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Atomic decomposition of a weighted inductive limit
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Dedicated to the memory of Klaus Floret

Abstract. We study some structural questions concerning the locally convex spaceH∞V , which consists
of analytic functions on the open unit disc. We construct an atomic decomposition in this space, using a
lattice of points of the unit disc which is more dense than a usual one. The coefficient space is a Köthe
sequence space. We also prove thatH∞V is not nuclear.

Descomposici ón at ómica de un lı́mite inductivo ponderado

Resumen. Estudiamos algunas cuestiones estructurales acerca del espacio localmente convexoH∞V ,
que est́a formado por funciones analı́ticas en el disco unidad abierto. Construimos una descomposición
atómica de este espacio, usando un retı́culo de puntos del disco unidad que es más denso que el usual.
Tambíen demostramos queH∞V no es nuclear.

1. Introduction

In the paper [10] we introduced the spaceH∞
V := H∞

V (D) consisting of analytic functions on the open
unit disc. This space is slightly larger than the classical Banach spaceH∞ of bounded analytic functions.
The motivation ofH∞

V is the fact that it behaves much better thanH∞ with respect to Bergman and Szegö
projections and the harmonic conjugation operator. The spaceH∞

V is aimed to be a substitute forH∞ in
situations where the continuity of the above mentioned mappings is critical. In [10] we also proved that this
space is a some sense the smallest possible substitute.

In this work we continue the study ofH∞
V by showing that it admits an atomic decomposition: every an-

alytic function in this space can be presented as a linear combination of “atoms” defined using the standard
Bergman kernel. The coefficients form sequences belonging to a natural Köthe sequence space. For details,
see Theorem 1. While atomic decompositions are interesting in itself in harmonic analysis, our results also
give a representation ofH∞

V as a complemented subspace of a Köthe–Schwartz coechelon space.
The atom functions are defined using a lattice of points of the unit disc. Our choice of the lattice is not

a typical one with essentially constant hyperbolic distances between the lattice points. In the present work
the lattice is much more dense. This leads to many simplifications in proofs.

Atomic decompositions were first studied by Coifman and Rochberg in the setting of Bergman spaces
on the disc, see [3] and especially the book [12], Chapter 4, for a simple presentation. It is intuitively quite
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clear that our method could be used also in the classical case of Bergman spaces to make many proofs
shorter or even trivial.

Before proceeding to the atomic decomposition let us recall from [10] the definition ofH∞
V . By dA we

denote the normalized 2–dimensional Lebesgue measure onD; moreover,m(B) :=
∫

B
dA for a measur-

able subsetB of D.

Definition 1 By V we denote the set of radial weight functionsv : D → R+ i.e. positive bounded
continuous functions, which satisfy for everyn ∈ N

sup
z∈D

v(z)| log(1− |z|)|n ≤ Cn (1)

and moreover √
1− |z| ≤ v(z) ≤ 1 for all z ∈ D. (2)

Notice that (2) is not explicitely required in [10]; nevertheless the spaces in the next definition are the same
as those in [10].

Definition 2 We define the locally convex space

H∞
V :=

{
f : D → C analytic

∣∣∣ ‖f‖v := sup
z∈D

|f(z)|v(z) <∞ for all v ∈ V
}
. (3)

The topology ofH∞
V is determined by the uncountable family{‖·‖v|v ∈ V } of seminorms. It is a complete

countable inductive limit of Banach spaces:H∞
V = indk→∞H

∞
vk
,wherevk(z) := min{1, | log(1−|z|)|−k}

and
H∞

vk
:=

{
f : D → C analytic

∣∣∣ ‖f‖vk
<∞

}
. (4)

It is a Schwartz space; in particular, the bounded and precompact subsets coincide. It is not so surprising
that the weight system is not “steep” enough to make the space a nuclear one. We consider this question in
Section 4.

The dual ofH∞
V (with respect to the topology of uniform convergence on bounded sets) is the space

H1
W :=

{
f : D → C analytic

∣∣∣ ‖f‖k :=∫
z∈D

|f(z)|| log(1− |z|)|kdA(z) <∞ for all k ∈ N
}
. (5)

The dual pairing is the usual〈f, g〉 :=
∫
D
fḡdA. The spacesH∞

V andH1
W are reflexive, hence, the duality

(H1
W )′b = H∞

V also holds. The dualH1
W is a Fŕechet–Schwartz space, whose topology is determined by

the sequence of seminorms(‖ · ‖k)∞k=1. For more details, especially for a proof of the duality, see [10].

