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Abstract. We show that Whitney’s approximation theorem holds in a general setting including spaces of
(ultra)differentiable functions and ultradistributions. This is used to obtain real analytic modifications for
differentiable functions including optimal estimates. Finally, a surjectivity criterion for continuous linear
operators between &chet sheaves is deduced, which can be applied to the boundary value problem
for holomorphic functions and to convolution operators in spaces of ultradifferentiable functions and
ultradistributions.

Un teorema de aproximaci 6n general de tipo Whitney

Resumen. Probamos que el teorema de aproxirbaaile Whitney se cumple en un contexto general

que incluye espacios de funciones (ultra)diferenciables y de ultradistribuciones. Este resultado se usa
para obtener modificaciones real atiehs de funciones diferenciables incluyendo estimaciopémas.
Finalmente se deduce un criterio para la sobreyectividad de operadores lineales y continuos entre haces de
Fréchet que puede ser aplicado a problemas de valores frontera de funciones holomorfas y a operadores
de convoluaddn entre espacios de funciones ultradiferenciables y de ultradistribuciones.

1. Introduction

Whitney’s approximation theorem roughly states th&tfunctions defined on an open getc R™ can be
approximated by real analytic functions with arbitrary precision and up to any order of derivatives. Whitney
used this result in his famous paper [24] to show th@tawhitney jetf defined on a closed sét c R” can
be extended to a functiofi e C*(R™) such thatf|, € A(Q), thatis, f|q is real analytic orf2 := R\ F",

For C*°-functions, Whitney’s approximation theorem can be stated as follows:

Theorem 1 ([24, Lemma 6]) LetQ C R™ be open and lety: Q& — 10, o0[ be continuous. For any
f e C>(Q)there isg € A(£2) such that

£ (2) =g (2) | <n(e) fz e Qand o < 1/7(z) . W

A corresponding result also holds for functiong(ifi(€2).
In this paper we will show that Whitney’s approximation theorem holds in a rather general setting
including spaces of (ultra)differentiable functions, locally integrable functions and also ultradistributions.
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M. Langenbruch

In fact, the key result can be stated as a decomposition lemma (see section 2) having a surprisingly short
functional analytic proof based on a surjectivity criterion for continuous linear mappings betwasefr
spaces (see Meise, Vogt [14, 26.1]).

We then deduce Whitney’s approximation theorem for several concrete spaces from analysis. This
is applied to Whitney’s extension problem mentioned above uQimgodification operators as they were
studied in Langenbruch [12].

In section 5 we finally prove a surjectivity criterion related to Whitney’s approximation theorem (see
Theorem 6), which roughly states that a continuous linear operator betweemeFsheaves is surjective if
its range contains the sections with compact support and the real analytic functions. This is then applied to
the representation of ultradistributions as boundary values of holomorphic functions and to the surjectivity
of convolution operators in spaces of ultradifferentiable functions and ultradistributions, respectively.

The author wants to thank L. Frerick (Wuppertal) for several interesting discussions concerning the
subject of this paper.

2. A decomposition lemma

In this section we will prove a basic decomposition lemma, which can be considered as a general version
of Whitney’s approximation theorem (see the discussion in section 3).

We use ultradifferentiable functions of Beurling type as a general frame for our considerations. The
reader is referred to Komatsu [9] for further information. In this pafief, ) always is a sequence of

positive numbers satisfying the following two standard assumptions pet
my = Mp411/M, is increasing (M1)
and
> 1/m, < . (M3")
p

ForQ) ¢ R™ open let

) (Q) = {f € C™(Q)|VK cc QVC >0:

| fllx.c = sup{|f(a) (z) |/(M|Q‘C'|a|)| reK, ac Ng‘} < oo}

and
D(Mp)(Q) = {f S QE(MP)(Q) | supp f CC Q}

be endowed with their natural topologie.,;, ) (€2) is the space of ultradifferentiable functions of Beurling

type.
The assumptions needed for decomposition are summarized in the following definition:

Definition 1 LetQ C R™ be open. Two Fchet space@F(Q), E(Q)) are called a decomposition pair if
there is a sequendg/,,),, as above such that

) €, (2) C E(Q) is dense and
id : €51,)(Q2) — E(Q) is continuous
i) D(]\4p)(Q) C F(Q) - E(Q) and

id: F(Q) — E(Q) is continuous
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iii) Let 7z and7r be the topologies aF'(2) and F'(2), respectively. Then the mapping
M, : (D, (Q),78)— (D, (Q), 7r), f — ©f
is continuous forp € D(ay,)(€2).

By Definition 1 i),
D(ar1,)(92) is dense inZ(2) . 1)

The mapping/,, from Definition 1 iii) thus can uniquely be extended to a continuous linear mapping
M, : E(Q) — F(Q). 2
For2 C R™ open and > 0 let
Q*:={z€C"|Rez € Q, |Imz| < dist(Rez,d9Q)} and
K. :={x € Q| dist(z,00) > cand |z| < 1/},

and letK? := (K.)* be defined similarly. LefZ(£2*) denote the holomorphic functions I endowed
with the seminorms

[l = sup{|f (2) | | 2 € KZ}.
Lemmal Let(F(Q), E(Q)) be a decomposition pair. Then the mapping
A:HQ)x F(Q) — EQ), A(f,9) == fla+y,
is surjective.

