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A general approximation theorem of Whitney type
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Abstract. We show that Whitney’s approximation theorem holds in a general setting including spaces of
(ultra)differentiable functions and ultradistributions. This is used to obtain real analytic modifications for
differentiable functions including optimal estimates. Finally, a surjectivity criterion for continuous linear
operators between Fréchet sheaves is deduced, which can be applied to the boundary value problem
for holomorphic functions and to convolution operators in spaces of ultradifferentiable functions and
ultradistributions.

Un teorema de aproximaci ón general de tipo Whitney

Resumen. Probamos que el teorema de aproximación de Whitney se cumple en un contexto general
que incluye espacios de funciones (ultra)diferenciables y de ultradistribuciones. Este resultado se usa
para obtener modificaciones real analı́ticas de funciones diferenciables incluyendo estimacionesóptimas.
Finalmente se deduce un criterio para la sobreyectividad de operadores lineales y continuos entre haces de
Fréchet que puede ser aplicado a problemas de valores frontera de funciones holomorfas y a operadores
de convolucíon entre espacios de funciones ultradiferenciables y de ultradistribuciones.

1. Introduction

Whitney’s approximation theorem roughly states thatCk-functions defined on an open setΩ ⊂ Rn can be
approximated by real analytic functions with arbitrary precision and up to any order of derivatives. Whitney
used this result in his famous paper [24] to show that aCk-Whitney jetf defined on a closed setF ⊂ Rn can
be extended to a functioñf ∈ Ck(Rn) such thatf̃ |Ω ∈ A(Ω), that is,f̃ |Ω is real analytic onΩ := Rn\F .

ForC∞-functions, Whitney’s approximation theorem can be stated as follows:

Theorem 1 ([24, Lemma 6]) Let Ω ⊂ Rn be open and letη: Ω −→ ]0,∞[ be continuous. For any
f ∈ C∞(Ω) there isg ∈ A(Ω) such that∣∣f (a) (x)−g(a) (x)

∣∣ ≤ η (x) if x ∈ Ω and |a| ≤ 1/η (x) . �

A corresponding result also holds for functions inCk(Ω).
In this paper we will show that Whitney’s approximation theorem holds in a rather general setting

including spaces of (ultra)differentiable functions, locally integrable functions and also ultradistributions.
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In fact, the key result can be stated as a decomposition lemma (see section 2) having a surprisingly short
functional analytic proof based on a surjectivity criterion for continuous linear mappings between Fréchet
spaces (see Meise, Vogt [14, 26.1]).

We then deduce Whitney’s approximation theorem for several concrete spaces from analysis. This
is applied to Whitney’s extension problem mentioned above usingΩ-modification operators as they were
studied in Langenbruch [12].

In section 5 we finally prove a surjectivity criterion related to Whitney’s approximation theorem (see
Theorem 6), which roughly states that a continuous linear operator between Fréchet sheaves is surjective if
its range contains the sections with compact support and the real analytic functions. This is then applied to
the representation of ultradistributions as boundary values of holomorphic functions and to the surjectivity
of convolution operators in spaces of ultradifferentiable functions and ultradistributions, respectively.

The author wants to thank L. Frerick (Wuppertal) for several interesting discussions concerning the
subject of this paper.

2. A decomposition lemma

In this section we will prove a basic decomposition lemma, which can be considered as a general version
of Whitney’s approximation theorem (see the discussion in section 3).

We use ultradifferentiable functions of Beurling type as a general frame for our considerations. The
reader is referred to Komatsu [9] for further information. In this paper,(Mp)p∈N0

always is a sequence of
positive numbers satisfying the following two standard assumptions

mp := Mp+1/Mp is increasing (M1)

and ∑
p

1/mp <∞ . (M3′)

ForΩ ⊂ Rn open let

E(Mp)(Ω) :=
{
f ∈ C∞(Ω)

∣∣ ∀K ⊂⊂ Ω∀C > 0 :

‖f‖K,C := sup
{∣∣f (a) (x)

∣∣/(
M|α|C

|a|)∣∣ x ∈ K, α ∈ Nn0
}
<∞

}
and

D(Mp)(Ω) :=
{
f ∈ E(Mp)(Ω)

∣∣ supp f ⊂⊂ Ω
}

be endowed with their natural topologies.E(Mp)(Ω) is the space of ultradifferentiable functions of Beurling
type.

The assumptions needed for decomposition are summarized in the following definition:

Definition 1 LetΩ ⊂ Rn be open. Two Fŕechet spaces
(
F (Ω), E(Ω)

)
are called a decomposition pair if

there is a sequence(Mp)p as above such that

i) E(Mp)(Ω) ⊂ E(Ω) is dense and

id : E(Mp)(Ω) −→ E(Ω) is continuous.

ii) D(Mp)(Ω) ⊂ F (Ω) ⊂ E(Ω) and

id : F (Ω) −→ E(Ω) is continuous.
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iii) Let τE andτF be the topologies ofE(Ω) andF (Ω), respectively. Then the mapping

Mϕ :
(
D(Mp)(Ω), τE

)
−→

(
D(Mp)(Ω), τF

)
, f −→ ϕf ,

is continuous forϕ ∈ D(Mp)(Ω).

By Definition 1 i),
D(Mp)(Ω) is dense inE(Ω) . (1)

The mappingMϕ from Definition 1 iii) thus can uniquely be extended to a continuous linear mapping

Mϕ : E(Ω) −→ F (Ω) . (2)

ForΩ ⊂ Rn open andε > 0 let

Ω∗ :=
{
z ∈ Cn

∣∣ Re z ∈ Ω, | Im z| < dist(Re z, ∂Ω)
}

and

Kε :=
{
x ∈ Ω

∣∣ dist(x, ∂Ω) ≥ ε and |x| ≤ 1/ε
}
,

and letK∗
ε := (Kε)∗ be defined similarly. LetH(Ω∗) denote the holomorphic functions onΩ∗ endowed

with the seminorms
|f |K∗

ε
:= sup

{
|f (z) |

∣∣ z ∈ K∗
ε

}
.

Lemma 1 Let
(
F (Ω), E(Ω)

)
be a decomposition pair. Then the mapping

A : H(Ω∗)× F (Ω) −→ E(Ω), A(f, g) := f |Ω + g ,

is surjective.

