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Abstract. We study some structural questions concerning the locally convex gfgcevhich consists

of analytic functions on the open unit disc. We construct an atomic decomposition in this space, using a
lattice of points of the unit disc which is more dense than a usual one. The coefficient spacétiea K
sequence space. We also prove tHgt is not nuclear.

Descomposici 6n atomica de un limite inductivo ponderado

Resumen. Estudiamos algunas cuestiones estructurales acerca del espacio localmente Egfivexo
que esh formado por funciones angtas en el disco unidad abierto. Construimos una descomgnsici
atbmica de este espacio, usando uficidd de puntos del disco unidad que edsmlenso que el usual.
Tambin demostramos qués” no es nuclear.

1. Introduction

In the paper [10] we introduced the spalig¢® := H{°(D) consisting of analytic functions on the open

unit disc. This space is slightly larger than the classical Banach d@&cef bounded analytic functions.

The motivation ofH{? is the fact that it behaves much better tHfaff with respect to Bergman and Sieg
projections and the harmonic conjugation operator. The spgEes aimed to be a substitute féf > in
situations where the continuity of the above mentioned mappings is critical. In [10] we also proved that this
space is a some sense the smallest possible substitute.

In this work we continue the study éf5° by showing that it admits an atomic decomposition: every an-
alytic function in this space can be presented as a linear combination of “atoms” defined using the standard
Bergman kernel. The coefficients form sequences belonging to a nafitted Kequence space. For details,
see Theorem 1. While atomic decompositions are interesting in itself in harmonic analysis, our results also
give a representation di;° as a complemented subspace of@he—-Schwartz coechelon space.

The atom functions are defined using a lattice of points of the unit disc. Our choice of the lattice is not
a typical one with essentially constant hyperbolic distances between the lattice points. In the present work
the lattice is much more dense. This leads to many simplifications in proofs.

Atomic decompositions were first studied by Coifman and Rochberg in the setting of Bergman spaces
on the disc, see [3] and especially the book [12], Chapter 4, for a simple presentation. It is intuitively quite
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clear that our method could be used also in the classical case of Bergman spaces to make many proofs
shorter or even trivial.

Before proceeding to the atomic decomposition let us recall from [10] the definitibfyafBy dA we
denote the normalized 2—dimensional Lebesgue measul¥ amoreover,n(B) := [, dA for a measur-
able subseB of D.

Definition 1 By V we denote the set of radial weight functions D — R* i.e. positive bounded
continuous functions, which satisfy for everg N

sup v(z)|log(1 — |2)[" < Cp 1)
zeD
and moreover
V1—|z| <wv(z) <1 forall z € D. (2

Notice that (2) is not explicitely required in [10]; nevertheless the spaces in the next definition are the same
as those in [10].

Definition 2 We define the locally convex space

Hy = {f : D — C analytic

11l i= sup | f()|o(z) < oo forall v € V. @3)
z€eD

The topology ofH{* is determined by the uncountable famfly- ||,|v € V'} of seminorms. Itis a complete
countable inductive limit of Banach space$® = indy . H;°, wherev, (z) := min{1, | log(1—|z])|7*}
and

H>X = {f : D — C analytic

Vi

11l < o} (4)

It is a Schwartz space; in particular, the bounded and precompact subsets coincide. It is not so surprising
that the weight system is not “steep” enough to make the space a nuclear one. We consider this question in
Section 4.

The dual ofH7® (with respect to the topology of uniform convergence on bounded sets) is the space

HI}/ = {f : D — Canalytic | || f|lx :=
/ |f(2)||log(1 — |2|)|*dA(z) < oo for all k € N}. (5)
zeD

The dual pairing is the usuaf, g) := [, fgdA. The spacesl;® andH};, are reflexive, hence, the duality
(H}y);, = H® also holds. The dualfy;, is a Féchet-Schwartz space, whose topology is determined by
the sequence of seminorr(is- ||x)5 . For more details, especially for a proof of the duality, see [10].

