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Abstract. The paper gives a complete characterization of the subspaces, quotients and complemented
subspaces of a stable power series space of infinite type without the assumption of nuclearity, so extending
previous work of M. J. Wagner and the author to the nonnuclear case. Various sufficient conditions for
the existence of bases in complemented subspaces of infinite type power series spaces are also extended
to the nonnuclear case.

Teoria estructural de espacios de series de potencias de tipo infinito

Resumen. Este artculo da una caracterizagi completa de los subespacios, cocientes y subespacios
complementados de los espacios de series de potencias estables de tipo infinito sin el supuesto de nucle-
aridad, extendiendo trabajo previo de M. J. Wagner y el autor al caso no nuclear. Se extienden tambi
varias condiciones suficientes para la existencia de bases en subespacios complementados de espacios de
potencias de tipo infinito al caso no nuclear.

1. Introduction

In the present paper we extend the structure theory of nuclear stable power series spaces of infinite type as
developed by M. J. Wagner and the author in [22],[29], [30] to the nonnuclear case, i.e. we characterize the
subspaces, quotient spaces and complemented subspaces éftinet Epace

Ze2ton < yooforallt € R}.

Aso(a) ={z € K |$|1% = Z |Zn

n=0

Herea = (ag, a1, . ..) is an increasing sequence of nonnegative numbers tending to infinity and satisfying

lim sup P2 —+o00. ()

n Qo

Condition (1) is equivalent td o (o) x Ao (a) = Ao () and called stability.
In the above mentioned work of Wagner and the author it was additionally assumed that

. logn
lim sup < +o0
n an
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D. Vogt

This condition is equivalent to the nuclearity &f, («). In the present paper we present the theory without
this assumption.

While the characterizing conditions remain the same and also the proof of the necessity of these con-
ditions, the proof for the sufficiency is essentially different and provides also a new access for the nuclear
case. The difference is the following: in the nuclear case the proof was based of the T. and Y. Komura
imbedding theorem, resp. its analogue denuclear spaces due to Ramanujan and Tgtaifl7], and on
a splitting theorem for exact sequences dfdtret spaces. The splitting theorem is also valid in the nonnu-
clear case. However we do not have an equivalent to the above mentioned imbedding theorems. Therefore
the imbedding and quotient maps will be given by a direct construction.

In a last section we consider results of Vogt [23], Aytuna, Krone and Tgizid], [2], Wagner [32],
Kondakov [9] and Dubinsky and Vogt [6], [7] on the structure of complemented subspades(of) and
give proofs in the new framework, without assuming nuclearity. Also here in some parts new methods had
to be developed.

The paper is partly based on lectures which the author has given in Wuppertal in 1987/88 but never has
published. The author thanks M. J. Wagner for useful conversations.

Throughout the paper we will study&eshet-Hilbert spaces, i.e. &het spaces admitting a fundamental
system of seminorm§ ||o < || |1 < ... given by semiscalar productz||? = (z, ). If not otherwise
stated a fundamental system of seminorms inécket-Hilbert space will always be assumed to be of this
form. So the local Banach spacEs are Hilbert spaces.

We will use common notation for locally convex spaces ar&tRet spaces in particular also for their
local Banach spaces and the linking maps between them. The scalar field is ElywalyereK is eitherR
or C. For all this we refer to [12].

2. Power series spaces of infinite type and related invariants

In the present paper we will study only power series spaces of infinite type as defined above. We will
not assume nuclearity. The spate, («) and likewise the sequeneewill be called stable ifn satisfies
condition (1). For more information on power series spaces we refer to [12, Section 29] and to [4]. For
examples see also [18, Chapter 8].

Throughout the paper we use for the local Banach spade dfv) with respect td |; the notation

o0
AP = {z = (z0,71,...) : 2]} =) |z;|?e** < +oo}.
j=0

Of course, these are Hilbert spaces isomorphi tan particularA§ = ¢s.

An analogous extension of the structure theory to the nonnuclear case for finite type power series spaces
has been given in [27]. From this paper we quote the following result [27, Theorem 3.2] which is based on
[30, Satz 2.4].

Proposition 1  If « is stable then there exists an exact sequence

N

0 — Ax(a) —— Ax(a) —— Ap(a)y —— 0. N

To describe the characteristic properties of power series spaces and their subspaces, quotient spaces and
complemented subspaces we need two types of invariants. The first one describes the asymptotic behavior
of the relative semiaxes of the ellipsoids which form the neighborhoods of zero.

Let X be a linear space arld C U absolutely convex subsets. We set for linear subspBo@scC X:

(VU F)=inf{6 >0 : V CoU + F}
YV, U;G) =inf{y>0: VNG CHU}
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Power series spaces of infinite type

and with this we notation

0, (V,U) =inf{§(V,U; F) : dim F < n}
Y (V,U) =inf{y(V,U; G) : codim G < n}.

d.(V,U) is called then-th Kolmogoroff diametery,,(V, U) then-th Gelfand diameter. For the behavior of
the diameters see [19] or [4, Section |, 6].

We call U a Hilbert disc ifU = {z : ||z|| < 1} and]||z|| is given by a semiscalar product, i.e.
|z||? = (x,z). The following is well known (see [19, 11,3.(3)]).

Lemmal If V anU are Hilbert discs ther,,(V,U) = ~,(V,U) for all n and they coincide with the
singular numbers of the canonical m&y — Ey. N

Here Fy and Ey denote the respective local Hilbert spaces and for the last assertion we assumed that
Ey — FEy is compact, i.e. that’ is precompact with respect t6. The following lemma is immediately
clear.

Lemma 2 If V C U are absolutely convex subsets of the linear spE¢eX, C X a linear subspace and
q: X — X /X, the quotient map, thefy, (¢V, qU) < 6,(V,U) andv,(VNX,,UNXy) < v, (V,U). N

We will use the following property of the diameters (cf. [20]).

Lemma3 Let| |lo < || |1 < | |2 be seminorms on the linear spagéand || |2 < || |lo] [|2, then
’}/n(UQ, U()) < ’}/Z(Uh U()) forall n € N().

PROOF LetG C X be alinear subspace withdim G < nandUs NG C vUy. From the assumption we
derive that(yUy) N Uz C /7U1. Inserting the first inclusion into the second we see that G C \/7U;.
Thereforey(Uz, U1;G) < /7 and, in consequencey(Us, Ur; G)? < ~(Us, Uy; G). Since obviously
v(Us, Ug; G)? < ~(Us, Uy; G)2?~(Uy, Up; G)? we havey(Us, Uy; G) < v(Uy, Uy; G)?. Taking infima over
G proves the result. B

The following definition goes back to Ramanujan-Te@hio[17] (there and in [30] under the name of
An(a)-nuclearity). We use the Kolmogoroff diameters for the definition as itis done in [30]. The difference
is that we do not assume nuclearity, i. e. we do not asdimmeip,, 22" < cc.