PROOF. A is defined and continuous by Definition 1 i) and ii). Since all spaces involved are Fréchet
spaces, we have to show by Meise, Vogt [14, 26.1] thatB ⊂ E(Ω)′b is bounded if

B|H(Ω∗) ⊂ H(Ω∗)′b is bounded and (3)

B|F (Ω) ⊂ F (Ω)′b is bounded. (4)

By (3) there areε > 0 andC ≥ 1 such that∣∣T (g)
∣∣ ≤ C|g|K∗

2ε
if T ∈ B andg ∈ H(Ω∗) . (5)

Let fk (z) := (k/π)n/2 exp
(
−k

∑n
j=1z

2
j

)
andϕ ∈ D(Mp)(Ω\K2ε). It is easily seen that

ϕ ∗ fk −→ ϕ in E(Mp)(Rn) and
∣∣ϕ ∗ fk∣∣K∗

2ε
−→ 0 . (6)

We thus get forT ∈ B andϕ ∈ D(Mp)

(
Ω\K2ε

)
by Definition 1 i), (5) and (6)∣∣T (ϕ)

∣∣ = lim
k

∣∣T (ϕ ∗ fk)
∣∣ ≤ C lim

k

∣∣ϕ ∗ fk∣∣K∗
2ε

= 0 . (7)

Chooseψ ∈ D(Mp)(Kε) such thatψ = 1 nearK2ε. Then (1) implies that

T = T |F (Ω) ◦Mψ if T ∈ B (8)

since this holds onD(Mp)(Ω) by (7).B is thus bounded inE(Ω)′b by (8), (2) and (4). �
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Remark 1 Since the Gauss - Kernel is real onRn, the Decomposition Lemma also holds for real decom-
position pairs

(
E(Ω), F (Ω)

)
with H(Ω∗) substituted by

HR(Ω∗) := {f ∈ H(Ω∗) | f |Ω is real valued}. �

The Decomposition Lemma will be applied in the next sections in several situations.
The holomorphic part in the Decomposition Lemma is defined onΩ∗ since we used the Gauss-kernels

fk in (6). In the case of one variable, this can be improved considerably:

Theorem 2 LetΩ ⊂ R be open and let
(
F (Ω), E(Ω)

)
be a decomposition pair. Then the mapping

A : H
(
C\∂Ω

)
×F (Ω) −→ E(Ω), A(f, g) := f |Ω + g .

is surjective.

PROOF. The theorem holds forΩ = R by the Decomposition Lemma. So letΩ 6= R and thus∂Ω 6= ∅.
Similarly as above we have to show thatB ⊂ E(Ω)′b is bounded if

B|H(C\∂Ω) ⊂ H(C\∂Ω)′b is bounded and (9)

B|F (Ω) ⊂ F (Ω)′b is bounded. (10)

By (9) there areε > 0 andC ≥ 1 such that∣∣T (g)
∣∣ ≤ C|g|K̃3ε

if T ∈ B andg ∈ H
(
C\∂Ω

)
(11)

whereK̃3ε :=
{
z ∈ C\∂Ω

∣∣ |z|1 ≤ 1/(3ε) anddist(z, ∂Ω) ≥ 3ε
}

.
Let ϕ ∈ D(Mp)

(
Ω\K2ε

)
. We want to show thatT (ϕ) = 0 if T ∈ B. The support ofϕ has finitely

many components and we may assume thatsuppϕ is contained in a componentI := ]a, b[ of Ω with
−∞ ≤ a < b < ∞ (or−∞ < a < b ≤ ∞). Let a = −∞ andb < ∞ (The cases−∞ < a < b ≤ ∞ are
treated similarly). We can then assume thatsuppϕ ⊂ ]−∞, 1/2ε[ or suppϕ ⊂ ]b− 2ε, b[. The first case
is treated as in the proof of the Decomposition Lemma. To consider the second, we use the shifted Cauchy
kernelshk (z) := 1/

(
2πi(z − i/k)

)
and setϕk := (hk − h−k) ∗ (ϕ ⊗ δ). Thenϕk is holomorphic on

C\
(
[b− 2ε, b]

)
×{−1/k, 1/k}. By Runge’s theorem, there is a sequencefj ∈ H

(
C\{b}

)
such thatfj −→

ϕk uniformly on compact subsets ofC\Jk, whereJk :=
(
[b−2ε, b]×{−1/k, 1/k} ∪

(
{b}× [−1/k, 1/k]

)
.

Hence,fj −→ ϕk also inE(Mp)(Ω) and we get by Definition 1i) and (11)∣∣T (ϕk)
∣∣ = lim

j

∣∣T (fj)
∣∣ ≤ C lim

j
|fj |K̃3ε

= C|ϕk|K̃3ε
if T ∈ B andk ≥ 1/ε .

ϕk −→ 0 uniformly on K̃3ε andϕk −→ ϕ in E(Mp)(R), since the sequence converges inC(R) by
the theorem of dominated convergence and since∂axϕk =

(
hk − h−k

)
∗
(
∂axϕ ⊗ δ

)
. We conclude that

T (ϕ) = lim
k
T (ϕk) = 0, and the proof is completed as for the Decomposition Lemma.�

3. Approximation theorems of Whitney type

In this section we will apply the Decomposition Lemma to deduce approximation results of Whitney type
in several function spaces including the space

(
D{Mp}(Ω)

)′
b

of ultradistributions of Roumieu type (see
Example 1e)). Here and in the followingE′b denotes the strong dual of a locally convex spaceE.

