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To the memory of our friend Klaus Floret

Abstract. If K is a non void compact subset ofRr, we give a condition under which the canonical
injection fromE{M },b(K) into E{M },d(K) is nuclear. We then consider the mixed case and obtain the
existence of a nuclear extension map fromE{M1}(F )A into E{M2}(R

r)D whereF is a proper closed
subset ofRr andA andD suitable Banach disks. We finally apply this last result to the Borel case, i.e.
whenF = {0}.

Sobre aplicaciones nucleares entre espacios de jets ultradiferenciables de
tipo Roumieu

Resumen. Si K es un compacto no vacı́o enRr, damos una condición suficiente para que la in-
yeccíon cańonica deE{M },b(K) enE{M },d(K) sea nuclear. Consideramos el caso mixto y obtenemos
la existencia de un operador de extension nuclear deE{M1}(F )A enE{M2}(R

r)D dondeF es un sub-
conjunto cerrado propio deRr y A y D son discos de Banach adecuados. Finalmente aplicamos este
último resultado al caso Borel, es decir cuandoF = {0}.

1. Introduction

Let us first recall the following facts about the quasi-LB-spaces studied in [7].
We endow the setNN of the sequences of positive integers with the order≤ defined by

(an)n∈N ≤ (bn)n∈N ⇐⇒ an ≤ bn,∀n ∈ N.

A quasi-LB-representationin a locally convex spaceE is a set
{
Aa : a ∈ NN}

of Banach disks inE
submitted to the following two requirements :
(a)∪

{
Aa : a ∈ NN}

= E;
(b) (a, b ∈ NN;a ≤ b) ⇒ Aa ⊂ Ab.
A quasi-LB-spaceis a locally convex space having a quasi-LB-representation.

Let us the remark that the Proposition 12 of [7] leads to the following property that will be used later
on. Let

{
Aa : a ∈ NN}

be a quasi-LB-representation in the locally convex spaceE and letT be a linear
map with closed graph fromE onto a Banach spaceF . Then for every compact subsetK of F , there are
a ∈ NN and a compact subsetH ofEAa such thatH ⊂ Aa andTH = K.
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Throughout the paper, unless otherwise stated,r designates a positive integer andM = (Mn)n∈N0

designates a sequence of positive numbers which is
(a)normalized, i.e.M0 = 1 andMn ≥ 1 for everyn ∈ N;
(b) logarithmically convex, i.e.M2

n ≤Mn−1Mn+1 for everyn ∈ N.

We now introduce the main locally convex spaces we shall deal with.

The spaceEm(K).
For every non void compact subsetK of Rr and integerm ∈ N0, Em(K) is the Banach space introduced

by Whitney. For the sake of completeness we recall that its elements are the Whitneym-jetsϕ onK, i.e.
ϕ is a family(ϕα)α∈Nr

0,|α|≤m of continuous functions onK such that

sup
|α|≤m

sup
x,y∈K

0<|x−y|≤t

|(Rmϕα)(x, y)|
|y − x|m−|α| → 0 if t→ 0+

where

(Rmϕα)(x, y) := ϕα(y)−
∑

|β|≤m−|α|

ϕα+β(x)
(y − x)β

β!
.

Its norm‖·‖Em(K) is defined by

‖ϕ‖Em(K) := |ϕ|Em(K) + sup
|α|≤m

sup
x,y∈K
x6=y

|(Rmϕα)(x, y)|
|y − x|m−|α|

where
|ϕ|Em(K) := sup

|α|≤m

‖ϕα‖K .

The spaceE{M }(Rr).
Let us briefly recall its definition as introduced in [3]. Its elements are theC∞-functionsf on Rr such

that, for every compact subsetK of Rr, there areA > 0 andh > 0 such that

|Dαf(x)| ≤ Ah|α|M|α|, ∀x ∈ K,∀α ∈ Nr
0.

Its topology is defined as follows. For every ballb(m) := {x ∈ Rr : |x| ≤ m} andh > 0, one introduces
the Banach spaceE{M },m,h(Rr): its elements are the restrictions tob(m) of theC∞-functionsf on Rr

such that

π{M},m,h(f) := sup
α∈Nr

0

‖Dαf‖b(m)

h|α|M|α|
<∞

and endows it with the normπ{M},m,h. Finally one sets

E{M }(Rr) = proj
m∈N

ind
k∈N

E{M },m,k(Rr);

soE{M }(Rr) is a locally convex space. More precisely as a Hausdorff projective limit of a sequence of
(LB)-spaces it is a quasi-LB-space (cf. [7]).