Qn

Definition 1 A Fréchet-Hilbert spacé is calleda-nuclear if for every absolutely convex neighborhood
U of zero and every > 0 there is another such neighborhoddcC U, so that

lim e'*"6,,(V,U) = 0.
Remark 1 In view of Lemma 1 we could have used also the condition

lime'* v, (V,U)=0. A

Clearly a-nuclearity is invariant under topological linear isomorphisms. As an immediate consequence
of Lemma 2 we obtain.

Proposition 2 «-nuclearity is inherited by subspaces and quotient spacli.
Lemma4 A («)isa-nuclear.
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PROORE If Uy = {z € A () : |z| < 1} ands < t then it is immediate that
Uy C span{eq,...,en_1} + els—tangy

whereey, e1, ... are the canonical basis vectors. Thereford/;, Us) < es—than  m

Remark 2 If codim G < nandU; NG C vU, then there is: € span{eq, ...,e,} NG, ||z||: = 1 and we
have

n
72 > |I’|§ _ Z ‘Ij|2625aj > 62(sft)an
7=0

hencee(s=ton < ~, (U, Us) which means that we have even
'Yn(Uta UG) = 6n(Uta Ue) = 6(57”&”- |
From Lemma 4 and Proposition 2 we obtain:

Proposition 3  If E is isomorphic to a subspace or a quotient spacd gf(a) thenE is a-nuclear. W

Just for the sake of completeness we notice that every closed subspace or quotient spaéetuadta Fr
Hilbert space is again a &chet-Hilbert space.

The second type of invariants are those who describe the interpolational properties of the seminorm
system definingZ. They have been considered, under different names, by Dragilev, Zaharjuta, Dubinsky,
Robinson, Wagner and the author. The importance of the properties (DN xusll{fased on the structure
theory of power series spaces as developed in [22],[29],[30] and, in particular, on the {(PSpltting
Theorem (see Theorem 2 below). For the properties of (DN) 8)dée [12, Sections 29, 30, 31].

Let E be a Fechetspacd, ||o < || |1 < ...afundamental system of seminorms dn, > || |7 > ...
the dual extended real valued normdih where for any seminorr || we are using the notation

[yll* = sup |y(=)]
[EES!

fory e E'.
Definition 2  E has propertyDN) if there isp so that for anyk there isK andC' > 0 with
I < Cl N -
I I, is called a dominating norm.
An equivalent formulation is given in the following lemma for the proof of which we refer to [12].

Lemma5 FE has propertyDN) if and only if there i, so that for every: and0 < 7 < 1 there existd(
andC > 0 with
e <ClN % ™

Definition 3 E has property(Q2) if for everyp there isq such that for any: there is0 < ¢ < 1 andC > 0
with ) )
* *x1— *
g < Sl il "l %

The most prominent example of a space with properties (DN) &nds the following.

Lemma 6 A («) has propertiegDN) and(£2).
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Power series spaces of infinite type

PROOF By Holder’s inequality we obtain easily fog < t1 < to

to—tg t1—tg
|, < Jlig ™ ol ()

Taking into account that

2 _ .
ylr® = lylPe e
J

we obtain in the same way
to—tq t1—tg

;>0 m 3)

Ta—to

lyly, < lyls,
Directly from the definition we see:
Lemma 7 (1) Property(DN)is inherited by subspaces.
(2) Property(9) is inherited by quotient spacesBl

From Lemmas 6, 7 and Proposition 3 we conclude:

Proposition 4 (1) If E is isomorphic to a subspace &f, («) then it isa-nuclear and has property
(DN).

(2) If E'is isomorphic to a quotient space &f, («) then it isa-nuclear and has propertff2). B

Of course, the arguments of the proof of Lemma 6 hold also if instead, dfv) we take a space of the
following form

Ao, I) ={z e K" : |2} = Z |z;i[2e** < +ooforallt € R}.
iel

Herea = («;)ier is a family of nonnegative numbers ahds any index set. In particular we have formulas
(2) and (3). For any index setwe setS,(J) = Ax (o, I) wherel = N x J ande, ; = n. Moreover we
set¥o = Xo(N). ThenX . (J) andX,, have properties (DN)and?).

At this point we want to extend some results of [25] to the case @ttrat-Hilbert spaces.

Theorem 1 Let F be a Féchet-Hilbert space and a dense subset d@f, then
(1) E has propertyDN) if and only if E is isomorphic to a subspace Bf,(J).

(2) E has property(Q) if and only if E is isomorphic to a quotient space Bf.(J). B

In particular we have
Corollary 1 LetE be a separable Fchet-Hilbert space then
(1) E has propertyDN) if and only if £ is isomorphic to a subspace Bf,..

(2) E has property(Q?) if and only if E is isomorphic to a quotient space Bf,. W

We can read Corollary 1 also as a characterization of the subspaces and quotient spagcewloich
is isomorphic taZ;,, (see [21] or [24, Theorem 3.2]).
From Theorem 1 we get immediately
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Corollary 2 If E is a Fréchet-Hilbert space and has prope(@N), then there is a one-parameter family
(| |t)ter Of Hilbert norms onE which generates the topology and so that> log|z|; is convex and
increasing foranyr ¢ £. N

Corollary 3 If E is a Fréchet-Hilbert space and has propef{) then there is a one-parameter family
of extended real valued Hilbert seminorfis;).cr so that the set8, = {y € E' : |y|; < 1} area
fundamental system of bounded set&frandt¢ — log |z|; is convex and decreasing for eagle /. W

The proof of Theorem 1 is exactly the same as the proof of Theorems 2.2 and 3.2 in [25]. One has to
replace the spacé#s° (1) and¢*(I) by ¢2(I) and apply the following theorem instead of [25, Lemma 1.3.].
For a proof of this theorem see e.g. [12, Section 30].

Theorem2 Let0 — FF — G — FE — 0 be an exact sequence ofé&ehet-Hilbert spaces and
assume that F has propert@) and E has propertyDN), then the sequence splitsll

An essential ingredient in the proof of Theorem 2 is the following lemma (see [12, Lemma 30.7]) which
we will use in the sequel.

Lemma 8 Let E and F' be Fréchet-Hilbert spaces. Assume that E has propédy) with dominating
norm|| ||o and thatF' has property Q). Let|| ||o be a continuous seminorm dnand|| ||; be chosen for
Il o according to(€2). Then for every € L(E, F}) ande > 0 there exist) € L(E, Fy), x € L(E, F) so

thatsup <1 [¥zlo < candifop =4 +:1°0x. W

HereF,, and F are the local Hilbert spaces generated|ljy and|| |1, respectively.
We will need the following interpolation result for Hilbert scales. For any two index Befsand
families («v;)ier, (B;) e Of nonnegative real numbers we put

Gt = {l‘ = (xi)iEI : |.’17|§ = ZeQait|$i|2 < +OO}

el
Hy= o= (x))jes: Jaff =3 2 < 4o

jeJ

These are Hilbert spaces, equipped with their natural scalar products. In the following |ethrdanotes
the norm of an operatdr; — H;. The following result is well known, see [11, Theorem 1.11].

