Rev. R. Acad. Cien. Serie A. Mat. Vol. 97 (2), 2003, pp. 315–324 Análisis Matemático / Mathematical Analysis

On Nuclear Maps Between Spaces of **Ultradifferentiable Jets of Roumieu Type**

J. Schmets and M. Valdivia

To the memory of our friend Klaus Floret

Abstract. If K is a non void compact subset of \mathbb{R}^r , we give a condition under which the canonical injection from $\mathcal{E}_{\{M\},b}(K)$ into $\mathcal{E}_{\{M\},d}(K)$ is nuclear. We then consider the mixed case and obtain the existence of a nuclear extension map from $\mathcal{E}_{\{M_1\}}(F)_A$ into $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)_D$ where F is a proper closed subset of \mathbb{R}^r and A and D suitable Banach disks. We finally apply this last result to the Borel case, i.e. when $F = \{0\}.$

Sobre aplicaciones nucleares entre espacios de jets ultradiferenciables de tipo Roumieu

Si K es un compacto no vacío en \mathbb{R}^r , damos una condición suficiente para que la inyección canónica de $\mathcal{E}_{\{M\},b}(K)$ en $\mathcal{E}_{\{M\},d}(K)$ sea nuclear. Consideramos el caso mixto y obtenemos la existencia de un operador de extension nuclear de $\mathcal{E}_{\{M_1\}}(F)_A$ en $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)_D$ donde F es un subconjunto cerrado propio de \mathbb{R}^r y A y D son discos de Banach adecuados. Finalmente aplicamos este último resultado al caso Borel, es decir cuando $F = \{0\}$.

1. Introduction

Let us first recall the following facts about the quasi-LB-spaces studied in [7].

We endow the set $\mathbb{N}^{\mathbb{N}}$ of the sequences of positive integers with the order \leq defined by

$$(a_n)_{n\in\mathbb{N}} \leq (b_n)_{n\in\mathbb{N}} \iff a_n \leq b_n, \forall n \in \mathbb{N}.$$

A quasi-LB-representation in a locally convex space E is a set $\{A_a : a \in \mathbb{N}^{\mathbb{N}}\}$ of Banach disks in E submitted to the following two requirements:

(a)
$$\cup \{A_{\boldsymbol{a}} : \boldsymbol{a} \in \mathbb{N}^{\mathbb{N}}\} = E_{\boldsymbol{a}}$$

$$\begin{split} & (\mathbf{a}) \cup \big\{\, A_{\boldsymbol{a}} : \boldsymbol{a} \in \mathbb{N}^{\mathbb{N}} \big\} = E; \\ & (\mathbf{b}) \, (\boldsymbol{a}, \boldsymbol{b} \in \mathbb{N}^{\mathbb{N}}; \boldsymbol{a} \leq \boldsymbol{b}) \Rightarrow A_{\boldsymbol{a}} \subset A_{\boldsymbol{b}}. \end{split}$$

A quasi-LB-space is a locally convex space having a quasi-LB-representation.

Let us the remark that the Proposition 12 of [7] leads to the following property that will be used later on. Let $\{A_a : a \in \mathbb{N}^{\mathbb{N}}\}$ be a quasi-LB-representation in the locally convex space E and let T be a linear map with closed graph from E onto a Banach space F. Then for every compact subset K of F, there are $a \in \mathbb{N}^{\mathbb{N}}$ and a compact subset H of E_{A_a} such that $H \subset A_a$ and TH = K.

Presentado por José Bonet.

Recibido: 30 de Abril de 2003. Aceptado: 25 de Julio de 2003.

Palabras clave / Keywords: nuclear (extension) map, ultradifferentiable jet, Roumieu type

Mathematics Subject Classifications: 46E10, 26E10

© 2003 Real Academia de Ciencias, España.

Throughout the paper, unless otherwise stated, r designates a positive integer and $\mathbf{M} = (M_n)_{n \in \mathbb{N}_0}$ designates a sequence of positive numbers which is

- (a) normalized, i.e. $M_0 = 1$ and $M_n \ge 1$ for every $n \in \mathbb{N}$;
- (b) logarithmically convex, i.e. $M_n^2 \leq M_{n-1}M_{n+1}$ for every $n \in \mathbb{N}$.

We now introduce the main locally convex spaces we shall deal with.

The space $\mathcal{E}^m(K)$.

For every non void compact subset K of \mathbb{R}^r and integer $m \in \mathbb{N}_0$, $\mathcal{E}^m(K)$ is the Banach space introduced by Whitney. For the sake of completeness we recall that its elements are the Whitney m-jets φ on K, i.e. φ is a family $(\varphi_\alpha)_{\alpha \in \mathbb{N}_r, |\alpha| < m}$ of continuous functions on K such that

$$\sup_{|\alpha| \le m} \sup_{\substack{x,y \in K \\ 0 < |x-y| \le t}} \frac{|(R^m \varphi_\alpha)(x,y)|}{|y-x|^{m-|\alpha|}} \to 0 \text{ if } t \to 0^+$$

where

$$(R^{m}\varphi_{\alpha})(x,y) := \varphi_{\alpha}(y) - \sum_{|\beta| \le m - |\alpha|} \varphi_{\alpha+\beta}(x) \frac{(y-x)^{\beta}}{\beta!}.$$

Its norm $\|\cdot\|_{\mathcal{E}^m(K)}$ is defined by

$$\|\varphi\|_{\mathcal{E}^m(K)} := |\varphi|_{\mathcal{E}^m(K)} + \sup_{|\alpha| \le m} \sup_{\substack{x,y \in K \\ x \ne y}} \frac{|(R^m \varphi_\alpha)(x,y)|}{|y - x|^{m - |\alpha|}}$$

where

$$|\varphi|_{\mathcal{E}^m(K)} := \sup_{|\alpha| \le m} \|\varphi_\alpha\|_K$$
.