We defineK(z, w) := 1/(1− zw̄)2, wherez, w ∈ D, and we denote byR the Bergman projection

Rf(z) =
∫
D

K(z, w)f(w)dA(w). (6)

According to [10],R is a continuous projection fromL∞V ontoH∞
V , whereL∞V is defined as in (3) but

“measurable” replacing “analytic” and “ess sup” replacing “sup”.
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To fix a constant later we remark thatR also maps the spaceL∞ continuously intoL∞v1
(definition

analogous to (4) ); see [10]. Moreover,R is self–dual with respect to the dual pairing〈·, ·〉. Let us thus
show thatR is also a bounded operator from

L1
1 :=

{
f : D → C measurable

∣∣∣ ‖f‖1 :=
∫

z∈D

|f(z)|(1 + | log(1− |z|)|)dA(z) <∞
}

(7)

intoL1 := L1(D, dA): for f ∈ L1
1 andg ∈ L∞,

|〈Rf, g〉| =
∣∣∣ ∫
D

∫
D

f(ζ)ḡ(z)
(1− zξ̄)2

dA(ζ)dA(z)
∣∣∣

≤
∫
D

|f(ζ)|
∣∣∣∫
D

g(z)
(1− z̄ξ)2

dA(z)
∣∣∣dA(ζ)

=
∫
D

|f(ζ)Rg(ζ)|dA(ζ)

≤ C

∫
D

|f(ζ)|(1 + | log(1− |ζ|)|)dA(ζ) ≤ C ′.

So, let us denote byC0 the positive constant such that (denoting the norm ofL1 by ‖ · ‖0 )

‖Rg‖0 ≤ C0‖g‖1 (8)

for all g ∈ L1
1.

Concerning other notations and terminology, for analytic function spaces we refer to the book of Zhu,
[12], and for locally convex spaces we mention [6], [7] and [8] and also the paper [10].

2. Preliminaries for the atomic decomposition.

We next turn to the construction of the atomic decomposition. Atomic decompositions for analytic function
spaces on the unit disc were first introduced by Coifman and Rochberg, see [3]. A simple presentation of the
classical result is given in [12], Chapter 4. By an “atomic decomposition” of some analytic function space
we roughly mean a way to write an analytic function as an infinite linear combination of simple building
blocks, “atoms”, in such a way that the complex coefficients for a sequence belong to a relevant sequence
space.

For our function spaceH∞
V the “atom” functions, i.e. the building blocks, will be defined using the

Bergman kernel, as usual. Another essential ingredient is a suitable decomposition of the unit discD. Our
decomposition is finer than the usual one, which consists of sets with essentially constant hyperbolic area;
see [3] or [12]. Our choice actually makes many preliminary lemmas nearly trivial to prove. It is very
probable that this could be used to simplify the proofs also in the classical case of Bergman spacesAp(D).

We are aware of the fact that on the other hand our choice of the lattice is not an optimal, i.e. small, one.
Hence we also do not particularly try to achieve optimal constants in various inequalities; the estimates may
be quite crude in some cases.

Definition 3 Let us fix the constantM = (C0 + 1)10000, whereC0 is as in (8). For allm ∈ N, define
first rm = 1−m−1/3; then define for everym, for everym′ := 0, 1, 2, . . . ,M

rm,m′ := rm +
m′

M
(rm+1 − rm) (9)
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andθ(m, k) := 2πk/[Mm4/3] for k = 0, 1, . . . , [Mm4/3]. (Here[a] stands for the largest integer strictly
smaller thana+1.) Define a bijectionρ fromN onto the set{(m,m′, k) |m ∈ N, m′ = 0, 1, 2, . . . ,M −
1, k = 0, 1, 2, . . . , [Mm4/3] − 1}. For everyn ∈ N, pick upm, m′ andk such thatn = ρ−1(m,m′, k)
and define

Dn := {z = reiθ ∈ D | rm,m′ ≤ r ≤ rm,m′+1 and θ(m, k) ≤ θ ≤ θ(m, k + 1)}. (10)

We clearly have ⋃
n

Dn = D, (11)

and moreover, the set formed by the numbersz ∈ D belonging to more than one of the setsDn has
Lebesgue measure 0.