Let (Mp)p always be a sequence of positive numbers satisfying(M1) and(M3′) and let‖ ‖Ω denote
the sup-norm onΩ.
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Example 1 Letη : Ω −→ ]0, 1/2] be continuous. The following spaces
(
F (Ω), E(Ω)

)
are decomposition

pairs:

a) E(Ω) := E(Mp)(Ω) andF (Ω) := E(Mp)(Ω, η) :={
f ∈ C∞(Ω)

∣∣ pk(f) := sup
a

(
‖f (a)/ηk(1+|a|)‖Ω

/
M|a|

)
<∞ if k ∈ N

}
b) E(Ω) := C∞(Ω) andF (Ω) := C∞(Ω, η) :={

f ∈ C∞(Ω)
∣∣ pk(f) := sup

{
‖f (a)/ηk‖Ω

∣∣ |a| ≤ k/η (x)
}
<∞ if k ∈ N

}
c) For k ∈ N0 letE(Ω) := Ck(Ω) andF (Ω) := Ck(Ω, η) :={

f ∈ Ck(Ω)
∣∣ p1(f) := sup

{
‖f (a)/η‖Ω

∣∣ |a| ≤ k
}
<∞

}
d) For 1 ≤ p <∞ letE(Ω) := Lloc

p (Ω) and

F (Ω) := Lp(Ω, η) :=
{
f ∈ Lp(Ω)

∣∣ p1(f) := ‖f/η‖Lp(Ω) <∞
}

e) E(Ω) :=
(
D{Mp}(Ω, η)

)′
b

andF (Ω) :=
(
E{Mp}(Ω, η)

)′
b

where

D{Mp}(Ω) :=
{
f ∈ C∞0 (Ω)

∣∣ ∃ k ≥ 1 : ‖f‖Rn,k <∞
}

and

E{Mp}(Ω, η) :=
{
f ∈ C∞(Ω)

∣∣
∃ k ∈ N : qk (f) := sup

{∣∣f (a) (x) η (x) k(1+|a|)
∣∣/M|a|

∣∣ x ∈ Ω, a ∈ Nn0
}
<∞

}
.

PROOF. The conditions in Definition 1 are trivially satisfied in the cases a) - d) (in case a), Definition 1iii)
is contained in Komatsu [9, Theorem 2.8]). In case e),E(Ω) andF (Ω) are Fŕechet spaces, since the spaces
D{Mp}(Ω) andE{Mp}(Ω, η) of test functions are compact injective limits of Banach spaces, hence (DFS)-
spaces. To check Definition 1 we notice that i) is well-known, ii) holds sinceD{Mp}(Ω) is continuously
embedded and dense inE{Mp}(Ω, η), and iii) holds since

Mϕ : E{Mp}(Ω, η) −→ D{Mp}(Ω) is continuous. �(
E{Mp}(Ω, η)

)′
b

is a weighted space of ultradistributions of Roumieu type endowed with its canonical
dual norms

pk (f) := q∗k (f) := sup
{∣∣〈f, ψ〉∣∣ ∣∣ ψ ∈ E{Mp}(Ω, η), qk(ψ) ≤ 1

}
. (12)

b) and c) of the following approximation theorem are Whitney’s results mentioned in the introduction. The
proof of the theorem via the Decomposition Lemma 1 is almost trivial.

Theorem 3 Letη : Ω −→ ]0,∞[ be continuous.

a) For anyf ∈ E(Mp)(Ω) there isg ∈ H(Ω∗) such that∣∣f (a) (x)−g(a) (x)
∣∣ ≤ η (x) 1+|a|M|a| if x ∈ Ω anda ∈ Nn0

b) For anyf ∈ C∞(Ω) there isg ∈ H(Ω∗) such that∣∣f (a) (x)−g(a) (x)
∣∣ ≤ η (x) if x ∈ Ω and |a| ≤ 1/η (x) .
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c) Letk ∈ N0. For anyf ∈ Ck(Ω) there isg ∈ H(Ω∗) such that∣∣f (a) (x)−g(a) (x)
∣∣ ≤ η (x) if x ∈ Ω and |a| ≤ k .

d) For anyf ∈ Lloc
p (Ω), 1 ≤ p <∞, there isg ∈ H(Ω∗) such that∥∥(f − g)/η

∥∥
Lp(Ω)

≤ 1

e) For anyf ∈
(
D{Mp}(Ω)

)′
b

there isg ∈ H(Ω∗) such that for anyψ ∈ D{Mp}(Ω)∣∣〈f − g, ψ〉
∣∣ ≤ sup

{∣∣ψ(a) (x) η (x) 1+|a|∣∣/M|a|
∣∣ x ∈ Ω, a ∈ Nn0

}
.

PROOF. We may assume thatη(Ω) ⊂ ]0, 1/2[ and apply the Decomposition Lemma 1 to the Examples 1
a) – e). The mappingA is open since it is surjective and the spaces involved are Fréchet spaces. Hence,
there are a continuous seminorm‖ ‖ onE(Ω) andC ≥ 1 such that for anyf ∈ E(Ω) there isg ∈ H(Ω∗)
such that

p1(f − g) ≤ C‖f‖ . (13)

SinceH(Ω∗) is dense inE(Ω) (e.g. by Definition 1i) and (6)), there isg1 ∈ H(Ω∗) such that‖f − g1‖ ≤
1/C. With g2 ∈ H(Ω∗) chosen for(f − g1) by (13), we get forg := g1 − g2

p1(f − g) ≤ C‖f − g1‖ ≤ 1 .

This shows the claim in any of the five cases, where in case e) the definition (12) of the normp1 in
E{Mp}(Ω, η)

′
b is used. �

The Approximation Theorem 3a), d) and e) provides a version of Whitney’s approximation theorem for
ultradifferentiable andLloc

p -functions and for the spaceD{Mp}(Ω)′b of ultradistributions of Roumieu type,
respectively.

Using Theorem 2 (and Runge’s theorem) instead of the Decomposition Lemma, we can substitute
H(Ω∗) byH(C\∂Ω) in the Approximation Theorem 3 ifΩ ⊂ R.

4. Whitney’s extension theorem

We already mentioned in the introduction that Whitney’s approximation theorem is connected to Whitney’s
extension theorem. In fact, Whitney’s approximation theorem is used to extend Whitney jetsg defined on
F such that the extensions are analytic onΩ. Here and in the following

F ⊂ Rn is always closed andΩ := Rn\F .

This “analytic extension” may be obtained in two steps: first,g is extended to a functionf ∈ C∞(Rn) and
then anΩ-modification inC∞(Rn) is chosen forf in the sense of the following

Definition 2 Letm ∈ N0 ∪ {∞} andf ∈ Cm(Rn). A functionf̃ is called anΩ-modification inCm(Rn)
for f if f̃ ∈ Cm(Rn) and

f̃ is real analytic onΩ (14)

∂αf̃ ∣∣F = ∂αf ∣∣F for anyα ∈ Nn0 with |α| ≤ m. (15)
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Ω-modifications and corresponding continuous linearΩ-modification operators have been studied by Val-
divia [21, 22], Schmets and Valdivia ([17], [18], [19]) and Brück, Frerick [4] for differentiable and ultrad-
ifferentiable functions. Using boundary values of harmonic functions, we obtained in Langenbruch [12] a
unified short proof of these results and an explicit formula for a continuous linearΩ-modification operator
on

BC∞(Rn) :=
{
f ∈ C∞(Rn)

∣∣ f (a) is bounded fora ∈ Nn0
}
,

whose restriction to classes of ultradifferentiable functions is also a continuous modification operator within
these classes.