PrROOF A is defined and continuous by Definition 1 i) and ii). Since all spaces involved aehé&r
spaces, we have to show by Meise, Vogt [14, 26.1] Bat E(); is bounded if

Bluq+) C H(QY), is bounded and 3)
Bl C F(Q), is bounded 4)
By (3) there are > 0 andC' > 1 such that
|T(g)| < Clglk;, if T € Bandg € H(Q"). (5)
Let fi. (2) := (k/m)"/2 exp(—kY_[_,27) andp € Dy, )(Q2\K2.). Itis easily seen that
@ * fr — @in €,y (R) and|<p*fk|K§E —0. (6)
We thus get fofl" € B andy € Dy, (Q2\K2.) by Definition 1), (5) and (6)
T ()| :111?1|T(<P*fk)‘ SCligl’S"*f’f’K;E =0. (7
Choose) € D(ay,)(K:) such that) = 1 nearK,.. Then (1) implies that
T =T|p@yo My if T €B (8)

since this holds oy, (€2) by (7). B is thus bounded if/((2); by (8), (2) and (4). H
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Remark 1 Since the Gauss - Kernel is real &%, the Decomposition Lemma also holds for real decom-
position pairs(E(Q2), F(2)) with H(Q*) substituted by

Hp(Y*):={f € HQ") | f |q isrealvalued;,. W

The Decomposition Lemma will be applied in the next sections in several situations.
The holomorphic part in the Decomposition Lemma is definefldsince we used the Gauss-kernels
fx in (6). In the case of one variable, this can be improved considerably:

Theorem 2 Let) C R be open and le(F(12), E((2)) be a decomposition pair. Then the mapping
A:H(C\OQ)xF(Q) — BE(Q), A(f.9) == fla+g-
is surjective.

PROOF The theorem holds fd? = R by the Decomposition Lemma. So t# R and thusd) # &.
Similarly as above we have to show tHatC E(); is bounded if

Bl uc\o0) C H(C\0Q), is bounded and 9)
B|p) C F(Q), is bounded (10)
By (9) there are > 0 andC' > 1 such that

T(9)| < Clglg, if T € Bandg € H(C\0Q) (11)

whereK;. := {z € C\0Q | |z|, < 1/(3¢) anddist(z, Q) > 3¢}.

Letp € D(py,)(Q2\K2:). We want to show thal'(¢) = 0if T € B. The support ofp has finitely
many components and we may assume thab ¢ is contained in a componedt :=]a, b[ of Q with
—0<a<b<oo(Or—oo<a<b<oo) Leta=—ooandb < oo (The cases-co < a < b < co are
treated similarly). We can then assume thatp ¢ C |— oo, 1/2¢[ orsupp ¢ C ]b — 2¢, b[. The first case
is treated as in the proof of the Decomposition Lemma. To consider the second, we use the shifted Cauchy
kernelshy, (z) := 1/(2mi(z — i/k)) and setpy, := (hy — h_g) * (¢ ® &). Thenyy, is holomorphic on
C\([b— 2¢,b]) x{—1/k,1/k}. By Runge’s theorem, there is a sequefice H (C\{b}) such thatf; —
¢, uniformly on compact subsets 6f\ Ji,, whereJ, := ([b—2¢,b] x {—1/k,1/k} U ({b} x [-1/k, 1/k]).
Hence,f; — @5 also in€,,,)(22) and we get by Definition 1i) and (11)

1T (or)| = li]rn|T(fj)| < Clijxrl\fj|I~(35 = Cloxlg, it T € Bandk > 1/e.

¢r — 0 uniformly on K5, and ¢, — ¢ in €u,)(R), since the sequence convergesd(R) by
the theorem of dominated convergence and sidfeg, = (hy — h—i)*(9%¢ @ 6). We conclude that
T(p) = h,?l T(¢x) = 0, and the proof is completed as for the Decomposition Lemmill

3. Approximation theorems of Whitney type

In this section we will apply the Decomposition Lemma to deduce approximation results of Whitney type
in several function spaces including the sp@mMp}(Q)); of ultradistributions of Roumieu type (see
Example 1e)). Here and in the followirf, denotes the strong dual of a locally convex space

Let (M), always be a sequence of positive numbers satisfyiig) and(M3') and let| | denote
the sup-norm of.
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Example 1 Lety : Q@ — ]0, 1/2] be continuous. The following spaces(2), E(12)) are decomposition
pairs:

2) E(Q) = €, (Q) and F(Q) := €y, (2 n) :=
{FeC=Q) | p(f) = sgp(llf(“)/n’“(”‘““\\Q/M|a,)< o if k € N}
b) E(Q) := C®(Q) andF(Q) := C=(Q,7) :=
{£ec=@) [ p(f) = sup{lf /n"la | lal < k/n (@)} < ocif k € N}
c) Fork € Ny let () := C¥(Q) and F(Q) := C*(Q, ) :=

{£ €@ | p(f) = sp {15 /mla | la] < k} < o0}
d) Forl <p < oo let E(Q) := L°(Q) and
F(Q) = Ly(Qn) = {] € Ly(@) | () = |7 /], < o0}

e) BE(Q) := (D{Mp}(Q,n)); andF(Q) := ((S{Mp}(Q,n));where
D () :={feC(Q) | 3k =>1:|flrnr < oo} and
€,y (4m) == {f e C®(Q) |

JkeN:q(f) = sup{|f(“) (z)n (z) k(1+‘“‘)|/M‘a‘ |z €Q,aeN;} <oo}.

PROOFE The conditions in Definition 1 are trivially satisfied in the cases a) - d) (in case a), Definition Ziii)
is contained in Komatsu [9, Theorem 2.8]). In case/)) and F'(2) are FEchet spaces, since the spaces
D,y (2) and €y, 1 (€2, m) of test functions are compact injective limits of Banach spaces, hence (DFS)-
spaces. To check Definition 1 we notice that i) is well-known, ii) holds sibigg; ,(€2) is continuously
embedded and densedn,,; (€2,7), and iii) holds since

My : € 3(2,m) — Dyar,1(92) is continuous B

(G{Mp}(ﬂ, n)); is a weighted space of ultradistributions of Roumieu type endowed with its canonical
dual norms

Pk (f) = QZ (f) = SUP{’(fﬂ/)M ’ ¢ € e{Mp}(Qvn)amc(w) < 1} . (12)

b) and c) of the following approximation theorem are Whitney’s results mentioned in the introduction. The
proof of the theorem via the Decomposition Lemma 1 is almost trivial.

Theorem 3 Letn : Q@ — ]0, oo[ be continuous.

a) Foranyf € €y, () there isg € H(Q2*) such that
|1 (2) =g (2)| < n(2) T, if 2 € Qanda € Nj

b) Foranyf € C>(Q) thereisg € H(Q*) such that

1@ (z) —g') (z) | < n(z) fzeQand|a] <1/n(z).
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c) Letk € Ny. Forany f € C*(Q) there isg € H(Q2*) such that

£ (2) —g) ()| <n(x) ifzeQand|a| < k.
d) Foranyf € Li*¢(€), 1 < p < oo, there isg € H(2*) such that

1 =9)/nll,, o <1

e) Foranyf € (D{Mp}(Q)); there isg € H(Q2*) such that for any) € Dy, (92)
|(f = g, 0] < sup{[9 (@) (2) "1 /M) [ 2 € O, a € NG}

PROOF We may assume thatQ)) C ]0,1/2[ and apply the Decomposition Lemma 1 to the Examples 1
a) — e). The mappingl is open since it is surjective and the spaces involved akeHet spaces. Hence,
there are a continuous seminofinj on E(€2) andC' > 1 such that for anyf € E(Q2) there isg € H(2*)
such that

pi(f—9) <CIfl- (13)

SinceH (Q*) is dense inE(2) (e.g. by Definition 1i) and (6)), there is € H(Q2*) such thaf|f — ¢1]| <
1/C. With go € H(Q*) chosen for( f — ¢1) by (13), we get foly := g1 — g2

pi(f—9) <Clf—aqll <1.

This shows the claim in any of the five cases, where in case e) the definition (12) of theppdrm
€, 3 (2,n), isused. W

The Approximation Theorem 3a), d) and e) provides a version of Whitney’s approximation theorem for
ultradifferentiable ancLi,OC—functions and for the spad@,, 1(9);, of ultradistributions of Roumieu type,
respectively.

Using Theorem 2 (and Runge’s theorem) instead of the Decomposition Lemma, we can substitute
H(Q*) by H(C\09) in the Approximation Theorem 3 {2 C R.

4. Whitney’'s extension theorem

We already mentioned in the introduction that Whitney’s approximation theorem is connected to Whitney'’s
extension theorem. In fact, Whitney’s approximation theorem is used to extend Whitneydgfised on
F such that the extensions are analyticCarHere and in the following

F c R"is always closed anf? := R"™\ F'.

This “analytic extension” may be obtained in two steps: fijsg extended to a functiofi € C>°(R™) and
then an2-modification inC'>°(R"™) is chosen forf in the sense of the following

Definition 2 Letm € NoU{cc} and f € C™(R"). A functionf is called anQ2-modification inC™ (R")
for fif f € C™(R™) and

f is real analytic onf? (14)

aaﬂF = (’)“f’F for anya € N2 with |o| < m. (15)
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Q-modifications and corresponding continuous linRamodification operators have been studied by Val-
divia [21, 22], Schmets and Valdivia ([17], [18], [19]) and(BK, Frerick [4] for differentiable and ultrad-
ifferentiable functions. Using boundary values of harmonic functions, we obtained in Langenbruch [12] a
unified short proof of these results and an explicit formula for a continuous liaodification operator

on

BEX(R") := {f € C*(R") | ) is bounded for: € Nj } ,

whose restriction to classes of ultradifferentiable functions is also a continuous modification operator within
these classes.