Lemma9 LetT € L(Go, Hy) andTG, C Hy,. ThenTG, C H, and ||T|: < [Tl "IIT|% for all
tel0,1. =

We will make immediate use of Lemma 9 to prove the following useful fact.

Lemma 10 If || || is a Hilbert norm onA(a) and| o < || || < C| |-, C > 1. Then there is an
automorphisn¥ of A, («) so that|Uz|o = ||z| and

|z[; < [Uz|e < Clafi4r

forall x € Ao (), t > 0.
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Power series spaces of infinite type

PROOF We denote byH, the Hilbert space generated By| and by( , ) its scalar product. For every
K > 7 we consider the canonical maf : A% — Hy. Itis compact, let,, be the singular numbers. We
set

Bn = _? 0g Sp.

Then the Schmidt representation takes the form

ew =Y e Kz, e0)  f, 4)

n=0
where(ey,)n, (fn)n are orthonormal bases ik, and Hy, respectively. If we set;; = {z : |z|, < 1},
V ={z: ||z| <1} thenjU. C V C U leads to
Uk, Up) < 6,(Ug, V) < C8,(Uk,Uy)

i.e. (see Remark 2)

e~ Kan < o=KBn < Ce=(K=T)an, (5)

We put
URKT = ((xvfn))RGNo'

We have
lzlo < Jukzlo = [lz| < Clz|;

and, by use of (5) for the first inequality and (4) for the equation in the middle row,

1 1 - —T)a :
gluxalk—r = C(Ze“ )"I(I,fn)|2>

n=0
1

<262Kﬂn(z7fn)|2> = |z|x
n=0

(ZeQKO‘"K%fn)F) = |ukz|k.
n=0

By use of Lemma 9, applied tox and its inverse, we obtain

IN

N

IN

2|y < Jurzl < Clafi,

foral0 <t < K — 7.

For everyk ¢ N the set{ux : K > k + 7} is an equicontinuous subset 6{Ag, , A%). Since
Ay — AY is compact fort > s the set is relatively compact ih(Ag,  ,,Ay_,) for everyk € N.
Therefore we may, by use of a diagonal procedure, find a subsequenceso thatuy, converges in
L(AR, 1, Af_ ) foreveryk € N. Since the same applies (togl)K we may choose the subsequence so
that also(u;(i)n converges inL(A, |, Ay ;) forall k € N, and we set for: € A (a):

Uz = lim ug,z, Vz= lim u;(ix

n—oo n—0o0

and certainiyU, V € L(A(«)). Of course, we first take the limits in the local Banach spaces separately
and then see that those results define elenénts A (a), Va € A (), respectively.
It can easily be seen th&tV = VU = id, henceU is an automorphism. We have

Uzlo = lim |Uy,, z]o = ||
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and we have for any > 0
‘.’L‘|t S 117131|Ukn1"t = |U$|t S C|£L"t+7-.

This proves the result. B
An endomorphisnt/ of A («) for which there are constants > 0 andr > 0 so that

|UI‘t§C‘I|t+T7 $€AOO(Q)

for all ¢ > 0 we call uniformly tame. A description of uniformly tame endomorphisms is contained in the
following lemmas.
For any endomorphisil € L(A(«)) there is a matriXus, ;)i jen, SO that

o
Uz = Zuk,jxj . r€A(a).
=0 keNo

Of course, we have;, ; = (Ue;, ;) if e;, ande; denote the canonical basis vectors &nd) the¢,-scalar
product.

Lemma 11 Leta be strictly increasing and/ € L(A(«)) be uniformly tame, then its matrix is upper
triangular.

PROOF From the continuity estimates we get
lug jle"“* < |Ue;ls < Clejlisr = Celttnas,

Therefore
|uk:7j| < Cet(aj—(xk)-‘m'aj

for all ¢ > 0 which implies the result. B

If «is not necessarily strictly increasing we have to replace upper triangular by blockwise upper trian-
gular, where the blocks are given by the sets of indices on whistconstant.

Lemma 12 Let « be strictly increasing andd € L(¢2) have an upper triangular matrix, thef <
L(Ax(«)) and.S is uniformly tame with- = 0.

PROOF  We may assume thgfS||.,,) = 1. Then in particulars; ;| < 1 for all j. Let (dp,dy,...) with
sup, |d;| < 4 be a sequence so thaj ; + d;| = 4 for all j.

We setDx = (dozo, d121,...) andH = S+ D. Let Hyx = (ho o0, h1,121, - . . ) be the diagonal part
of HandH, = H — Hy thenH, = S, whereS, and S, are defined in an analogous way. Therefore
|H+|l = 1S+l < IISII+ IS0l < 2, all norms taken irl(¢5).

Because off = H(I + Hy 'H,) and||Hy 'Hy | < 3 the operatotH is invertible inL(¢2) and
|H~1|| < 1. So we have

[zlo < [Hz|o < 5[z[o.

We apply Lemma 10 tfz|| = |Hx|o and get a uniformly tame automorphigimof A, («) with

|z < |Uzxl; < 5|zl;, € As(a)

forallt > 0, so thaUx|o = |Hz|o for all 2. By Lemma 11 the matrix o/ is upper triangular.
ThereforeV = U o H~! is unitary in¢, and has an upper triangular matrix. This implies thais
diagonal andv; ;| = 1 for all j and thereforéHz|, = |V~ 'Uz|; < 5|z|; for all z € A («) andt > 0.
Finally we obtain
|Sz|; < |Hzli + |Dxl|s <9xlt, € As(a)

for all ¢ > 0. This proves the result. B

Since we can modify any to a strictly increasing sequence without changlng(«) we obtain from
Lemma 12 as an immediate consequence:
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Lemma 13 LetS € L(¢3) have an upper triangular matrix, the$i € L(A(«)). W

3. Subspaces of power series spaces of infinite type

We characterize in this section the subspaces of a stable power series\space We assume that that
the FEchet-Hilbert spac& has property (DN) and is-nuclear. By Corollary 1 the spadeis isomorphic
to a subspace df.. We may assume that it is a subspace.gf.

By | |+ we denote the canonical norms BR, and also their restrictions tB.