The spaceE{M }(F ).
In this notation,F designates a proper closed subset ofRr. A jet ϕ onF is a familyϕ = (ϕα)α∈Nr

0
of

continuous function onF . The elements ofE{M }(F ) are the Whitney jets of class{M} onF , i.e. the jets
ϕ onF such that for every compact subsetK of F , there ish > 0 such that

|ϕ|K,h := sup
α∈Nr

0

‖ϕα‖K

h|α|M |α|
<∞
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and

‖ϕ‖K,h := sup
m∈N0

sup
α∈Nr

0
|α|≤m

sup
x,y∈K
x6=y

|(Rmϕα)(x, y)|
hm+1Mm+1

(m− |α|+ 1)!

|y − x|m−|α|+1
<∞.

ClearlyE{M }(F ) is a vector space. To define its topology, one proceeds as follows.
If F = K is compact, then for every positive integers, E{M },s(K) denotes the vector subspace of

E{M }(K) the elementsϕ of which verify |ϕ|K,s + ‖ϕ‖K,s <∞, endowed with the norm|·|K,s + ‖·‖K,s;
it is a Banach space. Then we set

E{M }(K) = ind
s∈N

E{M },s(K),

a Hausdorff (LB)-space indeed hence a quasi-LB-space.
If F is not compact, we consider a sequence(Hs)s∈N of compact subsets ofRr such thatHs = H◦,−

s ⊂
H◦

s+1,Ks = Hs ∩ F 6= ∅ andRr = ∪∞s=1Hs and set

E{M }(F ) = proj
s∈N

E{M }(Ks).

It is a Hausdorff (LF)-space hence a quasi-LB-space.

Results.
We establish that the canonical map fromEr+1(K) into E0(K) is nuclear; this extends a result of

Komatsu (cf. [3]). We then obtain a result establishing the nuclearity of the canonical injection from
E{M },b(K) into E{M },d(K) for somed > b. Finally we consider the mixed problem. In this case two
sequencesM1 andM2 are used; they are submitted to a condition of the type

L ⊂
{

(Dαf |F )α∈Nr
0

: f ∈ E{M2}(R
r)

}
whereL is a vector subspace ofE{M1}(F ). We obtain a result providing the existence of a nuclear extension
map from a subspace ofL intoE{M2}(Rr). We finally examine the application of this last result to the Borel
case, i.e. whenF reduces to{0}.

Let us mention that the problem of the existence of extension maps in the mixed setting has also been
examined in [1], [2], [4] and [5].

2. A nuclearity result about the E{M },s(K) spaces

For the sake of completeness, let us mention with proof the following Lemma that was obtained by Komatsu
in [3], under the assumption thatK is regular, i.e.K has a finite number of connected components and there
is a constantC > 0 such that any two pointsx, y of any connected componentH of K are the endpoints of
a rectifiable curve contained inH and of length≤ C |x− y|. Of course ifK is convex, it is regular. Let us
recall the following property that will be used later on:if the compact subsetK is regular, then, for every
m ∈ N0, the norms|·|Em(K) and‖·‖Em(K) are equivalent onEm(K) (cf. [6] page 76, for instance).

Lemma 1 For every non void compact subsetK of Rr, the continuous linear map

J : Er+1(K) → E0(K); ϕ = (ϕα)|α|≤r+1 7→ ϕ0

is nuclear.

PROOF. Let h be a positive integer such thatK is contained in the interior of[−h, h]r. We are going
to use the following Banach spaceCr+1

H (πH): its elements are theCr+1-functions onπH with support
contained inH and its norm is‖·‖ := sup|α|≤r+1 ‖Dα·‖πH .

The Whitney extension theorem provides the existence of a continuous linear extension mapE from
Er+1(K) into Cr+1

H (πH), i.e. such that(DαEϕ)(x) = ϕα(x) for everyϕ ∈ Er+1(K), x ∈ K andα ∈ Nr
0
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such that|α| ≤ r + 1. Let us denote by‖E‖ the norm of this mapE. For everyk ∈ Zr, we then designate
by vk the continuous linear functional

vk : Cr+1
H (πH) → C; g 7→

∫
πH

g(y)e−iyk/h dy.