Lemma 1 For everyn the Euclidean diameter ofDn satisfies

diamDn ≤ inf
z∈Dn

20(1− |z|)4

M
(12)

PROOF. If n is given andm,m′ andk are such thatn = ρ−1(m,m′, k), then

inf
z∈Dn

(1− |z|) = 1− rm,m′+1 = 1−
(
rm +

m′ + 1
M

(rm+1 − rm)
)
≥ 1− rm+1 = (m+ 1)−1/3. (13)

On the other hand, the arguments of the points ofDn may vary at most fromθ(m, k) to θ(m, k+ 1), hence
at most2π/(Mm4/3). The radii may vary fromrm,m′ to rm,m′+1, which amounts to a change of (see (9) )

M−1(rm+1 − rm) =
1
M

(
1− 1

(m+ 1)1/3
− 1 +

1
m1/3

)
≤ m−4/3

M
. (14)

This implies the claim. �

Corollary 1 For every analytic functionf onD, for all n, we have

|f(z)− f(w)| ≤ 20
M

(1− |λ|)4 sup
ζ∈Dn

|f ′(ζ)| (15)

for all z, w, λ ∈ Dn. �

The proof is a direct application of the previous lemma and the mean value theorem.

The crucial step for our main result is to strengthen the classical approximation lemma (e.g. [12],
Lemma 4.3.4) using our new decomposition ofD. Notice that the (relatively easy) proof is based on the
density of our decomposition.

Lemma 2 Let v ∈ V , in particular, assume
√

1− |z| ≤ v(z) ≤ 1. For all n ∈ N, let λn be an interior
point ofDn.
a) For all g ∈ H1

W with
∫
D

|g|dA ≤ 1 we have

∞∑
n=1

∫
Dn

|g(z)− g(λn)| 1
v(z)

dA(z) ≤ 200M−1 (16)

b) For all f ∈ H∞
V with |f(z)| ≤ 1/v(z) onD, and for alln ∈ N, we have

sup
z∈Dn

|f(z)− f(λn)| ≤ 200M−1 sup
z∈Dn

(1− |z|)1/4. (17)
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PROOF. In the case a) we estimate using Corollary 1 (chooseλ := z there) and (2)

∞∑
n=1

∫
Dn

1
v(z)

|g(z)− g(λn)|dA(z)

≤ 20
M

∞∑
n=1

∫
Dn

(1− |z|)−1/2(1− |z|)4 sup
ζ∈Dn

|g′(ζ)|dA(z) (18)

Since sup
ζ∈Dn

(1− |ζ|) ≤ (1 + 1/10)(1− |z|) for all z ∈ Dn (e.g.by Lemma 1), we can bound (18) by

40
M

∞∑
n=1

m(Dn) sup
z∈Dn

(1− |z|)7/2|g′(z)| ≤ 40
M

sup
z∈D

(1− |z|)7/2|g′(z)| (19)

Here we differentiate the reproducing formulag(z) =
∫
D

g(ζ)

(1−zζ̄)2
dA(ζ) once under the integral sign to

bound (19) by
80
M

sup
z∈D

(1− |z|)7/2
∣∣∣ ∫
D

g(ζ)ζ̄
(1− zζ̄)3

dA(ζ)
∣∣∣ (20)

≤ 80
M

∫
D

|g(ζ)|dA(ζ) ≤ 80
M
. (21)

As for b), letf be as indicated. Again by Corollary 1

sup
z∈Dn

|f(z)− f(λn)| ≤ 20
M

sup
z∈Dn

(1− |z|)4|f ′(z)|

≤ 20
M

(
sup

z∈Dn

(1− |z|)7/2|f ′(z)|
)(

sup
z∈Dn

(1− |z|)1/4
)
,

and as in the previous case we see that the first factor is bounded by

40
M

∫
D

|f(ζ)|dA(ζ) ≤ 40
M

∫
D

1/v(ζ)dA(ζ) ≤ 200
M

. (22)

The part b) of the above result immediately implies.�

Corollary 2 Letv ∈ V . If ‖f‖v ≤ 1, we have

|f(λ)| ≤ 2
v(z)

(23)

for everyλ, z ∈ Dn. �

3. Main result.

In this section we construct an atomic decomposition for the spaceH∞
V . We shall show that every element

f of H∞
V can be presented as a linear combination

f(z) =
∞∑

n=1

α(n)m(Dn)
(1− λ̄nz)2

, (24)
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whereλn ∈ Dn and the coefficient sequence(α(n))∞n=1 belongs to a K̈othe sequence spaceK∞(A).
Conversely, for every sequence(α(n))∞n=1 ∈ K∞(A), the analytic function defined by (24) belongs to
H∞

V . However, givenf ∈ H∞
V , the sequence(α(n))∞n=1 is not unique. (The atoms do not form a Schauder

basis.)