We defineK (z,w) := 1/(1 — 2w)?, wherez, w € D, and we denote by the Bergman projection
RFG) = [ Kz w)f(w)datw) ©)
D

According to [10], R is a continuous projection from{® onto Hy°, whereL$® is defined as in (3) but
“measurable” replacing “analytic” and “ess sup” replacing “sup”.
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To fix a constant later we remark th&t also maps the spade™ continuously intoLS° (definition

V1

analogous to (4) ); see [10]. Moreovdr,is self-dual with respect to the dual pairigg-). Let us thus
show thatR is also a bounded operator from

L= {f . D — C measurable ] Il = / 1F()|(1+ |Tog(1 — [2))dA(z) < oo} 7)
zeD

into L! := LY(D, dA): for f € L1 andg € L,

wrgl =] [ [ L2 aa0aac)
D D

IN
—
=
O

IN

c / FOI1+ og(1 — [¢CAAQ) < C.
D

So, let us denote b, the positive constant such that (denoting the norm'oby || - ||o )

I1Rgllo < Collgllx (8)

forallg € L}.
Concerning other notations and terminology, for analytic function spaces we refer to the book of Zhu,
[12], and for locally convex spaces we mention [6], [7] and [8] and also the paper [10].

2. Preliminaries for the atomic decomposition.

We next turn to the construction of the atomic decomposition. Atomic decompositions for analytic function
spaces on the unit disc were first introduced by Coifman and Rochberg, see [3]. A simple presentation of the
classical result is given in [12], Chapter 4. By an “atomic decomposition” of some analytic function space
we roughly mean a way to write an analytic function as an infinite linear combination of simple building
blocks, “atoms”, in such a way that the complex coefficients for a sequence belong to a relevant sequence
space.

For our function spacéiy® the “atom” functions, i.e. the building blocks, will be defined using the
Bergman kernel, as usual. Another essential ingredient is a suitable decomposition of the Uit @isc
decomposition is finer than the usual one, which consists of sets with essentially constant hyperbolic area;
see [3] or [12]. Our choice actually makes many preliminary lemmas nearly trivial to prove. It is very
probable that this could be used to simplify the proofs also in the classical case of Bergman&iiazes

We are aware of the fact that on the other hand our choice of the lattice is not an optimal, i.e. small, one.
Hence we also do not particularly try to achieve optimal constants in various inequalities; the estimates may
be quite crude in some cases.

Definition 3 Let us fix the constan/ = (Cy + 1)10000, whereCj, is as in (8). For allm € N, define
firstr,, = 1 — m~'/3; then define for every, for everym’ :=0,1,2,..., M

m/

Tm,m/ ‘= Tm + M(Tm-f—l - Tm) (9)
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and@(m, k) := 2rk/[Mm*/3] for k = 0,1,...,[Mm?*/3]. (Here[a] stands for the largest integer strictly
smaller tharu + 1.) Define a bijectiorp from N onto the se{(m,m’, k) |[m € N, m' =0,1,2,..., M —

1, k=0,1,2,...,[Mm*/3] — 1}. For everyn € N, pick upm, m’ andk such thatn = p='(m, m’, k)
and define

Dy ={z=re" €D | rpm <1< o1 and 0(m, k) <0 < 0(m, k+ 1)}, (10)

We clearly have
|JD. =D, (11)

and moreover, the set formed by the numbers D belonging to more than one of the sdis, has
Lebesgue measure 0.

Lemma 1 For everyn the Euclidean diameter dP,, satisfies

20(1 — |2])*
diamD,, < inf M

12
z€D,, M ( )

PROOF.  If n is given andm, m’ andk are such that = p~!(m,m/, k), then

m' 41

inf (1—|2) =1~ Fmmrgpr = 1 — (rm +

Jnf (rma1 — rm)> >1—rpe1 = (m+ 1)_1/3. (13)

On the other hand, the arguments of the point®gfmay vary at most frord(m, k) to 8(m, k + 1), hence
at mos2r/(Mm?*/3). The radii may vary from,,, ., t0 r,,, ../ 1, Which amounts to a change of (see (9) )

1 1 1 m~4/3
—1 _ - R -
M7 (= ) = (1 oL ) < e (14)
This implies the claim. H
Corollary 1 For every analytic functiorf on D, for all n, we have
20
|£(2) = fw)] < ;A= [AD* sup |F(Q)] (15)

¢EDn

forall z,w,Ae D,. R

The proof is a direct application of the previous lemma and the mean value theorem.

The crucial step for our main result is to strengthen the classical approximation lemma (e.g. [12],
Lemma 4.3.4) using our new decompositionIdf Notice that the (relatively easy) proof is based on the
density of our decomposition.

