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Structure theory of power series spaces of infinite type
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Abstract. The paper gives a complete characterization of the subspaces, quotients and complemented
subspaces of a stable power series space of infinite type without the assumption of nuclearity, so extending
previous work of M. J. Wagner and the author to the nonnuclear case. Various sufficient conditions for
the existence of bases in complemented subspaces of infinite type power series spaces are also extended
to the nonnuclear case.

Teorı́a estructural de espacios de series de potencias de tipo infinito

Resumen. Este art́ıculo da una caracterización completa de los subespacios, cocientes y subespacios
complementados de los espacios de series de potencias estables de tipo infinito sin el supuesto de nucle-
aridad, extendiendo trabajo previo de M. J. Wagner y el autor al caso no nuclear. Se extienden también
varias condiciones suficientes para la existencia de bases en subespacios complementados de espacios de
potencias de tipo infinito al caso no nuclear.

1. Introduction

In the present paper we extend the structure theory of nuclear stable power series spaces of infinite type as
developed by M. J. Wagner and the author in [22],[29], [30] to the nonnuclear case, i.e. we characterize the
subspaces, quotient spaces and complemented subspaces of the Fréchet space

Λ∞(α) = {x ∈ KN0 : |x|2t =
∞∑

n=0

|xn|2e2tαn < +∞ for all t ∈ R}.

Hereα = (α0, α1, . . .) is an increasing sequence of nonnegative numbers tending to infinity and satisfying

lim sup
n

α2n

αn
< +∞. (1)

Condition (1) is equivalent toΛ∞(α)× Λ∞(α) ∼= Λ∞(α) and called stability.
In the above mentioned work of Wagner and the author it was additionally assumed that

lim sup
n

log n
αn

< +∞.

Presentado por José Bonet.
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D. Vogt

This condition is equivalent to the nuclearity ofΛ∞(α). In the present paper we present the theory without
this assumption.

While the characterizing conditions remain the same and also the proof of the necessity of these con-
ditions, the proof for the sufficiency is essentially different and provides also a new access for the nuclear
case. The difference is the following: in the nuclear case the proof was based of the T. and Y. Komura
imbedding theorem, resp. its analogue forα-nuclear spaces due to Ramanujan and Terzioğlu [17], and on
a splitting theorem for exact sequences of Fréchet spaces. The splitting theorem is also valid in the nonnu-
clear case. However we do not have an equivalent to the above mentioned imbedding theorems. Therefore
the imbedding and quotient maps will be given by a direct construction.

In a last section we consider results of Vogt [23], Aytuna, Krone and Terzioğlu [1], [2], Wagner [32],
Kondakov [9] and Dubinsky and Vogt [6], [7] on the structure of complemented subspaces ofΛ∞(α) and
give proofs in the new framework, without assuming nuclearity. Also here in some parts new methods had
to be developed.

The paper is partly based on lectures which the author has given in Wuppertal in 1987/88 but never has
published. The author thanks M. J. Wagner for useful conversations.

Throughout the paper we will study Fréchet-Hilbert spaces, i.e. Fréchet spaces admitting a fundamental
system of seminorms‖ ‖0 ≤ ‖ ‖1 ≤ . . . given by semiscalar products,‖x‖2

k = 〈x, x〉k. If not otherwise
stated a fundamental system of seminorms in a Fréchet-Hilbert space will always be assumed to be of this
form. So the local Banach spacesEk are Hilbert spaces.

We will use common notation for locally convex spaces and Fréchet spaces in particular also for their
local Banach spaces and the linking maps between them. The scalar field is alwaysK, whereK is eitherR
or C. For all this we refer to [12].

2. Power series spaces of infinite type and related invariants

In the present paper we will study only power series spaces of infinite type as defined above. We will
not assume nuclearity. The spaceΛ∞(α) and likewise the sequenceα will be called stable ifα satisfies
condition (1). For more information on power series spaces we refer to [12, Section 29] and to [4]. For
examples see also [18, Chapter 8].

Throughout the paper we use for the local Banach space ofΛ∞(α) with respect to| |t the notation

Λα
t := {x = (x0, x1, . . .) : |x|2t :=

∞∑
j=0

|xj |2e2tαj < +∞}.

Of course, these are Hilbert spaces isomorphic to`2, in particularΛα
0 = `2.

An analogous extension of the structure theory to the nonnuclear case for finite type power series spaces
has been given in [27]. From this paper we quote the following result [27, Theorem 3.2] which is based on
[30, Satz 2.4].

Proposition 1 If α is stable then there exists an exact sequence

0 −−−−→ Λ∞(α) −−−−→ Λ∞(α) −−−−→ Λ∞(α)N −−−−→ 0. �

To describe the characteristic properties of power series spaces and their subspaces, quotient spaces and
complemented subspaces we need two types of invariants. The first one describes the asymptotic behavior
of the relative semiaxes of the ellipsoids which form the neighborhoods of zero.

LetX be a linear space andV ⊂ U absolutely convex subsets. We set for linear subspacesF,G ⊂ X:

δ(V,U ;F ) = inf{δ > 0 : V ⊂ δU + F}
γ(V,U ;G) = inf{γ > 0 : V ∩G ⊂ γU}
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and with this we notation

δn(V,U) = inf{δ(V,U ;F ) : dimF ≤ n}
γn(V,U) = inf{γ(V,U ;G) : codimG ≤ n}.

δn(V,U) is called then-th Kolmogoroff diameter,γn(V,U) then-th Gelfand diameter. For the behavior of
the diameters see [19] or [4, Section I, 6].

We call U a Hilbert disc ifU = {x : ‖x‖ ≤ 1} and ||x|| is given by a semiscalar product, i.e.
‖x‖2 = 〈x, x〉. The following is well known (see [19, II,3.(3)]).

Lemma 1 If V an U are Hilbert discs thenδn(V,U) = γn(V,U) for all n and they coincide with the
singular numbers of the canonical mapEV ↪→ EU . �

HereEU andEV denote the respective local Hilbert spaces and for the last assertion we assumed that
EV ↪→ EU is compact, i.e. thatV is precompact with respect toU . The following lemma is immediately
clear.

Lemma 2 If V ⊂ U are absolutely convex subsets of the linear spaceX,X0 ⊂ X a linear subspace and
q : X −→ X/X0 the quotient map, thenδn(qV, qU) ≤ δn(V,U) andγn(V ∩X0, U∩X0) ≤ γn(V,U). �

We will use the following property of the diameters (cf. [20]).

Lemma 3 Let ‖ ‖0 ≤ ‖ ‖1 ≤ ‖ ‖2 be seminorms on the linear spaceX and ‖ ‖2
1 ≤ ‖ ‖0‖ ‖2, then

γn(U2, U0) ≤ γ2
n(U1, U0) for all n ∈ N0.

PROOF. LetG ⊂ X be a linear subspace withcodimG ≤ n andU2∩G ⊂ γU0. From the assumption we
derive that(γU0) ∩ U2 ⊂

√
γU1. Inserting the first inclusion into the second we see thatU2 ∩G ⊂ √

γU1.
Thereforeγ(U2, U1;G) ≤ √

γ and, in consequence,γ(U2, U1;G)2 ≤ γ(U2, U0;G). Since obviously
γ(U2, U0;G)2 ≤ γ(U2, U1;G)2γ(U1, U0;G)2 we haveγ(U2, U0;G) ≤ γ(U1, U0;G)2. Taking infima over
G proves the result. �

The following definition goes back to Ramanujan-Terzioğlu [17] (there and in [30] under the name of
ΛN(α)-nuclearity). We use the Kolmogoroff diameters for the definition as it is done in [30]. The difference
is that we do not assume nuclearity, i. e. we do not assumelim supn

log n
αn

<∞.

Definition 1 A Fréchet-Hilbert spaceE is calledα-nuclear if for every absolutely convex neighborhood
U of zero and everyt > 0 there is another such neighborhoodV ⊂ U , so that

lim
n
etαnδn(V,U) = 0.

Remark 1 In view of Lemma 1 we could have used also the condition

lim
n
etαnγn(V,U) = 0. �

Clearlyα-nuclearity is invariant under topological linear isomorphisms. As an immediate consequence
of Lemma 2 we obtain.

