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On the control measures of vector measures

Baltasar Rodrı́guez-Salinas

Abstract. If Σ is aσ-algebra andX a locally convex space we study conditions for a countably additive
vector measuresγ : Σ → X to have a control measuresµ. If Σ is the Borelσ-algebra of a metric
spaceΩ we obtain necessary and sufficient conditions using theτ additivity of γ. We also give results for
polymeasures.

Sobre las medidas de control de medidas vectoriales

Resumen. Si Σ es unaσ-álgebra yX un espacio localmente convexo se estudian las condiciones para
las cuales una medida vectorialσ-aditivaγ : Σ → X tenga una medida de controlµ. SiΣ es laσ-álgebra
de Borel de un espacio métricoΩ, se obtienen condiciones necesarias y suficientes usando laτ aditividad
deγ. También se dan estos resultados para las polimedidas.

1. Basic section

Following the usual notation, we writeca(Σ;X ) for the set of the countably additive measures defined on
aσ-algebraΣ of subsets ofΩ and taking values in a locally convex space (l.c.s.)X . If V is an absolutely
convex neighborhood (a.c.n.) of0, we writepV for the seminorm associated toV and we writeXV for the
quotient spaceX/p−1

V (0). As usual, we can endowXV with the norm‖·‖V . defined by‖gV(x)‖V = pV(x),
wheregV is the canonical applicationX → XV .

Theorem 1 Let γ : Σ → X whereX is a metrizable space, or a space such that{0} is aGδ set. Then
there exists a countably additive measureµ : Σ → [0.l] such that

lim
µ(A)→0

γ(A) = 0,

that is,γ isµ-continuous. This mesureµ is called a control measure ofγ.

PROOF. If X is a metrizable space then its topology can be defined by a sequence{Vn} of a.c.n. of0.
Then, sinceγ is countably additive, by [1, Corollary I.5.3], there exists a finite countably additive measure
µn such thatgVn

◦ γ is µn-continuous. It follows that the measure

µ(A) =
∑

n

2−nγn(A)/γn(Ω) (A ∈ Σ)
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satisfies the required conditions because every measuregVn
◦ γ is µ-continuous. In case{0} =

⋂

n Vn we
can proceed similarly, taking into account thatµ(A) = 0 implies thatγ(A) = 0 andgVn

◦ γ(A) = 0 for
every a.c.n.V and, hence, we can apply the theorem of Pettis [1, I.2].�

Corollary 1 The previous Theorem is valid ifX is an (LF) space and, more generally, if every bounded
set ofX is contained in a metrizable subspace ofX . �

Proposition 1 There exists a reflexive and complete spaceX and a countably additive measureγ : Σ →
X so that there is no control measureµ such thatµ(A) = 0 impliesγ(A) = 0.

PROOF. Let Ω be an uncountable set andX the spaceRΩ endowed with the product topology. ThenX
is a reflexive complete Montel nuclear space. Letγ = (δx)x∈Ω, whereδx is Dirac’s delta, and letΣ be
theσ-algebra of all the subsets ofX . Let us suppose that there is one such measureµ. Then, sinceΩ is
uncountable, there existsx ∈ Ω such thatµ({x}) = 0 and, hence,γ({x}) = 0 andδx({x}) = 0, against
the definition ofδx.

This measureγ is not diffuse. To define a diffuse measure we can considerΩ =
⋃

j∈J Ij , where
{Ij}j∈J is a not countable disjoint family of copies of [0,1]. Ifµj is the Lebesgue measure ofIj we can
define

γ(A) = (µj(A ∩ Ij))j∈J ∈ X = R
J

for every setA ⊂ Ω such thatA ∩ Ij is µj-measurable for everyj ∈ J . �

Definition 1 Let Ω be a topological space andγ : Σ → X a Borel measure. Then we say thatγ is a fat
measureif every set of not nullγ-measure contains a open set of not null measure. It is clear that every
Borel measure on a spaceΩ endowed with the discreet topology is a fat measure. It is also easy to see that
not null fat measure on aT1 separable space, in particular, on a Lusin space, is an atomic measure.

Theorem 2 Let Σ be theσ-algebra of the Borel sets of a Lusin spaceΩ and X a l.c.s.. Then, every
countably additive fat measureγ : Σ → X has a control measureµ such thatγ is µ-continuous.