It is well known that if‖vk‖ is the norm ofvk, there is a constantL > 0 such that‖vk‖ ≤ L(1 + |k|)−1−r

for everyk ∈ Zr. Finally we setuk := vk ◦ E for everyk ∈ Zr as well asψk(x) := (2πh)−reixk/h for
everyk ∈ Zr andx ∈ K.

Of course for everyk ∈ Z, ψk belongs toE0(K) anduk to the dual ofEr+1(K). If we designate by
|uk| the norm ofuk, we successively get∑

k∈Zr

|uk| ‖ψk‖E0(K) ≤ (2πh)−r
∑
k∈Zr

‖vk‖ ‖E‖

≤
L ‖E‖
(2πh)r

∑
k∈Zr

1
(1 + |k|)r+1

<∞.

Hence the conclusion since for everyϕ ∈ Er+1(K), we have

(Jϕ)(x) = (2πh)−r
∑
k∈Zr

eixk/h

∫
πH

(Eϕ)(y)e−iyk/h dy

=
∑
k∈Zr

〈ϕ, uk〉ψk(x), ∀x ∈ K. �

Theorem 1 LetK be a non empty convex and compact subset ofRr and let the sequenceM verify the
following condition: there are positive constantsP andQ such thatMn+1 ≤ PQnMn for everyn ∈ N0.

Then for everyb ∈ N, there is an integerd > b such that the continuous linear injection fromE{M },b(K)
into E{M },d(K) is nuclear.

PROOF. Let the mapJ : Er+1(K) → E0(K) as well as theuk ∈ Er+1(K)′ andψk ∈ E0(K) be defined
as in the Proposition 1 and its proof. We then order the family(uk, ψk)k∈Zr as a sequence(wj , φj)j∈N; this
leads to

∞∑
j=1

|wj | <∞ and Jϕ = ϕ0 =
∞∑

j=1

〈ϕ, wj〉φj , ∀ϕ ∈ Er+1(K).

To everyϕ ∈ E{M },b(K) andα ∈ Nr
0, let us associate the(r + 1)-jet

ϕ(α) := (ϕα+β)β∈Nr
0,|β|≤r+1.

Obviously we haveϕ(α) ∈ Er+1(K) hence

Jϕ(α) = ϕα =
∞∑

j=1

〈
ϕ(α), wj

〉
φj . (1)

Now we choose an integerl such that

l > b and
bQr+1

l
<

1
(1 + r)2r

.

Then for everyj ∈ N andα ∈ Nr
0, we designate byuα,j the continuous linear functional defined on

E{M },b(K) by

〈ϕ, uα,j〉 :=
3

〈
ϕ(α), wj

〉
l|α|M|α|

, ∀ϕ ∈ E{M },b(K),
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and we denote its norm by|‖uα,j‖|. From the inequality (1), we get

‖ϕα‖K ≤ 1
3
l|α|M|α|

∞∑
j=1

|〈ϕ, uα,j〉|

hence

|ϕ|K,l = sup
α∈Nr

0

‖ϕα‖K

l|α|M|α|
≤ 1

3

∑
α∈Nr

0

∞∑
j=1

|〈ϕ, uα,j〉| . (2)

AsK is convex, it is regular. Therefore the norms|·|Er+1(K) and‖·‖Er+1(K) are equivalent onEr+1(K):
there isA > 0 such that

‖·‖Er+1(K) ≤ A |·|Er+1(K) onEr+1(K).

This successively leads to∣∣∣〈ϕ(α), wj

〉∣∣∣ ≤ |wj |
∥∥∥ϕ(α)

∥∥∥
Er+1(K)

≤ A |wj |
∣∣∣ϕ(α)

∣∣∣
Er+1(K)

with ∣∣∣ϕ(α)
∣∣∣
Er+1(K)

= sup
|β|≤r+1

‖ϕα+β‖K ≤ b|α|+r+1M|α|+r+1 sup
|β|≤r+1

‖ϕα+β‖K

b|α+β|M|α+β|

≤ b|α|+r+1M|α|+r+1 |ϕ|K,b

hence ∣∣∣〈ϕ(α), wj

〉∣∣∣ ≤ A |wj | b|α|+r+1M|α|+r+1(|ϕ|K,b + ‖ϕ‖K,b).