Proposition 2 α-nuclearity is inherited by subspaces and quotient spaces.�

Lemma 4 Λ∞(α) is α-nuclear.
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PROOF. If Ut = {x ∈ Λ∞(α) : |x|t ≤ 1} ands < t then it is immediate that

Ut ⊂ span{e0, . . . , en−1}+ e(s−t)αnUs

wheree0, e1, . . . are the canonical basis vectors. Thereforeδn(Ut, Us) ≤ e(s−t)αn . �

Remark 2 If codimG ≤ n andUt ∩G ⊂ γUs then there isx ∈ span{e0, . . . , en} ∩G, ‖x‖t = 1 and we
have

γ2 ≥ |x|2s =
n∑

j=0

|xj |2e2sαj ≥ e2(s−t)αn

hencee(s−t)αn ≤ γn(Ut, Us) which means that we have even

γn(Ut, Us) = δn(Ut, Us) = e(s−t)αn . �

From Lemma 4 and Proposition 2 we obtain:

Proposition 3 If E is isomorphic to a subspace or a quotient space ofΛ∞(α) thenE is α-nuclear. �

Just for the sake of completeness we notice that every closed subspace or quotient space of a Fréchet-
Hilbert space is again a Fréchet-Hilbert space.

The second type of invariants are those who describe the interpolational properties of the seminorm
system definingE. They have been considered, under different names, by Dragilev, Zaharjuta, Dubinsky,
Robinson, Wagner and the author. The importance of the properties (DN) and (Ω) is based on the structure
theory of power series spaces as developed in [22],[29],[30] and, in particular, on the (DN)-(Ω)-Splitting
Theorem (see Theorem 2 below). For the properties of (DN) and (Ω) see [12, Sections 29, 30, 31].

LetE be a Fŕechet space,‖ ‖0 ≤ ‖ ‖1 ≤ . . . a fundamental system of seminorms and‖ ‖∗0 ≥ ‖ ‖∗1 ≥ . . .
the dual extended real valued norms inE′, where for any seminorm‖ ‖ we are using the notation

‖y‖∗ = sup
‖x‖≤1

|y(x)|

for y ∈ E′.

Definition 2 E has property(DN) if there isp so that for anyk there isK andC > 0 with

‖ ‖2
k ≤ C‖ ‖p‖ ‖K .

‖ ‖p is called a dominating norm.

An equivalent formulation is given in the following lemma for the proof of which we refer to [12].

Lemma 5 E has property(DN) if and only if there isp, so that for everyk and0 < τ < 1 there existsK
andC > 0 with

‖ ‖k ≤ C‖ ‖1−τ
p ‖ ‖τ

K . �

Definition 3 E has property(Ω) if for everyp there isq such that for anyk there is0 < ϑ < 1 andC > 0
with

‖ ‖∗q ≤ C‖ ‖∗p
1−ϑ‖ ‖∗k

ϑ
.

The most prominent example of a space with properties (DN) and(Ω) is the following.

Lemma 6 Λ∞(α) has properties(DN) and(Ω).
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PROOF. By Hölder’s inequality we obtain easily fort0 < t1 < t2

|x|t1 ≤ |x|
t2−t1
t2−t0
t0 |x|

t1−t0
t2−t0
t2 . (2)

Taking into account that

|y|∗t
2 =

∑
j

|yj |2e−2tαj

we obtain in the same way

|y|∗t1 ≤ |y|∗
t2−t1
t2−t0

t0 |y|∗
t1−t0
t2−t0

t2 . � (3)

Directly from the definition we see:

Lemma 7 (1) Property(DN)is inherited by subspaces.

(2) Property(Ω) is inherited by quotient spaces.�

From Lemmas 6, 7 and Proposition 3 we conclude:

Proposition 4 (1) If E is isomorphic to a subspace ofΛ∞(α) then it isα-nuclear and has property
(DN).

(2) If E is isomorphic to a quotient space ofΛ∞(α) then it isα-nuclear and has property(Ω). �

Of course, the arguments of the proof of Lemma 6 hold also if instead ofΛ∞(α) we take a space of the
following form

Λ∞(α, I) = {x ∈ KI : |x|2t =
∑
i∈I

|xi|2e2tαi < +∞ for all t ∈ R}.

Hereα = (αi)i∈I is a family of nonnegative numbers andI is any index set. In particular we have formulas
(2) and (3). For any index setJ we setΣ∞(J) = Λ∞(α, I) whereI = N× J andαn,j = n. Moreover we
setΣ∞ = Σ∞(N). ThenΣ∞(J) andΣ∞ have properties (DN)and(Ω).

At this point we want to extend some results of [25] to the case of Fréchet-Hilbert spaces.

Theorem 1 LetE be a Fŕechet-Hilbert space andJ a dense subset ofE, then

(1) E has property(DN) if and only ifE is isomorphic to a subspace ofΣ∞(J).

(2) E has property(Ω) if and only ifE is isomorphic to a quotient space ofΣ∞(J). �

In particular we have

Corollary 1 LetE be a separable Fŕechet-Hilbert space then

(1) E has property(DN) if and only ifE is isomorphic to a subspace ofΣ∞.

(2) E has property(Ω) if and only ifE is isomorphic to a quotient space ofΣ∞. �

We can read Corollary 1 also as a characterization of the subspaces and quotient spaces ofΣ∞, which
is isomorphic toDL2 (see [21] or [24, Theorem 3.2]).

From Theorem 1 we get immediately
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Corollary 2 If E is a Fréchet-Hilbert space and has property(DN), then there is a one-parameter family
(| |t)t∈R of Hilbert norms onE which generates the topology and so thatt 7→ log |x|t is convex and
increasing for anyx ∈ E. �

Corollary 3 If E is a Fréchet-Hilbert space and has property(Ω) then there is a one-parameter family
of extended real valued Hilbert seminorms(| |∗t )t∈R so that the setsBt = {y ∈ E′ : |y|∗t ≤ 1} are a
fundamental system of bounded sets inE′ andt 7→ log |x|∗t is convex and decreasing for eachy ∈ E′. �

The proof of Theorem 1 is exactly the same as the proof of Theorems 2.2 and 3.2 in [25]. One has to
replace the spaces`∞(I) and`1(I) by `2(I) and apply the following theorem instead of [25, Lemma 1.3.].
For a proof of this theorem see e.g. [12, Section 30].

Theorem 2 Let 0 −→ F −→ G −→ E −→ 0 be an exact sequence of Fréchet-Hilbert spaces and
assume that F has property (Ω) and E has property(DN), then the sequence splits.�

An essential ingredient in the proof of Theorem 2 is the following lemma (see [12, Lemma 30.7]) which
we will use in the sequel.

Lemma 8 Let E andF be Fŕechet-Hilbert spaces. Assume that E has property(DN) with dominating
norm‖ ‖0 and thatF has property (Ω). Let‖ ‖0 be a continuous seminorm onF and‖ ‖1 be chosen for
‖ ‖0 according to(Ω). Then for everyϕ ∈ L(E,F1) andε > 0 there existψ ∈ L(E,F0), χ ∈ L(E,F ) so
that sup‖x‖0≤1 ‖ψx‖0 ≤ ε andıo1 ◦ ϕ = ψ + ıo ◦ χ. �

HereF0 andF1 are the local Hilbert spaces generated by‖ ‖0 and‖ ‖1, respectively.
We will need the following interpolation result for Hilbert scales. For any two index setsI, J and

families(αi)i∈I , (βj)j∈J of nonnegative real numbers we put

Gt =

{
x = (xi)i∈I : |x|2t =

∑
i∈I

e2αit|xi|2 < +∞

}

Ht =

x = (xj)j∈J : |x|2t =
∑
j∈J

e2βjt|xj |2 < +∞

 .

These are Hilbert spaces, equipped with their natural scalar products. In the following lemma‖ ‖t denotes
the norm of an operatorGt → Ht. The following result is well known, see [11, Theorem 1.11].

Lemma 9 Let T ∈ L(G0,H0) and TG1 ⊂ H1. ThenTGt ⊂ Ht and ‖T‖t ≤ ‖T‖1−t
0 ‖T‖t

1 for all
t ∈ [0, 1]. �

We will make immediate use of Lemma 9 to prove the following useful fact.

Lemma 10 If ‖ ‖ is a Hilbert norm onΛ∞(α) and | |0 ≤ ‖ ‖ ≤ C| |τ , C ≥ 1. Then there is an
automorphismU of Λ∞(α) so that|Ux|0 = ‖x‖ and

|x|t ≤ |Ux|t ≤ C|x|t+τ

for all x ∈ Λ∞(α), t ≥ 0.
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PROOF. We denote byH0 the Hilbert space generated by‖ ‖ and by( , ) its scalar product. For every
K > τ we consider the canonical mapıoK : Λα

K ↪→ H0. It is compact, letsn be the singular numbers. We
set

βn = − 1
K

log sn.