To be precise, the following basic result was shown in Langenbruch [12, Theorem 1.2]: Assume that
there ish € BE >°(R™) such that

h |q is real analyticO < h [o< 1 andaah’F =0 foranya € Nj} . (16)

For f € BC>(R™) let T}, (f) be defined by

2

Cn+1

T (f) (z) :=

/f(a: —eh (@) (1+ ¢ "  deforz e RY (17)

wherec, 1 is the area of the unit spherelk*+!. Then

Tp : BEP(R™) — BE>°(R") is linear and continuous (18)
and

Ty, (f) is anf2 — modification inBC >°(R™) for any f € BE > (R"). (19)

Ty, is called arf) - modification operator ifB€ >°(R™). The modification problem was thus reduced to the
existence of a functioh satisfying (16).

To estimate the derivativess' (T}, (f)) for |a| < m in Langenbruch [12], we needed the derivatigéy
for |8] < m+1if mis odd. So there was a loss of one derivative in these estimates (as in Schmets/Valdivia
[17]). This caused a (weak) additional assumption (compared with the papers of Schmets and Valdivia) in
[12], when ultradifferentiable functions were considered.

In his Habilitationsschrift [7, chapter 4] Frerick proved that there are extension operators without loss
of derivatives. We will show now that a slight variant of the operatprfrom above will give anQ-
modification operator without loss of derivatives (and hence corresponding extension operators with optimal
continuity estimates).

More precisely, we will provide an operator T defined and continuou @6 (R™) whose restrictions
to BE™(R™) are ) - modification operators ifl8€™(R™) for anym € Ny U {oo}, that is, they are
continuous linear operators within these spacesfand 7'( f) is an{2 - modification inB¢ ™ (R™) for any
feBE™(R).

For this we need the following interpolation result: Hor=] — oo, y] andg € BE (1) let

lg|1 == sup |g(z)| and||g|| := sup |¢‘“];.
Ty a<k

Lemma 2 If 0 < g e BE>°(I)is strictly increasing o0, y] andg(y) < 1, then

lim ¢ (y)|In(1/g(y)) = 0 and
y\.0
19 (y)| In(1/g(y)) < 2°3||g||232 " foranya € N.
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PROOF By a standard interpolation inequality (see Beckenbach, Bellmann [1], p. 171) we have
1| < 4|h)y |2 if e BE (D).
This is applied a times to obtain

a a— 1/2, (a 1/2 a— 1/4 a14 1/2
199 ()] < 4lg@ D[P 1gl @tV < 4 412 gl A g (@14 g1 V2

J 27j —a _9—a
)2 gir a+1 —= 2 ;+?
< 4T550 27 g2 ]| = < 169(y)* " [lgll

since0 < g is increasing. The claim now follows directly sinte> g(y) > 0 and

1
‘ TIn(1/z) = — and lim 27 In(1/2) = 0if 7 €]0,1[. W
121]101,)1]3: n(1/z) o Jimy n(1/z) 7 €]0,1]

A modification operator without loss of derivatives is now obtained by means of one extra composition
with a functiong € B¢ >°(] — oo, 2[) satisfying the following conditions similar to (16)

g ljo,21 is real analytic and strictly increasing/jo,11< 1 andg [;—oc,0;= 0. (20)

We finally recall the formula of Fa di Bruno for the derivatives of the composition of#&f- functionsv
andg of one variable (see e.g. Krantz and Parks [11], Lemma 1.3.1):

(1) (b)
'U © g (b) Z kl g(t))(gli!(t))kl' - (g b!(t))kb (21)

wherek := 22:1 k;. The sum is taken over &l . . . k;, for which 22:1 jkj =b.

Theorem 4 Leth € BEC>(R™) andg € BE& (] — oo, 2]) satisfy(16)and(20), respectively. LeT'(f) :=
T,on(f) be defined fof € BE(R™) by (17). ThenT' is anQ-modification operator i8¢ ™ (R") for any
m € Nog U {oo}.