The space $\mathcal{E}_{\{M\}}(\mathbb{R}^r)$.

Let us briefly recall its definition as introduced in [3]. Its elements are the C^{∞} -functions f on \mathbb{R}^r such that, for every compact subset K of \mathbb{R}^r , there are A > 0 and h > 0 such that

$$|\mathbf{D}^{\alpha}f(x)| \leq Ah^{|\alpha|}M_{|\alpha|}, \quad \forall x \in K, \forall \alpha \in \mathbb{N}_0^r.$$

Its topology is defined as follows. For every ball $b(m):=\{x\in\mathbb{R}^r:|x|\leq m\}$ and h>0, one introduces the Banach space $\mathcal{E}_{\{M\},m,h}(\mathbb{R}^r)$: its elements are the restrictions to b(m) of the \mathbf{C}^{∞} -functions f on \mathbb{R}^r such that

$$\pi_{\{\boldsymbol{M}\},m,h}(f) := \sup_{\alpha \in \mathbb{N}_t^r} \frac{\|\mathbf{D}^\alpha f\|_{b(m)}}{h^{|\alpha|} M_{|\alpha|}} < \infty$$

and endows it with the norm $\pi_{\{M\},m,h}$. Finally one sets

$$\mathcal{E}_{\{\boldsymbol{M}\}}(R^r) = \underset{m \in \mathbb{N}}{\operatorname{proj ind}} \mathcal{E}_{\{\boldsymbol{M}\},m,k}(R^r);$$

so $\mathcal{E}_{\{M\}}(\mathbb{R}^r)$ is a locally convex space. More precisely as a Hausdorff projective limit of a sequence of (LB)-spaces it is a quasi-LB-space (cf. [7]).

The space $\mathcal{E}_{\{M\}}(F)$.

In this notation, F designates a proper closed subset of \mathbb{R}^r . A $\operatorname{jet} \varphi$ on F is a family $\varphi = (\varphi_\alpha)_{\alpha \in \mathbb{N}_0^r}$ of continuous function on F. The elements of $\mathcal{E}_{\{M\}}(F)$ are the Whitney jets of class $\{M\}$ on F, i.e. the jets φ on F such that for every compact subset K of F, there is h > 0 such that

$$|oldsymbol{arphi}|_{K,h} := \sup_{lpha \in \mathbb{N}_0^r} rac{\|arphi_lpha\|_K}{h^{|lpha|} oldsymbol{M}_{|lpha|}} < \infty$$

and

$$\|\varphi\|_{K,h} := \sup_{m \in \mathbb{N}_0} \sup_{\substack{\alpha \in \mathbb{N}_0^r \\ |\alpha| \leq m}} \sup_{\substack{x,y \in K \\ x \neq y}} \frac{|(R^m \varphi_\alpha)(x,y)|}{h^{m+1} M_{m+1}} \frac{(m-|\alpha|+1)!}{|y-x|^{m-|\alpha|+1}} < \infty.$$

Clearly $\mathcal{E}_{\{M\}}(F)$ is a vector space. To define its topology, one proceeds as follows.

If F=K is compact, then for every positive integer s, $\mathcal{E}_{\{M\},s}(K)$ denotes the vector subspace of $\mathcal{E}_{\{M\}}(K)$ the elements φ of which verify $|\varphi|_{K,s}+\|\varphi\|_{K,s}<\infty$, endowed with the norm $|\cdot|_{K,s}+\|\cdot\|_{K,s}$; it is a Banach space. Then we set

$$\mathcal{E}_{\{\boldsymbol{M}\}}(K) = \inf_{s \in \mathbb{N}} \mathcal{E}_{\{\boldsymbol{M}\},s}(K),$$

a Hausdorff (LB)-space indeed hence a quasi-LB-space.

If F is not compact, we consider a sequence $(H_s)_{s\in\mathbb{N}}$ of compact subsets of \mathbb{R}^r such that $H_s=H_s^{\circ,-}\subset H_{s+1}^{\circ}$, $K_s=H_s\cap F\neq\emptyset$ and $\mathbb{R}^r=\cup_{s=1}^\infty H_s$ and set

$$\mathcal{E}_{\{\boldsymbol{M}\}}(F) = \operatorname{proj}_{s \in \mathbb{N}} \mathcal{E}_{\{\boldsymbol{M}\}}(K_s).$$

It is a Hausdorff (LF)-space hence a quasi-LB-space.

Results.

We establish that the canonical map from $\mathcal{E}^{r+1}(K)$ into $\mathcal{E}^0(K)$ is nuclear; this extends a result of Komatsu (cf. [3]). We then obtain a result establishing the nuclearity of the canonical injection from $\mathcal{E}_{\{M\},b}(K)$ into $\mathcal{E}_{\{M\},d}(K)$ for some d>b. Finally we consider the mixed problem. In this case two sequences M_1 and M_2 are used; they are submitted to a condition of the type

$$L \subset \left\{ (D^{\alpha} f|_F)_{\alpha \in \mathbb{N}_0^r} : f \in \mathcal{E}_{\{M_2\}}(\mathbb{R}^r) \right\}$$

where L is a vector subspace of $\mathcal{E}_{\{M_1\}}(F)$. We obtain a result providing the existence of a nuclear extension map from a subspace of L into $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)$. We finally examine the application of this last result to the Borel case, i.e. when F reduces to $\{0\}$.