Lemma?2 Letv € V,in particular, assumg/1 — |z| < v(z) < 1. Forall n € N, let \,, be an interior
point of D,,.
a) Forall g € H},, with [ |g|dA < 1 we have

D

> [ lae) = gl dAG) < 2000 (16)
=17 Dn v(z)
b) For all f € H{® with|f(z)| < 1/v(z) onD, and for alln € N, we have
sup |f(2) — f(hn)] < 200M 1 sup (1 — |z])'/4. (17)
zEDn ZeDn
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PROOF Inthe case a) we estimate using Corollary 1 (choose z there) and (2)

> [ ot - sniaae

n=1
20 / —1/2 4 ’
— 1—|z 1—1z|)* su dA(z 18
M; Dn( 2~ 21 = 12)) C€3L|g<<>| (2) (18)
Since sup (1 — [¢]) < (1 +1/10)(1 — |z]) for all z € D,, (e.g.by Lemma 1), we can bound (18) by
¢EDn
40 & 40
17 2 D) sup (1= [2)72)¢/ ()| < 37 sup(1 — |2)2|g(2)] (19)
ne1 z€D, zeD

Here we differentiate the reproducing formuyjéz) = f 9(¢) sdA(C) once under the integral sign to

(1-2¢)
bound (19) by -
80 )7/2 C
g | [ G 2
<37 [ lo©laa < 5. (21)
D

As for b), let f be as indicated. Again by Corollary 1

sup [£(2) = f(0)] < 57 sup (1= [2)17(2)

z€Dy, zeD,,

20
< _ 7/2) §1 . _ 1/4
< 31 ( s (=P (s 0 120)7).

and as in the previous case we see that the first factor is bounded by

40 40 200

— < = < —.

a1 [ 1#©1a© < 5 [ ye@dae < 37 22)

D D
The part b) of the above result immediately impliesll
Corollary 2 Letv € V. If || f]l, < 1, we have
< (23)
~u(z)

foreveryh,z € D,,. R

3. Main result.

In this section we construct an atomic decomposition for the sfigee We shall show that every element
f of Hi® can be presented as a linear combination

= a(n)m(Dy)
“2 0 )

n=1 o
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where \,, € D,, and the coefficient sequen¢e(n))>2, belongs to a Kthe sequence spadé,.(A).
Conversely, for every sequen¢e(n))s>, € K. (A), the analytic function defined by (24) belongs to
Hy?. However, givenf € Hy?, the sequencéx(n))>2, is not unique. (The atoms do not form a Schauder
basis.)

We now consider the sequence space relevant to the atomic decomposition H3inisea countable
inductive limit of Banach spaces, the same is also true for the sequence space.

Definition 4 Let us fix, for alln € N, an interior pointA,, of D,,. For all k € N, leta; be the sequence
of positive real numbers with
ar(n) :=|log(l — \.|)[F , n€N. (25)

DenoteA := {ay | k € N}, define the Kthe co—echelon spad€..(A) corresponding tad as in [1],
Section 1.

For a quick definition ofK,,(A4), let us denote by the set of all bounded positive sequences
satisfying
(n) < Cy/ar(n) forall k,n € N. (26)
Then a sequence = («a(n))s2, of complex numbers belongs 6., (A) if and only if for everyo € ¥y

one can find & > 0 such that

sup |a(n)|o(n) < C. (27)
neN

The (non—-metrizable) topology @€, (A) is defined by the seminorms

|z := sup |a(n)[o(n). (28)

neN

Let us next define three operators. Let the sequéRgE? ; be as above. Lef be analytic orD and
leta = (a(n))$2, be a sequence of complex numbers. Set

= (D) f()
Sf(z) = ;m (29)
= a(n)m(D,)
T(a) = 2 ﬁ (30)
(Qf)(n) = f(Ay) forneN. (31)

Hence, formallyS = T'Q. These operators have the following continuity properties.
Lemma 3 The operatorsS : H® — H{®, T : Ko(A) — H{® andQ : H{® — K (A) are continuous.