As the inequalitiesM|α|+1 ≤ PQ|α|M|α|,M|α|+2 ≤ PQ|α|+1M|α|+1, . . . lead to

M|α|+r+1 ≤ P r+1Q|α|(r+1)Qr(r+1)/2M|α|,

we finally obtain

|〈ϕ, uα,j〉| ≤ 3A |wj |
(
bQr+1

l

)|α|

(bPQr/2)r+1(|ϕ|K,b + ‖ϕ‖K,b). (3)

So if we setB := 3A(bPQr/2)r+1, we get

|‖uα,j‖| ≤ B |wj | (1 + r)−2r|α|, ∀α ∈ Zr,∀j ∈ N.

For everys ∈ N, this leads to∑
|α|=s

|‖uα,j‖| ≤ B |wj | sr(1 + r)−2rs ≤ B |wj | (2s/22s)r = 2−sB |wj |

hence
∞∑

j=1

∑
α∈Nr

0

|‖uα,j‖| ≤
∞∑

j=1

∞∑
s=0

∑
|α|=s

|‖uα,j‖| ≤ 2B
∞∑

j=1

|wj | <∞. (4)

Givenϕ ∈ E{M },b(K) real andm ∈ N0, the finite jet(ϕα)|α|≤m+1 belongs of course toEm+1(K)
and the extension theorem of Whitney provides a real functionf ∈ Cm+1(Rr) such that Dαf(x) = ϕα(x)
for everyx ∈ K andα ∈ Nr

0 such that|α| ≤ m + 1. If we fix α ∈ Nr
0 such that|α| ≤ m as well as two
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pointsx andy of Rr, the limited Taylor formula provides the existence of someθ ∈]0, 1[ such that Dαf(y)
is equal to ∑

|β|≤m−|α|

Dα+βf(x)
(y − x)β

β!
+

∑
|β|=m+1−|α|

Dα+βf(x+ θ(y − x))
(y − x)β

β!
.

If x andy belong toK, we havex+ θ(y−x) ∈ K sinceK is convex and this formula applies as well if we
replace Dα+βf byϕα+β . If ϕ is not real, we may split it into its real and imaginary parts and therefore get

|(Rmϕα)(x, y)| ≤ 2
∑

|β|=m+1−|α|

‖ϕα+β‖K

|y − x|m+1−|α|

β!

for everyϕ ∈ E{M },b(K),m ∈ N0 andα ∈ Nr
0 such that|α| ≤ m hence successively

|(Rmϕα)(x, y)|

≤ 2
lm+1Mm+1

(m+ 1− |α|)!
∑

|β|=m+1−|α|

‖ϕα+β‖K

l|α+β|M|α+β|

|y − x|m+1−|α|

β!
(m+ 1− |α|)!

≤ 2
lm+1Mm+1

(m+ 1− |α|)!
|ϕ|K,l |y − x|m+1−|α| ∑

|β|=m+1−|α|

(m+ 1− |α|)!
β!

≤ 2
lm+1Mm+1

(m+ 1− |α|)!
|ϕ|K,l |y − x|m+1−|α|

rm+1−|α|

≤ 2
(rl)m+1Mm+1

(m+ 1− |α|)!
|ϕ|K,l |y − x|m+1−|α|

and finally
|(Rmϕα)(x, y)|
(rl)m+1Mm+1

(m+ 1− |α|)!
|y − x|m+1−|α| ≤ 2 |ϕ|K,l .

Obviously we have|ϕ|K,rl ≤ |ϕ|K,l for everyϕ ∈ E{M },b(K). Therefore ifJ1 is the canonical
injection fromE{M },b(K) into E{M },rl(K), we get

|J1ϕ|K,rl + ‖J1ϕ‖K,rl = |ϕ|K,rl + ‖ϕ‖K,rl ≤ 3 |ϕ|K,l .

Applying the inequality (2) leads then to

|J1ϕ|K,rl + ‖J1ϕ‖K,rl ≤
∑

α∈Nr
0

∞∑
j=1

|〈ϕ, uα,j〉| , ∀ϕ ∈ E{M },b(K).

This last relation combined with the inequality (4) imply that the linear mapJ1 is quasi-nuclear.
In the same way we may obtain an integerd > rl such that the canonical injectionJ2 from E{M },rl(K)

into E{M },d(K) is quasi-nuclear. Therefore we know that the canonical injectionJ := J2 ◦ J1 from
E{M },b(K) into E{M },d(K) is nuclear.