Then the Schmidt representation takes the form

ıoKx =
∞∑

n=0

e−Kβn〈x, en〉Kfn, (4)

where(en)n, (fn)n are orthonormal bases inΛα
K andH0, respectively. If we setUt = {x : |x|t ≤ 1},

V = {x : ‖x‖ ≤ 1} then 1
CUτ ⊂ V ⊂ U0 leads to

δn(UK , U0) ≤ δn(UK , V ) ≤ Cδn(UK , Uτ )

i.e. (see Remark 2)
e−Kαn ≤ e−Kβn ≤ Ce−(K−τ)αn . (5)

We put
uKx = ((x, fn))n∈N0 .

We have
|x|0 ≤ |uKx|0 = ‖x‖ ≤ C|x|τ

and, by use of (5) for the first inequality and (4) for the equation in the middle row,

1
C
|uKx|K−τ =

1
C

( ∞∑
n=0

e2(K−τ)αn |(x, fn)|2
) 1

2

≤

( ∞∑
n=0

e2Kβn |(x, fn)|2
) 1

2

= |x|K

≤

( ∞∑
n=0

e2Kαn |(x, fn)|2
) 1

2

= |uKx|K .

By use of Lemma 9, applied touK and its inverse, we obtain

|x|t ≤ |uKx|t ≤ C|x|t+τ

for all 0 ≤ t ≤ K − τ .
For everyk ∈ N the set{uK : K ≥ k + τ} is an equicontinuous subset ofL(Λα

k+τ ,Λ
α
k ). Since

Λα
t −→ Λα

s is compact fort > s the set is relatively compact inL(Λα
k+τ+1,Λ

α
k−1) for everyk ∈ N.

Therefore we may, by use of a diagonal procedure, find a subsequenceuKn
, so thatuKn

converges in
L(Λα

k+τ+1,Λ
α
k−1) for everyk ∈ N. Since the same applies to(u−1

K )K we may choose the subsequence so
that also(u−1

Kn
)n converges inL(Λα

k+1,Λ
α
k−1) for all k ∈ N, and we set forx ∈ Λ∞(α):

Ux = lim
n→∞

uKnx, V x = lim
n→∞

u−1
Kn
x.

and certainlyU, V ∈ L(Λ∞(α)). Of course, we first take the limits in the local Banach spaces separately
and then see that those results define elementsUx ∈ Λ∞(α), V x ∈ Λ∞(α), respectively.

It can easily be seen thatUV = V U = id, henceU is an automorphism. We have

|Ux|0 = lim
n
|Ukn

x|0 = ‖x‖
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and we have for anyt > 0
|x|t ≤ lim

n
|Ukn

x|t = |Ux|t ≤ C|x|t+τ .

This proves the result. �

An endomorphismU of Λ∞(α) for which there are constantsC > 0 andτ ≥ 0 so that

|Ux|t ≤ C |x|t+τ , x ∈ Λ∞(α)

for all t > 0 we call uniformly tame. A description of uniformly tame endomorphisms is contained in the
following lemmas.

For any endomorphismU ∈ L(Λ∞(α)) there is a matrix(uk,j)k,j∈N0 so that

Ux =

 ∞∑
j=0

uk,jxj


k∈N0

, x ∈ Λ∞(α).

Of course, we haveuk,j = 〈Uej , ek〉 if ek andej denote the canonical basis vectors and〈 , 〉 the`2-scalar
product.

Lemma 11 Letα be strictly increasing andU ∈ L(Λ∞(α)) be uniformly tame, then its matrix is upper
triangular.

PROOF. From the continuity estimates we get

|uk,j |etαk ≤ |Uej |t ≤ C |ej |t+τ = C e(t+τ)αj .

Therefore
|uk,j | ≤ C et(αj−αk)+ταj

for all t > 0 which implies the result. �

If α is not necessarily strictly increasing we have to replace upper triangular by blockwise upper trian-
gular, where the blocks are given by the sets of indices on whichα is constant.

Lemma 12 Let α be strictly increasing andS ∈ L(`2) have an upper triangular matrix, thenS ∈
L(Λ∞(α)) andS is uniformly tame withτ = 0.

PROOF. We may assume that‖S‖L(`2) = 1. Then in particular|sj,j | ≤ 1 for all j. Let (d0, d1, . . . ) with
supj |dj | ≤ 4 be a sequence so that|sj,j + dj | = 4 for all j.

We setDx = (d0x0, d1x1, . . . ) andH = S+D. LetH0x = (ho,ox0, h1,1x1, . . . ) be the diagonal part
of H andH+ = H − H0 thenH+ = S+ whereS0 andS+ are defined in an analogous way. Therefore
‖H+‖ = ‖S+‖ ≤ ‖S‖+ ‖S0‖ ≤ 2, all norms taken inL(`2).

Because ofH = H0(I + H−1
0 H+) and‖H−1

0 H+‖ ≤ 1
2 the operatorH is invertible inL(`2) and

‖H−1‖ ≤ 1. So we have
|x|0 ≤ |Hx|0 ≤ 5|x|0.

We apply Lemma 10 to‖x‖ = |Hx|0 and get a uniformly tame automorphismU of Λ∞(α) with

|x|t ≤ |Ux|t ≤ 5|x|t, x ∈ Λ∞(α)

for all t > 0, so that|Ux|0 = |Hx|0 for all x. By Lemma 11 the matrix ofU is upper triangular.
ThereforeV = U ◦ H−1 is unitary in`2 and has an upper triangular matrix. This implies thatV is

diagonal and|vj,j | = 1 for all j and therefore|Hx|t = |V −1Ux|t ≤ 5|x|t for all x ∈ Λ∞(α) andt > 0.
Finally we obtain

|Sx|t ≤ |Hx|t + |Dx|t ≤ 9|x|t, x ∈ Λ∞(α)

for all t > 0. This proves the result. �

Since we can modify anyα to a strictly increasing sequence without changingΛ∞(α) we obtain from
Lemma 12 as an immediate consequence:
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Lemma 13 LetS ∈ L(`2) have an upper triangular matrix, thenS ∈ L(Λ∞(α)). �

3. Subspaces of power series spaces of infinite type

We characterize in this section the subspaces of a stable power series spaceΛ∞(α). We assume that that
the Fŕechet-Hilbert spaceE has property (DN) and isα-nuclear. By Corollary 1 the spaceE is isomorphic
to a subspace ofΣ∞. We may assume that it is a subspace ofΣ∞.

By | |t we denote the canonical norms onΣ∞ and also their restrictions toE.
We assume chosen a sequence0 = t0 < t1 < . . . with limk tk = ∞. We set‖ ‖k = | |tk

onE and
Uk = {x ∈ E : ‖x‖k ≤ 1}.

By definition the‖ ‖0 ≤ ‖ ‖1 ≤ . . . are Hilbertian norms onE so that with suitable0 < τk < 1

‖ ‖k ≤ ‖ ‖1−τk

k−1 ‖ ‖
τk

k+1. (6)

By the choice of our seminorms the spaceE is countably normed, i.e. the canonical mapılk : Ek −→ El is
injective for allk ≥ l.

The fundamental lemma in this section is:

Lemma 14 Assume thatδn(Uk, U0) ≤ e−kαn for all n ≥ n0. Then there is a sequenceβ with βn ≥ an

for all n ≥ n0 and an injective mapϕk ∈ L(E,Λ∞(β)), so that for allx ∈ E

1. |ϕk(x)|0 ≤ 2‖x‖0,

2. |ϕk(x)|k ≥ 1
2 ‖x‖k.

Moreoverϕk extends to an isomorphism̂ϕk : E0 −→ `2 = Λβ
0 .

PROOF. We sets = 2tk, E(s) the local Banach space of| |s andı(s)l : El −→ E(s), ıl(s) : E(s) −→ El

the respective linking maps. By assumption the mapı0k, hence alsoı0(s) : E(s) −→ E0 is compact. Letsn

be the singular numbers ofı0(s). We set

βn = − 1
2k

log sn.

Then the Schmidt representation takes the form

ı0(s)x =
∞∑

n=0

e−2kβn〈x, en〉sfn. (7)

Here(en)n is an orthonormal basis ofE(s) and(fn)n an orthonormal basis ofE0.
The choice ofs and (2) applied toΣ∞ implies‖ ‖2

k ≤ ‖ ‖0| |s. If δn(Uk, U0) ≤ e−kαn we obtain, by
use of Lemmas 1 and 3, withU(s) = {x ∈ E : |x|s ≤ 1}

e−2kβn = δn(U(s), U0) ≤ δ2n(Uk, U0) ≤ e−2kαn .