PROOF.  1° ConsiderT". To prove the continuity it suffices to take an arbitrary boundedset H};, and
show that a neighbourhood of 0 i, (A) is mapped into the polaB° of B by T', where

B°:={ge Hy | |{f,g9)] < 1forevery f € B}. (32)
We first claim thatB is contained in a se¥ := {f € H{;, | [|f|v(z)~! < 10} forav € V. To findv

we use the boundednessifto pick the numberg’;, > 1 such thatB c C, Uy, for everyk; hereU, is the
closed unit ball of the continuous seminofim||;, of H{;,. This means that every € B satisfies, for alk,

/ Il log(1 — |2])[*dA < Gy (33)
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Atomic decomposition

Definev by
1
v(2) = = . (34)
> kTR log (1 — 2]
k=0
Since

3 TR log(1 — |z)F = e H 801D = (1 — |24,
we get the estimate
v(z) > (1—|z)"* (35)
We clearly havesup v(z)|log(1 — |z])|* < k!4%Cy, for everyk, hencep € V. Moreover, it follows easily

from (33) and (351) that every function 8 belongs to the seft:

/|f|v‘1dA <> ket / |f1[log(1 — [2])[*dA =" k17" < 10. (36)
k=0 b k=0

D

Setd(n) := v(A,) for n € N; we then havés(n));2, € Vn, by definitions. Fotja|; < C we thus
have, by the reproducing formufg\,,) = [ f(¢)(1 — A.¢) 2dA(C),

(T f)l = |3 amym(Da)f(A)
n=1

IN

Y la(m@)a(n)o(ra) " m(Da)l f(An)]
n=1

< Jalls (32 v mD)IFOn)]). 37)

We prove in a moment that
1/v(A,) < CJu(z) (38)

for everyn, for everyz € D,, . Using this, Lemma 2.b), the definition of the §éaind (35), we can estimate
(37) by a constant times

Z/ 2)|v(z 1dA+Z/ (1—|z])*(z)"'dA < C. (39)

The statement (38) follows from the smallness of digm First,

du(r) ' 1=l —k -1 k-1 —1 —1-1/4
= ! —Tr — < —
o I;:lk EA™RC | log(l—7)[" (1 =r)"" <C(1 —7) ,

This, diamD,, < C(1 — |z|)* (Lemma 1) and the mean value theorem imflyv(z) — 1/v(\,)| <
C(1—z])? < C’" < C'/v(z). Hence, (38) follows.

2° Concerning@, let the weight sequence € Vi be given. We define € 1 as follows. First let
(pj)521,0 < p; < 1, be the unique strictly increasing sequence which satisfies: for gwagre exists an
n such thap; = |\,|. Let us define the subsat; of N by N; = {n | |\,| = p; }.

For everyj, define for allz € D with |z| = p,,

v(z) = sup o(n). (40)
neN;
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For everyr € [0, 1], extendv(r) piecewise linearly, and then extendadially toD.
We show thav € V. If z € D satisfiedz| = p; for somej, andk € N is given, then

v(z) = sup 0(n) < sup Ci/ax(n)
neN; neN;
= sup Crllog(1 — [An])| 7" = Ci|log(1 — |2)| 7. (41)
neN;

Concerning other numbets Lemma 1 impliesp; — p;+1| < C;(1 — p;)*, hence, for every we have

[log(1 — p;)| < [log(1 — pjy1)| < cx|log(l — pj) (42)

for a constant;, > 0. So, if z satisfiesp; < |z| < p;11, then the piecewise linearity ofand (41) and (42)
imply
v(z) < max{v(p;), v(pj+1)} < Cillog(1 = pj11)| 7 < Cy|log(1 — |2)| 7. (43)

Hencep e V.
Now (40) and the definition of) imply |Qf||z < C||f|l», henceR is continuous.
3° Finally, we haveS = T'Q), hence als® is continuous. B

The following fact can now be proved using a result of Garnir, De Wilde and Schmets to be found in
[5], p. 346.

Lemma 4 The operatorS : Hy® — Hy? is invertible .

PROOFE We want to show that the operatdr:=1 — S

(i) is bounded (i.e. maps a neighbourhood of GgF into a bounded set), and
(1) for some neighbourhootd C H{® of 0, A(U) C U/2.