We now consider the sequence space relevant to the atomic decomposition. SinceH∞
V is a countable

inductive limit of Banach spaces, the same is also true for the sequence space.

Definition 4 Let us fix, for alln ∈ N, an interior pointλn ofDn. For all k ∈ N, let ak be the sequence
of positive real numbers with

ak(n) := | log(1− |λn|)|k , n ∈ N. (25)

DenoteA := {ak | k ∈ N}, define the K̈othe co–echelon spaceK∞(A) corresponding toA as in [1],
Section 1.

For a quick definition ofK∞(A), let us denote byVN the set of all bounded positive sequencesṽ
satisfying

ṽ(n) ≤ Ck/ak(n) for all k, n ∈ N. (26)

Then a sequenceα = (α(n))∞n=1 of complex numbers belongs toK∞(A) if and only if for everyṽ ∈ VN

one can find aC > 0 such that
sup
n∈N

|α(n)|ṽ(n) ≤ C. (27)

The (non–metrizable) topology ofK∞(A) is defined by the seminorms

‖α‖ṽ := sup
n∈N

|α(n)|ṽ(n). (28)

Let us next define three operators. Let the sequence(λn)∞n=1 be as above. Letf be analytic onD and
let α = (α(n))∞n=1 be a sequence of complex numbers. Set

Sf(z) :=
∞∑

n=1

m(Dn)f(λn)
(1− λ̄nz)2

, (29)

T (α) :=
∞∑

n=1

α(n)m(Dn)
(1− λ̄nz)2

, (30)

(Qf)(n) := f(λn) for n ∈ N. (31)

Hence, formallyS = TQ. These operators have the following continuity properties.

Lemma 3 The operatorsS : H∞
V → H∞

V , T : K∞(A) → H∞
V andQ : H∞

V → K∞(A) are continuous.

PROOF. 1◦ ConsiderT . To prove the continuity it suffices to take an arbitrary bounded setB ∈ H1
W and

show that a neighbourhood of 0 inK∞(A) is mapped into the polarB◦ of B by T , where

B◦ := {g ∈ H∞
V | |〈f, g〉| ≤ 1 for every f ∈ B}. (32)

We first claim thatB is contained in a setG := {f ∈ H1
W |

∫
|f |v(z)−1 ≤ 10} for av ∈ V . To findv

we use the boundedness ofB to pick the numbersCk ≥ 1 such thatB ⊂ CkUk for everyk; hereUk is the
closed unit ball of the continuous seminorm‖ · ‖k of H1

W . This means that everyf ∈ B satisfies, for allk,∫
D

|f || log(1− |z|)|kdA ≤ Ck. (33)
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Definev by

v(z) :=
1

∞∑
k=0

k!−14−kC−1
k | log(1− |z|)|k

. (34)

Since
∞∑

k=0

k!−14−k| log(1− |z|)|k = e−
1
4 log(1−|z|) = (1− |z|)−1/4,

we get the estimate
v(z) ≥ (1− |z|)1/4. (35)

We clearly havesup
z
v(z)| log(1− |z|)|k ≤ k!4kCk for everyk, hence,v ∈ V . Moreover, it follows easily

from (33) and (34) that every function inB belongs to the setG:∫
D

|f |v−1dA ≤
∞∑

k=0

k!−1C−1
k

∫
D

|f || log(1− |z|)|kdA =
∞∑

k=0

k!−1 ≤ 10. (36)

Setṽ(n) := v(λn) for n ∈ N; we then have(ṽ(n))∞n=1 ∈ VN, by definitions. For‖α‖ṽ ≤ C we thus
have, by the reproducing formulaf(λn) =

∫
f(ζ)(1− λnζ̄)−2dA(ζ),

|〈Tα, f〉| =
∣∣∣ ∞∑
n=1

α(n)m(Dn)f̄(λn)
∣∣∣

≤
∞∑

n=1

|α(n)|ṽ(n)v(λn)−1m(Dn)|f(λn)|

≤ ‖α‖ṽ

( ∞∑
n=1

v(λn)−1m(Dn)|f(λn)|
)
. (37)