Hence the conclusion.�

3. Mixed problem: general case

Theorem 2 LetM1 = (M1,n)n∈N0 andM2 = (M2,n)n∈N0 be two sequences of positive numbers which
are normalized and logarithmically convex. Let moreoverA andB be Banach disks inE{M1}(F ) such that
A ⊂ B and the canonical injection fromE{M1}(F )A into E{M1}(F )B is nuclear.
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If
E{M1}(F )B ⊂

{
(Dαf |F )α∈Nr

0
: f ∈ E{M2}(R

r)
}
,

then there are an absolutely convex compact subsetD of E{M2}(Rr) and a nuclear linear extension map
fromE{M1}(F )A into E{M2}(Rr)D.

PROOF. Let us designate byH the vector subspace ofE{M2}(Rr) the elements of which verify

Sf := (Dαf |F )α∈Nr
0
∈ E{M1}(F )B .

Of course the mapS : H → E{M1}(F )B so defined is linear and surjective.
As S−1{0} clearly is a closed vector subspace ofE{M2}(Rr), we may considerH/S−1{0} as a vector

subspace ofE{M2}(Rr)/S−1{0}. If we consider the canonical quotient map

Q : E{M2}(R
r) → E{M2}(R

r)/S−1{0},

this allows to define the injective linear map

T : E{M1}(F )B → E{M2}(R
r)/S−1{0}

by T (Sf) = Qf for everyf ∈ H.
We now prove that this mapT has a closed graph. Let(ϕj)j∈J be a net inE{M1}(F )B converging to0

and such that the net(Tϕj)j∈J converges tou in E{M2}(Rr)/S−1{0}. Letf be an element ofE{M2}(Rr)
such thatQf = u. As u belongs to the closure ofH/S−1{0} in E{M2}(Rr)/S−1{0}, f itself belongs to
the closure ofH in E{M2}(Rr). Now let{Vi : i ∈ I} be a fundamental system of neighbourhoods off in
E{M2}(Rr) and letL be the subset of the elements(i, j) of I × J such thatTϕj ∈ QVi. We orderL with
≤ defined by

(i1, j1) ≤ (i2, j2) ⇐⇒
(
Vi2 ⊂ Vi1 and j1 ≤ j2

)
.

For every(i, j) ∈ L, we choose an elementfi,j ∈ Vi such thatQfi,j = Tϕj . Of course the net
(fi,j)(i,j)∈(L,≤) converges tof ; in particular, for everyα ∈ Nr

0, the net(Dαfi,j)(i,j)∈(L,≤) converges
pointwise to Dαf and as

Sfi,j = (T−1 ◦Q)fi,j = T−1(Qfi,j) = T−1(Tϕj) = ϕj ,

we get that the net(Dαfi,j)(i,j)∈(L,≤) converges pointwise to0 onF , i.e. Dαf |F = 0 hencef ∈ S−1{0}.
This impliesu = 0 and soT has a closed graph.

SinceE{M2}(Rr)/S−1{0} is a quasi-LB-space, the mapT is continuous (cf. Corollary 1.5 of [7]).
ThereforeTA andTB are Banach disks inH/S−1{0}. Let us respectively denote byE andG the Banach
spaces generated byTA andTB: we haveE ⊂ G and by use of the hypothesis, the canonical injection
W : E → G is nuclear. Let us denote by‖·‖ the norm inE and its conjugate as well, and by|·| the norm in
G. So we know there are sequences(u′n)n∈N in E′ and(vn)n∈N in G such that

‖u′n‖ = 1 for everyn ∈ N,
∞∑

n=1

|vn| <∞,

Wu =
∞∑

n=1

〈u, u′n〉 vn for everyu ∈ E.

For everyn ∈ N, if we set

λn :=
( ∞∑

j=n

|vj |
)1/2 −

( ∞∑
j=n+1

|vj |
)1/2

and ρn := (|vn| /λn)1/2,
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we get ∣∣∣∣ vn

λnρn

∣∣∣∣ =
(
|vn|
λn

)1/2

=
((∑∞

j=n |vj |
)1/2 +

(∑∞
j=n+1 |vj |

)1/2
)1/2

henceρn = |vn/(λnρn)| → 0 if n → ∞. Therefore the closed absolutely convex hullP of the set
{ vn/(λnρn) : n ∈ N} inG is compact. Moreover it is clear that the sequence(vn/λn = ρnvn/(λnρn))n∈N
converges to0 in GP ; therefore the closed absolutely convex hullM of { vn/λn : n ∈ N} is a compact
subset ofGP .