Thereforeαn ≤ βn for all n ≥ n0.
We setϕx = (〈x, fn〉0)n∈N0 and obtain a unitary mapϕ : E0 −→ `2 = Λβ

0 . From (7) we see that

ϕ ◦ ı0(s)(x) = (e−2kβn〈x, en〉s)n

which means thatϕ ◦ ı0(s) is a unitary mapE(s) −→ Λβ
2k. We denote byu its inverse. Thenu is unitary

Λβ
2k −→ E(s) and we have

|u ξ|s =|ξ|2k

‖ı0(s)u ξ‖0 =|ξ|0
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for all ξ ∈ Λβ
2k. The latter because obviously

ı0(s) ◦ u = ϕ−1|Λβ
2k
. (8)

By Lemma 9, applied for maps between the Hilbert spaces ofΛβ
t andΣt we obtain

‖ık(s)u ξ‖k ≤ |ξ|k. (9)

Notice that, by assumption,E ⊂ Σ∞ and therefore, by natural identification,Ek ⊂ Σtk
, E(s) ⊂ Σs. By

this identification we have‖ı0(s)u ξ‖0 = |uξ|0 and‖ık(s)u ξ‖k = |uξ|tk
.

We apply Lemma 8 (withε = 1
2 ) toϕ ◦ ı0(s) ∈ L(E(s),Λ

β
2k). We obtain mapsϕk ∈ L(E,Λ∞(β)), ψ ∈

L(E0,Λ
β
k) so thatsup‖x‖0≤1 |ψx|k ≤ 1

2 and

ϕ ◦ ı0 = ϕk + ψ ◦ ı0.

We have to verify the desired properties forϕk.
Forx ∈ E we have

|ϕkx|0 ≤|ϕ(ı0x)|0 + |ψ(ı0x)|k
≤2‖x‖0.

This proves part 1. Moreoverϕk extends toϕ̂k ∈ L(E0,Λ
β
0 ) and we havêϕk = ϕ − ψ = ϕ(I − ϕ−1ψ).

Since‖ϕ−1ψ‖L(E0) ≤ 1
2 the mapϕ̂k is invertible.

The mapı0 is injective, hence alsoϕk = ϕ̂k ◦ ı0.
We may writeϕ̂−1

k by its Neumann series

ϕ̂−1
k =ϕ−1 + ϕ−1ψϕ−1

∞∑
n=0

(ψϕ−1)n

=ϕ−1 + ϕ−1 ◦ v

where

v = ψ

∞∑
n=0

(ϕ−1ψ)nϕ−1.

Hencev ∈ L(Λβ
0 ,Λ

β
k) and‖v‖L(Λβ

0 ,Λβ
k) ≤ 1.

Forx ∈ E andξ = ϕkx we obtain

ı0x = ϕ−1(ξ) + ϕ−1(vξ) = ϕ−1(ξ + vξ). (10)

Because of (9) the mapık(s) ◦u extends touk ∈ L(Λβ
k , Ek). Due to (8), forη ∈ Λβ

k we haveϕ−1η = ı0kukη.

With η = ξ + vξ we obtain from (10), using thatı0k is injective,ıkx = uk(ξ + vξ).
Therefore we have

‖x‖k ≤ |ξ + vξ|k ≤ 2|ξ|k.

This completes the proof. �

Lemma 15 If lim supn
α2n+1

αn
< d < +∞ and βn ≥ αn for all n ≥ n0, then there exists a strictly

monotonous sequence(n(ν))ν∈N0 andb ≥ 0 so thatβν ≤ αn(ν) ≤ b+ dβν for all ν ∈ N0.
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PROOF. We setm(ν) = sup{n : αn ≤ βν} andn(ν) = m(ν) + ν + 1. Then by assumption we have
m(ν) ≥ ν for ν ≥ n0 andn(ν) is strictly increasing. Moreoverβν < αn(ν) for all ν. We choosen1 ≥ n0

so thatα2n+1 ≤ dαn for n ≥ n1. Forν ≥ n1 we have

αn(ν) ≤ α2m(ν)+1 ≤ dαm(ν) ≤ dβν .

Settingb = sup{αn(ν) : ν < n1} we obtain the result. �

Lemma 16 Under the assumptions of Lemma 14 and the assumption thatlim supn
α2n

αn
< +∞we obtain:

for everyk there is an injective mapϕk ∈ L(E,Λ∞(α)) so that for allx ∈ E

1. |ϕk(x)|0 ≤ 2‖x‖0

2. |ϕkx|k ≥ 1
2‖x‖k.

PROOF. We chooseβ andϕk as in Lemma 14. We use Lemma 15 to find a sequencen(ν) with βν ≤
αn(ν) ≤ b+ dβν and define forξ = (ξ0, ξ1, . . .) a sequenceϕ ξ by

(ϕ ξ)n =

{
ξν if n = n(ν)
0 otherwise.

Thenϕ gives an isomorphic imbeddingΛ∞(β) ↪→ Λ∞(α) and an isometric imbedding̀2 ↪→ `2. If we
replaceϕk by φk := ϕ ◦ ϕk, thenφk ∈ L(E,Λ∞(α)) is injective, we have

|φk(x)|0 ≤ |ϕk(x)|0 ≤ 2‖x‖0

and withξ = ϕkx

|φkx|k =|ϕ(ϕkx)|k =

(∑
ν

|ξν |2e2kαn(ν)

) 1
2

≥

(∑
ν

|ξν |2e2kβν

) 1
2

= |ϕkx|k ≥
1
2
‖x‖k. �

We are now in the position to prove the main theorem of this section. For the nuclear case see [30, Satz
3.2].

Theorem 3 Letα be stable. A Fŕechet spaceE is isomorphic to a subspace ofΛ∞(α) if and only ifE is
anα-nuclear Fŕechet-Hilbert space with property(DN).

PROOF. If E is isomorphic to a subspace ofΛ∞(α) then it is Fŕechet-Hilbert and, by Proposition 4, it is
α-nuclear and has property (DN).

We have to show the converse implication. We setn(i, k) = 2k + i2k+1 − 1 and get a bijective map
N0 × N0 −→ N0. We setαi,k := αn(i,k) and obtain an isomorphismΛ∞(α) ∼= Λ where

Λ := {x = (xi,k)i,k∈N0 : ‖x‖2
t =

∑
i,k

|xi,k|2e2tαi,k < +∞ for all t ∈ R}.

The isomorphism is given by(xn)n∈N0 7→ (xn(i,k))i,k∈N0 .
In E we choose a fundamental system of Hilbertian norms as in Lemma 14. For everyk ∈ N0 we

chooseϕk ∈ L(E,Λ∞(α)) according to Lemma 16 and set

ϕk(x) = (ϕi,k(x))i∈N0 .
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We define forx ∈ E
φ(x) := (2−ke−kαi,kϕi,k(x))i,k∈N0 .

We have to show thatφ(x) ∈ Λ andφ ∈ L(E,Λ).
From the stability ofα we getbk ≥ 0, dk ∈ N so that

αi ≤ αi,k ≤ bk + dkαi.

We may assume thatbk ≤ bk+1 anddk ≤ dk+1 for all k. Now, we fixm and chooseM,C such that

|ϕkx|mdm
≤ C‖x‖M

for k = 0, . . . ,m− 1. We get

‖φx‖2
m ≤

m−1∑
k=0

4−k

( ∞∑
i=0

|ϕi,k(x)|2e2(m−k)αi,k

)
+

∞∑
k=m

4−k

( ∞∑
i=0

|ϕi,k(x)|2
)

≤
m−1∑
k=0

4−ke2mbm |ϕk(x)|2mdm
+

∞∑
k=m

4−k|ϕk(x)|20

≤4
3
(e2mbmC2 + 4)‖x‖2

M .

On the other hand we have form ∈ N

‖φx‖2m ≥ 2−m

( ∞∑
i=0

|ϕi,m(x)|2e2mαi,m

) 1
2

≥ 2−m|ϕm(x)|m ≥ 2−m−1‖x‖m.

Thereforeφ is an isomorphic imbeddingE ↪→ Λ ∼= Λ∞(α). �

4. Quotient spaces of power series spaces of infinite type

In this section we characterize the quotient spaces of a stable power series spaceΛ∞(α). We assume
that that the Fŕechet-Hilbert spaceE has property(Ω) and isα-nuclear. By Corollary 1 the spaceE is
isomorphic to a quotient ofΣ∞. Let q : Σ∞ −→ E be the quotient map.

By | |t we denote the quotient seminorms underq of the canonical norms| |t onΣ∞.
We assume chosen a sequence0 = t0 < t1 < . . . with limk tk = ∞. We set‖ ‖k = | |tk

and
Uk = {x : ‖x‖k ≤ 1}.