Let us mention that the problem of the existence of extension maps in the mixed setting has also been examined in [1], [2], [4] and [5].

2. A nuclearity result about the $\mathcal{E}_{\{M\},s}(K)$ spaces

For the sake of completeness, let us mention with proof the following Lemma that was obtained by Komatsu in [3], under the assumption that K is regular, i.e. K has a finite number of connected components and there is a constant C>0 such that any two points x,y of any connected component H of K are the endpoints of a rectifiable curve contained in H and of length $\leq C|x-y|$. Of course if K is convex, it is regular. Let us recall the following property that will be used later on: if the compact subset K is regular, then, for every $m \in \mathbb{N}_0$, the norms $|\cdot|_{\mathcal{E}^m(K)}$ and $||\cdot||_{\mathcal{E}^m(K)}$ are equivalent on $\mathcal{E}^m(K)$ (cf. [6] page 76, for instance).

Lemma 1 For every non void compact subset K of \mathbb{R}^r , the continuous linear map

$$J \colon \mathcal{E}^{r+1}(K) \to \mathcal{E}^0(K); \quad \varphi = (\varphi_{\alpha})_{|\alpha| \le r+1} \mapsto \varphi_0$$

is nuclear.

PROOF. Let h be a positive integer such that K is contained in the interior of $[-h,h]^r$. We are going to use the following Banach space $C_H^{r+1}(\pi H)$: its elements are the C^{r+1} -functions on πH with support contained in H and its norm is $\|\cdot\| := \sup_{|\alpha| \le r+1} \|D^{\alpha}\cdot\|_{\pi H}$.

The Whitney extension theorem provides the existence of a continuous linear extension map E from $\mathcal{E}^{r+1}(K)$ into $C_H^{r+1}(\pi H)$, i.e. such that $(D^{\alpha}E\varphi)(x)=\varphi_{\alpha}(x)$ for every $\varphi\in\mathcal{E}^{r+1}(K)$, $x\in K$ and $\alpha\in\mathbb{N}_0^r$

such that $|\alpha| \le r + 1$. Let us denote by ||E|| the norm of this map E. For every $k \in \mathbb{Z}^r$, we then designate by v_k the continuous linear functional

$$v_k \colon \mathcal{C}_H^{r+1}(\pi H) \to \mathbb{C}; \quad g \mapsto \int_{\pi H} g(y) e^{-iyk/h} \, dy.$$

It is well known that if $||v_k||$ is the norm of v_k , there is a constant L > 0 such that $||v_k|| \le L(1+|k|)^{-1-r}$ for every $k \in \mathbb{Z}^r$. Finally we set $u_k := v_k \circ E$ for every $k \in \mathbb{Z}^r$ as well as $\psi_k(x) := (2\pi h)^{-r} \mathrm{e}^{ixk/h}$ for every $k \in \mathbb{Z}^r$ and $x \in K$.

Of course for every $k \in \mathbb{Z}$, ψ_k belongs to $\mathcal{E}^0(K)$ and u_k to the dual of $\mathcal{E}^{r+1}(K)$. If we designate by $|u_k|$ the norm of u_k , we successively get

$$\sum_{k \in \mathbb{Z}^r} |u_k| \|\psi_k\|_{\mathcal{E}^0(K)} \le (2\pi h)^{-r} \sum_{k \in \mathbb{Z}^r} \|v_k\| \|E\|$$

$$\le \frac{L \|E\|}{(2\pi h)^r} \sum_{k \in \mathbb{Z}^r} \frac{1}{(1+|k|)^{r+1}} < \infty.$$

Hence the conclusion since for every $\varphi \in \mathcal{E}^{r+1}(K)$, we have

$$(J\varphi)(x) = (2\pi h)^{-r} \sum_{k \in \mathbb{Z}^r} e^{ixk/h} \int_{\pi H} (E\varphi)(y) e^{-iyk/h} dy$$
$$= \sum_{k \in \mathbb{Z}^r} \langle \varphi, u_k \rangle \psi_k(x), \quad \forall x \in K. \quad \blacksquare$$

Theorem 1 Let K be a non empty convex and compact subset of \mathbb{R}^r and let the sequence M verify the following condition: there are positive constants P and Q such that $M_{n+1} \leq PQ^nM_n$ for every $n \in \mathbb{N}_0$. Then for every $b \in \mathbb{N}$, there is an integer d > b such that the continuous linear injection from $\mathcal{E}_{\{M\},b}(K)$ into $\mathcal{E}_{\{M\},d}(K)$ is nuclear.