PROOF @) T is anf2 - modification operator if3¢ °(R™).
Indeed, let

2 —
vl = — [ . +f 72”'2)?321)/2 dé for (z,) € B x [0,1]

andwy (z,y) := vs(z, g(y)). Thus,
T(f) (@) = wy (2, h(2)). (22)
Since(1+ | - [2)~(*tD/2 ¢ L1 (R™), T(f)(x) is defined for any: € R™ and anyf € B¢ °(R"), and

IT(Hlle < sup gz, y)l < Cillflle if f € BE(R™). (23)
(z,y)€ER™ x[0,1]

Moreover,
wy € BEO(R™ x [0,1]) andwy(-,0) = fif f € BEO(R™) (24)

by (23) and the theorem of dominated convergence. H&lige € B¢ °(R™) by (22). T'(f) is real analytic
on{2 sincego h is strictly positive and real analytic ddand sincevs(x, y) is harmonic, hence real analytic
for y > 0. Thus,T(f) is anQ - modification inB¢ °(R") for any f € B °(R") by (24) and (22).
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b) To studyZ'(f) for f € BE™(R"), we now estimaté, v, for f € BE(R™) :
|Oyvy (2, y)| < (C+In(1/y)) max{]| f||e~, | grad(f)[|e~} if (z,y) € R"x ]0,1].
In order to do it, fixp € C5°(R™) such thatp(x) = 1if ||z < 1/2 andgo(x) = 0if ||z|| > 1. Then

S = [ E e+ [ T et

hence
En —(grad f(z — &y), + flz - rad ,
L0y vp(a,y) = / (grad f(z — &) fiwf?{z)(ﬂlw Sy)lgrad o(8y).€)
_ 61— 1 N (n+1)y?
+/f(x &1 @(f))((yz ¥ |§|2)(n+1)/2 (2 + |§|2)1+(n+1)/2)d§.

Sincep(y€) = 01if ||| > 1/y, the first integral can be estimated by

= 1

1/y
s mas{| e gxad(Plen) [ gorgar

< Cy max{]|f|[r~, || grad(f)l|lr~} In(1 + 1/y).
Similarly, the second integral is estimated by

Cs £ e / (5 + 1€[2) - D72de < Oyl g
1gl>1/2

c) Letf € B&™(R"™) andm € N. Forj = (a,2b + 1) € Nit1 1 =0, 1and|j| < m we have
vz, y) = (_1>baéU8aAbf(m,y) andd’wy (z,y) = 6§b+lwaaf(x7y) fory >0 (25)
sincevy(z,y) is harmonic fory > 0. By b) we thus get for odé < m

08w (2, y)| < (C5 + In(1/y))CE s 10° f|| g 1 (,y) € R"x ]0,1]. (26)

For evenk < m, (26) (without the logarithmic term) directly follows from (25) and (23). So (26) holds for
any k # 0. By the formula of Fa di Bruno (21), Lemma 2, (25), (23) and (26) we thus get ferNg“
and0 < |j| <m

|07 (wy (@, 9))] < CCY! Sup [[0% g 1f (20) € R 10,6, 27)
thatis,w; € BE™(R™x]0, 1]). Moreover, by the same arguments and (24),

0wy € BE™(R™ x [0,1]), 11{1%)agwf(x,y) = 0°f(z) if |a] < m, and
y

1%a;a§wf(x,y) =0if k # 0and|a| + k < m. (28)
Yy

thatis,wy € BE™(R™ x [0,1]), T(f) € %QW(R") and T is a continuous operator e ™ (R"™).
To prove (15) we notice that? (7'(f)(z)) = 0%(w¢(z, h(z))) consists of the sum abfwy)(z, h(z)) and
certain products each containif@g 9, w;) (a:, (x)) for somek # 0 and|a| + k& < m. We therefore get
by (28)

OUT(f)(@)) = (9%wy)(x,0) = 0°f(2) if |a| <mandz € F
sinceh(z) = 0. The theorem is thus proved. B

The existence of2-modifications inC™ (R™) for (unbounded)”™-functions now easily follows from
Theorem 4 and the Approximation Theorem:
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Corollary 1 Letm € Ny U {oc}. Any f € C™(R™) has an{2-modificationf in C™ (R™).

PrROOF By the Approximation Theorem 3b) and c) (for = R"™) there aref; € H(C™) and f» €
BE™(R™) such thatf = f1 + fo. With the Q-modification operatofl” from Theorem 4, we then set

f=f+T(f). N

To conside2-modification operators in classes(dff,)-ultradifferentiable functions, we must choose
the functionh in (16) such that

he B ) (R") = {f € CP[R") | VC >0:

1 llen o = sup{ | £ (@) |/ (Lo C1*))] @ € N2 € R"} < oo}

where(L,),, satisfiesM3’),
1} := L,/(pLy-1) is increasing (M17)

and
L, < C,e? M, foranye > 0. (29)

(see Langenbruch [12]). Such a functibrwas constructed in loc. cit. using infinite products and some
subtle arguments from the theory of ultradifferentiable functions. We will now show that the existénce of
is an easy consequence of the Approximation Theorem 3a):

Proposition 1  There ish € B&;, )(R™) satisfying(16)if (L,), satisfiesM1) and (M3').

PROOR W.lLo.g. letL, = 1. Itis clear that there i/ € B€ )(R") satisfying (16) such that/4 >
H > 00nQ. Setn := H/2|g and choosg € Hg(2*) by the Approximation Theorem 3a) (and Remark
1) for f := Hlq (andL, instead ofM,,). Then

|9 ()| < H (z)+|g(x) —H (z)| <1/2and
lg(x)| > H (z)—|g(x)—H ()| > H () /2> 0if 2 € Q.