We assume chosen a sequefice ¢y < t; < ... with limy t; = oco. We set|| ||x = | |+, on E and
U,={z€FE : || <1}

By definition the|| ||o < || |]1 < ... are Hilbertian norms ot so that with suitabl® < 7, < 1

1—
e < A= 1 MTRS 6)

By the choice of our seminorms the spdtés countably normed, i.e. the canonical map E, — Ej is
injective for allk > I.
The fundamental lemma in this section is:

Lemma 14 Assume thad,, (Uy, Uy) < e~*@= for all n > ngy. Then there is a sequengewith 3,, > a,
for all n > ny and an injective mapy, € L(E, A (0)), so thatfor allz € E

L Jew(@)lo < 2([lo,
2. |on(@)k = 3 |2l
Moreovery,, extends to an isomorphisgy, : £y — {3 = Ag.
PROOF  We sets = 2t;, E,) the local Banach space 6f, andzl(s) c B — Ey, zl(s) c By — E

the respective linking maps. By assumption the nfgmence also?s): E() — Ep is compact. Let,
be the singular numbers cﬁs). We set

1
=~ logs,.
Pn = =55 108 5n

Then the Schmidt representation takes the form

z?s)x = Z e 2kBn (1 en) o f. (7)

n=0

Here(e,,), is an orthonormal basis df,) and( f,.), an orthonormal basis dfj.
The choice ofs and (2) applied t&, implies|| |12 < || |lo| |s- If 3,(Ux, Up) < e~**» we obtain, by
use of Lemmas 1 and 3, wifti,) = {z € E : |z|, < 1}

6_2k6” = 6n<U(s)7 U0> < 5721(U}c, UO) < 6_2ka".

Thereforen,, < 3, for all n > ng.
We setpx = ({z, fn)o)nen, @and obtain a unitary map: Ey — {5 = Ag. From (7) we see that

p oy (x) = (e (z,en))n

which means thap o z?s) is a unitary mapf,) — Agk. We denote by its inverse. Then is unitary
Agk — E(4) and we have

uls =[€]2x
||Z(()5)U5H0 =|¢lo
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forall ¢ € Agk. The latter because obviously
z?s) ou = <p_1|A§k. (8)
By Lemma 9, applied for maps between the Hilbert space‘sfcrindzt we obtain

ooyl < [€]k. €)
Notice that, by assumptior; C X, and therefore, by natural identificatiohy, C X, E(,) C ¥,. By
this identification we havé(,u&llo = [uélo and|fsf,u | = [u€ls,.
We apply Lemma 8 (with = ) top o z?s) € L(E), Agk). We obtain mapsy, € L(E, A (0)), 9 €
L(EO,AZ) so thatsupy, |, <1 || < % and

0o’ = +104°.

We have to verify the desired properties {gr.
Forz € E we have

lorzlo <lo(x)]o + [¥(°x)|k
<2[z|o.

This proves part 1. Moreoves, extends tap, € L(Eo, Ag) and we haved, = ¢ — ¢ = (I — p~19).
Since||¢o Y| L(5,) < 3 the mappy, is invertible.

The map is injective, hence alsp;, = ¢y o 2°.

We may write@;l by its Neumann series

Gl = o Y (e
n=0

=o'+ lovw

where

v=1Y (e M)

n=0
B AB
Hencev € L(Ag, Ay) and||v|\L(A€’A£) <1
Forz € E and{ = ¢z we obtain

Pz =M E) + o (vE) = o HE FvE). (10)

Because of (9) the map, ou extends tay; € L(A}, E}). Dueto (8), fom € A} we havep~'n = Quyn.
With n = ¢ + v¢ we obtain from (10), using tha{ is injective,.*z = u (¢ + v€).
Therefore we have

]l < €+ v€[k < 2/

This completes the proof. B

Lemma 15 If limsup,, % < d < 4o and g, > a, for all n > ng, then there exists a strictly
monotonous sequen(me(z/)slyel\fO andb > 0 so thats, < a,,(,) < b+ dp, forall v € Ny.
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PrROOR We setm(v) = sup{n : a, < §,} andn(v) = m(v) + v + 1. Then by assumption we have
m(v) > v forv > ng andn(v) is strictly increasing. Moreoves, < o, for all v. We chooser; > ng
so thatog, 11 < da, for n > ny. Forv > ny we have

An) < Q2m)+1 < Ay ) < dBy.
Settingb = sup{a,,) : ¥ < ni} we obtain the result. W
Lemma 16 Under the assumptions of Lemma 14 and the assumptiotithatip,, % < 400 we obtain:
for everyk there is an injective mapy, € L(E, A («)) sothat for allx € E
L |ek(@)lo < 2([zflo
2. |orzle = § 2k

PROOF We chooses andyy, as in Lemma 14. We use Lemma 15 to find a sequeriee with 5, <
Q) < b+ dp, and define fo€ = (£o,&1, . ..) a sequence £ by

(o) = {g,, if n = n(v)

0 otherwise

Theny gives an isomorphic imbedding (5) — A~ (a) and an isometric imbedding — /5. If we
replacep; by ¢ := ¢ o i, thengy, € L(E, A ()) is injective, we have

[P (2)]o < |er(@)]o < 2|zllo

and with = gz

2

(rli =lp(ora)] = <Z |sy|2e2'w"<v>)

1
2
1
> (Z |€u|2€2kﬁ”> = lowzlk 2 Sllzfe. W
1%

We are now in the position to prove the main theorem of this section. For the nuclear case see [30, Satz
3.2].

Theorem 3 Leta be stable. A Rechet spacd’ is isomorphic to a subspace 8f, («) if and only if E is
an a-nuclear Fieéchet-Hilbert space with properfipN).

PrROOF If E is isomorphic to a subspace 6f.(«) then it is FEchet-Hilbert and, by Proposition 4, it is
a-nuclear and has property (DN).

We have to show the converse implication. Wers@t k) = 2* + i2k+1 — 1 and get a bijective map
No x Ng — No. We set; 1. := a,(;,x) and obtain an isomorphisf,, (o) = A where

A= {z = (@in)iker, ¢ 2]f =Y lwix?e®** < +ooforallt € R}.
ik
The isomorphism is given bie,, ) nen, — (Tn(i,k))ikeNo -

In £ we choose a fundamental system of Hilbertian norms as in Lemma 14. For/everi{, we
choosepy, € L(E, A (a)) according to Lemma 16 and set

or(z) = (i k(T))ien,-
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We define forr € F
p(z) == (2 Fe F ik, 1 (7)) ke,

We have to show that(z) € A and¢ € L(E, A).
From the stability otx we getb;, > 0, dj, € N so that

o < < by + dioy.
We may assume théaf, < b1 anddy, < dg41 for all k. Now, we fixm and choosé/, C' such that
lox®lmd,, < Cllzlla
fork=0,...,m — 1. We get

m—1 e 0o oo
H@UH?n < Z 4=k (Z |<,0i,k<-7i)262(m_k)m'k> + Z 4=k (Z |(Pi,k(55)|2>
=0 =0

=0 k=m
1

=

3

4fke2mbm

IN

k(@) ma, + Y 4 ler()]3
0 k=m

(emem Cc? + 4) ||33H?V1

IA
Wl o

On the other hand we have for ¢ N

[N

o0
pzllom >27™ (Z |30i,m(x)|2€2mm'm> > 2_m‘90m(x)|m > 2_m_1H$”m-

i=0

Thereforeyp is an isomorphic imbedding «— A 2 A (o). W

4. Quotient spaces of power series spaces of infinite type

In this section we characterize the quotient spaces of a stable power series\space We assume
that that the Fechet-Hilbert spac& has property(§2) and isa-nuclear. By Corollary 1 the spadeé is
isomorphic to a quotient of .. Letq : ¥, — F be the quotient map.