PROOF. SinceΩ is a Lusin space there exists a strict web(Cn1,...,nk
) of Borel subsets ofΩ such that

Ω =
⋃

Cn andCn1,...nk
=

⋃

n Cn1,...,nkn and so that every open set is the union of disjoint sets of the web
[5, p. 98 and 101].

Let (αn1,...,nk
) be a farnily of positive numbers whose total sum equals 1. Letus choosex∗n1,...,nk

∈ X ∗

such that
|x∗n1,...,nk

◦ γ|(Cn1,...,nk
) = αn1,...,nk

whenγ(Cn1,...,nk
) 6= 0 andx∗n1,...,nk

= 0 in the opposite case. Then, if

µ(A) =
∑

|x∗n1,...,nk
◦ γ|(A ∩ Cn1,...,nk

) (≤ 1)

for everyA ∈ Σ with γ(A) 6= 0 there exists an open setG ⊂ A such thatγ(G) 6= 0 and therefore there
exists aCn1,...,nk

with not null γ-measure. Henceµ(A) ≥ µ(G) ≥ µ(Cn1,...,nk
) > 0 and soµ(A) = 0

implies γ(A) = 0. Then, using the theorem of Pettis [1, I.21] we obtain that every measuregV ◦ γ is
µ-continuous and, so, the measureγ is µ-continuous. �

Definition 2 A l.c.sX is said to have theproperty of the dual sequenceif for the closed linear spanY of
every bounded sequence there exists a sequence{x∗n} ⊆ Y∗ such that, ifx ∈ Y andx∗n(x) = 0 for every
n ∈ N, thenx = 0.

Proposition 2 LetY be the closed linear span of a bounded sequence. If for any such Y there exists a
sequence{Vn} of neighborhoods of 0 such that

⋂

n Vn ∩ Y = 0 (i.e. {0} is aGδ set inY), thenX has the
property of the dual sequence.
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PROOF. Let{xn} be a sequence dense inY andBn = V0
n (the polar set ofVn), where we can supposeVn

to be absolutely convex. Then, ifpn is the seminorming function ofVn, for everyxn there existsx∗nk ∈ Bk

such that|x∗nk(xn)| ≥ pk(xn)/2. Letx∗nk(x) = 0 with x ∈ Y for every pair(n, k) of whole numbers, then

pk(x− xn) ≥ |x∗nk(x− xn)| = |x∗nk(xn)| ≥ pk(xn)/2.

Since{xn} is dense inY, there exists a subsequence{xni
} such thatpk(x − xn) → 0; it follows that

pk(xni
) → 0, pk(x) = 0 andx ∈ Vk for everyk ∈ N, hencex = 0. �

We remark that if there exists such sequence{x∗n} with the required property, then the neighborhoods
Vnk = {x ∈ X : |x∗n(x)| < 1(k} verify

⋂

nk Vnk ∩ Y = {0}.

Examples. Every metrizable space and, in general, every l.c.s. such that{0} is aGδ set, have the property
of the dual sequence. The spaceD∗(Ω) of the distributions on an open set ofRn have the property of the
dual sequence, because its dual is separable, and it is not metrizable. D(Ω) also has the property of the
dual sequence. In general, every normal space of distributions [3, 4.2, p. 3l9] has the property of the dual
sequence.

Theorem 3 If Ω is a Lusin space andX is a l.c.s with property of the dual sequence, then every Borel
measureγ : Σ → X has a control measure.

PROOF. With the notations of Theorem 2, letY be the closed linear span of the range ofγ. If x∗ ∈ Y∗

verifiesx∗ ◦ γ(Cn1,...,nk
) = 0 for anyn1, . . . , nk, thenx∗(G) = 0 fon every open setG, becauseG is the

union of disjoint setsCn1,...,nk
. Therefore,x∗ ◦γ(A) = 0 for every Borel setA, because every Lusin space

is a Radon space [5, p. l22] and, so,x∗ = 0. Then, the numerable setγ(Cn1,...,nk
) is a total set inY and

there exists a sequence{x∗n} ⊂ X ∗ such that, ifx∗n(x) = 0 for everyn ∈ N thenx = 0. It is clear that, if
B is the range ofγ, we can take thex∗n ∈ B0. Then, since{x∗ ◦ γ(A)} is a bounded sequence for every
A ∈ Σ, it follows from the theorem of Nikodym [1, I.3] that{|x∗ ◦ γ|(Ω)} is also bounded. Then

µ(A) =
∑

n

2−n|x∗n ◦ γ|(A) (A ∈ Σ)

is a finite Borel measure such that ifµ(A) = 0 thenx∗n ◦ γ(A) = 0 for everyn ∈ N with γ(A) ∈ Y. From
here it follows thatγ(A) = 0.