SinceH ¢ ‘BQE(LP)(IR") andH = 0onF D 99, foranyC > 0 there areC; > 1 andK CC € such that
we get from the Approximation Theorem 3a) for any N{

19" (2) | < |¢' () ~H'@ (@) | + |H® (2) |
< H ()L, + 0L, <20,01IL, if 2 € Q\K . (30)
Sinceg € H(Q*) C €,(12), this implies that
sup [|¢'¥||,C' /Lja) < 0if C > 0. (31)

Seth (z) := g(z) if x € Q,andh (z) = 0on F. Thenh € C>(R™) andh is flat on F' since by (30),
g9 (x) — 0if 2 — 9Q sinceH is flatonF C 09. (31) then shows thdt € BE; (). W

Since we have no loss of derivatives for fRenodification operator in Theorem 4, we get corresponding
operators in classes of ultradifferentiable functions without any extra assumption:

Theorem 5 There is arf2-modification operator T ifB €, (R") if (M,,) satisfiegM1) and (M3').

PROOF By Langenbruch [12, Lemma 2.3] we can cho¢sg),, satisfying(M3’), (M1*) and (29). We
may assume thdt.,,), also satisfies

Lyi1 < APTIL, for anyp € No. (M2')
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Chooseh for (L,), by Proposmon 1. Then choog@for( »)p DY Proposition 1 (fon = 1, F' :=] — o0, 0]
and :=]0, oo[) and sety(y) := cf ) dt. Theng satisfies (20) for suitable ¢, and the operator
T := Tyn from Theorem 4 is af - mod|f|cat|on operator i3 > (R™). Using the notation from the
proof of Theorem 4, we also know that; € B¢ >°(R™ x [0, 1]). By Komatsu [10, Remark after Theorem
4.4], composition withh is continuous ing ) since by(M3')

M,(a—y) < C"O‘le ifvy<a

(Komatsu [9, Lemma 4.1]). We thus have to show thate BE ) (R"x]0,1]) if f € BE ;) (R™). To
see this we use the formula of Fa di Bruno (21): Eix> 0. Forb € N andy > 0 we get

Ia‘f?@zwf(fc’y)\ =10y (voe (2, 9(y)))]

(1) i (b)
< Z k1 k , ‘ 3'vaaf)(a:,g(y))(g U(y))kl”.(g b'(y))kb‘

L2) (Lb-‘rl)kb

b!

< 2l Z m(020) FMiajgn(
a * ENES kl * * 7% k
< C3(24) bl Z H(Czlc)kaHk (L1/(Lol1)) (Lb/(LOll)) '

< Cs5(24)°Cl Y C4O)* Mo L), < C5(4A) clalzi(ch)kakLb,k

7k'(

< Cr(4A)P CIIT M 1 > kl!%c!; < Cs(CoC) " Mg

k!
where the constants;, are independent of C, b and y, and where we have used (25), (21), (26), Lemma 2,
(M2') and(M1*) for (L,),, (29) and finally Lemma 1.3.2 from Krantz and Parks [11]®

Notice thatZ, ]'[”+1 i (In(1 + 5))? satisfies all assumptions needed in the proof of Theorem 5 and
that for anys > 1
L, < C.eP(p!)* foranyp € N.

By Theorem 4 and 5, the operafBbr= T, constructed withh, g € BE&y, ) is anf2 - modification operator
in any of the standard classes of differentiable functions, namedf' (R™) for m € Ny U {oo} and in
the Gevrey classeg’(R") = BE(,+)(R") and™*(R") = B &1 (R™) for anys > 1 since Theorem 5
also holds for the class@¢,,, , (R") of ultradifferentiable functions of Roumieu type (by essentially the
same proof).

The existence of ultradifferentiabf&modifications for unbounded ultradifferentiable functions follows
from Theorem 5 as in Corollary 1.

5. A criterion for surjectivity

We will first prove a criterion for surjectivity of continuous linear operators betweénHeat spaces based
on the Decomposition Lemma 1. This will be applied to several linear problems of analysis including the
representation of ultradistributions as boundary values of holomorphic functions and solvability questions
for partial differential operators and convolution operators.

We begin with corresponding examples of decomposition pairs:

Remark 2 Let E((2) be a FEchet space with the topology defined by an increasing sequence of seminorms
| ||lx- We assume that

a) E(Q) is the space of sections éhof a sheaf’ onR™ which has continuous restriction mappings
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b) there is(M,), such that
) €, () C E(R) is dense and
id : €(p,)(Q2) C E() is continuous
i) Fory € D(,y,)(£2) the mapping

M, : (D(Mp)(Q),TQ)—’ (D(pr)(ﬂ)ﬂ'ﬂ)a I —ef,

is continuous for the topology, induced byE ().