By | |+ we denote the quotient seminorms underf the canonical norms|; on .

We assume chosen a sequefice- t, < ¢; < ... with lim, ¢, = co. We set| || = | |s,and
Up={z : ||z|x <1}

By definition the|| |[o < || |1 < ... are Hilbertian seminorms o so that with suitabl® < ¢, < 1
andCy >0

1—9 Vg
1% < Crll Iy IR (11)

The fundamental lemma in this section is:

Lemma 17 Assume thab,, (Us.1,Ux) < e 2Po» for all n > ngy. Then there is a sequengewith
Bn > ay forall n > ng and a mappy, € L(Aw(8), E) so that for all§ € A (53)

1. fleréllk < 21€o
2. le&lles1 = 1€

Moreovery,, extends to an isomorphisg, : ¢ = Ag — .
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PROOFE By assumption the maz;QJrl is compact. We set

1
ﬁn = *% 1Og 6n(Uk+17 Uk)

Then the Schmidt representation takes the form

oo
7'Z-i—lx = Z €—2pﬁn <.13, en>k+1fn

n=0

where(e,, )nen, IS an orthonormal sequence )1, (fn)nen, an orthonormal basis df,.
As in the proof of Lemma 14, we get, < 3, for all n > ny. We set

o
pE = Z 5n62pﬂn €n

n=0

and obtain an isometry from Agp into £y,. Because of

o0
Zl/i-u@f = Z Enfn
n=0
the map.}’ | o ¢ extends to a unitary map: (; = Ag — E}.
We puts = 1(t;11 — t). We denote byE(,, the local Hilbert space of |, and by:(*), z,(jzl, zfs)

the respective canonical maps. We apply Lemma 8 to the gnap L(A.(53), Ex+1) defined by

and the seminorm§|, < || [[x4+1 on E. We obtaing;, € L(A(8), E), ¥ € L(Ax(B3), E¢s)) so that
supje|, <1 [¥€|s < 5 and
Zl(cil op =1 op+1.

We have to verify the desired properties {gr. We have
Zkocpk :zZJrlocp—z’(“s)ow.

Therefore||pré|x < 2/¢|o for € € E. Moreover o ¢, extends to a mapy, € L(fs, Ei) which can be
written as

@r = xo (id—x1 oz](“s) o).

Herev) denotes, as always, the continuous extension. Sirisdnvertible and|y~! o z’(“s) o ¢||L(£2) <3
the mappy, is invertible.
We have forr € Ej,

X_l(x) = ({z, fa)k)neNo-
Therefore forz € Ejy1
X_l(lllz-&-lx) = (e—Qpﬁn <3§‘, en>k+1)nENO'

Forz € E we defineh(z) := x~!(«*x) and obtain

|h(x)]o <[]k
|h(@)]2p <[|[lk+1-

Therefore by Lemma 9, applied i, andA . (5), we get

[h(@)lp <|zs-
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This implies thaty ™" o uf,, o ¢ extends to a mafi’ ¢ L(Ag,A%) and we have| Tl \5 25y < i
Thereforeid — T is invertible inL(A%), with || (id —T)—1|\L(A5) < 2.
Foré € Ao (B) we setx = (id —T)¢ and havepy () = x(x) hencer = h(p(£)) which implies
[€lp < 202lp < 2[or(E)llk+1-
This completes the proof. B
We assume now that is stable and may choodec N, so that

Q2n41

lim sup <d.

n a’ﬂ

Lemma 18 Under the assumptions of Lemma 17 and the assumptiom tli&, 1, Uy) < e~24Pan for
n > ng andlim sup,, a%:l < d we obtain: there is amap; € L(A(a), E) andc, > 0, so that

1. [Joréllr < 2[¢lo forall § € A (ar)
2. |<p;€y|; > cillyllyyq forally € E'.

Moreovery,, extends to a surjection, : Af — Ej.
PrRoOOFR From Lemma 17, applied t@l«.,, )., we get for giverk a sequencg with 3,, > da, forn > ng

and a mappy, € L(Ax(0), E) with the propertied. and2. in Lemma 17.
From Lemma 15 we get a increasing sequepde)),cn, andb > 0 so that

1
gﬁv < An(v) <b+ ﬂl/'

We set, as in the proof of Lemma 16

(0E)n = {@ if n =n(v)

0 otherwise.
Theny gives an isomorphic imbedding. (3) — A () and an isometric imbedding — ¢5. We have
lpx|; < ef|z|; forall t € R.
We definel € L(Ax (), Aso(5)) by

(LS)VGNO = (€7L(V))V€N0'

ThenL o p = id and|LE|: < |z|q: for all t > 0. We putey, = i o L. Thengy, € L(Ax (), E).
Moreoverl. is satisfied sincéL¢|, < ||, and, becausé is surjective, als@y, is surjective. As for.
we notice that foy € E’

1, ., . .
Iyl <leryly = [(¢" o L o @} )yly
<e”|(L' o gl )yl = elryls. W

We are now ready to prove the main theorem of this section. For the nuclear case see [30, Satz 3.4].

Theorem 4 Leta be stable. A Fechet spacé’ is isomorphic to a quotient space &f. («) if and only if
E is ana-nuclear Féchet-Hilbert space with property?).
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PrROOF If E isisomorphic to a quotient space &f. («) then it is FEchet-Hilbert and, by Proposition 4,
it is a-nuclear and has propertQ).

We have to show the converse implication. As in the proof of Theorem 3 we&ét) = 2% +42F+1 —1
anda; i 1= oK) and use the isomorphic representation (o) = A where

A=Az = (@ig)irern, : |27 =D |wix?e?** < +ooforeallt € R}.
ik
For everyk € Ny we choosel, € N, b, > 0 so thata; , < by + dioy; for all < and sefp, = kd,. We
choose by induction a sequenge= 0 < t; < t2 < ... so that the seminorms ||, = | |, satisfy the
assumptions of Lemma 18 with= p;. For each € Ny let ¢, be the map from Lemma 18.
Forz = (z;k)iken, andk € Ng setzy = (4)ien,. Sincei < n(i, k), hencer; < apir) = ik,

we havery, € A (o) and
oo oo oo
Sl < 303 fwinlPeRer = |laff?

k=0 k=0 i=0
forall ¢ > 0.
We put
U(w) =Y 27 Sy (ay)
k=1

for z = (zx)r = (s,x)ix € A. We show that the series converges and definesL(A, E).
This follows from

m—1 oo 2
|Wz||?, < (Z 275 paplm + Y 2-’5||wkxk||k)
k=1

k=m

m—1 o]