Now let
{
Aa : a ∈ NN}

be a quasi-LB representation ofE{M2}(Rr). To everya ∈ NN, we associate
the setBa := Q−1(a1P ) ∩ Aa0 wherea0 denotes the sequence(a0

n := an+1)n∈N. It is then clear that{
Ba : a ∈ NN}

is a quasi-LB representation of the subspaceL = ∪a∈NNBa = Q−1GP of E{M2}(Rr).
The map

R : L→ GP ; f 7→ Qf

is linear and surjective and has a closed graph. AsM is a compact subset ofGP , the property of the
quasi-LB spaces mentioned in the introduction providesb ∈ NN and a compact subsetD of LBb

such that
RD = QD = M . Let us denote by|‖·‖| the norm ofLD as well as the one ofGM . From|‖vn/λn‖| ≤ 1,
we deduce

∞∑
m=1

|‖vn‖| ≤
∞∑

n=1

λn ≤
∞∑

n=1

|vn|1/2
<∞.

For everyn ∈ N, we then choose an elementgn ∈ LD such thatRgn = vn and|‖gn‖| ≤ 2 |‖vn‖|.
Now for everyϕ ∈ E{M1}(F )A, we consider the series

σϕ =
∞∑

n=1

〈Tϕ, u′n〉 gn.

We denote bỹT : E′ → E{M1}(F )′A the transposed ofT : E{M1}(F )A → E and setw′n = T̃ u′n for every
n ∈ N. If |·| denotes the norm ofE{M1}(F )A and of its conjugate space, we have|w′n| = 1 for everyn ∈ N
hence

∞∑
n=1

|w′n| |‖gn‖| =
∞∑

n=1

|‖gn‖| ≤ 2
∞∑

n=1

|‖vn‖| <∞.

Moreover we also have

σϕ =
∞∑

n=1

〈Tϕ, u′n〉 gn =
∞∑

n=1

〈ϕ, w′n〉 gn.

Thereforeσ is a linear and nuclear map fromE{M1}(F )A into E{M2}(Rr)D. To conclude we then have
just to compute successively

(
(Dα(σϕ))|F

)
α∈Nr

0
= Sσϕ = T−1Qσϕ = T−1Q

( ∞∑
n=1

〈Tϕ, u′n〉 gn

)
= T−1

∞∑
n=1

〈Tϕ, u′n〉 vn = T−1WTϕ = T−1Tϕ = ϕ

which proves thatσ is an extension map.�
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4. Mixed problem: Borel setting

In the caseF = {0}, the spaceE{M1}(F ) has to be replaced by the spaceΛ{M1} defined as follows. It is
the vector space of the familiesc = (cα)α∈Nr

0
of complex numbers for which there ish > 0 such that

|c|h := sup
α∈Nr

0

|cα|
h|α|M1,|α|

<∞.

Then
a)Λ{M1},h denotes the Banach space of the elementsc of Λ{M1} for which |c|h < ∞, endowed with the
norm|·|h;
b) Λ{M1} is the inductive limitindn∈N Λ{M1},n. It is a Hausdorff (LB)-space hence a quasi-LB space:
in fact if we denote byBn the closed unit ball ofΛ{M1},n, it is clear that

{
Aa = a2Ba1 : a ∈ NN}

is a
quasi-LB representation ofΛ{M1}.

The proof of the following Lemma is standard since a multiplication operator is nuclear whenever its
symbol is absolutely summable.

Lemma 2 With the notations just introduced, for everya, b ∈ NN such thata1 < b1, the canonical
injection from(Λ{M1})a2Ba1

into (Λ{M1})b2Bb1
is nuclear.

In particular, the spaceΛ{M1} is complete, nuclear and conuclear.�

As a direct consequence of the main theorem, we then get the following result.

Theorem 3 If the inclusion

Λ{M1},m+1 ⊂
{

(f (α)(0))α∈Nr
0

: f ∈ E{M2}(R
r)

}
holds then there are an an absolutely convex compact subsetD ofE{M2}(Rr) and a linear nuclear extension
map fromΛ{M1},m into E{M2}(Rr)D. �

Finally we obtain the following Corollary as a direct consequence of Grothendieck’s factorization the-
orem.

Corollary 1 If the inclusion

Λ{M1} ⊂
{

(f (α)(0))α∈Nr
0

: f ∈ E{M2}(R
r)

}
holds then, for every Banach diskB of Λ{M1}, there are an absolutely convex compact subsetD of
E{M2}(Rr) and a linear nuclear extension map fromΛ{M1},B into E{M2}(Rr)D. �
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