To be precise, the following basic result was shown in Langenbruch [12, Theorem 1.2]: Assume that
there ish ∈ BC∞(Rn) such that

h |Ω is real analytic, 0 < h |Ω≤ 1 and∂αh∣∣F = 0 for anyα ∈ Nn0 . (16)

Forf ∈ BC∞(Rn) let Th (f) be defined by

Th (f) (x) :=
2

cn+1

∫
f
(
x− ξh (x)

)(
1 + |ξ| 2

)−(n+1)/2
dξ for x ∈ Rn (17)

wherecn+1 is the area of the unit sphere inRn+1. Then

Th : BC∞(Rn) −→ BC∞(Rn) is linear and continuous (18)

and

Th (f) is anΩ−modification inBC∞(Rn) for anyf ∈ BC∞(Rn) . (19)

Th is called anΩ - modification operator inBC∞(Rn). The modification problem was thus reduced to the
existence of a functionh satisfying (16).

To estimate the derivatives∂a
(
Th (f)

)
for |a| ≤ m in Langenbruch [12], we needed the derivatives∂βf

for |β| ≤ m+1 if m is odd. So there was a loss of one derivative in these estimates (as in Schmets/Valdivia
[17]). This caused a (weak) additional assumption (compared with the papers of Schmets and Valdivia) in
[12], when ultradifferentiable functions were considered.

In his Habilitationsschrift [7, chapter 4] Frerick proved that there are extension operators without loss
of derivatives. We will show now that a slight variant of the operatorTh from above will give anΩ-
modification operator without loss of derivatives (and hence corresponding extension operators with optimal
continuity estimates).

More precisely, we will provide an operator T defined and continuous onBC 0(Rn) whose restrictions
to BCm(Rn) are Ω - modification operators inBCm(Rn) for anym ∈ N0 ∪ {∞}, that is, they are
continuous linear operators within these spaces andf̃ := T (f) is anΩ - modification inBCm(Rn) for any
f ∈ BCm(Rn).

For this we need the following interpolation result: ForI :=]−∞, y] andg ∈ BC∞(I) let

|g|I := sup
x≤y

|g(x)| and‖g‖k := sup
a≤k

|g(a)|I .

Lemma 2 If 0 ≤ g ∈ BC∞(I) is strictly increasing on[0, y] andg(y) ≤ 1, then

lim
y↘0

|g(a)(y)| ln(1/g(y)) = 0 and

|g(a)(y)| ln(1/g(y)) ≤ 2a+3‖g‖1−2−a

a+1 for anya ∈ N.
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PROOF. By a standard interpolation inequality (see Beckenbach, Bellmann [1], p. 171) we have

|h′|I ≤ 4|h|1/2I |h′′|1/2I if h ∈ BC∞(I).

This is applied a times to obtain

|g(a)(y)| ≤ 4|g(a−1)|1/2I |g(a+1)|1/2I ≤ 4 41/2|g(a−2)|1/4I |g(a)|1/4I ‖g‖1/2
a+1

≤ 4
∑a−1

j=0 2−j

|g|2
−a

I ‖g‖
∑a

j=1 2−j

a+1 ≤ 16 g(y)2
−a

‖g‖1−2−a

a+1

since0 ≤ g is increasing. The claim now follows directly since1 ≥ g(y) > 0 and

sup
x∈]0,1]

xτ ln(1/x) =
1
eτ

and lim
x↘0

xτ ln(1/x) = 0 if τ ∈]0, 1[. �

A modification operator without loss of derivatives is now obtained by means of one extra composition
with a functiong ∈ BC∞(]−∞, 2[) satisfying the following conditions similar to (16)

g |]0,2[ is real analytic and strictly increasing,g |[0,1]≤ 1 andg |]−∞,0]= 0 . (20)

We finally recall the formula of Fa di Bruno for the derivatives of the composition of twoC∞ - functionsv
andg of one variable (see e.g. Krantz and Parks [11], Lemma 1.3.1):

(v ◦ g)(b)(t) =
∑ b!

k1! . . . kb!
v(k)(g(t))

(g(1)(t)
1!

)k1
. . .

(g(b)(t)
b!

)kb (21)

wherek :=
∑b
j=1 kj . The sum is taken over allk1, . . . kb for which

∑b
j=1 jkj = b.

Theorem 4 Leth ∈ BC∞(Rn) andg ∈ BC∞(]−∞, 2[) satisfy(16)and(20), respectively. LetT (f) :=
Tg◦h(f) be defined forf ∈ BC 0(Rn) by (17). ThenT is anΩ-modification operator inBCm(Rn) for any
m ∈ N0 ∪ {∞}.

PROOF. a) T is anΩ - modification operator inBC 0(Rn).
Indeed, let

vf (x, y) :=
2

cn+1

∫
f
(
x− ξy

)(
1 + |ξ| 2

)(n+1)/2
dξ for (x, y) ∈ Rn × [0, 1]

andwf (x, y) := vf (x, g(y)). Thus,

T (f) (x) = wf
(
x, h (x)

)
. (22)

Since(1 + | · |2)−(n+1)/2 ∈ L1(Rn), T (f)(x) is defined for anyx ∈ Rn and anyf ∈ BC 0(Rn), and

‖T (f)‖Rn ≤ sup
(x,y)∈Rn×[0,1]

|vf (x, y)| ≤ C1‖f‖Rn if f ∈ BC 0(Rn). (23)

Moreover,
wf ∈ BC 0(Rn × [0, 1]) andwf ( · , 0) = f if f ∈ BC 0(Rn) (24)

by (23) and the theorem of dominated convergence. HenceT (f) ∈ BC 0(Rn) by (22).T (f) is real analytic
onΩ sinceg◦h is strictly positive and real analytic onΩ and sincevf (x, y) is harmonic, hence real analytic
for y > 0. Thus,T (f) is anΩ - modification inBC 0(Rn) for anyf ∈ BC 0(Rn) by (24) and (22).
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b) To studyT (f) for f ∈ BCm(Rn), we now estimate∂yvf for f ∈ BC 1(Rn) :

|∂yvf (x, y)| ≤ (C + ln(1/y))max{‖f‖Rn , ‖ grad(f)‖Rn} if (x, y) ∈ Rn× ]0, 1].