<C? Z k3 + 4 Z ENH
k=1 k=m

<2+ 03 Janliy
k=0

<(C? + )|z 13

with suitableC' and M depending fromn.
Sinceyy, € L(Ax (), E) andyy, is surjective fron¥s onto Ej;,, we see thaRR(¥) is dense inE. Let
m be given. We obtain foy € E’:

19 y|l5, >27% sup{| (¢, () ()] : Z & [2e2meim < 1}
>27% sup{| (¥, 1))(©)] + [lma,, < e}

m
*

2277 ' eimbm |w’:n(y) |'rndm

22" F e e, [yl

The surjectivity criterion [12, 26.1] then shows thiais surjective. W

5. Complemented subspaces of power series spaces of infi-
nite type

Our next task is to characterize the complemented subspades (@f) by invariants and study their struc-
ture.
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First we prove a partial replacement for the Ramanujan and Tgwimbedding theorem from [17].

Lemma 19 If @ is a quotient ofA («), equipped with the quotient seminorfg; of the normg |,
t € R, then for anyk there isSy, € L(Q, Axo(a)), SO thatsup,, <1 [Skx|o < +00 and Sy, induces an

isometrySy,: Qr — A9 = /.
PROOF We may assumé = 0 anddim @y = co. Lety: A (a) — @ be the quotient map. For
K > 0the map : Qx — Qo is compact. Les,, be its singular numbers. We set

1
ﬁn = —g 10g Sn-
Then its Schmidt representation takes the form

G = Z e K0z en) K s

n

where(e,, )nen, IS an orthonormal system Bk, (f»)nen, an orthonormal basis @.

By Remark 2 and Lemma 2 we get
e_Kﬁn S e_Kan

i.e. B, > a, forall n.
We set forz € A (@)

Then we have

Trcalg =[zllo, Tray =)k,
hence

Tkl =[llo, Tk x| <[]«
and therefore by Lemma 9, applied®fg o g,
|Tez|y < ||lz||x forall0 <k < K.

Here| |? and| | denote the norms in.. (8) and A (a), respectively.
We argue like in the proof of Lemma 10 to find a subsequefiée, ),en and an operatofl’ €
L(Q, A () so thatly, x — T forall z € Q.
For everyz € Q we have
|Tz|o = lirlln Tk, x|lo = ||z||o-
SettingSy := T we obtain the result. H

As an immediate consequence we obtain:
Lemma 20 If Q) is a quotient ofA . () then there is an imbedding: Q — A, (a)N.

PROOF We setSz = (Skx)ken, Sk @asinLemma19. B

We can now give the characterization of the complemented subspadgs(af). For the nuclear case
see [30, Satz 3.5].

Theorem 5 Leta be stable. A Fechet spacé’ is isomorphic to a complemented subspacdé of(«) if
and only ifE is ana-nuclear Féchet-Hilbert space with properti¢BN) and (2).
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ProOOFR If E is isomorphic to a complemented subspace\gf(«) then it is FEchet-Hilbert and by
Proposition 4, it isx-nuclear and has properties (DN) affel). We have to prove the converse implication.
Since F is ana-nuclear Fechet-Hilbert space with property (DN) we know from Theorem 3 thads
isomorphic to a subspace 6f,, («), this means that there is an isomorphic imbedding — A ().

We setQ := A, (a)/jE. By Lemma 20 there is an imbeddisg Q — A (a)N.

We consider the exact sequence

0 —— Ag(a) —— Ag(a) —2— Ag(@)N —— 0

from Proposition 1 and s = ©~1(SQ). We can set up the following commutative diagram with exact
rows and columns:

0 0
[ [
0 E—— Ag(a) 24— Q@ ——0
T: Yo %)
0 E H 2., Qg —o0

HereH = {(z,y) € Axo() X Q:qr= ¢y} is a Fechet-Hilbert spacey (z,y) = z, qo(,y) = y.
Since by assumptiol’ has property(§2) and@ as a subspace df,,(«) has property (DN) the second
row splits by Theorem 2.
SinceA(«) has properties (DN) an@?) the first column splits by the same theorem. Therefore we
have
E®Qx=HA(a)®As(a) = Ax(a).

The last isomorphism exists sinads stable. W

6. About the structure of complemented subspaces of power
series spaces of infinite type

After having characterized the complemented subspaces of power series spaces by invariants we will now
closer study their structure. In [14, Theorem14] (see also [13]) Mityagin proved that every complemented
subspace of a finite type power series space has a basis and is again isomorphic to a finite type power
series space. He posed the problem whether the same is true for infinite type power series spaces, see [14,
Problem 15]. In [15] he showed that that every complemented subspace of an infinite type power series
space with an unconditional basis is isomorphic to an infinite type power series space. So the problem
remains whether every complemented subspace of an infinite type power series space has an unconditional
basis. This problem is, even in the nuclear case, still unsolved. A solution for the nuclear case has been
announced without proof in Kondakov [10]. A proof proposed by the same author in [8] is apparently
mistaken. Nevertheless there are many partial solutions. We will describe some of them.

A principal tool for that is the following result, in the nuclear case it was first proved in [23].
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Lemma 21 If «is stable andE is a complemented subspace\af, (a), thenE & A () = Aso ().
PROOF Let F be a complement af in A (), i.e. E® F = A (), then

AN 2EVNo FN>2Fo ENo FN 2 Eg A ()N,
We use again the exact sequence from Proposition 1. We add the exact sequence

id E 0

0 0 E

and obtain by use of the previous isomorphism
0 —— Ax(a) —— Ap(@) @ E —— Ay (a)N —— 0.

Like in the proof of Theorem 5 we obtain the following diagram

0 —— Ax(a) —— H —— Ag(a)®E —— 0
I I
Ao (@) Ao (@)
| I
0 0

HereH C A (a) ® Ao () ® E is a FEchet-Hilbert space. By use of Theorem 2 the first column and the
second row split and we get

Ao(0) DE 2 Ao (@) ® Ao () D E 2 H 2 Ao () ® Ao () 2 Ao ().
Here we used several times the stabilitypof W
In the nuclear case the following theorem was first proved in [23].

Theorem 6 Let « be stable. IfE is isomorphic to a complemented subspace\gf(«) and A ()
isomorphic to a complemented subspac&pthenE = A . («).

PROOF LetE® F 2 Ay (a) andG @ A () = E, thenG & Ao (o) & F = Ao (). ThereforeG is
isomorphic to a complemented subspacd gf(a). By Lemma 21 we have

EXGEoAo(a) 2 Ax(e). N

We will now present sufficient conditions so that &€&met-Hilbert space with properties (DN) arid)
has a basis. To formulate them we need one more concept which is due Aytuna-Kronélid2jioLet
E be a Féchet-Hilbert-Schwartz space with properties (DN) &4l Let || ||, be a dominating norm and
choose, for givem, ag according toQ?). We setU, = {z : ||z|x < 1} forall k.