We prove in a moment that
1/v(λn) < C/v(z) (38)

for everyn, for everyz ∈ Dn . Using this, Lemma 2.b), the definition of the setG and (35), we can estimate
(37) by a constant times∑

n

∫
Dn

|f(z)|v(z)−1dA+
∑

n

∫
Dn

(1− |z|)4v(z)−1dA ≤ C. (39)

The statement (38) follows from the smallness of diamDn. First,

∂v(r)−1

∂r
=

∞∑
k=1

k!−1k4−kC−1
k | log(1− r)|k−1(1− r)−1 ≤ C(1− r)−1−1/4,

This, diamDn ≤ C(1 − |z|)4 (Lemma 1) and the mean value theorem imply|1/v(z) − 1/v(λn)| ≤
C(1− |z|)2 ≤ C ′ ≤ C ′/v(z). Hence, (38) follows.

2◦ ConcerningQ, let the weight sequencẽv ∈ VN be given. We definev ∈ V as follows. First let
(ρj)∞j=1, 0 ≤ ρj < 1, be the unique strictly increasing sequence which satisfies: for everyj there exists an
n such thatρj = |λn|. Let us define the subsetNj of N byNj = {n | |λn| = ρj}.

For everyj, define for allz ∈ D with |z| = ρj ,

v(z) = sup
n∈Nj

ṽ(n). (40)
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For everyr ∈ [0, 1[, extendv(r) piecewise linearly, and then extendv radially toD.
We show thatv ∈ V . If z ∈ D satisfies|z| = ρj for somej, andk ∈ N is given, then

v(z) = sup
n∈Nj

ṽ(n) ≤ sup
n∈Nj

Ck/ak(n)

= sup
n∈Nj

Ck| log(1− |λn|)|−k = Ck| log(1− |z|)|−k. (41)

Concerning other numbersz, Lemma 1 implies|ρj − ρj+1| ≤ Cj(1− ρj)4, hence, for everyk we have

| log(1− ρj)| ≤ | log(1− ρj+1)| ≤ ck| log(1− ρj)| (42)

for a constantck > 0. So, ifz satisfiesρj < |z| < ρj+1, then the piecewise linearity ofv and (41) and (42)
imply

v(z) ≤ max{v(ρj), v(ρj+1)} ≤ C ′k| log(1− ρj+1)|−k ≤ C ′k| log(1− |z|)|−k. (43)

Hence,v ∈ V .
Now (40) and the definition ofQ imply ‖Qf‖ṽ ≤ C‖f‖v, henceQ is continuous.
3◦ Finally, we haveS = TQ, hence alsoS is continuous. �

The following fact can now be proved using a result of Garnir, De Wilde and Schmets to be found in
[5], p. 346.

Lemma 4 The operatorS : H∞
V → H∞

V is invertible .

PROOF. We want to show that the operatorA := I − S

(i) is bounded (i.e. maps a neighbourhood of 0 ofH∞
V into a bounded set), and

(ii) for some neighbourhoodU ⊂ H∞
V of 0,A(U) ⊂ U/2.

ThenS is invertible by [5], p. 346.
Let us take a weight as small as

w(z) :=
√

1− |z|. (44)

Then, for sure,w ∈ V . LetU ⊂ H∞
V be the unit ball of‖ · ‖w:

U :=
{
f ∈ H∞

V

∣∣∣ sup
z∈D

|f(z)|(1− |z|)1/2 ≤ 1
}

; (45)

We want to show that ∣∣∣ ∫
D

Af(z)ḡ(z)dA(z)
∣∣∣ ≤ 1

2
(46)

for everyf ∈ U , g in the unit ball ofL1
1 (see (8)), that is,

g ∈ Ũ :=
{
h ∈ L1

loc(D, dA)
∣∣∣ ‖h‖1 :=

∫
z∈D

|h(z)|(1 + | log(1− |z|)|)dA(z) ≤ 1
}
. (47)

HereL1
loc(D, dA) is the space of locally integrable functions onD.