Let V be an a.c.n. of 0 inX and letgV : X → XV be the canonical application. Then, applying the
theorem of Pettis [1, I.2] togV ◦ γ the theorem follows immediately. �

In orden to study the theorem of Rybakov [1, IX.2] we give the following

Definition 3 A l.c.s.X is said to have theproperty of the sequenceif, for every bounded sequence{xn}
of not null elements ofX , there exists anx∗ ∈ X ∗ such thatx∗(xn) = 0 for everyn ∈ N.

Proposition 3 Every normed spaceX and, hence, every direct sum of normed spaces, has the property
of the sequence. The same holds true for every (LB) space and every 1. c. s. such that every bounded
sequence ofX is contained in a normed space ofX .

PROOF. LetX be a normed space andHn = {x∗ : x∗(x) = 0}. SinceX ∗ is a Banach space and every
Hn 6= X ∗, it follows from the theorem of Baire that

⋃

nHn 6= X ∗ and, hence, there existsx∗ ∈ X ∗\
⋃

nHn

such thatx∗(x) 6= 0 for everyn ∈ N.
Finally, it X is the direct sum of normed spaces it can be easily proved thatX has the property of

the sequence. (ItX is the topological product of an infinite family of Banach spaces, thenX has not the
property of the sequence.)�

Examples: 1. Let Ω be a locally compact space andC00(K) the space of the scalar continuous functions
with support contianed in the compactK ⊂ Ω, endowed with the usual norm. Then we writeC00(Ω) (or
K(Ω)) for the strict inductive limit of the spacesC00(K).
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If Ω is a countable union of compacts sets thenC00(Ω) is an (LB) space [3, 2.12, p.164] and it follows
from Proposition 3 thatC00(Ω) has the property of the sequence. We will give a direct proof of this fact
assuming thatΩ is aσ-compact set. In that case, sinceΩ is a locally compact space there exists an increasing
sequence{Kn} of compact subsets ofΩ such that every compact setK ⊂ Ω is contained in one of them.
Then, every bounded sequence{ϕn} ⊂ C00(Ω) is contained in a subspaceC00(K) and, so,C00(Ω) has the
property of the sequence. Indeed, let us suppose thatA =

⋃

n supp ϕn is not relatively compact. Then, for
everyn ∈ N , there existsxn ∈ supp ϕn such thatϕkn

(x) 6= 0. Let

µ =
∑

n

n|ϕkn
(xn)|−1δxn

,

then every compact setK ⊆ Ω has only a finite number of pointsxn becauseK is contained in aKk and,
therefore,µ ∈ C∗

00(Ω). Since|µ(|ϕkn
|)| ≥ nwe get that the sequence{ϕn} is not bounded, a contradiction.

Let us now see that the result we just obtained remains valid without any restriction. Let{ϕn} ⊂ C00(Ω)
be a bounded sequence. LetGn be a relatively compact open neighborhood ofAn = supp ϕn and letψn

be a continuous function onGn that takes the value 1 onAn and the value 0 on the border ofGn. Then
G′

n = {x ∈ Gn : ψn(x) 6= 0} is aσ-compact open neighborhood ofAn andG′ =
⋃

nG
′
n is aσ-compact

open neighborhood ofA =
⋃

nAn. SinceG′ is a locally compact space there exists a measureν ∈ C00(G
′)

such that
ν(ϕn) 6= 0 for everyn ∈ N. (1)

We are not done because the canonical applicationC00(Ω) → C00(G
′) need not be onto. Let{Kn} be

an increasing sequence of compact sets whose union isG′. Let {ck} be a positive sequence such that
∑

k ck|ν|(Kn \Kn−1) ≤ 1 (K0 = ∅) and, for everyα = {αk} ∈ ℓ∞ andϕ ∈ C00(G
′) let us set

µα(ϕ) =
∑

k

αkckν(ϕχKn\Kn−1
).