In order to do it, fixϕ ∈ C∞0 (Rn) such thatϕ(x) = 1 if ‖x‖ ≤ 1/2 andϕ(x) = 0 if ‖x‖ ≥ 1. Then

cn+1

2
vf (x, y) =

∫
f(x− ξy)ϕ(ξy)
(1 + |ξ|2)(n+1)/2

dξ +
∫
f(x− ξ)(1− ϕ(ξ))y
(y2 + |ξ|2)(n+1)/2

dξ,

hence
cn+1

2
∂yvf (x, y) =

∫
−〈grad f(x− ξy), ξ〉ϕ(ξy) + f(x− ξy)〈gradϕ(ξy), ξ〉

(1 + |ξ|2)(n+1)/2
dξ

+
∫
f(x− ξ)(1− ϕ(ξ))

( 1
(y2 + |ξ|2)(n+1)/2

− (n+ 1)y2

(y2 + |ξ|2)1+(n+1)/2
)dξ.

Sinceϕ(yξ) = 0 if ‖ξ‖ ≥ 1/y, the first integral can be estimated by

C1 max{‖f‖Rn , ‖ grad(f)‖Rn}
∫ 1/y

0

rn−1

(1 + r2)n/2
dr

≤ C2 max{‖f‖Rn , ‖ grad(f)‖Rn} ln(1 + 1/y).

Similarly, the second integral is estimated by

C3‖f‖Rn

∫
‖ξ‖≥1/2

(y2 + |ξ|2)−(n+1)/2dξ ≤ C4‖f‖Rn .

c) Letf ∈ BCm(Rn) andm ∈ N. Forj = (a, 2b+ l) ∈ Nn+1
0 , l = 0, 1 and|j| ≤ m we have

∂jvf (x, y) = (−1)b∂lyv∂a∆bf (x, y) and∂jwf (x, y) = ∂2b+l
y w∂af (x, y) for y > 0 (25)

sincevf (x, y) is harmonic fory > 0. By b) we thus get for oddk ≤ m∣∣∂kyvf (x, y)∣∣ ≤ (C5 + ln(1/y))Ck6 sup
|α|≤k

∥∥∂αf∥∥
Rn if (x, y) ∈ Rn× ]0, 1] . (26)

For evenk ≤ m, (26) (without the logarithmic term) directly follows from (25) and (23). So (26) holds for
anyk 6= 0. By the formula of Fa di Bruno (21), Lemma 2, (25), (23) and (26) we thus get forj ∈ Nn+1

0

and0 ≤ |j| ≤ m ∣∣∂j(wf (x, y))∣∣ ≤ C7C
|j|
8 sup

|α|≤|j|

∥∥∂αf∥∥
Rn if (x, y) ∈ Rn× ]0, δ] , (27)

that is,wf ∈ BCm(Rn×]0, 1]). Moreover, by the same arguments and (24),

∂awf ∈ BCm(Rn × [0, 1]), lim
y↘0

∂axwf (x, y) = ∂af(x) if |a| ≤ m, and

lim
y↘0

∂ax∂
k
ywf (x, y) = 0 if k 6= 0 and|a|+ k ≤ m. (28)

that is,wf ∈ BCm(Rn × [0, 1]), T (f) ∈ BCm(Rn) and T is a continuous operator inBCm(Rn).
To prove (15) we notice that∂ax(T (f)(x)) = ∂ax(wf (x, h(x))) consists of the sum of(∂axwf )(x, h(x)) and
certain products each containing(∂αx ∂

k
ywf )(x, h(x)) for somek 6= 0 and|α| + k ≤ m. We therefore get

by (28)
∂ax(T (f)(x)) = (∂axwf )(x, 0) = ∂af(x) if |a| ≤ m andx ∈ F

sinceh(x) = 0. The theorem is thus proved.�

The existence ofΩ-modifications inCm(Rn) for (unbounded)Cm-functions now easily follows from
Theorem 4 and the Approximation Theorem:
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Corollary 1 Letm ∈ N0 ∪ {∞}. Anyf ∈ Cm(Rn) has anΩ-modificationf̃ in Cm(Rn).

PROOF. By the Approximation Theorem 3b) and c) (forΩ = Rn) there aref1 ∈ H(Cn) and f2 ∈
BCm(Rn) such thatf = f1 + f2. With the Ω-modification operatorT from Theorem 4, we then set
f̃ := f1 + T (f2). �

To considerΩ-modification operators in classes of(Mp)-ultradifferentiable functions, we must choose
the functionh in (16) such that

h ∈ BE(Lp)(Rn) :=
{
f ∈ C∞(Rn)

∣∣ ∀C > 0 :

‖f‖Rn,C := sup
{∣∣f (α) (x)

∣∣/(
L|α|C

|a|)∣∣ α ∈ Nn
0 , x ∈ Rn

}
<∞

}
where(Lp)p satisfies(M3′),

1∗p := Lp/(pLp−1) is increasing (M1∗)

and
Lp ≤ Cε ε

pMp for anyε > 0 . (29)

(see Langenbruch [12]). Such a functionh was constructed in loc. cit. using infinite products and some
subtle arguments from the theory of ultradifferentiable functions. We will now show that the existence ofh
is an easy consequence of the Approximation Theorem 3a):

Proposition 1 There ish ∈ BE(Lp)(Rn) satisfying(16) if (Lp)p satisfies(M1) and(M3′).

PROOF. W.l.o.g. letL0 = 1. It is clear that there isH ∈ BE(Lp)(Rn) satisfying (16) such that1/4 ≥
H > 0 on Ω. Setη := H/2|Ω and chooseg ∈ HR(Ω∗) by the Approximation Theorem 3a) (and Remark
1) for f := H|Ω (andLp instead ofMp). Then∣∣g (x)

∣∣ ≤ H (x) +
∣∣g (x)−H (x)

∣∣ ≤ 1/2 and∣∣g (x)
∣∣ ≥ H (x)−

∣∣g (x)−H (x)
∣∣ ≥ H (x) /2 > 0 if x ∈ Ω .