Assuming (46) we show that(i) and(ii) hold. As for(i), let us pick up an arbitrary weightv ∈ V ; to
prove the boundedness ofA it suffices to find ak such that forf ∈ H∞

V andg ∈ H1
W with ‖f‖v ≤ 1 and

‖g‖k ≤ 1 we have
|〈Af, g〉| ≤ C. (48)

But v(z) ≥
√

1− |z|, see (2) in the definition ofV . Hence,f ∈ U . Moreover, for everyk ∈ N, k ≥ 2,
the subset{‖g‖k ≤ 1} ⊂ H1

W is smaller than the set̃U above. Hence, (48) follows from (46).
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Concerning(ii), the identification of the norm ofL∞(D, dA) as the dual norm ofL1(D, dA) implies
the following:

An analytic functionϕ belongs toU/2, if |
∫
D
ϕḡ| ≤ 1/2 for every

g ∈ U◦ :=
{
h ∈ L1

loc(D)
∣∣∣ ∫

D

|h(z)|(1− |z|)−1/2dA(z) ≤ 1
}
. (49)

ButU◦ is a much smaller set thañU , hence(ii) follows from (46).
So we want to prove (46). Let nowf andg be given. SinceAf is analytic and the Bergman projection

is self–dual, the identities ∫
D

Afḡ =
∫

(RAf)ḡ = 〈Af,Rg〉 (50)

hold formally. Moreover, by (8),

‖g̃‖0 := ‖Rg‖0 ≤ C0‖g‖1 ≤ C0 (51)

We thus have∫
D

Afḡ = 〈Af, g̃〉 =
∫
D

f(z)g̃(z)dA(z)−
∞∑

n=1

m(Dn)f(λn)g̃(λn)

=
∞∑

n=1

∫
Dn

(
f(z)− f(λn)

)
g̃(z)dA(z) +

∞∑
n=1

∫
Dn

f(λn)
(
g̃(z)− g̃(λn)

)
dA(z). (52)

Using Lemma 2.b) and (51) we get the following bound for the first sum in (52):
∞∑

n=1

sup
z∈Dn

|f(z)− f(λn)|
∫

Dn

|g̃(z)|dA(z)

≤ 200M−1

∫
D

|g̃(z)|dA(z) ≤ 2000C0M
−1 ≤ 1/5. (53)

To estimate the second term of (52) from above, we first use Corollary 2 to bound|f(λn)| by 2
w(z) for any

z ∈ Dn. Then Lemma 2 a) directly gives the bound
∞∑

n=1

∫
Dn

2
w(z)

|g̃(z)− g̃(λn)|dA(z) ≤ 400C0

M
. (54)

This completes the proof.�

We now formulate the main result as follows. We denotem(n) := m(Dn); this number can be esti-
mated, if necessary, from the definition of the setsDn after (9). Recall thatλn was chosen in Lemma 2: it
is an interior point of the setDn. The spaceK∞(A) was defined in the beginning of Section 3.

Theorem 1 For every(α(n))∞n=1 ∈ K∞(A) the function

f(z) =
∞∑

n=1

α(n)m(n)
(1− λ̄nz)2

(55)

belongs toH∞
V (D), and the mapping(α(n))∞n=1 7→ f is continuous between these two spaces.

For every analytic functionf ∈ H∞
V (D) there exists a complex sequence(α(n))∞n=1 ∈ K∞(A) such

that

f(z) =
∞∑

n=1

α(n)m(n)
(1− λ̄nz)2

. (56)

The mappingf 7→ (α(n))∞n=1 can be made linear and continuous fromH∞
V (D) intoK∞(A).
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PROOF. The first statement follows from the continuity ofT . For the second one, givenf , chooseg =
S−1f and then define the sequenceα = Qg, i.e. α(n) = g(λn). We then obtain (56) from (29) and (31).
The continuity statement follows from the continuity ofQ and Lemma 4. �

Finally, the operatorP := QS−1T is a continuous projection in the spaceK∞(A); we haveP 2 = P .
This implies

Proposition 1 The spaceH∞
V is isomorphic to a complemented subspace of the Köthe sequence space

K∞(A). �

4. The space is not nuclear.

Intuitively it is quite clear that the spaceH∞
V cannot be nuclear, since the weight system is not “steep”

enough. Two arbitrary weights differ from each other at most by a factor which grows only logarithmically
on the boundary ofD.