By definition the‖ ‖0 ≤ ‖ ‖1 ≤ . . . are Hilbertian seminorms onE so that with suitable0 < ϑk < 1
andCk > 0

‖ ‖∗k ≤ Ck‖ ‖∗
1−ϑk

k−1 ‖ ‖∗
ϑk

k+1. (11)

The fundamental lemma in this section is:

Lemma 17 Assume thatδn(Uk+1, Uk) ≤ e−2pαn for all n ≥ n0. Then there is a sequenceβ with
βn ≥ αn for all n ≥ n0 and a mapϕk ∈ L(Λ∞(β), E) so that for allξ ∈ Λ∞(β)

1. ‖ϕkξ‖k ≤ 2|ξ|0

2. ‖ϕ ξ‖k+1 ≥ 1
2 |ξ|p.

Moreoverϕk extends to an isomorphism̂ϕk : `2 = Λβ
0 −→ Ek.
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PROOF. By assumption the mapıkk+1 is compact. We set

βn = − 1
2p

log δn(Uk+1, Uk).

Then the Schmidt representation takes the form

ıkk+1x =
∞∑

n=0

e−2pβn〈x, en〉k+1fn

where(en)n∈N0 is an orthonormal sequence inEk+1, (fn)n∈N0 an orthonormal basis ofEk.
As in the proof of Lemma 14, we getαn ≤ βn for all n ≥ n0. We set

ϕξ =
∞∑

n=0

ξne
2pβnen

and obtain an isometryϕ from Λβ
2p intoEk+1. Because of

ıkk+1ϕξ =
∞∑

n=0

ξnfn

the mapıkk+1 ◦ ϕ extends to a unitary mapχ : `2 = Λβ
0 −→ Ek.

We puts = 1
2 (tk+1 − tk). We denote byE(s) the local Hilbert space of| |s and byı(s), ı(s)k+1, ı

k
(s)

the respective canonical maps. We apply Lemma 8 to the mapϕ ∈ L(Λ∞(β), Ek+1) defined byϕ
and the seminorms| |s ≤ ‖ ‖k+1 on E. We obtainϕk ∈ L(Λ∞(β), E), ψ ∈ L(Λ∞(β), E(s)) so that
sup|ξ|0≤1 |ψξ|s ≤ 1

2 and

ı
(s)
k+1 ◦ ϕ = ı(s) ◦ ϕk + ψ.

We have to verify the desired properties forϕk. We have

ık ◦ ϕk = ıkk+1 ◦ ϕ− ık(s) ◦ ψ.

Therefore‖ϕkξ‖k ≤ 2|ξ|0 for ξ ∈ E. Moreoverık ◦ ϕk extends to a map̂ϕk ∈ L(`2, Ek) which can be
written as

ϕ̂k = χ ◦ (id−χ−1 ◦ ık(s) ◦ ψ̂).

Hereψ̂ denotes, as always, the continuous extension. Sinceχ is invertible and‖χ−1 ◦ ık(s) ◦ ψ̂‖L(`2) ≤ 1
2

the mapϕ̂k is invertible.
We have forx ∈ Ek

χ−1(x) = (〈x, fn〉k)n∈N0 .

Therefore forx ∈ Ek+1

χ−1(ıkk+1x) = (e−2pβn〈x, en〉k+1)n∈N0 .

Forx ∈ E we defineh(x) := χ−1(ıkx) and obtain

|h(x)|0 ≤‖x‖k

|h(x)|2p ≤‖x‖k+1.

Therefore by Lemma 9, applied toΣ∞ andΛ∞(β), we get

|h(x)|p ≤|x|s.
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This implies thatχ−1 ◦ ık(s) ◦ ψ extends to a mapT ∈ L(Λβ
0 ,Λ

β
p ) and we have‖T‖L(Λβ

0 ,Λβ
p ) ≤

1
2 .

Thereforeid−T is invertible inL(Λβ
p ), with ‖(id−T )−1‖L(Λβ

p ) ≤ 2.

For ξ ∈ Λ∞(β) we setx = (id−T )ξ and haveϕk(ξ) = χ(x) hencex = h(ϕk(ξ)) which implies

|ξ|p ≤ 2|x|p ≤ 2‖ϕk(ξ)‖k+1.

This completes the proof. �

We assume now thatα is stable and may choosed ∈ N, so that

lim sup
n

α2n+1

αn
< d.

Lemma 18 Under the assumptions of Lemma 17 and the assumption thatδn(Uk+1, Uk) ≤ e−2dpαn for
n ≥ n0 andlim supn

α2n+1
αn

< d we obtain: there is a mapϕk ∈ L(Λ∞(α), E) andck > 0, so that

1. ‖ϕkξ‖k ≤ 2|ξ|0 for all ξ ∈ Λ∞(α)

2. |ϕ′ky|∗p ≥ ck‖y‖∗k+1 for all y ∈ E′.

Moreoverϕk extends to a surjection̂ϕk : Λα
0 −→ Ek.

PROOF. From Lemma 17, applied to(dαn)n, we get for givenk a sequenceβ with βn ≥ dαn for n ≥ n0

and a mapϕk ∈ L(Λ∞(β), E) with the properties1. and2. in Lemma 17.
From Lemma 15 we get a increasing sequence(n(ν))ν∈N0 andb > 0 so that

1
d
βν ≤ αn(ν) ≤ b+ βν .

We set, as in the proof of Lemma 16

(ϕξ)n =

{
ξν if n = n(ν)
0 otherwise.

Thenϕ gives an isomorphic imbeddingΛ∞(β) ↪→ Λ∞(α) and an isometric imbedding̀2 ↪→ `2. We have
|ϕx|t ≤ etb|x|t for all t ∈ R.

We defineL ∈ L(Λ∞(α),Λ∞(β)) by

(Lξ)ν∈N0 = (ξn(ν))ν∈N0 .

ThenL ◦ ϕ = id and|Lξ|t ≤ |x|dt for all t ≥ 0. We putφk = ϕk ◦ L. Thenφk ∈ L(Λ∞(α), E).
Moreover1. is satisfied since|Lξ|0 ≤ |ξ|0 and, becauseL is surjective, alsôφk is surjective. As for2.

we notice that fory ∈ E′

1
2
‖y‖∗k+1 ≤|ϕ′ky|∗p = |(ϕ′ ◦ L′ ◦ ϕ′k)y|∗p

≤epb|(L′ ◦ ϕ′k)y|∗p = epb|φ′ky|∗p. �

We are now ready to prove the main theorem of this section. For the nuclear case see [30, Satz 3.4].

Theorem 4 Letα be stable. A Fŕechet spaceE is isomorphic to a quotient space ofΛ∞(α) if and only if
E is anα-nuclear Fŕechet-Hilbert space with property(Ω).

352



Power series spaces of infinite type

PROOF. If E is isomorphic to a quotient space ofΛ∞(α) then it is Fŕechet-Hilbert and, by Proposition 4,
it is α-nuclear and has property(Ω).

We have to show the converse implication. As in the proof of Theorem 3 we setn(i, k) = 2k+i2k+1−1
andαi,k := αn(i,k) and use the isomorphic representationΛ∞(α) ∼= Λ where

Λ := {x = (xi,k)i,k∈N0 : ‖x‖2
t =

∑
i,k

|xi,k|2e2tαi,k < +∞ fore all t ∈ R}.

For everyk ∈ N0 we choosedk ∈ N, bk ≥ 0 so thatαi,k ≤ bk + dkαi for all i and setpk = kdk. We
choose by induction a sequencet0 = 0 < t1 < t2 < . . . so that the seminorms‖ ‖k = | |tk

satisfy the
assumptions of Lemma 18 withp = pk. For eachk ∈ N0 letψk be the map from Lemma 18.

Forx = (xi,k)i,k∈N0 andk ∈ N0 setxk = (xi,k)i∈N0 . Sincei ≤ n(i, k), henceαi ≤ αn(i,k) = αi,k,
we havexk ∈ Λ∞(α) and

∞∑
k=0

|xk|2t ≤
∞∑

k=0

∞∑
i=0

|xi,k|2e2tαi,k = ‖x‖2
t

for all t ≥ 0.
We put

Ψ(x) :=
∞∑

k=1

2−
k
2ψk(xk)

for x = (xk)k = (xi,k)i,k ∈ Λ. We show that the series converges and definesΨ ∈ L(Λ, E).
This follows from

‖Ψx‖2
m ≤

(
m−1∑
k=1

2−
k
2 ‖ψkxk‖m +

∞∑
k=m

2−
k
2 ‖ψkxk‖k

)2

≤C2
m−1∑
k=1

|xk|2M + 4
∞∑

k=m

|xk|20

≤(C2 + 4)
∞∑

k=0

|xk|2M

≤(C2 + 4)‖x‖2
M

with suitableC andM depending fromm.
Sinceψk ∈ L(Λ∞(α), E) andψ̂k is surjective from̀ 2 ontoEk, we see thatR(Ψ) is dense inE. Let

m be given. We obtain fory ∈ E′:

‖Ψ′y‖∗m ≥2−
m
2 sup{|(ψ′m(y))(ξ)| :

∑
i

|ξi|2e2mαi,m ≤ 1}

≥2−
m
2 sup{|(ψ′m(y))(ξ)| : |ξ|mdm

≤ e−mbm}
≥2−

m
2 · e−mbm |ψ′m(y)|∗mdm

≥2−
m
2 e−mbmcmdm

‖y‖∗m+1.