PROOF. Let the map $J \colon \mathcal{E}^{r+1}(K) \to \mathcal{E}^0(K)$ as well as the $u_k \in \mathcal{E}^{r+1}(K)'$ and $\psi_k \in \mathcal{E}^0(K)$ be defined as in the Proposition 1 and its proof. We then order the family $(u_k, \psi_k)_{k \in \mathbb{Z}^r}$ as a sequence $(w_j, \phi_j)_{j \in \mathbb{N}}$; this leads to

$$\sum_{j=1}^{\infty} |w_j| < \infty \ \ \text{and} \ \ J\boldsymbol{\varphi} = \varphi_0 = \sum_{j=1}^{\infty} \left< \boldsymbol{\varphi}, w_j \right> \phi_j, \quad \forall \boldsymbol{\varphi} \in \mathcal{E}^{r+1}(K).$$

To every $\varphi \in \mathcal{E}_{\{M\},b}(K)$ and $\alpha \in \mathbb{N}_0^r$, let us associate the (r+1)-jet

$$\varphi^{(\alpha)} := (\varphi_{\alpha+\beta})_{\beta \in \mathbb{N}_0^r, |\beta| \le r+1}.$$

Obviously we have $\varphi^{(\alpha)} \in \mathcal{E}^{r+1}(K)$ hence

$$J\varphi^{(\alpha)} = \varphi_{\alpha} = \sum_{j=1}^{\infty} \left\langle \varphi^{(\alpha)}, w_j \right\rangle \phi_j. \tag{1}$$

Now we choose an integer l such that

$$l > b$$
 and $\frac{bQ^{r+1}}{l} < \frac{1}{(1+r)^{2r}}$.

Then for every $j \in \mathbb{N}$ and $\alpha \in \mathbb{N}_0^r$, we designate by $u_{\alpha,j}$ the continuous linear functional defined on $\mathcal{E}_{\{M\},b}(K)$ by

$$\langle \boldsymbol{\varphi}, u_{\alpha,j} \rangle := \frac{3 \left\langle \boldsymbol{\varphi}^{(\alpha)}, w_j \right\rangle}{l^{|\alpha|} M_{|\alpha|}}, \quad \forall \boldsymbol{\varphi} \in \mathcal{E}_{\{\boldsymbol{M}\},b}(K),$$

and we denote its norm by $|||u_{\alpha,j}|||$. From the inequality (1), we get

$$\|\varphi_{\alpha}\|_{K} \leq \frac{1}{3}l^{|\alpha|}M_{|\alpha|}\sum_{j=1}^{\infty}|\langle \varphi, u_{\alpha,j}\rangle|$$

hence

$$|\varphi|_{K,l} = \sup_{\alpha \in \mathbb{N}_0^r} \frac{\|\varphi_\alpha\|_K}{l^{|\alpha|} M_{|\alpha|}} \le \frac{1}{3} \sum_{\alpha \in \mathbb{N}_1^r} \sum_{i=1}^{\infty} |\langle \varphi, u_{\alpha,j} \rangle|. \tag{2}$$

As K is convex, it is regular. Therefore the norms $|\cdot|_{\mathcal{E}^{r+1}(K)}$ and $\|\cdot\|_{\mathcal{E}^{r+1}(K)}$ are equivalent on $\mathcal{E}^{r+1}(K)$: there is A>0 such that

$$\|\cdot\|_{\mathcal{E}^{r+1}(K)} \le A \|\cdot\|_{\mathcal{E}^{r+1}(K)}$$
 on $\mathcal{E}^{r+1}(K)$.

This successively leads to

$$\left|\left\langle \boldsymbol{\varphi}^{(\alpha)}, w_j \right\rangle \right| \le |w_j| \left\| \boldsymbol{\varphi}^{(\alpha)} \right\|_{\mathcal{E}^{r+1}(K)} \le A |w_j| \left| \boldsymbol{\varphi}^{(\alpha)} \right|_{\mathcal{E}^{r+1}(K)}$$

with

$$\begin{split} \left| \boldsymbol{\varphi}^{(\alpha)} \right|_{\mathcal{E}^{r+1}(K)} &= \sup_{|\beta| \leq r+1} \| \varphi_{\alpha+\beta} \|_K \leq b^{|\alpha|+r+1} M_{|\alpha|+r+1} \sup_{|\beta| \leq r+1} \frac{\| \varphi_{\alpha+\beta} \|_K}{b^{|\alpha+\beta|} M_{|\alpha+\beta|}} \\ &\leq b^{|\alpha|+r+1} M_{|\alpha|+r+1} \left| \boldsymbol{\varphi} \right|_{K,b} \end{split}$$

hence

$$\left|\left\langle \boldsymbol{\varphi}^{(\alpha)}, w_j \right\rangle \right| \leq A \left| w_j \right| b^{|\alpha|+r+1} M_{|\alpha|+r+1} (\left| \boldsymbol{\varphi} \right|_{K,b} + \left\| \boldsymbol{\varphi} \right\|_{K,b}).$$

As the inequalities $M_{|\alpha|+1} \leq PQ^{|\alpha|}M_{|\alpha|}, M_{|\alpha|+2} \leq PQ^{|\alpha|+1}M_{|\alpha|+1}, \dots$ lead to

$$M_{|\alpha|+r+1} \leq P^{r+1} Q^{|\alpha|(r+1)} Q^{r(r+1)/2} M_{|\alpha|},$$

we finally obtain

$$|\langle \varphi, u_{\alpha,j} \rangle| \le 3A |w_j| \left(\frac{bQ^{r+1}}{l}\right)^{|\alpha|} (bPQ^{r/2})^{r+1} (|\varphi|_{K,b} + ||\varphi||_{K,b}).$$
 (3)

So if we set $B := 3A(bPQ^{r/2})^{r+1}$, we get

$$|\|u_{\alpha,j}\|| \le B |w_j| (1+r)^{-2r|\alpha|}, \quad \forall \alpha \in \mathbb{Z}^r, \forall j \in \mathbb{N}.$$