LetHn = {α ∈ ℓ∞ : µα(ϕn) = 0} . It follows from (1) that everyHn 6= ℓ∞, so the theorem of Baire
states that there exists anα ∈ ℓ∞ \

⋃

nHn such thatµα(ϕn) 6= 0 for everyn ∈ N. Sinceµα ∈ C∗
00(G

′)
is a finite measure, the Borel measure defined byµ(A) = µα(A ∩ G′) solves the matter, since belong to
C∗
00(Ω) and it verifiesµ(ϕn) 6= 0 for everyn ∈ N .

2. Let Ω ⊆ Rn be an open set andD(Ω) the set of the infinitely differentiable functions with compact
supportK ⊆ Ω, with its usual topology [3]. If{ϕn} is a bounded sequence of not null functions ofD(Ω),
then their supports are contained in a fixed compact setK ⊆ Ω. Let j : D(K) → C00(K) be the natural
injection. SinceC00(K) has the property of the sequence, there exists a measureµ ∈ C∗

00(K) such that
jµ(ϕn) = µ(jϕn) 6= 0 for everyn ∈ N and so we get thatD(Ω) has the property of the sequence.

In general, ifX has the property of the sequence andj is an injective continuous linear application from
a l.c.s.Y intoX , thenY also has the property of the sequence.
3. Let D∗(Ω) be the dual ofD(Ω), that is, the space of the distributions. We will prove thatD∗(Ω)
has not the property of the sequence. Let{xn} ⊂ Ω be a sequence not contained in any compact set of
Ω and letTn = δxn

. Then,{Tn} is a bounded sequence of not null elements ofD∗(Ω) and, for every
ϕ ∈ D∗∗(Ω) ⊂ D∗(Ω) there exists ann ∈ N such thatTn(ϕ) = ϕ(xn) = 0 and it follows thatD∗(Ω) has
not the property of the sequence.
4. Let C(Ω) be the space of continuous functions endowed with the topology of the uniform convergence
on the compact subsets of the locally compact spaceΩ. Then, using the fact that every measureµ ∈ C∗(Ω)
has compact support, we are going to prove thatC∗(Ω) has the property of the sequence.

First of all, to prove that every positive measureµ ∈ C∗(Ω) has compact support, let us take into account
that there exists a sequence{Kn} of compact subsets ofΩ such thatµ(Ω \

⋃

nKn) = 0 and everyKn

is contained in the interiorGn+1 of Kn+1. Then, if the support ofµ is not compact, we can suppose,
taking subsequences it necessary, thatµ(Kn) < µ(Gn+1) for everyn ∈ N. So, for everyn ∈ N there
exists a positive functionϕn ∈ C(Ω such thatµ(ϕn) = 1 andsupp ϕn ⊆ Gn+1 \ Kn. It follows that
ϕ =

∑

n ϕn ∈ C(Ω) a contradiction withµ(ϕ) = limn µ(
∑

k≤n ϕk) = ∞.
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Now, if {ϕn} is a bounded sequence inβ(C∗(Ω), C(Ω)) of not null measures, there exists a constant
M > 0 such that|µn(ϕ)| ≤ M‖ϕ‖∞ for every bounded functionϕ ∈ C(Ω) and everyn ∈ N. Hence,
|µn|(Ω) ≤ M andµ =

∑

n 2−n|µn| is a finite Radon measure. Moreover, itK is the class of the compact
sets ofΩ, then the sets

B = {ϕ ∈ C(Ω) : ‖ϕ‖K ≤MK , ∀K ∈ K}

are fundamental system of bounded sets ofC(Ω). So,

M = sup{|µn(ϕ)| : n ∈ N, ϕ ∈ B} <∞

and
sup{|µn|(ϕ) : n ∈ N, ϕ ∈ B} ≤M.

Therefore,{|µn|} is also a bounded sequence inβ(C∗(Ω), C(Ω)) andµ =
∑

n 2−n|µn| ∈ C∗(Ω) and
K = supp µ is a compact set.

Then, there exists a sequence{fn} in L1(µ), with fn 6= 0, a.e. and such thatµn(A) =
∫

A
fndµ for

every Borel setA ⊆ Ω. SinceL1(µ) is a Banach space, it follows that there exists a bounded Borel function
g ∈ L∞(µ) with supp g ⊆ K and, hence,g ∈ C∗∗(Ω), and such that〈µn, g〉 =

∫

gfndµ 6= 0 for every
n ∈ N. ThenC∗(Ω) has the property of the sequence.

