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Abstract. In these notes we report on recent progress in the theory of hypercyclic and chaotic operators.
Our discussion will be guided by the following fundamental problems: How do we recognize hypercyclic
operators? How many vectors are hypercyclic? How many operators are hypercyclic? How big can
non-dense orbits be?

Avances recientes en hiperciclicidad

Resumen. En estas notas informamos acerca de progresos recientes en la teorı́a de operadores
hiperćıclicos y cáoticos. Nuestro estudio ha sido guiado por los siguientes problemas: ¿Cómo recono-
cemos los operadores hipercı́clicos? ¿Cúantos vectores son hipercı́clicos? ¿Cúantos operadores son
hiperćıclicos? ¿Qúe tamano tienen laśorbitas no densas?

1. Prologue: The basic concepts

Hypercyclicity is the study of linear operators that possess a dense orbit. Although the first examples of
hypercyclic operators date back to the first half of the last century, a systematic study of this concept has
only been undertaken since the mid-eighties. Seminal papers like the unpublished but widely disseminated
thesis of Kitai [43], a highly original and broad investigation by Godefroy and Shapiro [32] and deep
operator-theoretic contributions by Herrero [40], [41] were instrumental in creating a flourishing new area
of analysis.

The survey [36] of 1999 tried to give a complete synopsis of hypercyclicity and the related area of
universality. The intervening years have seen remarkable major advances. In particular, G. Costakis, A.
Peris and S. Grivaux have solved two of the five1 problems mentioned in [36]. Additionally, many other
noteworthy results have been obtained and a number of foundational issues have been clarified. In this note
we want to present some of these new developments.

For an updated bibliography on hypercyclicity and related areas such as universal functions, chaotic
operators, transitive operators, supercyclic operators or hypercyclic semigroups the interested reader is
referred to [37]. A very readable and detailed introduction to hypercyclicity from the point of view of linear
dynamics is provided by unpublished notes of J. H. Shapiro [56].

The most general setting for hypercyclicity is that of a (real or complex) topological vector space, which
will always be assumed to be Hausdorff. Depending on the result one wants to obtain additional structure
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1The survey states six problems, but Problems 1 and 3 are equivalent.
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like local convexity, metrizability, completeness or normability is needed. Since the Baire Category The-
orem is vital in the more fundamental results on hypercyclicity, the underlying space is often assumed to
be anF -space, that is, a complete metrizable topological vector space. In general, however, the reader will
lose very little on assuming that we are working in Banach spaces. Throughout, by anoperatorwe mean a
continuous linear mapping.

Definition 1 LetX be a topological vector space. Then an operatorT : X → X is calledhypercyclicif
there is a vectorx ∈ X whoseorbit underT ,

orb(T, x) := {x, Tx, T 2x, . . .},

is dense inX. Every such vectorx is calledhypercyclicfor T .

Since the definition requires a countable dense set inX hypercyclicity can only occur in separable spaces.
Another, less obvious, restriction is that the spaceX has to be infinite-dimensional as there are no hyper-
cyclic operators inRN or CN , cf. [36, Proposition 11].

Hypercyclicity is closely related to the well-known concept of transitivity from topological dynamics.

Definition 2 LetX be a topological vector space. Then an operatorT : X → X is called(topologically)
transitiveif for each pairU andV of non-empty open subsets ofX there is somen ∈ N with

Tn(U) ∩ V 6= ∅.

It is easy to see that every hypercyclic operator is transitive, but the converse need not be true, see [17] or
[7, Example] for simple examples. In many spaces, however, the two concepts coincide, cf. [56, 1.10] or
[36, Theorem 3].

Theorem 1 (Birkhoff Transitivity Theorem) Let X be a separableF -space. Then an operatorT :
X → X is hypercyclic if and only if it is transitive. �

The result follows from an application of the Baire Category Theorem. The breakdown of the theorem for
general spaces has recently led to an increased interest in transitive operators in their own right. We will
return to this in Section 4.