SinceH ∈ BE(Lp)(Rn) andH = 0 onF ⊃ ∂Ω, for anyC > 0 there areC1 ≥ 1 andK ⊂⊂ Ω such that
we get from the Approximation Theorem 3a) for anya ∈ Nn0∣∣g(a) (x)

∣∣ ≤ ∣∣g(a) (x)−H(a) (x)
∣∣ +

∣∣H(a) (x)
∣∣

≤ H (x) |a|L|a| + C1C
|a|L|a| ≤ 2C1C

|a|L|a| if x ∈ Ω\K . (30)

Sinceg ∈ H(Ω∗) ⊂ E(Lp)(Ω), this implies that

sup
∥∥g(a)

∥∥
Ω
C |a|

/
L|a| <∞ if C > 0 . (31)

Seth (x) := g (x) if x ∈ Ω, andh (x) = 0 on F . Thenh ∈ C∞(Rn) andh is flat onF since by (30),
g(a) (x) −→ 0 if x −→ ∂Ω sinceH is flat onF ⊂ ∂Ω. (31) then shows thath ∈ BE(Lp)(Ω). �

Since we have no loss of derivatives for theΩ-modification operator in Theorem 4, we get corresponding
operators in classes of ultradifferentiable functions without any extra assumption:

Theorem 5 There is anΩ-modification operator T inBE(Mp)(Rn) if (Mp) satisfies(M1) and(M3′).

PROOF. By Langenbruch [12, Lemma 2.3] we can choose(Lp)p satisfying(M3′), (M1∗) and (29). We
may assume that(Lp)p also satisfies

Lp+1 ≤ Ap+1Lp for anyp ∈ N0. (M2′)
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A general approximation theorem of Whitney type

Chooseh for (Lp)p by Proposition 1. Then chooseg1 for (Lp)p by Proposition 1 (forn = 1, F :=]−∞, 0]
andΩ :=]0,∞[) and setg(y) := c

∫ y
−∞ g1(t) dt. Theng satisfies (20) for suitable c, and the operator

T := Tg◦h from Theorem 4 is anΩ - modification operator inBC∞(Rn). Using the notation from the
proof of Theorem 4, we also know thatwf ∈ BC∞(Rn × [0, 1]). By Komatsu [10, Remark after Theorem
4.4], composition withh is continuous inE(Mp) since by(M3′)

Mγ(α− γ)! ≤ C |α|M|α| if γ ≤ α

(Komatsu [9, Lemma 4.1]). We thus have to show thatwf ∈ BE(Mp)(Rn×]0, 1]) if f ∈ BE(Mp)(Rn). To
see this we use the formula of Fa di Bruno (21): FixC > 0. Forb ∈ N andy > 0 we get

|∂ax∂bywf (x, y)| = |∂by
(
v∂af (x, g(y))

)
|

≤
∑ b!

k1! . . . kb!

∣∣(∂kyv∂af

)
(x, g(y))

(g(1)(y)
1!

)k1
. . .

(g(b)(y)
b!

)kb
∣∣

≤ C12bC |a|
∑ b!

k1! . . . kb!
(C2C)kM|a|+k

(L2

1!
)k1

. . .
(Lb+1

b!
)kb

≤ C3(2A)bC |a|
∑ b!

k1! . . . kb!
(C4C)kM|a|+k

(
L∗1/(L

∗
0l
∗
1)

)k1
. . .

(
L∗b/(L

∗
0l
∗
1)

)kb

≤ C5(2A)bC |a|
∑ b!

k1! . . . kb!
(C4C)kM|a|+kL

∗
b−k ≤ C5(4A)bC |a|

∑ k!
k1! . . . kb!

(C6C)kM|a|+kLb−k

≤ C7(4A)bC |a|+bM|a|+b
∑ k!

k1! . . . kb!
Ck6 ≤ C8(C9C)|a|+bM|a|+b

where the constantsCk are independent of C, b and y, and where we have used (25), (21), (26), Lemma 2,
(M2′) and(M1∗) for (Lp)p, (29) and finally Lemma 1.3.2 from Krantz and Parks [11].�

Notice thatLp :=
∏p+1
j=1 j (ln(1 + j))2 satisfies all assumptions needed in the proof of Theorem 5 and

that for anys > 1
Lp ≤ Cεε

p(p!)s for anyp ∈ N.

By Theorem 4 and 5, the operatorT = Tg◦h constructed withh, g ∈ BE(Lp) is anΩ - modification operator
in any of the standard classes of differentiable functions, namely inBCm(Rn) for m ∈ N0 ∪ {∞} and in
the Gevrey classesγs(Rn) = BE(p!s)(Rn) andΓs(Rn) = BE{p!s}(Rn) for anys > 1 since Theorem 5
also holds for the classesBE{Mp}(Rn) of ultradifferentiable functions of Roumieu type (by essentially the
same proof).

The existence of ultradifferentiableΩ-modifications for unbounded ultradifferentiable functions follows
from Theorem 5 as in Corollary 1.

5. A criterion for surjectivity

We will first prove a criterion for surjectivity of continuous linear operators between Fréchet spaces based
on the Decomposition Lemma 1. This will be applied to several linear problems of analysis including the
representation of ultradistributions as boundary values of holomorphic functions and solvability questions
for partial differential operators and convolution operators.

We begin with corresponding examples of decomposition pairs:

Remark 2 LetE(Ω) be a Fŕechet space with the topology defined by an increasing sequence of seminorms
‖ ‖k. We assume that

a) E(Ω) is the space of sections onΩ of a sheafE onRn which has continuous restriction mappings
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b) there is(Mp)p such that

i) E(Mp)(Ω) ⊂ E(Ω) is dense and

id : E(Mp)(Ω) ⊂ E(Ω) is continuous

ii) For ϕ ∈ D(Mp)(Ω) the mapping

Mϕ :
(
D(Mp)(Ω), τΩ

)
−→

(
D(Mp)(Ω), τΩ

)
, f −→ ϕf ,

is continuous for the topologyτΩ induced byE(Ω).