Let us now prove that ifΩ is σ-compact and non compact, thenC(Ω) has not the property of the
sequence. In the hypothesis there exists an increasing sequence{Kn} of compact subsets ofΩ such that
every compact subset ofΩ is contained in aKn. Letϕn 6= 0 be a continuous with support inΩ \Kn and
µ ∈ C∗(Ω). Then, since the support ofµ is a compact setK ⊂ Ω, there exists aKn ⊇ K and, therefore,
µ(ϕk) = 0 for k ≥ n, because the support ofϕk is disjoint withK. It follows that the sequence{ϕn} is
bounded andC(Ω) has not the property of sequence.

Moreover, if Ω is an infinite set endowed with the discreet topology, thenC(Ω) = RΩ has not the
property of the sequence.
5. LetH(Ω) be the space of the holomorphic functions on an open setΩ ⊆ C endowed with the topology
of the uniform convergence oven the compact subsets ofΩ. Then,H(Ω) has the property of the sequence.
Indeed, let{ϕn} be sequence of not null functions inH(Ω). Then, since the set of zeros of everyϕn

is countable, there exists a pointz ∈ Ω such thatϕn(z) = 0 for everyn ∈ N. On the other hand, if
j : H(Ω) → C(Ω) is the natural injection, thentj (δz) ∈ H∗(Ω) and 〈ϕn,

tj (δz)〉 = 〈j(ϕn), δz〉 =
ϕn(z) 6= 0, which proves what we wanted.
6. Let S be the space of the functionsϕ infinitely differentiable on such that(1 + |x|2)k∂pϕ(x) equals 0
in infinite for everyk ∈ N andp ∈ Nn, and letS∗ be its dual of the temperate distributions. Then, sinceS
is a reflexive and Fréchet space, the Proposition 4 states thatS∗ has the property of the sequence. On the
other hand, sinceS is a subspace ofS∗ and the injectionj : S → S∗ is continuous, it follows thatS also
has the property of the sequence.

Proposition 4 If X ∗ is a Baire space for theβ(X ∗,X ) topology, thenX has the property of the sequence.
Therefore, ifX ∗ is a Fréchet space, thenX has the property of the sequence.

PROOF. Let {xn} ⊂ X be a sequence of not null elements andHn = {x∗ ∈ X ∗ : x∗(xn) = 0}. Then
Hn ⊂ X ∗ is closed for theσ(X ∗,X ) andβ(X ∗,X ) topologies. SinceX is a Baire space, we have that
X ∗ 6=

⋃

nHn. If we now takex∗ ∈ X ∗ \
⋃

nHn it follows thatx∗(xn) 6= 0 for n ∈ N. �

Theorem 4 In the conditions of Theorem 2, ifX is a l.c.s. with property of the sequence, there exists
x∗ ∈ X ∗ such thatµ = |x∗ ◦ γ| is a control measure ofγ.

PROOF. It suffices to consider that, in virtue of the previous definition, there existsx∗ ∈ X ∗ such that
x∗ ◦ γ(Cn1,...,nk

) 6= 0 whenγ(Cn1,...,nk
) 6= 0 and then reason as in Theorem 2.�
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Remark 1 It Ω = N, Σ is theσ-algebra of the subsets ofΩ, X = RN andδn is the corresponding Dirac’s
delta, then the measureγ = {δn}n∈N has the control measureµ =

∑

n 2−n|e∗n ◦ γ| =
∑

n 2−nδn but there
exists nox∗ ∈ X ∗ such that|x∗ ◦ γ| is a control measure ofγ. We notice thatX so chosen is a Fréchet
space, and also Montel and nuclear space.�

Theorem 5 If X is a sequentially complete l.c.s. without the property of the sequence, then there exists
a countably additive measureγ : Σ → X such that for nonex∗ ∈ X ∗ is the measure|x∗ ◦ γ| a control
measure forγ.