We give a proof for the nonnuclearity by extracting a subspace which is isomorphic to a nonnuclear
Köthe coechelon space. The method of the proof may have some independent interest. It resembles the
construction [2], Section 2. However, in [2] the weight system was non–radial, and the essential phenomena
occurred on the boundary of the disc. In the present work the weights are radial; consequently, we have to
play also with the radii of the points ofD. More precisely, the interesting and crucial things happen in the
interior pointszn := eiθn(1 − (2n)−20) of the subdomainsDn (to be chosen below). Of course there is a
lot of freedom in the construction; many other points could be used as well.

Notice that the spaceK∞(A) above is not nuclear; however, the results of Section 3 do not imply that
H∞

V contains a subspace isomorphic toK∞(A). The operatorT need not be injection, sinceQ is not a
surjection.

Proposition 2 The spaceH∞
V is not nuclear, since it contains a subspace isomorphic to the Köthe co-

echelon spaceK∞(M), which is defined asK∞(A) in the beginning of Section 3, butak(n) replaced
by

µk(n) := (log n)k (57)

So, a sequenceα belongs toK∞(M), if and only if sup
n
|αn|(log n)−k < ∞ for somek. It is well

known thatK∞(M) is not nuclear, see e.g. [9], Theorem 6.1.2.
PROOF. Let θn := 1/n andJn := [θn − εn, θn + εn] for all n ∈ N, whereεn := 2−9n−4. Notice that
the setsJn are mutually disjoint. Choose the functionϕn : [0, 2π] → R+ such thatϕn(θ) = 1 for θ ∈ Jn,
andϕn(θ) = (2n)−4 for θ /∈ Jn. Let en be an analytic function on the disc defined by

en(z) := exp
( 1

2π

2π∫
0

eiθ + z

eiθ − z
logϕn(θ)dθ

)
.

The radial limits (on the boundary of the disc) of the functionsen exist a.e. (we denote them by the same
symbol), and we have|en(eiθ)| = ϕn(θ) for a.e.θ. Compare with [2] and the references therein.�

Let us define
Dn := {z ∈ D | |z − eiθn | < 1/n4} , Cn := D \Dn.

We formulate a lemma containing some crucial estimates.

Lemma 5 1◦ For all z ∈ D, all n, we have|en(z)| ≤ 1.
2◦ Fix a z ∈ D; if n is such that| arg z − θn| = min

m∈N
{| arg z − θm|}, then|en(z)| ≤ 4n−4(1 − |z| +

n−4)−1. Moreover, ifm 6= n, then|em(z)| ≤ 2−3m−2.
3◦ For everyn we have|en(zn)| ≥ 1/2, wherezn := eiθn(1− (2n)−20).
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PROOF. The statement1◦ follows immediately from the maximum principle, since the moduli of the
radial limits of everyen are at most 1.

Concerning2◦, if z andn are as in the assumption, the Jensen inequality implies (as in [2])

|en(z)| = exp
( 1

2π
Re

2π∫
0

eiθ + z

eiθ − z
logϕn(θ)dθ

)

= exp
( 1

2π

2π∫
0

1− |z|2

|eiθ − z|2
logϕn(θ)dθ

)

≤ 1
2π

2π∫
0

1− |z|2

|eiθ − z|2
ϕn(θ)dθ. (58)

We may assume|z| ≤ 1 − n−4; otherwise there is nothing to prove. We have|z − eiθ| ≥ n−4, hence,
|z − eiθ| ≥ max(|z − eiθ|, n−4) ≥ max(1− |z|, n−4) ≥ (1− |z|+ n−4)/2. So we have

1− |z|2

|eiθ − z|2
≤ 1− |z|2

(1− |z|)|eiθ − z|
≤ 4

1− |z|+ n−4
.

Dividing the integration interval[0, 2π] in (58) into the partsJn and[0, 2π] \ Jn, we thus find that the first
part yields the estimate

2
n4(1− |z|+ n−4)

,

since the lenght ofJn is smaller than2−1n−4. The second part has the smaller bound(2n)−4, since
ϕn = (2n)−4 on [0, 2π] \ Jn.

In the casem 6= n we again have

|em(z)| ≤ 1
2π

2π∫
0

1− |z|2

|eiθ − z|2
ϕm(θ)dθ. (59)

Dividing the integration interval into the partsJm and its complement, onJm we have

|eiθ − z| ≥ 1
2

∣∣∣ 1
m

− 1
n

∣∣∣ =
|n−m|
2mn

.