For a (fixed) locally finite resolution of the identity(ϕn)n∈N ⊂ D(Mp)(Ω) on Ω and increasing sequences
(jn)n∈N ⊂ N and(Cn)n∈N ⊂ [1,∞[ we define

E
(
(jn), (Cn); Ω

)
:=

{
f ∈ E(Ω)

∣∣∣ ∀ k ∈ N : qk (f) :=
∑
n∈N

∥∥Mϕn
(f)

∥∥
jn+k

Cn2nk <∞
}
.

Then
(
E

(
(jn), (Cn); Ω

)
, E(Ω)

)
is a decomposition pair.

PROOF. I) F (Ω) := E
(
(jn), (Cn); Ω

)
is defined sinceMϕn (f) is defined forf ∈ E(Ω) by b)i), b)ii)

and continuous extension.

II) Definition 1 i)–iii) is satisfied.
Indeed i) holds by assumption.D(Mp)(Ω) ⊂ F (Ω) by Remark 2b)i) and 2b)ii) since the sum defining
qk (f) then is finite. Forf ∈ F (Ω), the sum

∑
Mϕn

(f) absolutely converges inE(Ω) with limit f (use
assumption a)). It is thus clear thatF (Ω) is continuously embedded inE(Ω). iii) is also evident since the
sum definingqk

(
Mϕ (f)

)
is finite forϕ ∈ D(Mp)(Ω).

III) F (Ω) is complete. Indeed, if(fj)j∈N is a Cauchy sequence inF (Ω), then by Definition 1ii),(fj)j∈N
converges inE(Ω) with limit f .∥∥∥Mϕn

(
fj − f

)∥∥∥
jn+(k+1)

Cn2n(k+1) ≤ ε+
∥∥∥Mϕn

(
fj − fm

)∥∥∥
jn+(k+1)

Cn2n(k+1) ≤ 2ε

if j ≥ j0 (ε) (andm ≥ m0(ε, n)). Thus,

qk(fj − f) ≤ ε if j ≥ j0 ,

f ∈ F (Ω) andlim fj = f in F (Ω). �

ForE(Ω) as in Remark 2 and a compactK ⊂ Ω we set

E0(K) :=
{
f ∈ E(Ω)

∣∣ supp (f) ⊂ K
}

andE0(Ω) :=
⋃

K ⊂⊂ Ω

E0(K) .

We now prove that continuous linear mappings intoE(Ω) are surjective if the range containsE0(Ω) and
H(Ω∗). The latter condition is easily verified in many concrete situations.

Theorem 6 Let E be a Fŕechet space and letE(Ω) satisfy the assumptions of Remark 2. LetG be a
locally convex space containingE(Ω) as a continuously embedded subspace and let

T : E −→ G be linear and continuous.

Thenrange (T ) ⊃ E(Ω) if range (T ) ⊃
(
E0(Ω) ∪ H(Ω∗)

)
.
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PROOF. E0(K) is a Fŕechet space forK ⊂⊂ Ω by Remark 2a). The mapping

T−1 : E0(K) −→ E/ ker(T )

is defined and closed by assumption. HenceT−1 is continuous. Choose a compact exhaustion(Kn)n∈N
of Ω. Then for anyn ∈ N there are increasing sequencesj(n) ∈ N andC(n) ≥ 1 such that for any
g ∈ E0(Kn) there ish ∈ E with T (h) = g such that

‖h‖En ≤ C (n) ‖g‖j (n) if g ∈ E0(Kn) . (32)

Fix a resolution of the identity(ϕn) as in Remark 2 withsuppϕn ⊂ Kn and set

F (Ω) := E
(
(j (n)),

(
C (n)

)
; Ω

)
.

By Remark 2 and the Decomposition Lemma, forf ∈ E(Ω) we can then choosẽf ∈ H(Ω∗) such that
(f − f̃) ∈ F (Ω). Choosehn ∈ E for gn := Mϕn

(f − f̃) ∈ E0(Kn) as in (32). Thenh :=
∑
nhn ∈ E

exists since ∑
n≥k

∥∥hn∥∥Ek ≤
∑
n

∥∥Mϕn(f − f̃)
∥∥
j (n)

C (n) 2n <∞

by (32) and the choice ofF (Ω). Also,

T (h) =
∑
n
T (hn) =

∑
n
Mϕn

(f − f̃) = f − f̃

sinceT is continuous and linear. This proves the theorem sincef̃ ∈ H(Ω∗) and thus there is̃F ∈ E with
T (F̃ ) = f̃ by assumption. �

Theorem 6 can often be used as a substitute for the Mittag-Leffler procedure. Roughly, the approxi-
mation procedure is realized in Theorem 6 in the range space ofT . No density condition for the kernel
spectrum ofT is needed.

We now give some standard examples for Remark 2, including Hörmander’s spacesBloc
p,k(Ω), the space

Dm(Ω)′b of distributions of orderm and the spaces ofω-ultradifferentiable functions andω-ultradistributions
(see Bj̈orck [3] and Braun, Meise and Taylor [5], which will be used as standard reference).

Hereω : [0,∞[ −→ [0,∞[ is an increasing continuous function such that

ω(2t) ≤ A
(
ω(t) + 1

)
for anyt ≥ 0 (33)∫ ∞

0

ω(t)/(1 + t2) dt <∞ (34)

ϕ := ω ◦ exp is convex onR and lim
x−→∞

ϕ (x) /x = ∞ . (35)

(33) - (35) are the conditions(α)− (γ) of Braun, Meise and Taylor [5]. By (35) the Young conjugateϕ∗ of
ϕ is defined. Let

E(ω)(Ω) :=
{
f ∈ C∞(Ω)

∣∣∣ ∀K ⊂⊂ Ω, ∀C > 0 :

|f |K,C := sup
{∣∣f (a) (x)

∣∣ exp
(
−ϕ∗(|a|C)/C

)∣∣ x ∈ K, a ∈ Nn0
}
<∞

}
D{ω}(Ω) :=

{
f ∈ C∞0 (Ω)

∣∣ ∃ C > 0 : |f |Rn,C <∞
}

be endowed with their natural Fréchet topology (and (DFS)-topology, respectively).