For a (fixed) locally finite resolution of the identity,,).en C Dz, (£2) on 2 and increasing sequences
(Jn)nen € Nand(Cyp)nen C [1, 00[ we define

E((j), (Ca)s Q)= {F € B) | VRN au () i= 3 [ Mo, ()]}, Cu2™ < 0}

neN
Then(E((jn), (Cn); ), E(R)) is a decomposition pair.

PROOF ) F(2) := E((jn), (Cr); Q) is defined sincéll,, (f) is defined forf € E(2) by b)i), b)ii)
and continuous extension.

) Definition 1 i)—iii) is satisfied.

Indeed i) holds by assumptionD;, ,(2) C F(£2) by Remark 2b)i) and 2b)ii) since the sum defining
g (f) then is finite. Forf € F(2), the sum)_ M., (f) absolutely converges iB(£2) with limit f (use
assumption a)). It is thus clear th&((?) is continuously embedded i (2). iii) is also evident since the
sum defininggy, (M,, (f)) is finite for o € D, ().

[y F(Q) is complete. Indeed, iff;),cn is a Cauchy sequence H(S2), then by Definition 1ii),(f;) en
converges irE () with limit f.

C, 2"+ < 92
Jnt(k+1) a

| Mo (55 = 1)

CnQn(k?-‘rl) <e+ HMQDn (f] — fm)

Jn+(k+1)
if 7 > jo (¢) (@ndm > my(e,n)). Thus,

a(fi —f) <eifj>jo,
feFQ) andlimf; = fin F(2). A

For E(Q2) as in Remark 2 and a compagtC 2 we set

Eo(K) = {f € E(Q) | supp (f) C K} andEy(Q) := | ] Eo(K).
K ccQ

We now prove that continuous linear mappings ifit(f2) are surjective if the range contaif% (2) and
H(Q*). The latter condition is easily verified in many concrete situations.

Theorem 6 Let E be a Fiechet space and IdE((2) satisfy the assumptions of Remark 2. Cebe a
locally convex space containing(2) as a continuously embedded subspace and let

T : E — G be linear and continuous

Thenrange (T') D E(R) if range (T') D (Eo(Q) U H(QY)).
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PROOF Ey(K) is a Féchet space foK ccC 2 by Remark 2a). The mapping
T Ey(K) — E/ker(T)

is defined and closed by assumption. Heficé is continuous. Choose a compact exhaustifi ),cn
of Q. Then for anyn € N there are increasing sequenggs) € N andC(n) > 1 such that for any
g € Eo(K,) there ish € E with T'(h) = g such that

1A% < C () 19l ) if 9 € Eo(Kn)- (32)
Fix a resolution of the identityy,,) as in Remark 2 witlupp ¢,, C K,, and set
F(Q) = E((j (n)), (C (n));9).

By Remark 2 and the Decomposition Lemma, foe E(2) we can then choosg € H(Q*) such that
(f — f) € F(Q). Chooseéh,, € E for g, := M,, (f — f) € Eo(K,) as in (32). Therh := Yophn € E
exists since B

D lrally < 2 1Me, (f = Dl ) () 2" < 00

n>k

by (32) and the choice df(Q2). Also,

T(h):ZT(hn):ZMsan(f_f):f_f

sinceT is continuous and linear. This proves the theorem sjheeH (%) and thus there i$' € E with
T(F) = f by assumption. W

Theorem 6 can often be used as a substitute for the Mittag-Leffler procedure. Roughly, the approxi-
mation procedure is realized in Theorem 6 in the range spa@é do density condition for the kernel
spectrum off" is needed.

We now give some standard examples for Remark 2, includisygridnder’s spaceB;?g(Q), the space
D™ (Q); of distributions of ordefn and the spaces af-ultradifferentiable functions and-ultradistributions
(see Bprck [3] and Braun, Meise and Taylor [5], which will be used as standard reference).

Herew : [0, 00 — [0, oo is an increasing continuous function such that

w(2t) < A(w(t) + 1) foranyt >0 (33)
/ w(t)/(1+1?)dt < 0o (34)
0
¢ :=woexp isconvex ok and lim ¢ (z)/z =o0. (35)

(33) - (35) are the conditionsy) — () of Braun, Meise and Taylor [5]. By (35) the Young conjugateof
@ is defined. Let

€ (Q) 1= {f e 0°(Q) ‘ VK CCQ, ¥C>0:
fl s = sup{ |1 (@) exp(—¢"(lal €)/C) | @ € K, a € Ny} < oo
Dy (Q) = {feCEQ) | 3C>0:|flgnc < oo}
be endowed with their natural &het topology (and (DFS)-topology, respectively).

Example 2 The following spaces satisfy the assumptions of Remark 2:
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a) i) €, ()
i) € (Q)

b) C*¥(Q) for k € Ng U {o0}.
C) L;)OC(Q), 1<p<oc.
d) B)i(9),1 < p < oo, for weightsk € & (see Hormander [8, section 10.1]).
e) D™(Q), == ({f € C™(Q) | supp f cC Q}); form e Ny .
DD Diary ()
i) Doy ().