Definition 4 The sequence
oy = —10g 8, (Uyg, Up)

is called an associated exponent sequend® ahd A, («) the associated power series space.
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From [2] we know the following:

Lemma 22 A, (o) depends only o, not on the choice d7,,U,. W

By use of Lemma 3 this implies that, in particul#t,is a-nuclear. As a consequence of Lemma 22 we
obtain:

Corollary 4 If E is a Frechet-Hilbert-Schwartz space with propert@) and (©2) and A («) its as-
sociated power series space andrif2> F then F' has the same properties, in particuldr(«) is its
associated power series spacdll

This yields

Proposition 5 If

MA) = {z = (Tn)nen, : 12lI7 = |2;|%ax < +ooforall k}
j=0

has propertiegDN) and (£2), and A () is its associated power series space th¢d) = A, («).
PROOFR By [29, Satz 2.7] there is a power series spAgg(3) so thath\(A) = A, (8). Since then clearly
A () is the associated power series spacg(of), we have by Corollary A (8) = Ao (). B

This means that, if a Echet-Hilbert-Schwartz space with properties (DN) &fdl is isomorphic to a
Kothe space\(A) defined as above, then it is isomorphic to its associated power series space. Since, by
Theorem 5 with suitable, it is always isomorphic to a complemented subspace of soggy) the result
of Mityagin [15] shows that this is always the case if it has an unconditional basis.

We will use a simplified version of the proofs of Lemma 14 and Lemma 17 to show the following.

Lemma 23 Let E be a Fiechet-Hilbert-Schwartz space with properti@N) and (Q2). Let|| ||o be a
Hilbertian dominating norm|| ||; chosen foi| ||, according to(2) and

ay, = —log 6, (Uy, Up)

whereU; = {z € E : ||z|; < 1}.
Then there exist mapg € L(A (@), E), ¢ € L(E,Ax()) so thaty extends to an isomorphism
Yo : by — Ey, ¢ extends to an isomorphism, : Fy — ¢> and we have

1
sup [€ — o 0 ¥o(§)]o < 3
[€lo<1

PROOF By assumption{ is compact and its Schmidt representation takes the form

oo
N = Z e (x, en)1fn

n=0

where(e,,),, is an orthonormal sequence#y and(f,,),, an orthonormal basis df.
We setp(z) = ((z, fn)o)nen, and obtain a unitary map: Ey — ¢y = A& for which we have

po o (J’J) = (e_an <l‘, €n>1)neNo

which means thapo:{ defines an isometry, from F := span{eg, e1, ...} ontoA§ with F- = ker go =
ker1). We sety) = ¢~1. Theny is a unitary magy, = Ay — Ej so that there is a map; : A — E;
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with 20 04/, = ¢). We apply Lemma 8 t; and¢;, and obtain maps € L(E, Ao (a)), ¥ € L(Ax(c), E)
so that with0 < € < 1 to be determined later

0

goil’ =p+xo0l onE

P =1"oyp+n onAy(a)

wherex € L(Ey, A§) with sup ., <1 [x(z)|o < e andn € L(A§, Eo) with sup ¢ <1 [|7(§)llo < .

Thereforep extends tapg = @ — x € L(Fo, ¢2) andy to g = ¢ — n € L({s, Ey). Sincel|x|| < 1
and||n|| < 1 ¢ andy are invertible.
Moreover

poothg =id—xo—@Gon+yxon
and therefore

1
sup € — oo to(€)]o < 26+ < 3
[€lo<1

forsmalle >0. N

Corollary 5 Under the assumptions of Lemma 23 there exist mapsl (A (o), E), p € L(E, A (a))
so thaty) extends to a unitary map, : /o — FEy andy extends to a unitary mapy: Eyg — 5.

PROOF We choose) and ¢ according to Lemma 23. Then we apply Lemma 10 to the nfpeth =
[|+z||o and obtain an automorphisi of A, («) so that|Uz|o = ||¢z||o. We do the same with the norm
||| = |l¢~'z||o and obtain an automorphisii of A () so that|Vz|y = |~ 'z||o. Finally we replace
wbyypoU landpbyVoyp. N

An important step now is contained in the following lemma. The method for the constructigmsof
due to Aytuna, Krone and Tergtu [1], the difference here is again, that we don’t need nuclearity.

Lemma 24 Leta be stable,l’ € L(A(«)) so thatT induces a unitary map it (¢2). Then there is
S € L(Ax()), so thatP = T o S is a projection inA . (a), orthogonal inly, and R(P) &2 A (a).

PrROOF Lete; = (0,...,0,1,0,...) € A(a) and f; = Te;. We choose inductively vectoks, €
A () with following properties:

(1) gn €span{fo,..., fon}

(2) gnLgo,.-- gn-1int2

(3) gnleg,...,ep—1in Ly

(4) lgnlo = 1.

This is possible sincéim span{ fo, ..., fan} = 2n + 1. Due to(1) we have
2n

2n
gn = tknfe =T pkner).
k=0 k=0

We set
2n
hn ::jzjllhnek
k=0

and obtain an orthonormal systeiy, ),.cn,. We setu , = 0 for k& > 2n.
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We define

oo

Sz = Z(aj,gn>hn.
n=0
This meansS = T~ o P whereP is the orthogonal projection ontpan{go, g1, ...}. We have to show
that.S defines a map i (A ().
We do that in two steps. First we define a mag L(¢3) by

o0

plx) = Z(x,gn>en.

n=0

For the matrix elementg, ; = (ve;,exr) = (ej, gx) we havep, ; = 0 for k > j. Therefore, by Lemma
13,9 € L(Ax(@)).
Next we define a map € L(¢3) by

oo

() = (2, en)hn.

n=0

For the matrix elementsy ; = (ve;, ex) = (h;, ex) We obtain thaty, ; = 0 for k > 2j.
We definey) € L(¢2) by ¢ = ¢ o Aand Az = (z2p)nen, fOr £ = (25)nen,- Then we have

7 1 Z2) : =2
<¢€ja€k>:{ e ek(>) : j’:25+1.

This means thaby, j = (e, e;) = 0 for k > j. By Lemma 13 we obtain that € L(A.(a)).

Now we set
s g=2w
(Bx)ﬂ_{ 0 : j=2w+1

for z = (,)nen, . Due to the stability oft we haveB € L(A(a)) and therefore) = o B € L(Ax(a)).
Since obviouslyS = 1 o ¢ we have shown that € L(A(«)). It remains to show thaR(P) =
Ao (@).
The mapl'oy € L(Ax (), R(P)) is injective and, because (f'oy)op = T'oS = P, also surjective.
Therefore it is an isomorphism. l

From Lemmas 23, 24 and Theorems 5, 6 we derive the following theorem which was shown in the
nuclear case by Aytuna, Krone and Tedioin [1].