There are several concepts of chaos for not necessarily linear mappings in the literature. Since many of
them require, among others, the existence of a dense orbit it seems natural to introduce a notion of chaos
into the theory of hypercyclicity. The first to consider this problem were Godefroy and Shapiro [32] who
took up a definition of chaos due to Devaney [28, p. 50]. InF -spaces, the following has by now been
generally accepted as the right notion of chaos in hypercyclicity; recall that a pointx ∈ X is calledperiodic
for a mappingT : X → X if TNx = x for someN ∈ N.

Definition 3 LetX be anF -space. Then an operatorT : X → X is calledchaoticif

(i) it has a dense orbit, that is, it is hypercyclic, and

(ii) it has a dense set of periodic points.

One may increase the symmetry between the two defining conditions by noting that condition (i) is equiv-
alent to the existence of a dense set of hypercyclic vectors. This follows from the fact that ifx has a dense
orbit then so does every vectorTnx because orb(T, x) \ orb(T, Tnx) is finite, and the vectorsTnx, n ∈ N,
form a dense set.

As a consequence we see that in every neighbourhood of any point inX there are hypercyclic points
and periodic points, which corresponds to the intuitive idea of chaos as the precarious alliance of regularity
and irregularity.

Devaney’s definition of chaos had in fact required a third condition, the so-calledsensitive dependence
on initial conditions.From the above discussion it is not surprising that, even for non-linear mappings, this
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condition follows from (i) and (ii), as was shown by Banks et al. [5]. Earlier, Godefroy and Shapiro [32,
Proposition 6.1] had shown that for linear mappings hypercyclicity alone implies sensitive dependence on
initial conditions.

BeyondF -spaces the appropriate definition of a chaotic operator is still under discussion. It seems that
condition (i) should then be replaced by the requirement thatT is transitive, which may then however lead
to chaotic operators that are no longer hypercyclic, cf. Bonet [17]. Definitions of chaos for unbounded
operators were recently proposed by Bès, Chan and Seubert [14] and by deLaubenfels, Emamirad and the
author [27].

For further discussions of linear chaos we refer to Shapiro [56] and Feldman [30].

2. How do we recognize hypercyclic operators?

Throughout this sectionX will always be a separableF -space.
For certain special operators the Birkhoff Transitivity Theorem leads to a simple verification of their

hypercyclicity, see the discussion at the end of Section 2 of [10]. In the vast majority of cases, however,
a different and a priori only sufficient condition has been applied successfully in the literature to obtain
hypercyclicity.

Theorem 2 (Hypercyclicity Criterion) Let T : X → X be an operator. If there are dense subsetsY
andZ of X and an increasing sequence(nk) of positive integers such that

(i) for eachy ∈ Y , Tnky → 0,

(ii) for eachz ∈ Z there is a sequence(xk) in X with

xk → 0 and Tnkxk → z,

thenT is hypercyclic.2 �

We have given here a reformulation of the usual statement of the criterion, cf. [15, Definition 1.2] or [36,
Theorem 4]. In the present form it brings out more clearly that hypercyclicity is caused by intertwining
collapse (in (i)) with blow-up (in (ii)).

The Hypercyclicity Criterion has evolved through a series of papers, starting with Kitai’s thesis [43] and
the independent investigation of Gethner and Shapiro [31] in the 1980’s; an early form had already been
given by Jóo [42] in 1978.

In recent years, several variants of the criterion have been considered, see [36, Remark 3], [49, Theorem
1.1] and [29, Theorem 3.2]. All of them, however, were shown to be equivalent to the Hypercyclicity
Criterion as stated above, see Peris [49, Theorem 2.3], Feldman [29, comment after Theorem 3.2] and
Bermúdez, Bonilla and Peris [6, Section 2]. For additional interesting discussions we refer to Grivaux [35].

The effectiveness of the Hypercyclicity Criterion is such that, to date, every known hypercyclic operator
in fact satisfies the Criterion. This has led to the following, cf. [36, Problem 1].