ThenS is invertible by [5], p. 346.
Let us take a weight as small as

w(z) :=+1—|z|. (44)

Then, for surew € V. LetU C H:® be the unit ball of| - ||.,:

U= {f e By | swplf)0- |22 < 1) (45)
zeD
We want to show that )
| [aregeaae)] < 5 (46)
D
for every f € U, g in the unit ball of L1 (see (8)), that is,
g€ U= {he L, (D,dA) | Al == / [h(2)](1+ | 1og(1 — [2))dA() <1}, (4D)
zeD

HereL. (D, dA) is the space of locally integrable functions Bn

Assuming (46) we show that) and(ii) hold. As for (i), let us pick up an arbitrary weighte V; to
prove the boundedness fit suffices to find & such that forf € H® andg € Hy;, with || f||, < 1 and
llgllx < 1 we have

[(Af,9) < C. (48)

Butv(z) > /1 — |2|, see (2) in the definition df . Hence,f € U. Moreover, for every; € N, k > 2,
the subset||g||x < 1} C Hjy, is smaller than the séf above. Hence, (48) follows from (46).
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Concerning(ii), the identification of the norm af>°(D, dA) as the dual norm of.}(D, dA) implies
the following:

An analytic functiony belongs tdJ/2, if | [, »g| < 1/2 for every

gev®:={ne L, (D) /|h(z)|(1 ~ |2 2aA() < 1), (49)
D

But U° is a much smaller set thah, hence(ii) follows from (46).
So we want to prove (46). Let noywandg be given. Sinced f is analytic and the Bergman projection
is self—dual, the identities

[ Afo= [(Rang= (a5, Ry) (50)
D
hold formally. Moreover, by (8),

llgllo :== IRgllo < Collglli < Co (51)

We thus have

/ Afg = (Af5) = | F5aAE) — Y m(Da) FO0)F0m)

D D n=1
= > [ G- r0)T@aAE + Y [ 0nGE - TR, 62)
n=1"Dn n=1
Using Lemma 2.b) and (51) we get the following bound for the first sum in (52):
> s 1) S0 /| llaAC)
< 200M! / |3(2)|dA(2) < 2000CoM~* < 1/5. (53)
D

To estimate the second term of (52) from above, we first use Corollary 2 to bégkg)| by ﬁ for any
z € D,,. Then Lemma 2 a) directly gives the bound

w

= 2 B 400C,
z) — g(Ap)|dA(2) < . 54
3 [, o) - gwlaac) < (54)
This completes the proof.

We now formulate the main result as follows. We denatg:) := m(D,,); this number can be esti-
mated, if necessary, from the definition of the sBisafter (9). Recall thah,, was chosen in Lemma 2: it
is an interior point of the seb,,. The spacd{.,(A) was defined in the beginning of Section 3.

Theorem 1 For every(a(n))s2,; € K« (A) the function

J =3 m (55)

n=1

belongs taH° (D), and the mappinga(n))>2, — f is continuous between these two spaces.
For every analytic functiorf € H{°(D) there exists a complex sequerfegn))s>; € K. (A) such
that

f&=2 m (56)

The mappingf — (a(n));2, can be made linear and continuous frdiij° (D) into K. (A).
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PROOE The first statement follows from the continuity df For the second one, givefy choosey =
S—1f and then define the sequenee= Qg, i.e. a(n) = g()\,). We then obtain (56) from (29) and (31).
The continuity statement follows from the continuity@fand Lemma 4. B

Finally, the operatoP := QS~'T is a continuous projection in the spakg,(A); we haveP? = P.
This implies

Proposition 1  The spaced;® is isomorphic to a complemented subspace of thth& sequence space
Ko(4). 1

4. The space is not nuclear.

Intuitively it is quite clear that the spadd;® cannot be nuclear, since the weight system is not “steep”
enough. Two arbitrary weights differ from each other at most by a factor which grows only logarithmically
on the boundary aD.

We give a proof for the nonnuclearity by extracting a subspace which is isomorphic to a nonnuclear
Kothe coechelon space. The method of the proof may have some independent interest. It resembles the
construction [2], Section 2. However, in [2] the weight system was non—radial, and the essential phenomena
occurred on the boundary of the disc. In the present work the weights are radial; consequently, we have to
play also with the radii of the points @. More precisely, the interesting and crucial things happen in the
interior pointsz,, := e (1 — (2n)~2%) of the subdomain®,, (to be chosen below). Of course there is a
lot of freedom in the construction; many other points could be used as well.

Notice that the spac& ., (A4) above is not nuclear; however, the results of Section 3 do not imply that
H:® contains a subspace isomorphiciAQ,(A). The operatofl’ need not be injection, sina@ is not a
surjection.