PROOF. According to the hypothesis, there exists a bounded sequence{xn} ⊂ X for which the property
of the sequence fails. LetΩ = N, Σ theσ-algebra of the subsets ofΩ andγ(A) =

∑

n∈A 2−nxn for every
A ∈ Σ (γ is well defined becauseX is sequentially complete and{xn} is bounded). It can be easily proved
thatγ : Σ → X is a countably measure. Since the property fails for{xn}, for everyx∗ ∈ X ∗ there exists
n ∈ N such that|x∗ ◦γ|({n}) = 2−n|x∗(xn)| = 0. Sinceγ({n}) = 2−nxn 6= 0, it follows that no measure
|x∗ ◦ γ| can be a control measure forγ. �

Remark 2 If Ω = N, Σ theσ-algebra of the subsets ofΩ, X is a l.c.s. with the property of the sequence
andγ : Σ → X is a measure. Then there existsx∗ ∈ X ∗ such that|x∗ ◦ γ| a control measure forγ(see,
Theorem 4). �

Definition 4 If Σ is theσ-algebra of the Borel sets of a topological spaceΩ andγ : Σ → X is a countably
additive measure with values in a l.c.s.X , we say thatγ is τ -additiveif, for every family{Gi}i∈I of open
sets ofΩ there exists a countably setJ ⊆ I such that, whenA is a Borel subset of

⋃

i∈I Gi \
⋃

i∈J Gi then
γ(A) = 0.

Theorem 6 Theorem 3 is valid whenX is a l.c.s. with the property of the dual sequence andΩ is a subset
of a Lusin space and, in particular, whenΩ is a separable metric space or it is a metric space but the vector
mesureγ is τ -additive. Moreover, we can choose a control measure with the formµ =

∑

n |x∗n ◦ γ| with
x∗n ∈ X ∗. If X has not the property of the sequence we can not assure the existence of a control measure
for γ of the formµ = |x∗ ◦ γ| with x∗ ∈ X ∗. Nevertheless, if every bounded sequence ofX is contained in
a Banach subspace, the existence of a control measure of the formµ = |x∗ ◦ γ| with x∗ ∈ X ∗ follows as a
consequence of the theorem of Rybakov [1, IX.2, p. 168].

PROOF. It suffices to prove that, ifγ is τ -additive andΩ is a metric space, thenγ is supported in a
separable space. LetF be the support ofγ, i.e., the set of all the pointsω ∈ Ω such that the restrictionγV
of γ to every neighborhoodV of ω is not null. First of all, let us prove that every open neighborhoodV of
any pointω ∈ F contains an open setG ⊆ Ω such thatγ(G) 6= 0. Indeed, there exists Borel setA ⊆ V
such thatγ(A) 6= 0 and anx∗ ∈ X ∗ which verities thatx∗ ◦ γ(A) 6= 0 and, for everyε > 0, there exists
an open setG such thatA ⊆ G ⊆ V and|x∗ ◦ γ(G) − x∗ ◦ γ(A)| ≤ |x∗ ◦ γ(G \ A)| ≤ ε. It follows
immediately the existence of an open setG which verifiesA ⊆ G ⊆ V andx∗ ◦ γ(G) 6= 0 andγ(G) 6= 0.
Using theτ -additivity of γ it follows that every family of disjoint balls with their centers in points ofF is
countable. Therefore, for everyn there exists a sequence{Bnk}k of balls with radius1/n which coversF ,
and, so,F is separable. Moreover, theτ -additivity of γ implies thatγ is supported inF, i.e., γ(A) = 0 if
A ⊆ Ω \ F , and the supportF is proper. �

Remark 3 Opposity to what happens, in general, in the scalar case, there exists Borel vector measuresγ
defined on a space of fixed density bigger thanℵ0 which are notτ -additive. To prove this, it suffices to
consider the measureγ = {δx}x∈Ω of Proposition 1, endowingΩ with metric̺ defined by̺ (x, y) = 1 if
x 6= y.

If the density of the metric spaceΩ is of measure zero, for a countably measureγ : Σ → X to have
control measureµ it is necessary thatγ is τ -additive. To see this, if there exists such control measureµ it
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must beτ -additive, because the density ofΩ is of measure zero. Therefore, if{Gi}i∈I is a family of open
sets ofΩ, there exists a countable setJ ⊆ I such thatµ(

⋃

i∈I Gi \
⋃

j∈J Gi) = 0. So, ifA is a Borel subset
of

⋃

i∈I Gi \
⋃

j∈J Gi, thenµ(A) = 0 andγ(A) = 0 and, therefore,γ is τ -additive.
If Ω is a metric space whose density is of measure zero andX is a metrizable space (or (LF)), it follows

from this result and Theorem 1 that every Borel measureγ : Σ → X is τ -additive.
Many of these results for metric spacesΩ are obviously true whenΩ is a topological space such that

there exists a metric spaceΩ′ so thatΩ andΩ′ have the same Borel sets.
Theorem 6 can be extended in a different direction when the measureγ is supported in a Lusin space

Ω0 ⊆ Ω. This condition is not very restrictive because, itΩ is a Radon space of type{Km} whereKm is
the class of the compact metrizable sets ofΩ, it is necessary thatγ is supported in a Lusin subspace for that
γ to have a control measure.�

2. Extension to polymeasures

We are going to see now that the preceding results can be extended to polymeasures [2].