The surjectivity criterion [12, 26.1] then shows thatΨ is surjective. �

5. Complemented subspaces of power series spaces of infi-
nite type

Our next task is to characterize the complemented subspaces ofΛ∞(α) by invariants and study their struc-
ture.
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First we prove a partial replacement for the Ramanujan and Terzioğlu imbedding theorem from [17].

Lemma 19 If Q is a quotient ofΛ∞(α), equipped with the quotient seminorms‖ ‖t of the norms| |t,
t ∈ R, then for anyk there isSk ∈ L(Q,Λ∞(α)), so thatsup‖x‖k≤1 |Skx|0 < +∞ andSk induces an

isometryŜk : Qk ↪→ Λ0
0 = `2.

PROOF. We may assumek = 0 anddimQ0 = ∞. Let ϕ : Λ∞(α) −→ Q be the quotient map. For
K > 0 the mapı0K : QK −→ Q0 is compact. Letsn be its singular numbers. We set

βn = − 1
K

log sn.

Then its Schmidt representation takes the form

ı0Kx =
∑

n

e−Kβn〈x, en〉Kfn,

where(en)n∈N0 is an orthonormal system inQK , (fn)n∈N0 an orthonormal basis ofQ0.
By Remark 2 and Lemma 2 we get

e−Kβn ≤ e−Kαn

i.e. βn ≥ αn for all n.
We set forx ∈ Λ∞(α)

TKx := (〈x, fn〉)n.

Then we have

|TKx|β0 =‖x‖0, |TKx|βK =‖x‖K ,

hence

|TKx|α0 =‖x‖0, |TKx|αK ≤‖x‖K .

and therefore by Lemma 9, applied toTK ◦ q,

|Tkx|αk ≤ ‖x‖k for all 0 ≤ k ≤ K.

Here| |βt and| |αt denote the norms inΛ∞(β) andΛ∞(α), respectively.
We argue like in the proof of Lemma 10 to find a subsequence(TKn

)n∈N and an operatorT ∈
L(Q,Λ∞(α)) so thatTKn

x −→ Tx for all x ∈ Q.
For everyx ∈ Q we have

|Tx|0 = lim
n
|TKn

x|0 = ‖x‖0.

SettingS0 := T we obtain the result. �

As an immediate consequence we obtain:

Lemma 20 If Q is a quotient ofΛ∞(α) then there is an imbeddingS : Q ↪→ Λ∞(α)N.

PROOF. We setSx = (Skx)k∈N, Sk as in Lemma 19. �

We can now give the characterization of the complemented subspaces ofΛ∞(α). For the nuclear case
see [30, Satz 3.5].

Theorem 5 Letα be stable. A Fŕechet spaceE is isomorphic to a complemented subspace ofΛ∞(α) if
and only ifE is anα-nuclear Fŕechet-Hilbert space with properties(DN) and(Ω).
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PROOF. If E is isomorphic to a complemented subspace ofΛ∞(α) then it is Fŕechet-Hilbert and by
Proposition 4, it isα-nuclear and has properties (DN) and(Ω). We have to prove the converse implication.
SinceE is anα-nuclear Fŕechet-Hilbert space with property (DN) we know from Theorem 3 thatE is
isomorphic to a subspace ofΛ∞(α), this means that there is an isomorphic imbeddingj : E ↪→ Λ∞(α).

We setQ := Λ∞(α)/jE. By Lemma 20 there is an imbeddingS : Q ↪→ Λ∞(α)N.
We consider the exact sequence

0 −−−−→ Λ∞(α) −−−−→ Λ∞(α)
ϕ−−−−→ Λ∞(α)N −−−−→ 0

from Proposition 1 and set̃Q = ϕ−1(SQ). We can set up the following commutative diagram with exact
rows and columns:

0 0x x
0 −−−−→ E

j−−−−→ Λ∞(α)
q−−−−→ Q −−−−→ 0x=

xϕ0

xϕ

0 −−−−→ E −−−−→ H
q0−−−−→ Q̃ −−−−→ 0x x

Λ∞(α) =−−−−→ Λ∞(α)x x
0 0

HereH = {(x, y) ∈ Λ∞(α)× Q̃ : qx = ϕy} is a Fŕechet-Hilbert space,ϕ0(x, y) = x, q0(x, y) = y.
Since by assumptionE has property(Ω) andQ̃ as a subspace ofΛ∞(α) has property (DN) the second

row splits by Theorem 2.
SinceΛ∞(α) has properties (DN) and(Ω) the first column splits by the same theorem. Therefore we

have
E ⊕ Q̃ ∼= H ∼= Λ∞(α)⊕ Λ∞(α) ∼= Λ∞(α).

The last isomorphism exists sinceα is stable. �

6. About the structure of complemented subspaces of power
series spaces of infinite type

After having characterized the complemented subspaces of power series spaces by invariants we will now
closer study their structure. In [14, Theorem14] (see also [13]) Mityagin proved that every complemented
subspace of a finite type power series space has a basis and is again isomorphic to a finite type power
series space. He posed the problem whether the same is true for infinite type power series spaces, see [14,
Problem 15]. In [15] he showed that that every complemented subspace of an infinite type power series
space with an unconditional basis is isomorphic to an infinite type power series space. So the problem
remains whether every complemented subspace of an infinite type power series space has an unconditional
basis. This problem is, even in the nuclear case, still unsolved. A solution for the nuclear case has been
announced without proof in Kondakov [10]. A proof proposed by the same author in [8] is apparently
mistaken. Nevertheless there are many partial solutions. We will describe some of them.

A principal tool for that is the following result, in the nuclear case it was first proved in [23].
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Lemma 21 If α is stable andE is a complemented subspace ofΛ∞(α), thenE ⊕ Λ∞(α) ∼= Λ∞(α).

PROOF. LetF be a complement ofE in Λ∞(α), i.e.E ⊕ F ∼= Λ∞(α), then

Λ∞(α)N ∼= EN ⊕ FN ∼= E ⊕ EN ⊕ FN ∼= E ⊕ Λ∞(α)N.

We use again the exact sequence from Proposition 1. We add the exact sequence

0 −−−−→ 0 −−−−→ E
id−−−−→ E −−−−→ 0

and obtain by use of the previous isomorphism

0 −−−−→ Λ∞(α) −−−−→ Λ∞(α)⊕ E −−−−→ Λ∞(α)N −−−−→ 0.

Like in the proof of Theorem 5 we obtain the following diagram

0 0x x
0 −−−−→ Λ∞(α) −−−−→ Λ∞(α) −−−−→ Λ∞(α)N −−−−→ 0x x
0 −−−−→ Λ∞(α) −−−−→ H −−−−→ Λ∞(α)⊕ E −−−−→ 0x x

Λ∞(α) Λ∞(α)x x
0 0

HereH ⊂ Λ∞(α)⊕Λ∞(α)⊕E is a Fŕechet-Hilbert space. By use of Theorem 2 the first column and the
second row split and we get

Λ∞(α)⊕ E ∼= Λ∞(α)⊕ Λ∞(α)⊕ E ∼= H ∼= Λ∞(α)⊕ Λ∞(α) ∼= Λ∞(α).

Here we used several times the stability ofα. �

In the nuclear case the following theorem was first proved in [23].

Theorem 6 Let α be stable. IfE is isomorphic to a complemented subspace ofΛ∞(α) and Λ∞(α)
isomorphic to a complemented subspace ofE, thenE ∼= Λ∞(α).

PROOF. LetE ⊕ F ∼= Λ∞(α) andG ⊕ Λ∞(α) ∼= E, thenG ⊕ Λ∞(α) ⊕ F ∼= Λ∞(α). ThereforeG is
isomorphic to a complemented subspace ofΛ∞(α). By Lemma 21 we have

E ∼= G⊕ Λ∞(α) ∼= Λ∞(α). �

We will now present sufficient conditions so that a Fréchet-Hilbert space with properties (DN) and (Ω)
has a basis. To formulate them we need one more concept which is due Aytuna-Krone-Terzioğlu [2]. Let
E be a Fŕechet-Hilbert-Schwartz space with properties (DN) and(Ω). Let ‖ ‖p be a dominating norm and
choose, for givenp, aq according to(Ω). We setUk = {x : ‖x‖k ≤ 1} for all k.