Example 2 The following spaces satisfy the assumptions of Remark 2:
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a) i) E(Mp)(Ω)

ii) E(ω)(Ω)

b) Ck(Ω) for k ∈ N0 ∪ {∞}.

c) Lloc
p (Ω), 1 ≤ p <∞.

d) Bloc
p,k(Ω), 1 ≤ p <∞, for weightsk ∈ K (see Ḧormander [8, section 10.1]).

e) Dm(Ω)′b :=
({
f ∈ Cm(Ω)

∣∣ supp f ⊂⊂ Ω
})′
b

for m ∈ N0 .

f) i) D{Mp}(Ω)′b
ii) D{ω}(Ω)′b.

PROOF. The cases a)i), b), c) and f)i) were already treated in Example 1. For d) we refer to Hörmander [8,
Theorems 10.1.7 and 10.1.15]. e) is easy. To prove a)ii) and f)ii), an easy construction provides a sequence
(Mp) with (M1) and(M3′) such thatE(Mp)(Ω) ⊂ E(ω)(Ω). Anyway, the spacesE(ω)(Ω) could also take
the role ofE(Mp)(Ω) as general frame in this paper.�

As a first application of Theorem 6 we consider ultradistributional boundary values of holomorphic
functions. The situation is the following:

Forf ∈ H
(
(C\R)n

)
the boundary valueR (f) in the sense ofD{Mp}(Rn)′b is defined if the limit

〈R (f), ϕ〉 :=
∑
ε∈σ

lim
y−→0

n∏
j=1

εj

∫
f(x+ iεy)ϕ (x) dx

exists for anyϕ ∈ D{Mp}(Rn) (hereσ := {1,−1}n). The boundary value problem can now be divided
into two parts:

i) Find a weighted spaceHW of holomorphic functions defined on(C\R)n such that the ultradistribu-
tional boundary valueR (f) exists for anyf ∈ HW .

ii) Show that any ultradistribution is the boundary value of somef ∈ HW , i.e. that the boundary value
mapping

R : HW −→ D{Mp}(R
n)′ is surjective.

The second problem is usually solved by means of topological tensorproducts (see Petzsche [15]) while the
use of Theorem 6 provides an elementary proof. We need the following assumption: there isA ∈ N such
that for anyp ∈ N

m∗
p + 2 ≤ m∗

Ap (M4′)

wherem∗p := Mp

/(
Mp−1p

)
. Let

M∗(t) := sup
{
tpp!M0/Mp

∣∣ p ∈ N
}

for t ≥ 0

and letH
(
{Mp}

)
denote the set of functionsf ∈ H

(
(C\R)n

)
such that for any closed coneΓ ⊂ {y ∈

Rn | yj 6= 0 for anyj} and anyL > 0

|f (z) | ≤ CL exp
(
M∗(L/| Im z|)

)
if Im (z) ∈ Γ .

Theorem 7 Let (Mp) satisfy(M1∗), (M2′), (M3′), and(M4′). Then

R : H
(
{Mp}

)
−→ D{Mp}(R

n)′ is surjective.
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PROOF. The boundary valueR (f) exists forf ∈ H
(
{Mp}

)
by Schroer [20, 5.1] (see also Komatsu [9]

and Petzsche/Vogt [16], where slightly stronger assumptions are used). Also by loc. cit.,R
(
H({Mp})

)
⊃

E{Mp}(Rn)′b.
Clearly,R

(
H({Mp})

)
⊃ H(Cn) since

R(f̃) = f |Rn for f ∈ H(Cn) ,

where f̃ (z) := f (z) if Im zj > 0 for any j and f̃ (z) := 0 otherwise. The claim now follows from
Theorem 6 and Example 2. �

The boundary value problem for distributions and ultradistributions of Beurling type is much more
involved (see Vogt [23] and Petzsche [15]).

As a second application of Theorem 6 we notice that in the situation of Example 2, sections onΩ may
be extended moduloH(Ω∗) to global sections:

Proposition 2 LetE(Ω) be one of the spaces from Example 2. Then for anyf ∈ E(Ω) there areF ∈
E(Rn) andg ∈ H(Ω∗) such thatf = F |Ω + g.

PROOF. This follows from Theorem 6 applied to

T : E(Rn)×H(Ω∗) −→ E(Ω), T (F, g) := F |Ω + g . �

We now consider convolution operators. Letµ ∈ E(Rn)′ where

E = C∞ orE = E(ω) orE =
(
D{ω}

)′
. (36)

Let Ω1,Ω2 ⊂ Rn be open and letsupp(µ) + Ω1 ⊂ Ω2. Then the convolution operator

µ∗ : E(Ω2) −→ E(Ω1)

is defined, continuous and linear (see e.g. Hörmander [8, chapter 16] and Bonet, Galbis, Meise [2]). We
now get the following result:

Theorem 8 In the above situation the following statements are equivalent:

a) µ∗ : E(Ω2) −→ E(Ω1) is surjective.

b) i) µ ∗
(
E(Rn)

)
⊃ E0(Rn) and

ii) µ ∗
(
E(Ω2)

)
⊃ H(Ω∗1).

PROOF. “ b) =⇒ a)” It is well known that

κ ∗ : H(Cn) −→ H(Cn) is surjective (37)

for anyκ ∈ H(Cn)′ (see Ehrenpreis [6] and Malgrange [13]). Hence

µ ∗
(
E(Rn)

)
= E(Rn) (38)

by Theorem 6 and b)i). Using (38) and b)ii) Proposition 2 implies thatµ ∗
(
E(Ω2)

)
= E(Ω1).

“a) =⇒ b)” ii) clearly holds. i) follows from Ḧormander [8, Theorem 16.5.7] and Bonet, Galbis and Meise
[2, Proposition 2.6, Corollary 2.9, and Theorem 3.5], respectively.�

Condition 8 b)i) is equivalent to (38) and to the existence of an elementary solution inD(Rn)′ (and in
D(ω)(Rn)′, and inD{ω}(Rn)′, respectively). Further equivalent conditions for surjectivity of convolution
operators are given in the detailed paper of Bonet, Galbis and Meise [2].

Since any partial differential operatorP (D) with constant coefficients has a distributional elementary
solution, Theorem 8 implies the following result which was first proved by Zampieri [25]:
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Corollary 2 Let Ω ⊂ Rn be open. IfP (D)A(Ω) = A(Ω), thenP (D)C∞(Ω) = C∞(Ω), i.e. Ω is
P -convex for supports. �

Acknowledgement. The author wants to thank L. Frerick (Wuppertal) for several interesting discus-
sions concerning the subject of this paper.
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