Proposition 2 The spaced{? is not nuclear, since it contains a subspace isomorphic to thiéco-
echelon spacd(., (M), which is defined a¥{.,(A) in the beginning of Section 3, buj(n) replaced
by

px(n) := (logn)* (57)

So, a sequence belongs toK ., (M), if and only if sup |, |(logn) ™% < oo for somek. It is well

known thatK' > (M) is not nuclear, see e.g. [9], Theorem 6.1.2.

PROOF Let#, := 1/nandJ, := [0, — €,,0, + &,] for all n € N, wheree,, := 27n~%. Notice that
the sets/,, are mutually disjoint. Choose the functign, : [0, 27] — R such thatp,,(f) = 1 for 6 € J,,,
andep,, (0) = (2n)~4 for 6 ¢ J,,. Lete,, be an analytic function on the disc defined by

2

en(s) = e (5 [ @2 log a(6)d6).

el — 2
0

The radial limits (on the boundary of the disc) of the functiepsexist a.e. (we denote them by the same
symbol), and we havi,, (e?)| = ¢,,(#) for a.e.f. Compare with [2] and the references thereifi]

Let us define )
D, :={zeD|[z—e"|<1/n'}, Cp:=D\D,.

We formulate a lemma containing some crucial estimates.

Lemma5 1° Forall z € D, all n, we havde, (z)| < 1.
2° Fixaz € D; if nissuchthaiargz — 60,,| = mirl\ll{| arg z — 0,,|}, thenle, ()] < 4n=4(1 — |2| +
me

n~*)~L. Moreover, ifm # n, then|e,,(2)| < 273m=2.
3° For everyn we havee,(z,)| > 1/2, wherez,, := e (1 — (2n)~20).
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PROOE The statement® follows immediately from the maximum principle, since the moduli of the
radial limits of everye,, are at most 1.
Concerning°®, if z andn are as in the assumption, the Jensen inequality implies (as in [2])

27
1 6
en() = e (5-Re [ S5 logien (6)0)
0

27
1 1—|z|?
- I e L NN de)
eXp(%' o 8% (0)
0

27

1 1—|z)?

21 ) e — 2\2('0"
0

IA

(6)do. (58)

We may assuméz| < 1 — n~*; otherwise there is nothing to prove. We have- ¢| > n=*, hence,
|z — €| > max(|z — e¥|,n™*) > max(1 — |z|,n™%) > (1 — |2| + n~*)/2. So we have

1—]z2 1—z2 4

67 =2 = [T [Dle? =2 = T= [ +n"

Dividing the integration interval, 27] in (58) into the parts/,, and|[0, 2] \ J,,, we thus find that the first

part yields the estimate
2

nd(1 —|z| +n=%)’

since the lenght of/,, is smaller thar2=!n=%. The second part has the smaller bougd)~*, since
on = (2n)"*on[0,27] \ J,.
In the casen # n we again have

2m
1 1—|z?
lem(2)] < o mwm(@d@- (59)
0

Dividing the integration interval into the paris, and its complement, o, we have
1 ‘ _n—m)|

. 11
19_ >7‘7_7
e 2 2 5

n 2mn

This is always larger than the numbef(4m?), as seen by considering the cages. 2m andn > 2m
separately: in the former case one uges m| > 1 and2mn < 4m?, and in the lattefn — m| > n/2 and
a cancellation of.. Taking into account the lengttr®m—* of the intervalJ,,, this part yields an estimate
2= "m~2in (59). The rest of the integral is bounded (n) 4, sincey,, = (2m)~* on[0,27] \ Jp..

For the lower boun@®, we havelog ¢,, = 0 on J,, andlog ¢,, = —41log(2n) < 0 on the complement
of J,, , hence

S G L 00

27 e — z,|2
[0,27]\ J,n

4 (2n)—20
exp ( ~ 5 / T log(2n)d0)
[0,27)\ Jn

Y

> exp(—27% V%) > - m (60)
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We return to the proof of the proposition. We define the mappirfpom K (M) into H{® by ¢ :
()22 — Z ane,. We claim that the mapping is an isomorphism onto its image. Since the spaces are

strong duals of Frchet—Schwartz spaces, it suffices to show that, for some constatts > 0,