Definition 4 The sequence
αn := − log δn(Uq, Up)

is called an associated exponent sequence ofE andΛ∞(α) the associated power series space.
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From [2] we know the following:

Lemma 22 Λ∞(α) depends only onE, not on the choice ofUp, Uq. �

By use of Lemma 3 this implies that, in particular,E is α-nuclear. As a consequence of Lemma 22 we
obtain:

Corollary 4 If E is a Fréchet-Hilbert-Schwartz space with properties(DN) and (Ω) andΛ∞(α) its as-
sociated power series space and ifE ∼= F thenF has the same properties, in particularΛ∞(α) is its
associated power series space.�

This yields

Proposition 5 If

λ(A) := {x = (xn)n∈N0 : ‖x‖2
k :=

∞∑
j=0

|xj |2aj,k < +∞ for all k}

has properties(DN) and(Ω), andΛ∞(α) is its associated power series space thenλ(A) ∼= Λ∞(α).

PROOF. By [29, Satz 2.7] there is a power series spaceΛ∞(β) so thatλ(A) ∼= Λ∞(β). Since then clearly
Λ∞(β) is the associated power series space ofλ(A), we have by Corollary 4Λ∞(β) = Λ∞(α). �

This means that, if a Fréchet-Hilbert-Schwartz space with properties (DN) and(Ω) is isomorphic to a
Köthe spaceλ(A) defined as above, then it is isomorphic to its associated power series space. Since, by
Theorem 5 with suitableα, it is always isomorphic to a complemented subspace of someΛ∞(α) the result
of Mityagin [15] shows that this is always the case if it has an unconditional basis.

We will use a simplified version of the proofs of Lemma 14 and Lemma 17 to show the following.

Lemma 23 Let E be a Fŕechet-Hilbert-Schwartz space with properties(DN) and (Ω). Let ‖ ‖0 be a
Hilbertian dominating norm,‖ ‖1 chosen for‖ ‖0 according to(Ω) and

αn = − log δn(U1, U0)

whereUj = {x ∈ E : ‖x‖j ≤ 1}.
Then there exist mapsψ ∈ L(Λ∞(α), E), ϕ ∈ L(E,Λ∞(α)) so thatψ extends to an isomorphism

ψ0 : `2 −→ E0, ϕ extends to an isomorphismϕ0 : E0 −→ `2 and we have

sup
|ξ|0≤1

|ξ − ϕ0 ◦ ψ0(ξ)|0 <
1
2
.

PROOF. By assumptionı01 is compact and its Schmidt representation takes the form

ı01x =
∞∑

n=0

e−αn〈x, en〉1fn

where(en)n is an orthonormal sequence inE1 and(fn)n an orthonormal basis ofE0.
We setϕ̃(x) = (〈x, fn〉0)n∈N0 and obtain a unitary map̃ϕ : E0 −→ `0 = Λα

0 for which we have

ϕ̃ ◦ ı01(x) = (e−αn〈x, en〉1)n∈N0

which means that̃ϕ◦ı01 defines an isometrỹϕ1 fromF := span{e0, e1, . . .} ontoΛα
1 withF⊥ = ker ϕ̃◦ı01 =

ker ı01. We setψ̃ = ϕ̃−1. Thenψ̃ is a unitary map̀ 2 = Λα
0 −→ E0 so that there is a map̃ψ1 : Λα

1 −→ E1
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with ı01 ◦ ψ̃1 = ψ̃. We apply Lemma 8 tõϕ1 andψ̃1 and obtain mapsϕ ∈ L(E,Λ∞(α)), ψ ∈ L(Λ∞(α), E)
so that with0 < ε < 1 to be determined later

ϕ̃ ◦ ı0 =ϕ+ χ ◦ ı0 onE

ψ̃ =ı0 ◦ ψ + η onΛ∞(α)

whereχ ∈ L(E0,Λα
0 ) with sup‖x‖0≤1 |χ(x)|0 < ε andη ∈ L(Λα

0 , E0) with sup|ξ|0≤1 ‖η(ξ)‖0 < ε.

Thereforeϕ extends toϕ0 = ϕ̃ − χ ∈ L(E0, `2) andψ to ψ0 = ψ̃ − η ∈ L(`2, E0). Since‖χ‖ < 1
and‖η‖ < 1 ϕ0 andψ0 are invertible.

Moreover
ϕ0 ◦ ψ0 = id−χ ◦ ψ̃ − ϕ̃ ◦ η + χ ◦ η

and therefore

sup
|ξ|0≤1

|ξ − ϕ0 ◦ ψ0(ξ)|0 < 2ε+ ε2 <
1
2

for smallε > 0. �

Corollary 5 Under the assumptions of Lemma 23 there exist mapsψ ∈ L(Λ∞(α), E), ϕ ∈ L(E,Λ∞(α))
so thatψ extends to a unitary mapψ0 : `2 −→ E0 andϕ extends to a unitary mapϕ0 : E0 −→ `2.

PROOF. We chooseψ andϕ according to Lemma 23. Then we apply Lemma 10 to the norm‖x‖ =
‖ψx‖0 and obtain an automorphismU of Λ∞(α) so that|Ux|0 = ‖ψx‖0. We do the same with the norm
‖x‖ = ‖ϕ−1x‖0 and obtain an automorphismV of Λ∞(α) so that|V x|0 = ‖ϕ−1x‖0. Finally we replace
ψ byψ ◦ U−1 andϕ by V ◦ ϕ. �

An important step now is contained in the following lemma. The method for the construction ofS is
due to Aytuna, Krone and Terzioğlu [1], the difference here is again, that we don’t need nuclearity.

Lemma 24 Let α be stable,T ∈ L(Λ∞(α)) so thatT induces a unitary map inL(`2). Then there is
S ∈ L(Λ∞(α)), so thatP = T ◦ S is a projection inΛ∞(α), orthogonal in`2, andR(P ) ∼= Λ∞(α).

PROOF. Let ej = (0, . . . , 0, 1, 0, . . .) ∈ Λ∞(α) andfj = Tej . We choose inductively vectorsgn ∈
Λ∞(α) with following properties:

(1) gn ∈ span{f0, . . . , f2n}

(2) gn⊥g0, . . . , gn−1 in `2

(3) gn⊥e0, . . . , en−1 in `2

(4) |gn|0 = 1.

This is possible sincedim span{f0, . . . , f2n} = 2n+ 1. Due to(1) we have

gn :=
2n∑

k=0

µk,nfk = T (
2n∑

k=0

µk,nek).

We set

hn =
2n∑

k=0

µk,nek

and obtain an orthonormal system(hn)n∈N0 . We setµk,n = 0 for k > 2n.
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We define

Sx :=
∞∑

n=0

〈x, gn〉hn.

This meansS = T−1 ◦ P whereP is the orthogonal projection ontospan{g0, g1, . . .}. We have to show
thatS defines a map inL(Λ∞(α)).

We do that in two steps. First we define a mapϕ ∈ L(`2) by

ϕ(x) =
∞∑

n=0

〈x, gn〉en.

For the matrix elementsϕk,j = 〈ϕej , ek〉 = 〈ej , gk〉 we haveϕk,j = 0 for k > j. Therefore, by Lemma
13,ϕ ∈ L(Λ∞(α)).

Next we define a mapψ ∈ L(`2) by

ψ(x) =
∞∑

n=0

〈x, en〉hn.

For the matrix elementsψk,j = 〈ψej , ek〉 = 〈hj , ek〉 we obtain thatψk,j = 0 for k > 2j.
We defineψ̃ ∈ L(`2) by ψ̃ = ψ ◦A andAx = (x2n)n∈N0 for x = (xn)n∈N0 . Then we have

〈ψ̃ej , ek〉 =
{
〈ψeν , ek〉 : j = 2ν

0 : j = 2ν + 1.

This means that̃ψk,j = 〈ψ̃ej , ek〉 = 0 for k > j. By Lemma 13 we obtain that̃ψ ∈ L(Λ∞(α)).
Now we set

(Bx)j =
{
xν : j = 2ν
0 : j = 2ν + 1.

for x = (xn)n∈N0 . Due to the stability ofαwe haveB ∈ L(Λ∞(α)) and thereforeψ = ψ̃◦B ∈ L(Λ∞(α)).
Since obviouslyS = ψ ◦ ϕ we have shown thatS ∈ L(Λ∞(α)). It remains to show thatR(P ) ∼=

Λ∞(α).
The mapT ◦ψ ∈ L(Λ∞(α), R(P )) is injective and, because of(T ◦ψ)◦ϕ = T ◦S = P , also surjective.

Therefore it is an isomorphism. �

From Lemmas 23, 24 and Theorems 5, 6 we derive the following theorem which was shown in the
nuclear case by Aytuna, Krone and Terzioğlu in [1].