Definition 5 A countably additive polymeasure

γ : Σ1 × · · ·Σd → X

is uniform in the variable i (or inΣi) if the measures

γ(A1 × · · · ×Ai−1 ×Ai+1 · · · ×Ad)

are uniformly countably additive in the setsAj ∈ Σj , j 6= i.

Theorem 7 Letγ : Σ1 × · · ·Σd → X be a countably additive polymeasure andX a metrizable space, or
a space such that its origin is aGδ. Then, ifγ is uniform inΣ1, there exists a countably additive measure
µ1 : Σ → [0, 1] such that

lim
µ1(A)→0

γ(A,A2, . . . , Ad) = 0

uniformly in(A2, . . . , Ad) ∈ (Σ2 × · · · × Σd). �

Theorem 8 Let γ : Σ1 × · · ·Σd → X be polymeasure where theσ-algebraΣi is the class of the Borel
sets of a Lusin spaceΩi. Then, ifγ is uniform inΣ1 andX is a 1.c.s. with property of the dual sequence,
there exists a countably additive measureµ1 : Σ1 → [0, 1] such that

lim
µ1(A)→0

γ(A,A2, . . . , Ad) = 0

uniformly in(A2, . . . , Ad) ∈ (Σ2 × · · · × Σd).

PROOF. First of all, same as in Theorem 3 we can prove that the closedlinear span of the rangeB of γ is
the closed linear span of a bounded sequence. So, sinceX the property of the dual sequence, there exists a
sequencex∗n ∈ B0 such thatx∗n ◦ γ(A1, . . . , Ad) = 0 for everyn ∈ N impliesγ(A1, . . . , Ad) = 0.

On the other hand, sinceγ is uniformly countably additive inΣ1, every application

Σ1 ∋ A→ (x∗n ◦ γ(A,A2, . . . , Ad)) ∈ ℓ∞(Σ2 × · · · × Σd)

is a countably additive and, therefore, sincex∗n ∈ B0, the measure

Σ1 ∋ A→
{(

2−nx∗n ◦ γ(A,A2, . . . , Ad)
)

: n ∈ N, Ai ∈ Σi ∀i
}
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is also countably additive. Corollary 3 [1, I.5] implies nowthe existence of a countably additive measure
µ1 : Σ1 → [0, 1] such thatµ1(A) = 0 impliesx∗n ◦ γ(A,A2, . . . , Ad) = 0 for everyn ∈ N and, hence,
γ(A,A2, . . . , Ad) = 0.

LetV be an absolutely convex neighborhood of 0 inX andgV the canonical applicationX → XV . The
measure

G(A) = (gV ◦ γ(A,A2, . . . , Ad), (A2, . . . , Ad) ∈ Σ2 × · · · × Σd (A ∈ Σ1)

is countably additive for the norm such that

‖G(A)‖ = sup {‖gV ◦ γ(A,A2, . . . , Ad)‖V : Ai ∈ Σi ∀i} .

So, it follows easily from the theorem of Pettis [1, I.2] that

lim
µ1(A)→0

γ(A,A2, . . . , Ad) = 0

uniformly in (A2, . . . , Ad) ∈ (Σ2 × · · · × Σd). �

Remark 4 Using this theorem, the first part of Theorem 6 can be generalized te polymeasures. Also, the
control measureµ1 : Σ1 → [0, 1] can be taken so that

µ1(A) =
∑

n

|x∗n ◦ γ|1(A,A
n
2 , . . . , A

n
d ), (A ∈ Σ1)

where|x∗n◦γ|1 is the variation of the measureA→ x∗n◦γ(A,A
n
2 , . . . , A

n
d ) andAn

k ∈ Σk for k = 1, . . . , d. �
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Facultad de CC. Matemáticas
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