¢, sup o, |(logn) ™ < | Zanen”vk < Gy, sup |an|(logn) ~* (61)
neN neN

for all k. Since the expression((a, = sup an|n~1/2 is obviously a continuous seminorm on
n 1

K (M), we may assume that{ (a,)) < 1, i.e. |an\ < n'/2 for all n in (61). We may moreover assume
that|a,,| > 1 there, for alln.
To prove the left hand side inequality, chog$esuch that

1
|aN|(log(N))_k > 3 sup |ay,|(log n)_k. (62)
neN

We then have, bg° of Lemma 5 above, and by,,| > 1,

1
lanen (zn)|vk(zn) > §2O_k(10g(2N))_k, (63)
and on the other hand
Z lanen(zn)|vk(zn) Z n/2273n,72207% (log(2N))~* (64)

HereZn—3/22 <1+ fx_3/2 273 < 3/8. Hence, combining (63) and (64) and using the triangle

mequallty we get

‘Zanen(zN)‘vk(zN) > |anen (2n)vr(2n) — ‘ > Oénen(ZN)‘vk(ZN) |aN€N(ZN)\vk(ZN)
n=1 n#N

hence, by (62) and (63), we get

20 sup\an|(logn) < 2-20"|an|(log N) ™" < Clanen (zn)|vx(2n)

E OnCn

We finally prove the right hand side of (61). LAt still be as above, let € D and letn be such that
|arg z — 0,,] = meigﬂ argz — 0,,|}. By 2° of Lemma 5 we have (since alwayg(z) < 1)

Z |atmem (2)|vk(z Z |am|m

<

Vi

Z anen(zN)‘vk(zN) <
n=1

m#n m#n
Z Crem ™| o |(logm)™F < C1|an|(log N)7*. (65)
m#n

Concerning thexith term, for|z| > 1 — n~2 we have byl°

ve(2)amen(2)] < v(1 —n7?)|anen(2)] < Jan vk (1 —n~?) < 3lan|(logn) ™" < 3|an|(log N)~*
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For|z| <1 —n~3 we have

4oy | 4an|
<
vk (2)|anen(2)] < (1= |z|+n%) = ni(n=3+n9)

4] _ _
< %gc&cmn\(logn) k< Cylay|(log N)7*.

This and (65) imply that the right hand side of (61) holds.

Acknowledgement. The author is grateful for JésBonet for showing him the reference [5], see
Lemma 4. The author also wishes to thank the referee for the careful reading of the paper and for some
remarks and corrections. The research is partially supported by the Academy of Finland.

References

(1]

(2]

(3]
(4]
(5]
(6]
(7]

(8]

9]

(10]
(11]
(12]

Bierstedt, K.D., Meise, R., Summers, W. (1982). A projective description of weighted inductive [iFrétss.
Amer. Math. Soc272(1), 107-160.

Bonet, J., Taskinen, J. (1995). The subspace problem for weighted inductive limits of spaces of holomorphic
functions,Michigan Math. J, 42, 259—-268.

Coifman, R. (1980). Rochberg, R.:Representation theorems for Hardy spaggsque 77, (1980), 11-66.
Garnett, J. (1981 Bounded Analytic Functiong\cademic Press, New York.

Garnir, H.G, De Wilde, M., Schmets, J. (1968nalyse Fonctionelle, Birkhauser Verlag, Basel Stuttgart.,
Jarchow, H. (1981)Locally Convex Space$eubner, Stuttgart.

Kothe, G. (1983)Topological Vector Spacesol. 1. Second edition. Springer Verlag, Berlin—Heidelberg—New
York.

Pérez Carreras, P., and Bonet, J. (1988treled Locally Convex Spacadorth—Holland Mathematics Studies
131. North—Holland, Amsterdam.

Pietsch, A. (1972)Nuclear Locally Convex SpaceErgebnisse der Mathematik und ihrer Grenzgeb&ge
Springer.

Taskinen, J. On the continuity of the Bergman and $z&gjectionsHouston J. Math.to appear.
Wojtaszczyk, P. (1991Banach Spaces for AnalystSambridge University Press.

Zhu, K. (1995).Operator Theory in Function Spacddarcel Dekker, New York.

J. Taskinen

Department of Mathematics
University of Joensuu
P.O.Box 111

FIN-80101 Joensuu. Finland
Jari.Taskinen@joensuul.fi

337