This is always larger than the number1/(4m2), as seen by considering the casesn ≤ 2m andn > 2m
separately: in the former case one uses|n−m| ≥ 1 and2mn ≤ 4m2, and in the latter|n−m| ≥ n/2 and
a cancellation ofn. Taking into account the length2−9m−4 of the intervalJm, this part yields an estimate
2−7m−2 in (59). The rest of the integral is bounded by(2m)−4, sinceϕm = (2m)−4 on [0, 2π] \ Jm.

For the lower bound3◦, we havelogϕn = 0 onJn andlogϕn = −4 log(2n) < 0 on the complement
of Jn , hence

|en(zn)| = exp
( 1

2π

∫
[0,2π]\Jn

1− |zn|2

|eiθ − zn|2
logϕn(θ)dθ

)

≥ exp
(
− 4

2π

∫
[0,2π]\Jn

(2n)−20

n−18
log(2n)dθ

)
≥ exp(−2−10n−1/2) ≥ 1

2
. � (60)

335



J. Taskinen

We return to the proof of the proposition. We define the mappingψ from K∞(M) into H∞
V by ψ :

(αn)∞n=1 7→
∞∑

n=1
αnen. We claim that the mapping is an isomorphism onto its image. Since the spaces are

strong duals of Fŕechet–Schwartz spaces, it suffices to show that, for some constantsck, Ck > 0,

ck sup
n∈N

|αn|(log n)−k ≤ ‖
∑

αnen‖vk
≤ Ck sup

n∈N
|αn|(log n)−k (61)

for all k. Since the expressionµ((αn)∞n=1) := sup
n
|αn|n−1/2 is obviously a continuous seminorm on

K∞(M), we may assume thatµ((αn)) ≤ 1, i.e. |αn| ≤ n1/2 for all n in (61). We may moreover assume
that|αn| ≥ 1 there, for alln.

To prove the left hand side inequality, chooseN such that

|αN |(log(N))−k ≥ 1
2

sup
n∈N

|αn|(log n)−k. (62)

We then have, by3◦ of Lemma 5 above, and by|αn| ≥ 1,

|αNeN (zN )|vk(zN ) ≥ 1
2
20−k(log(2N))−k, (63)

and on the other hand∑
n 6=N

|αnen(zN )|vk(zN ) ≤
∑
n 6=N

n1/22−3n−220−k(log(2N))−k (64)

Here
∑
n
n−3/22−3 ≤ (1 +

∞∫
1

x−3/2)2−3 ≤ 3/8. Hence, combining (63) and (64) and using the triangle

inequality we get

∣∣∣ ∞∑
n=1

αnen(zN )
∣∣∣vk(zN ) ≥ |αNeN (zN )|vk(zN )−

∣∣∣ ∑
n 6=N

αnen(zN )
∣∣∣vk(zN ) ≥ 1

8
|αNeN (zN )|vk(zN ),

hence, by (62) and (63), we get

20−k sup
n
|αn|(log n)−k ≤ 2 · 20−k|αN |(logN)−k ≤ C|αNeN (zN )|vk(zN )

≤ C ′
∣∣∣ ∞∑

n=1

αnen(zN )
∣∣∣vk(zN ) ≤ C ′

∥∥∥∑
αnen

∥∥∥
vk

We finally prove the right hand side of (61). LetN still be as above, letz ∈ D and letn be such that
| arg z − θn| = min

m∈N
{| arg z − θm|}. By 2◦ of Lemma 5 we have (since alwaysvk(z) ≤ 1 )

∑
m6=n

|αmem(z)|vk(z) ≤
∑
m6=n

|αm|m−2

≤
∑
m6=n

Ckm
−3/2|αm|(logm)−k ≤ C ′k|αN |(logN)−k. (65)

Concerning thenth term, for|z| ≥ 1− n−3 we have by1◦

vk(z)|αnen(z)| ≤ vk(1− n−3)|αnen(z)| ≤ |αn|vk(1− n−3) ≤ 3|αn|(log n)−k ≤ 3|αN |(logN)−k
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For |z| ≤ 1− n−3 we have

vk(z)|αnen(z)| ≤ 4|αn|
n4(1− |z|+ n−4)

≤ 4|αn|
n4(n−3 + n−4)

≤ 4|αn|
n

≤ Ck|αn|(log n)−k ≤ Ck|αN |(logN)−k.

This and (65) imply that the right hand side of (61) holds.

Acknowledgement. The author is grateful for José Bonet for showing him the reference [5], see
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