Great open problem in hypercyclicity Does every hypercyclic operator satisfy the Hypercyclicity Cri-
terion?

The problem has so far evaded all attempts at being resolved. This has motivated the search for equivalent
but less technical forms of the Hypercyclicity Criterion. The following result was obtained independently
by Bernal and the author, Bès, Saldivia, and Léon, see [10, Remark 3.5] and [44].

2Adding as third condition that there is a dense subsetW of X such that

(iii) for eachw ∈W there is somen ∈ N with Tnw = w

we obtain a criterion for chaos.
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Theorem 3 An operatorT : X → X satisfies the Hypercyclicity Criterion if and only if for each pairU
andV of non-empty open subsets ofX and each neighbourhoodW of zero inX there is somen ∈ N with

Tn(U) ∩W 6= ∅ and Tn(W ) ∩ V 6= ∅. �

This condition, which is in the spirit of the definition of transitivity, was introduced by Godefroy and
Shapiro, who had already shown that it is implied by the Hypercyclicity Criterion, see [32, Corollaries 1.3
and 1.4].

The Hypercyclicity Criterion has recently helped to solve an open problem in a surprising way. By a
well-known theorem of Ansari [2], [3, Note 3] every powerTN , N ∈ N, of a hypercyclic operatorT is
itself hypercyclic, that is, there is somex ∈ X such that the set{T kNx : k = 0, 1, 2, . . .} is dense inX,
see also Section 5. One might ask if the sequences(kN)k can be replaced here by arbitrary increasing
sequences(nk) for which supk(nk+1 − nk) < ∞. Peris and Saldivia [51] have shown that this is indeed
so (only) for operatorsT that satisfy the Hypercyclicity Criterion.

Theorem 4 LetT : X → X be an operator. Then the following assertions are equivalent:

(i) For any increasing sequence(nk) of positive integers withsupk(nk+1 − nk) < ∞ there is some
x ∈ X such that the set{Tnkx : k = 0, 1, 2, . . .} is dense inX.

(ii) T satisfies the Hypercyclicity Criterion.

In Banach spaces this result was obtained independently by Grivaux [35], whose approach also led to a new
proof of Theorem 3. We give here a proof of Theorem 4, a variant of that by Peris and Saldivia [51], that is
in turn based on Theorem 3.

PROOF. (ii) =⇒ (i). Let T satisfy the Hypercyclicity Criterion with sequence(nk) and dense subsetsY
andZ. Let (mk) be an increasing sequence of positive integers withsupk(mk+1 −mk) < ∞. Then it is
easy to see that there is someN ≥ 0 and subsequences(kν) and(k′ν) such thatnkν

= mk′
ν
−N for all ν.

Hence we have for ally ∈ Y
Tmk′

ν y = TNTnkν y → 0,

and for eachz ∈ Z there is a sequence(xk) in X with xk → 0 and

Tmk′
ν xkν = TNTnkν xkν → TNz.

HenceT satisfies the Hypercyclicity Criterion with sequence(mk′
ν
) and dense subsetsY andTN (Z); note

thatT necessarily has dense range. This implies (i), see, for example, [36, Theorem 2].
(i) =⇒ (ii). We shall show that assertion (i) implies the condition stated in Theorem 3. LetU andV

be non-empty open subsets ofX andW a neighbourhood of zero inX. We choose non-empty open sets
U1 ⊂ U, V1 ⊂ V andW1 ⊂ W such thatU1 − U1 ⊂ W andV1 − W1 ⊂ V. SinceT is hypercyclic
there is somem ∈ N such thatTm(W1) ∩ V1 6= ∅. Hence there is a non-empty open setW2 ⊂ W1 with
Tm(W2) ⊂ V1.

Now, by (i) there is somel ∈ N such thatT l+i(U1) ∩W2 6= ∅ for i = 0, . . . ,m (otherwise we could
find an increasing sequence(nk) with nk+1 − nk ≤ m + 1 andTnk(U1)∩W2 = ∅ for all k). In particular
we have

T l(U1) ∩W2 6= ∅ and T l+m(U1) ∩W2 6= ∅.