For every $s \in \mathbb{N}$, this leads to

$$\sum_{|\alpha|=s} |\|u_{\alpha,j}\|| \le B |w_j| s^r (1+r)^{-2rs} \le B |w_j| (2^s/2^{2s})^r = 2^{-s} B |w_j|$$

hence

$$\sum_{j=1}^{\infty} \sum_{\alpha \in \mathbb{N}_0^r} |||u_{\alpha,j}||| \le \sum_{j=1}^{\infty} \sum_{s=0}^{\infty} \sum_{|\alpha|=s} |||u_{\alpha,j}||| \le 2B \sum_{j=1}^{\infty} |w_j| < \infty.$$
 (4)

Given $\varphi \in \mathcal{E}_{\{M\},b}(K)$ real and $m \in \mathbb{N}_0$, the finite jet $(\varphi_\alpha)_{|\alpha| \leq m+1}$ belongs of course to $\mathcal{E}^{m+1}(K)$ and the extension theorem of Whitney provides a real function $f \in \mathbb{C}^{m+1}(\mathbb{R}^r)$ such that $\mathbb{D}^\alpha f(x) = \varphi_\alpha(x)$ for every $x \in K$ and $\alpha \in \mathbb{N}_0^r$ such that $|\alpha| \leq m+1$. If we fix $\alpha \in \mathbb{N}_0^r$ such that $|\alpha| \leq m$ as well as two

points x and y of \mathbb{R}^r , the limited Taylor formula provides the existence of some $\theta \in]0,1[$ such that $D^{\alpha}f(y)$ is equal to

$$\sum_{|\beta| \le m - |\alpha|} \mathsf{D}^{\alpha + \beta} f(x) \frac{(y - x)^{\beta}}{\beta!} + \sum_{|\beta| = m + 1 - |\alpha|} \mathsf{D}^{\alpha + \beta} f(x + \theta(y - x)) \frac{(y - x)^{\beta}}{\beta!}.$$

If x and y belong to K, we have $x + \theta(y - x) \in K$ since K is convex and this formula applies as well if we replace $D^{\alpha+\beta}f$ by $\varphi_{\alpha+\beta}$. If φ is not real, we may split it into its real and imaginary parts and therefore get

$$|(R^m \varphi_\alpha)(x,y)| \le 2 \sum_{|\beta|=m+1-|\alpha|} \|\varphi_{\alpha+\beta}\|_K \frac{|y-x|^{m+1-|\alpha|}}{\beta!}$$

for every $\varphi \in \mathcal{E}_{\{M\},b}(K)$, $m \in \mathbb{N}_0$ and $\alpha \in \mathbb{N}_0^r$ such that $|\alpha| \leq m$ hence successively

$$\begin{split} &|(R^{m}\varphi_{\alpha})(x,y)|\\ &\leq 2\frac{l^{m+1}M_{m+1}}{(m+1-|\alpha|)!}\sum_{|\beta|=m+1-|\alpha|}\frac{\|\varphi_{\alpha+\beta}\|_{K}}{l^{|\alpha+\beta|}M_{|\alpha+\beta|}}\frac{|y-x|^{m+1-|\alpha|}}{\beta!}(m+1-|\alpha|)!\\ &\leq 2\frac{l^{m+1}M_{m+1}}{(m+1-|\alpha|)!}|\varphi|_{K,l}|y-x|^{m+1-|\alpha|}\sum_{|\beta|=m+1-|\alpha|}\frac{(m+1-|\alpha|)!}{\beta!}\\ &\leq 2\frac{l^{m+1}M_{m+1}}{(m+1-|\alpha|)!}|\varphi|_{K,l}|y-x|^{m+1-|\alpha|}r^{m+1-|\alpha|}\\ &\leq 2\frac{(rl)^{m+1}M_{m+1}}{(m+1-|\alpha|)!}|\varphi|_{K,l}|y-x|^{m+1-|\alpha|} \end{split}$$

and finally

$$\frac{\left|(R^m\varphi_\alpha)(x,y)\right|}{(rl)^{m+1}M_{m+1}}\frac{(m+1-|\alpha|)!}{\left|y-x\right|^{m+1-|\alpha|}}\leq 2\left|\varphi\right|_{K,l}.$$

Obviously we have $|\varphi|_{K,rl} \leq |\varphi|_{K,l}$ for every $\varphi \in \mathcal{E}_{\{M\},b}(K)$. Therefore if J_1 is the canonical injection from $\mathcal{E}_{\{M\},b}(K)$ into $\mathcal{E}_{\{M\},rl}(K)$, we get

$$|J_1\varphi|_{K,rl} + ||J_1\varphi||_{K,rl} = |\varphi|_{K,rl} + ||\varphi||_{K,rl} \le 3 |\varphi|_{K,l}$$

Applying the inequality (2) leads then to

$$|J_1\varphi|_{K,rl} + ||J_1\varphi||_{K,rl} \le \sum_{\alpha \in \mathbb{N}_0^r} \sum_{j=1}^{\infty} |\langle \varphi, u_{\alpha,j} \rangle|, \quad \forall \varphi \in \mathcal{E}_{\{M\},b}(K).$$

This last relation combined with the inequality (4) imply that the linear map J_1 is quasi-nuclear.