Theorem 7 If E is a Fréchet-Hilbert-Schwartz space with properties(DN) and (Ω) and its associated
power series spaceΛ∞(α) is stable, thenE ∼= Λ∞(α).

PROOF. From Corollary 5 we getϕ ∈ L(E,Λ∞(α)), ψ ∈ L(Λ∞(α), E) so thatT := ϕ ◦ ψ extends to
a unitary map inL(`2). Then by Lemma 24 we getS ∈ L(Λ∞(α)), so thatP = T ◦ S is a projection in
Λ∞(α) with R(P ) ∼= Λ∞(α).

We setπ := ψ ◦S ◦P ◦ϕ ∈ L(E) and obtain a projection.P ◦ϕ ∈ L(R(π), R(P )) is an isomorphism,
sinceψ ◦ S|R(P ) is its inverse. As the assumptions imply thatE is α-nuclear (see the remark after Lemma
22), Theorems 5 and 6 yield the result.�

Stability of the associated power series space is one condition which implies the existence of a basis in
E, and by far the most important for analysis since in applications in analysis the associated power series
usually can be calculated and is stable. Another condition is the following, see [6], [7].

Definition 5 Λ∞(α) is called tame if, up to equivalence,α has the following form: there are strictly
increasing sequencesn(k) in N0 with n(0) = 0 andβk > 0 so that

359



D. Vogt

(1) αn = βk for n(k) ≤ n < n(k + 1)

(2) limk
βk+1
βk

= +∞.

These spaces have the following properties (see [6, Proposition 1], [7, Theorem 1.3]).

Theorem 8 The following are equivalent

(1) Λ∞(α) is tame.

(2) There existsd so that for everyA ∈ L(Λ∞(α)) there isb with

|Ax|k ≤ Ck|x|dk+b

for all k with suitableCk.

(3) There are countably many functionsσm(·),m ∈ N so that for everyA ∈ L(Λ∞(α)) there ism with

|Ax|k ≤ Ck|x|σm(k)

for all k with suitableCk.

(4) The set of finite limit points of{αµ

αν
: µ, ν ∈ N0} is bounded. �

If α has, without equivalence, the form given in the definition, thenα is called blockwise unstable. Then
we have in a natural way

Λ∞(α) ∼= {x = (x0, x1, . . .) ∈
∏
k

`2(m(k)) : |x|2t =
∑

k

|xk|2e2tβk (12)

<+∞ for all t ∈ R}

wherem(k) = n(k + 1)− n(k) and`2(m(k)) is them(k)-dimensional Hilbert space.
EveryA ∈ L(Λ∞(α)) corresponds to a matrix(Aj,ν)j,ν∈N0 whereAj,ν ∈ L(`2(m(ν)), `2(m(j))). We

put
A0

j,ν := δj,νAj,ν , A1
j,ν = Aj,ν −A0

j,ν .

The following result, which is a generalization of a result in [3], is contained in [7, Lemma 2.1].

Lemma 25 If α is blockwise unstable,A ∈ L(Λ∞(α)) and |Ax|0 ≤ C|x|0, then for eachε > 0 the set
A1Uε is relatively compact inΛ∞(α), where

Uε = {x ∈ Λ∞(α) : |x|ε ≤ 1}.

PROOF. We need to prove only thatA1Uε is bounded inL(Λ∞(α)). Fix t > 0.
(1) Forν > j ≥ j0 we obtain from the continuity ofA in `2∣∣∣∣∣∣

∞∑
ν=j+1

Aj,νxν

∣∣∣∣∣∣ ≤ C

 ∞∑
ν=j+1

|xν |2
 1

2

.

Therefore ∣∣∣∣∣∣
∞∑

ν=j+1

Aj,νxν

∣∣∣∣∣∣ etβj ≤ Ce−βj

 ∞∑
ν=j+1

|xν |2e2εβν

 1
2

if j0 is so large that(t+ 1)βj ≤ εβj+1.
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(2) Forν < j, j ≥ j0 we findCt+2, σ(t+ 2) so that

|Ax|t+2 ≤ Ct+2|x|σ(t+2)

and therefore
‖Aj,ν‖e(t+2)βj ≤ Ct+2e

σ(t+2)βν .

Here‖Aj,ν‖ denotes the norm inL(`2(m(ν)), `2(m(j))). From this we get

‖Aj,ν‖etβj ≤Ct+2e
σ(t+2)βν−2βj

≤Ct+2e
−βj

if j0 is so large thatσ(t+ 2)βj−1 ≤ βj for j ≥ j0.
(3) From all this we get

|A1x|t ≤etβj0

 j0∑
j=1

∣∣∣∣∣
∞∑

ν=0

Aj,νxν

∣∣∣∣∣
2
 1

2

+

 ∞∑
j=j0

∣∣∣∣∣∣
∞∑

ν=j+1

Aj,νxν

∣∣∣∣∣∣
2

e2tβj


1
2

+

 ∞∑
j=j0

∣∣∣∣∣
j−1∑
ν=0

Aj,νxν

∣∣∣∣∣
2

e2tβj


1
2

≤etβj0C|x|0 + C

∑
j

e−2βj

 1
2

|x|ε + Ct+2

∑
j

j2e−2βj

 1
2

|x|0.

The last estimate holds since∣∣∣∣∣
j−1∑
ν=0

Aj,νxν

∣∣∣∣∣ etβj ≤

(
j−1∑
ν=0

‖Aj,ν‖2e2tβj

) 1
2

|x|0

≤Ct+2j
1
2 e−βj |x|0. �

Lemma 26 LetΛ∞(α) be tame,A ∈ L(Λ∞(α)) andsup|x|0≤1 |x−Ax|0 < 1. ThenA is invertible.

PROOF. We may assume thatα is blockwise unstable and that, in the notation of Definition 5, allβj ∈ N.
We calculatex−A0x as follows: we putB(t)x = (eitβjx)j for x = (xj)j ∈ Λ∞(α) in the representation
(12). ThenB(t) ∈ L(Λ∞(α)) andB(t) is unitary oǹ 2. We obtain

x−A0x =
1
2π

∫ 2π

0

B(t)(I −A)B(−t)x dt.

From this we derive easily
sup
|x|0≤1

|x−A0x|0 < 1.

ThereforeA0 is invertible in`2 = Λα
0 . A0−1

being a blockwise diagonal map defines a map inL(Λ∞(α)).
Hence we obtain

A0−1 ◦A = I +A0−1 ◦A1

whereA0−1 ◦A1 is compact inL(Λ∞(α)). This implies thatA0−1 ◦A is a Fredholm map with index= 0
in L(Λ∞(α)).

The assumption implies thatA is invertible in`2 = Λα
0 . ThereforekerA0−1 ◦ A = {0}. This proves

the result. �

We obtain the following theorem, for the nuclear case see Wagner [32, Theorem 5] and Kondakov [9].
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Theorem 9 If E is a Fréchet-Hilbert-Schwartz space with properties(DN) and (Ω) and its associated
power series spaceΛ∞(α) is tame, thenE ∼= Λ∞(α).

PROOF. We apply Lemma 26 toA = ϕ ◦ ψ whereϕ ∈ L(E,Λ∞(α)) andψ ∈ L(Λ∞(α), E) are the
maps of Lemma 23. Notice thatα in Lemma 23 is the associated exponent sequence.

Lemma 26 yields thatA is invertible. We setχ := A−1 ◦ ϕ ∈ L(E,Λ∞(α)). Thenχ ◦ ψ = id. From
this we conclude thatP := ψ ◦ χ is a projection inE. If P (x) = 0 then |x|0 = 0 hencex = 0. So
kerP = 0 andP = id, i.e.ψ ◦ χ = id. Soχ is an isomorphism. �

The preceding theorem is a generalization of the following theorem shown in [6, Theorem], [7, Theo-
rem 2.4].

Theorem 10 If Λ∞(α) is tame then every complemented subspace ofΛ∞(α) has a basis.

PROOF. We have to show that Theorem 9 implies Theorem 10. LetE be complemented inΛ∞(α) and
F a complement. LetΛ∞(β) andΛ∞(γ) be the associated power series spaces ofE andF , respectively.
Then clearlyΛ∞(α) = Λ∞(β)⊕Λ∞(γ). where⊕ means that to getΛ∞(α) we have to take an increasing
common rearrangement ofα andβ. Therefore there is a subsequenceα̃ = (αjν )ν∈N0 so thatΛ∞(α̃) =
Λ∞(β). From there it is easily seen thatΛ∞(β) is tame, henceE ∼= Λ∞(β) by Theorem 9. �
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[1] Aytuna A. and Krone J. (1989). Terzioğlu, Complemented infinite type power series subspaces of nuclear Fréchet
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