Theorem 7 If E is a Fréchet-Hilbert-Schwartz space with properti@&N) and (Q2) and its associated
power series spacé.,(«) is stable, therl = A («).

PROOF From Corollary 5 we gep € L(E, A (), ¥ € L(Ax (), E) so thatl” := ¢ o ¢ extends to
a unitary map inL(¢). Then by Lemma 24 we g&t € L(A(«)), so thatP = T o S is a projection in
Ao (@) with R(P) =2 Ao (a).

We setr := ¢ oSoPoy € L(FE) and obtain a projection? o o € L(R(w), R(P)) is an isomorphism,
sincey o S|g(p) is its inverse. As the assumptions imply ttiats a-nuclear (see the remark after Lemma
22), Theorems 5 and 6 yield the resultll

Stability of the associated power series space is one condition which implies the existence of a basis in
E, and by far the most important for analysis since in applications in analysis the associated power series
usually can be calculated and is stable. Another condition is the following, see [6], [7].

Definition 5 A, («) is called tame if, up to equivalence, has the following form: there are strictly
increasing sequencegk) in Ny with n(0) = 0 and 3, > 0 so that
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1) a, =B forn(k) <n <n(k+1)
(2) limy % = +o00.
These spaces have the following properties (see [6, Proposition 1], [7, Theorem 1.3]).
Theorem 8 The following are equivalent
(1) Ax(c) is tame.
(2) There existd so that for everyd € L(A,,(«)) there isb with
|Az|r < Cklx|dar+s
for all k& with suitableC},.

(3) There are countably many functioms,(-), m € N so that for everyd € L(A («)) there ism with

om (k)

for all k with suitableC},.

(4) The set of finite limit points gf-

n
ay

., v € No} is bounded. B

If « has, without equivalence, the form given in the definition, théscalled blockwise unstable. Then
we have in a natural way

Aso(@) = {z = (z0,21,...) € [[lalm(k)) « |2} = |wy [P (12)
k

k
<+ ooforallt e R}
wherem(k) = n(k + 1) — n(k) andlz(m(k)) is them(k)-dimensional Hilbert space.
EveryA € L(A(«)) corresponds to a matri¥; ., ) ,en, WhereA; , € L(¢2(m(v)), la2(m(j))). We
put
A(])’,l/ = 5j,uAj,ya A;’V = Ajﬂ/ — A?y’/'

The following result, which is a generalization of a result in [3], is contained in [7, Lemma 2.1].

Lemma 25 If « is blockwise unstabled € L(A.(a)) and|Az|o < C|zo, then for eachke > 0 the set
AlU. is relatively compact i\ ., (), where

Us ={z € Ac() : |z]c <1}

PROOF  We need to prove only that!U. is bounded inl.(A.. (). Fix t > 0.
(1) Forv > j > jo we obtain from the continuity ofl in ¢

<C Z E
v=j+1

1
o 2
etﬁj < Cefﬁj Z |IV|2626ﬁu
v=j+1

o0
E Aj’l,l‘,/

v=j+1

Therefore

oo
> Ay

v=j+1

if jo is so large thatt + 1)3; < efj41.

360



Power series spaces of infinite type

(2) Forv < j,j > jo we findCyy2,0(t + 2) so that

|Az|t12 < Cryo|®|gi42)

and therefore
||Aj,y||e(t+2)ﬁj < Ct+260(t+2)ﬂu.

Herel[.,| denotes the norm (£ (1)), (2(m())). From this we get
| 4,0 1" <Cqpe”tH2)By =26,
<Cpyoe"

if jo is so large thatr (¢t + 2)3;_1 < j3; for j > jo.
(3) From all this we get

1 2 3
jo | oo 2\ 2 00 0o
\Alm\t <etPio E E Aj oz, + E E Aj oz, e2tPi
j=1|v=0 Jj=jo |v=j+1
1
o |j—1 2 2
+ g E Aj,uxu thﬁj
j=jo lv=0
1 1
2 2
SetﬁJ'OCMO—&—C 56_251 |z|c + Ciqa Eer_wj |]o.
J J

The last estimate holds since

j—1 i1 3
2 Aju| e < (Z ||Aj7u||2€2”") 2lo
v=0 v=0

<Ciyzj?e P|zlo. W

Lemma 26 LetA () betameA € L(Ax(a)) andsupy, <1 [# — Azl < 1. ThenA is invertible.

PROOF We may assume thatis blockwise unstable and that, in the notation of Definition 53alt N.
We calculater — A% as follows: we putB(t)z = (e*Pix); for x = (z;); € Ax(a) in the representation
(12). ThenB(t) € L(Ax(e)) andB(t) is unitary oné,. We obtain

1 27
r— A2 = — B(t)(I — A)B(—t)x dt.

21 0
From this we derive easily

sup |z — A%]p < 1.

|z]o<1
ThereforeA® is invertible in¢; = Ag. A°~" being a blockwise diagonal map defines a map (o, ().
Hence we obtain . )

AV o A=T+A" oAl
whereA® ' o Al is compact iNL (Ao (). This implies thatd® ' o A is a Fredholm map with index 0
in L(Aoo ().
The assumption implies that is invertible inly = A§. Thereforeker Ao A= {0}. This proves

the result. W

We obtain the following theorem, for the nuclear case see Wagner [32, Theorem 5] and Kondakov [9].
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Theorem 9 If E is a Fréchet-Hilbert-Schwartz space with properti@&@N) and (Q2) and its associated
power series spac&.,(«) is tame, therf = A ().

PROOF We apply Lemma 26 tol = ¢ o ¢ wherep € L(E,Ax(a)) andy € L(Ay(a), E) are the
maps of Lemma 23. Notice thatin Lemma 23 is the associated exponent sequence.

Lemma 26 yields thatl is invertible. We sef := A~ o ¢ € L(E, As()). Theny o ¢ = id. From
this we conclude thaP := ¢ o x is a projection inE. If P(xz) = 0 then|z|o = 0 hencex = 0. So
ker P=0andP =id, i.e.y o x =id. Soy is an isomorphism. W

The preceding theorem is a generalization of the following theorem shown in [6, Theorem], [7, Theo-
rem 2.4].

Theorem 10 If A («) is tame then every complemented subspacegfa) has a basis.

PROOF We have to show that Theorem 9 implies Theorem 10. K. &e complemented i («) and
F a complement. LeA . (3) andA, () be the associated power series spacel ahd F', respectively.
Then clearlyA . (@) = Ao (5) ® Ao (7). Where® means that to get . () we have to take an increasing
common rearrangement ofand 5. Therefore there is a subsequernice= (o, ),en, SO thatA (&) =
Ao (). From there itis easily seen th&t, (3) is tame, henc& =~ A, (5) by Theorem 9. B
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