In the same way we may obtain an integer d>rl such that the canonical injection J_2 from $\mathcal{E}_{\{\boldsymbol{M}\},rl}(K)$ into $\mathcal{E}_{\{\boldsymbol{M}\},d}(K)$ is quasi-nuclear. Therefore we know that the canonical injection $J:=J_2\circ J_1$ from $\mathcal{E}_{\{\boldsymbol{M}\},b}(K)$ into $\mathcal{E}_{\{\boldsymbol{M}\},d}(K)$ is nuclear.

Hence the conclusion. ■

3. Mixed problem: general case

Theorem 2 Let $M_1 = (M_{1,n})_{n \in \mathbb{N}_0}$ and $M_2 = (M_{2,n})_{n \in \mathbb{N}_0}$ be two sequences of positive numbers which are normalized and logarithmically convex. Let moreover A and B be Banach disks in $\mathcal{E}_{\{M_1\}}(F)$ such that $A \subset B$ and the canonical injection from $\mathcal{E}_{\{M_1\}}(F)_A$ into $\mathcal{E}_{\{M_1\}}(F)_B$ is nuclear.

If

$$\mathcal{E}_{\{\boldsymbol{M}_1\}}(F)_B \subset \left\{ (D^{\alpha}f|_F)_{\alpha \in \mathbb{N}_0^r} : f \in \mathcal{E}_{\{\boldsymbol{M}_2\}}(\mathbb{R}^r) \right\},$$

then there are an absolutely convex compact subset D of $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)$ and a nuclear linear extension map from $\mathcal{E}_{\{\mathbf{M}_1\}}(F)_A$ into $\mathcal{E}_{\{\mathbf{M}_2\}}(\mathbb{R}^r)_D$.

PROOF. Let us designate by H the vector subspace of $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)$ the elements of which verify

$$Sf := (\mathbf{D}^{\alpha} f|_F)_{\alpha \in \mathbb{N}_0^r} \in \mathcal{E}_{\{\boldsymbol{M}_1\}}(F)_B.$$

Of course the map $S\colon H\to \mathcal{E}_{\{M_1\}}(F)_B$ so defined is linear and surjective. As $S^{-1}\{0\}$ clearly is a closed vector subspace of $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)$, we may consider $H/S^{-1}\{0\}$ as a vector subspace of $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)/S^{-1}\{0\}$. If we consider the canonical quotient map

$$Q \colon \mathcal{E}_{\{\boldsymbol{M}_2\}}(\mathbb{R}^r) \to \mathcal{E}_{\{\boldsymbol{M}_2\}}(\mathbb{R}^r)/S^{-1}\{0\},$$

this allows to define the injective linear map

$$T \colon \mathcal{E}_{\{M_1\}}(F)_B \to \mathcal{E}_{\{M_2\}}(\mathbb{R}^r)/S^{-1}\{0\}$$

by T(Sf) = Qf for every $f \in H$.

We now prove that this map T has a closed graph. Let $(\varphi_j)_{j\in J}$ be a net in $\mathcal{E}_{\{M_1\}}(F)_B$ converging to 0 and such that the net $(T\varphi_j)_{j\in J}$ converges to u in $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)/S^{-1}\{0\}$. Let f be an element of $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)$ such that Qf = u. As u belongs to the closure of $H/S^{-1}\{0\}$ in $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)/S^{-1}\{0\}$, f itself belongs to the closure of H in $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)$. Now let $\{V_i: i \in I\}$ be a fundamental system of neighbourhoods of f in $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)$ and let L be the subset of the elements (i,j) of $I \times J$ such that $T\varphi_i \in QV_i$. We order L with \leq defined by

$$(i_1, j_1) \le (i_2, j_2) \iff (V_{i_2} \subset V_{i_1} \text{ and } j_1 \le j_2).$$

For every $(i,j) \in L$, we choose an element $f_{i,j} \in V_i$ such that $Qf_{i,j} = T\varphi_j$. Of course the net $(f_{i,j})_{(i,j)\in(L,\leq)}$ converges to f; in particular, for every $\alpha\in\mathbb{N}_0^r$, the net $(\mathbf{D}^\alpha f_{i,j})_{(i,j)\in(L,\leq)}$ converges pointwise to $\overline{D}^{\alpha} f$ and as

$$Sf_{i,j} = (T^{-1} \circ Q)f_{i,j} = T^{-1}(Qf_{i,j}) = T^{-1}(T\varphi_j) = \varphi_j,$$

we get that the net $(\mathbf{D}^{\alpha}f_{i,j})_{(i,j)\in(L,\leq)}$ converges pointwise to 0 on F, i.e. $\mathbf{D}^{\alpha}f|_{F}=0$ hence $f\in S^{-1}\{0\}$. This implies u = 0 and so T has a closed graph.