PROOFE The cases a)i), b), c) and f)i) were already treated in Example 1. For d) we reférrmaHder [8,
Theorems 10.1.7 and 10.1.15]. e) is easy. To prove a)ii) and f)ii), an easy construction provides a sequence
(M,) with (M1) and(M3') such that®,; () C €,)(€2). Anyway, the space€,,(£2) could also take

the role of&,, (§2) as general frame in this paper.l

As a first application of Theorem 6 we consider ultradistributional boundary values of holomorphic
functions. The situation is the following:
For f € H((C\R)") the boundary valug ( f) in the sense oDy, ; (R"); is defined if the limit

R =3 Jim [ [ 1t +icnew) ds

exists for anyy € Dyyy 3 (R™) (hereo := {1,—-1}"). The boundary value problem can now be divided
into two parts:

i) Find a weighted spacHy, of holomorphic functions defined i€\R)™ such that the ultradistribu-
tional boundary valud (f) exists for anyf € Hyy .

i) Show that any ultradistribution is the boundary value of sgfne Hyy, i.e. that the boundary value
mapping
R: Hy — Dy 1 (R™)" s surjective

The second problem is usually solved by means of topological tensorproducts (see Petzsche [15]) while the
use of Theorem 6 provides an elementary proof. We need the following assumption: tHeeelssuch
that for anyp € N

my, +2 <mjy, (M4")
wherems, := M, /(M,_1p). Let
M*(t) := sup{t’p! My /M, ’ peN}fort>0

and letH ({M,}) denote the set of functiong € H ((C\R)") such that for any closed cofec {y €
R™ | y; # 0forany;} and anyL > 0

|f(2)] < Crexp(M*(L/|Imzl)) if Im(z) €T.
Theorem 7 Let(M,) satisfy(M1*), (M2'), (M3'), and(M4'). Then

R: H({My})— Dy, y(R")" is surjective

300



A general approximation theorem of Whitney type

PROOF  The boundary valug (f) exists forf € H({M,}) by Schroer [20, 5.1] (see also Komatsu [9]
and Petzsche/Vogt [16], where slightly stronger assumptions are used). Also by loB.(£i({},})) >
G{]\/jz)} (R’ﬂ);}
Clearly, R(H ({M,})) D H(C™) since
R(f) = flg~ for f € H(C"),

where f (z) := f(2) if Im z; > 0 for any j and f(z) := 0 otherwise. The claim now follows from
Theorem 6 and Example 2. &

The boundary value problem for distributions and ultradistributions of Beurling type is much more
involved (see Vogt [23] and Petzsche [15]).

As a second application of Theorem 6 we notice that in the situation of Example 2, secti@nsan
be extended modul& (2*) to global sections:

Proposition 2 Let F(2) be one of the spaces from Example 2. Then for fry E(2) there areF’ €
E(R"™)andg € H(Q*) such thatf = F|q + g.

PrROOF This follows from Theorem 6 applied to
T:ER") x HQ*) — E(Q), T(F,g) :=Flg+g. N
We now consider convolution operators. e E(R™) where
E=C®0rE=¢gorE = (Dy,)". (36)
Let2, Q2 C R™ be open and letupp(u) + 21 C Q9. Then the convolution operator
ux: E(Qy) — E(Q4)

is defined, continuous and linear (see e.@iridander [8, chapter 16] and Bonet, Galbis, Meise [2]). We
now get the following result:

Theorem 8 In the above situation the following statements are equivalent:
a) px: E(Q2) — E(Q) is surjective.
b) i) px (E(R™))D Eo(R™) and
i) px (E(Q2))D H(Q).
PROOF “b)=-a)" Itiswell known that
»xx: H(C") — H(C") is surjective (37)
for any > € H(C™)’ (see Ehrenpreis [6] and Malgrange [13]). Hence
+ (B(R"))= E(R") (38)

by Theorem 6 and b)i). Using (38) and b)ii) Proposition 2 implies that{ £(€2;)) = E().
“a) = b)" ii) clearly holds. i) follows from Hbrmander [8, Theorem 16.5.7] and Bonet, Galbis and Meise
[2, Proposition 2.6, Corollary 2.9, and Theorem 3.5], respectivelll

Condition 8 b)i) is equivalent to (38) and to the existence of an elementary solutio(iRfi)’ (and in
Dy (R™)", and inDy,,; (R™)’, respectively). Further equivalent conditions for surjectivity of convolution
operators are given in the detailed paper of Bonet, Galbis and Meise [2].

Since any partial differential operatét(D) with constant coefficients has a distributional elementary
solution, Theorem 8 implies the following result which was first proved by Zampieri [25]:
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Corollary 2 LetQ C R™ be open. IfP(D)A(Q2) = A(QY), thenP(D)C>(2) = C>*(Q), i.e. Qs
P-convex for supports. &

Acknowledgement.  The author wants to thank L. Frerick (Wuppertal) for several interesting discus-
sions concerning the subject of this paper.
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