q) < = (5)

It is known, see, e.g., Fortini and Ruggeri (1994), that iafiof expectations within a total variation
neighbourhood are attained at measures with a point maisa point and coinciding with the priaron a
subsetd of measurd — . We have

inf / V(0)Q(d0) = inf /A W (0)m(0)df + < inf ¥ (0)
= N%(x) - / U (0)7(0)do + e inf ¥(6). (6)
AC o

Since (6) is monotonic, nonincreasingsthere is a smallestsuch that (6) is nonnegative.
b) Let{t;} € A such that¥(¢;)— inf, U(¢) and define); by Q; = d;, + (1 — &)wla..
c) A consequence &f) orb). H

When the inequality in (5) becomes an equality, its solugimesé, as in the next example.

Example 3 (Continuation of Example 1)  Considera = 0 andb = 1. We have that

elfl — -1 <1
L) = { A

Observe thainfy, ¥(0) = ¥(1) = ¢! — 1 = —¥(0) = —sup, ¥(#). Because of the shape &f(0),
see Figure 1 b), we look for an interval® = (t1,t5), witht; < 0 < ty and ¥ (t;) = W(ty). We find,
numerically, that the solution to (5) is given By’ = (—.1618,.0701) with & = .1086.

O

5. Prior-Utility Sensitivity

Based on the previous results, we present a strategy to dempnd the most sensitive prior and utility in
the case of a neighbourhood(ef, ) as defined in Sections 2, 3 and 4. We know that

N®(v,q) = /v(@) [[(x]0 + a)q(0 + a) — (x| + b)q(6 + b)] db = /U(O)Aq(e)db’.

where(v, ¢) is in ane-neighbourhood ofu, 7). Then, we could proceed as follows:

1. Set ¢ =0, &, = min{e-robustness for u, e-robustness for =}.

2. Set e=(eu+e)/2

3. Search for 6. nininising min [v(f)As(0)dd, where & is Dirac neasure at ..

4. Take v.(0) = max{0,u(f) —e} where A,(0) >0 and v.(0) = min{1,u(t) + <} el sewhere.

5. Find subset A. of w-neasure 1—¢ with the smallest value of v.(0)Ar(6) and
consi der the prior ¢. which coincids with = on A., has point nass ¢ at . and va-
ni shes el sewhere.

6. Conpute N%(ve,q.). |f |[N%®(v.,q)| <eps (for a given eps), then stop; other-

wi se, change ¢ or ¢, according to sign of N“b(vs,qs), go back to 2.
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Note that, in step 3nin [ v(6)A;(0)d0 is equivalent to
elé%? {max{0,u(f) — e}(x]0 + a) — min{1,u(f) + e} (z|0 + 1)} = orgé)n, #(0) (7)

where®©_ = {0 : A(d) <0}

Example 4 (Continuation of Example 1)  We consider now prior-utility robustness, within our prob-
lem. The following table contains the results obtained fthm applications of the algorithm above. We
takeeps=0.0001 and solve steps 3,4 and 5 numerically:

€ Eu € 0. AY Nt (v, qc)

0 | 0.1086 | 0.0543 | -1.05583| (-0.0429,0.0689) 0.0480361
0.0543 | 0.1086| 0.0815| -1.08496| (-0.0651,0.10527) 0.0148017
0.0815| 0.1086 | 0.0950| -1.09985| (-0.0763,0.1240)( -0.0035509
0.0815| 0.0950| 0.0882| -1.09237| (-0.0707,0.1146) 0.0053917
0.0882 | 0.0950| 0.0916| -1.09610| (-0.0735,0.1192)( -0.0011112
0.0882 | 0.0916| 0.0899 | -1.09424| (-0.0721,0.1169) 0.0003098
0.0899 | 0.0916| 0.9078 | -1.09517| (-0.0728,0.1181)| -0.0000980

Then, the joint-robustness is 0.9078.

6. Conclusions

Here, following Martin et al (2003), we have addressed issigncerning joint sensitivity with respect to
the prior and the utility, considering distances based amso By analysing changes in differences in
expected utility among alternatives, we are able to detieettions in which perturbations of the assessed
utility and/or probability lead to fastest changes in diffieces in expected utility and, as a consequence, to
directions in which assessments should be considered raceéudly.

The results concerning-contaminations, discussed in Martin et al (2003), can berjporated in this
general approach, by changing the distaiibg a set function over the space of priors and/or utilities.
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