Since $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)/S^{-1}\{0\}$ is a quasi-LB-space, the map T is continuous (cf. Corollary 1.5 of [7]). Therefore TA and TB are Banach disks in $H/S^{-1}\{0\}$. Let us respectively denote by E and G the Banach spaces generated by TA and TB: we have $E \subset G$ and by use of the hypothesis, the canonical injection $W \colon E \to G$ is nuclear. Let us denote by $\|\cdot\|$ the norm in E and its conjugate as well, and by $|\cdot|$ the norm in G. So we know there are sequences $(u'_n)_{n\in\mathbb{N}}$ in E' and $(v_n)_{n\in\mathbb{N}}$ in G such that

$$\left\{ \begin{array}{l} \|u_n'\| = 1 \text{ for every } n \in \mathbb{N}, \\ \displaystyle \sum_{n=1}^{\infty} |v_n| < \infty, \\ Wu = \displaystyle \sum_{n=1}^{\infty} \left\langle u, u_n' \right\rangle v_n \text{ for every } u \in E. \end{array} \right.$$

For every $n \in \mathbb{N}$, if we set

$$\lambda_n := \left(\sum_{j=n}^{\infty} |v_j|\right)^{1/2} - \left(\sum_{j=n+1}^{\infty} |v_j|\right)^{1/2} \text{ and } \rho_n := (|v_n|/\lambda_n)^{1/2},$$

we get

$$\left| \frac{v_n}{\lambda_n \rho_n} \right| = \left(\frac{|v_n|}{\lambda_n} \right)^{1/2} = \left(\left(\sum_{j=n}^{\infty} |v_j| \right)^{1/2} + \left(\sum_{j=n+1}^{\infty} |v_j| \right)^{1/2} \right)^{1/2}$$

hence $\rho_n = |v_n/(\lambda_n \rho_n)| \to 0$ if $n \to \infty$. Therefore the closed absolutely convex hull P of the set $\{v_n/(\lambda_n \rho_n) : n \in \mathbb{N}\}$ in G is compact. Moreover it is clear that the sequence $(v_n/\lambda_n = \rho_n v_n/(\lambda_n \rho_n))_{n \in \mathbb{N}}$ converges to 0 in G_P ; therefore the closed absolutely convex hull M of $\{v_n/\lambda_n : n \in \mathbb{N}\}$ is a compact subset of G_P .

Now let $\left\{A_{\boldsymbol{a}}: \boldsymbol{a} \in \mathbb{N}^{\mathbb{N}}\right\}$ be a quasi-LB representation of $\mathcal{E}_{\{\boldsymbol{M}_2\}}(\mathbb{R}^r)$. To every $\boldsymbol{a} \in \mathbb{N}^{\mathbb{N}}$, we associate the set $B_{\boldsymbol{a}}:=Q^{-1}(a_1P)\cap A_{\boldsymbol{a}^0}$ where \boldsymbol{a}^0 denotes the sequence $(a_n^0:=a_{n+1})_{n\in\mathbb{N}}$. It is then clear that $\left\{B_{\boldsymbol{a}}: \boldsymbol{a} \in \mathbb{N}^{\mathbb{N}}\right\}$ is a quasi-LB representation of the subspace $L=\cup_{\boldsymbol{a}\in\mathbb{N}^{\mathbb{N}}}B_{\boldsymbol{a}}=Q^{-1}G_P$ of $\mathcal{E}_{\{\boldsymbol{M}_2\}}(\mathbb{R}^r)$. The map

$$R: L \to G_P; \quad f \mapsto Qf$$

is linear and surjective and has a closed graph. As M is a compact subset of G_P , the property of the quasi-LB spaces mentioned in the introduction provides $\boldsymbol{b} \in \mathbb{N}^{\mathbb{N}}$ and a compact subset D of $L_{B_{\boldsymbol{b}}}$ such that RD = QD = M. Let us denote by $|\|\cdot\||$ the norm of L_D as well as the one of G_M . From $|\|v_n/\lambda_n\|| \le 1$, we deduce

$$\sum_{m=1}^{\infty} |||v_n||| \le \sum_{n=1}^{\infty} \lambda_n \le \sum_{n=1}^{\infty} |v_n|^{1/2} < \infty.$$

For every $n \in \mathbb{N}$, we then choose an element $g_n \in L_D$ such that $Rg_n = v_n$ and $|||g_n||| \le 2 |||v_n|||$. Now for every $\varphi \in \mathcal{E}_{\{M_1\}}(F)_A$, we consider the series

$$\sigma \varphi = \sum_{n=1}^{\infty} \langle T \varphi, u'_n \rangle g_n.$$

We denote by $\tilde{T} \colon E' \to \mathcal{E}_{\{M_1\}}(F)'_A$ the transposed of $T \colon \mathcal{E}_{\{M_1\}}(F)_A \to E$ and set $w'_n = \tilde{T}u'_n$ for every $n \in \mathbb{N}$. If $|\cdot|$ denotes the norm of $\mathcal{E}_{\{M_1\}}(F)_A$ and of its conjugate space, we have $|w'_n| = 1$ for every $n \in \mathbb{N}$ hence

$$\sum_{n=1}^{\infty} |w_n'| |||g_n||| = \sum_{n=1}^{\infty} |||g_n||| \le 2 \sum_{n=1}^{\infty} |||v_n||| < \infty.$$

Moreover we also have

$$\sigma \varphi = \sum_{n=1}^{\infty} \langle T \varphi, u'_n \rangle g_n = \sum_{n=1}^{\infty} \langle \varphi, w'_n \rangle g_n.$$

Therefore σ is a linear and nuclear map from $\mathcal{E}_{\{M_1\}}(F)_A$ into $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)_D$. To conclude we then have just to compute successively

$$\begin{split} \left((\mathbf{D}^{\alpha}(\sigma \boldsymbol{\varphi}))|_{F} \right)_{\alpha \in \mathbb{N}_{0}^{r}} &= S \sigma \boldsymbol{\varphi} = T^{-1} Q \sigma \boldsymbol{\varphi} = T^{-1} Q \left(\sum_{n=1}^{\infty} \left\langle T \boldsymbol{\varphi}, u_{n}' \right\rangle g_{n} \right) \\ &= T^{-1} \sum_{n=1}^{\infty} \left\langle T \boldsymbol{\varphi}, u_{n}' \right\rangle v_{n} = T^{-1} W T \boldsymbol{\varphi} = T^{-1} T \boldsymbol{\varphi} = \boldsymbol{\varphi} \end{split}$$

which proves that σ is an extension map.

4. Mixed problem: Borel setting

In the case $F = \{0\}$, the space $\mathcal{E}_{\{M_1\}}(F)$ has to be replaced by the space $\Lambda_{\{M_1\}}$ defined as follows. It is the vector space of the families $c = (c_\alpha)_{\alpha \in \mathbb{N}_0^r}$ of complex numbers for which there is h > 0 such that

$$|\boldsymbol{c}|_h := \sup_{\alpha \in \mathbb{N}_0^r} rac{|c_{lpha}|}{h^{|lpha|} M_{1,|lpha|}} < \infty.$$

Then

a) $\Lambda_{\{M_1\},h}$ denotes the Banach space of the elements c of $\Lambda_{\{M_1\}}$ for which $|c|_h < \infty$, endowed with the norm $|\cdot|_h$;

b) $\Lambda_{\{M_1\}}$ is the inductive limit $\operatorname{ind}_{n\in\mathbb{N}}\Lambda_{\{M_1\},n}$. It is a Hausdorff (LB)-space hence a quasi-LB space: in fact if we denote by B_n the closed unit ball of $\Lambda_{\{M_1\},n}$, it is clear that $\{A_{\boldsymbol{a}}=a_2B_{a_1}: \boldsymbol{a}\in\mathbb{N}^\mathbb{N}\}$ is a quasi-LB representation of $\Lambda_{\{M_1\}}$.

The proof of the following Lemma is standard since a multiplication operator is nuclear whenever its symbol is absolutely summable.

Lemma 2 With the notations just introduced, for every a, $b \in \mathbb{N}^{\mathbb{N}}$ such that $a_1 < b_1$, the canonical injection from $(\Lambda_{\{M_1\}})_{a_2B_{a_1}}$ into $(\Lambda_{\{M_1\}})_{b_2B_{b_1}}$ is nuclear.

In particular, the space $\Lambda_{\{M_1\}}$ is complete, nuclear and conuclear.

As a direct consequence of the main theorem, we then get the following result.

Theorem 3 If the inclusion

$$\Lambda_{\{\boldsymbol{M}_1\},m+1} \subset \left\{ (f^{(\alpha)}(0))_{\alpha \in \mathbb{N}_0^r} : f \in \mathcal{E}_{\{\boldsymbol{M}_2\}}(\mathbb{R}^r) \right\}$$

holds then there are an an absolutely convex compact subset D of $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)$ and a linear nuclear extension map from $\Lambda_{\{M_1\},m}$ into $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)_D$.

Finally we obtain the following Corollary as a direct consequence of Grothendieck's factorization theorem.

Corollary 1 If the inclusion

$$\Lambda_{\{\boldsymbol{M}_1\}} \subset \left\{ (f^{(\alpha)}(0))_{\alpha \in \mathbb{N}_0^r} : f \in \mathcal{E}_{\{\boldsymbol{M}_2\}}(\mathbb{R}^r) \right\}$$

holds then, for every Banach disk B of $\Lambda_{\{M_1\}}$, there are an absolutely convex compact subset D of $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)$ and a linear nuclear extension map from $\Lambda_{\{M_1\},B}$ into $\mathcal{E}_{\{M_2\}}(\mathbb{R}^r)_D$.

Acknowledgement. J. Schmets, partially supported by the Belgian CGRI. M. Valdivia, partially supported by the MCYT and FEDER Project BFM 2002–01423.

References

- [1] Bonet J., Meise R. and Taylor B. A. (1992). On the Range of the Borel Map for Classes of Non-Quasianalytic Functions. Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, J. Horváth & M. Maestre (Eds.), North Holland Mathematics Studies 170, 97–111.
- [2] Chaumat J. and Chollet A.-M. (1994). Surjectivité de l'application restriction à un compact dans les classes de fonctions ultradifférentiables. *Math. Ann.*, 298, 7–40.

- [3] Komatsu H., Ultradistributions, I: Structure theorems and a characterization. (1973). *J. Fac. Sc. Univ. Tokyo*, **20**, 25–105.
- [4] Langenbruch M. (1994). Extension of ultradifferentiable functions, Manuscripta Math., 83, 123-143.
- [5] Schmets J. and Valdivia M. On certain extension theorems in the mixed Borel setting, J. Math. Anal. Appl., to appear.
- [6] Tougeron J.-Cl. (1972). Idéaux de fonctions différentiables, *Ergebnisse der Mathematik und ihrer Grenzgebiete*, **71** Springer.
- [7] Valdivia M. (1987). Quasi-LB-spaces, J. London Math. Soc., 35, 149-168.
- [8] Whitney H., (1934). Analytic extensions of differentiable functions defined in closed sets, *Trans. Amer. Math. Soc.*, **36**, 63–89.

J. Schmets
Institut de Mathématique
Université de Liège
Sart Tilman Bât. B 37
B-4000 LIEGE 1
Belgium

j.schmets@ulg.ac.be

M. Valdivia Facultad de Matemáticas Universidad de Valencia Dr. Moliner 50 E-46100 BURJASOT (Valencia) Spain