Writing n = l + m we obtain
Tn(U) ∩W 6= ∅

and

Tn(W ) ∩ V ⊃ T l+m(U1 − U1) ∩ (V1 −W2) = (TmT l(U1)− T l+m(U1)) ∩ (V1 −W2)

⊃ (TmT l(U1) ∩ V1)− (T l+m(U1) ∩W2) 6= ∅. �
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Another useful method for deriving the hypercyclicity of an operator consists in relating it to a known
hypercyclic operator by means of a commutative diagram. This approach is well known in topological
dynamics but its full potential in hypercyclicity was first realized by Martı́nez and Peris [47, Lemma 2.1].

Theorem 5 Let X andY beF -spaces andS : Y → Y, T : X → X operators. Suppose that there is a
continuous mapping3 φ : Y → X of dense range such that the following diagram commutes:

Y
S−−−−→ Y

φ

y yφ

X
T−−−−→ X,

that is, we haveT ◦ φ = φ ◦ S. If S is hypercyclic, satisfies the Hypercyclicity Criterion or is chaotic,
respectively, thenT has the same property. Ify ∈ Y is hypercyclic or periodic forS thenφ(y) is hypercyclic
or periodic forT , respectively. �

We note that, with a proof as in [47], the result remains true for any topological vector spacesX and
Y , independently of whether in the definition of chaos we use the concept of hypercyclicity or that of
transitivity.

In the language of topological dynamics,T is called aquasi-factor ofS andS a quasi-extension ofT ,
see [56, Definition 1.12]. In the case whenY is a dense subspace ofX, whereY carries a possibly stronger
topology than the one inherited fromX, andφ : Y → X is the canonical injection we get Shapiro’s
Hypercyclicity Comparison Principle: T : X → X is hypercyclic if T |Y : Y → Y is well-defined,
continuous and hypercyclic. We refer to [55, p. 111] and [36, Proposition 9].

3. How many vectors are hypercyclic?

The simple answer to the question is: Many – if there are any. Of course, there are operators with no
hypercyclic vectors like the identity operator. But as soon as an operator is hypercyclic the set of hypercyclic
vectors becomes huge, in several respects. First one may note that for every hypercyclic operatorT : X →
X on any topological vector spaceX

the set of hypercyclic vectors ofT is dense,

because, as we had seen in the introductory section, with any vectorx also everyTnx, n ∈ N, has a dense
orbit. Next, ifX is anF -space then it is not difficult to see that

the set of hypercyclic vectors ofT is a denseGδ-set, hence has a complement of first Baire
category,

which has as an immediate consequence that

every vector inX is the sum of two hypercyclic vectors forT ,

see [36, Proposition 8(a)].
This final observation, however, seems to impose, in general, a restriction on the size of the set of all

hypercyclic vectors: If, after adding the non-hypercyclic zero vector, this set becomes a linear subspace then
every non-zero vector inX is hypercyclic, which is very rarely the case. Defining ahypercyclic subspaceas
one in which every non-zero vector is hypercyclic we must therefore conclude that the set of all hypercyclic

3In the case of the Hypercyclicity Criterion, the proof given in [47] requires thatφ(0) = 0. In fact, this can be assumed without
loss of generality. For, ifφ(0) = x0 is arbitrary then the commutativity of the diagram implies thatx0 is a fixed point ofT . When we
now defineψ(y) = φ(y)− x0 for y ∈ Y then the assumptions of the theorem also hold forψ, and we haveψ(0) = 0. I am grateful
to Alfredo Peris for this clarification.
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vectors is in most cases no hypercyclic subspace. This suggested the problem if, nonetheless, the set
of hypercyclic vectors contains hypercyclic subspaces of high dimensions. Quite surprisingly, Herrero
[40] and Bourdon [21] showed independently that, indeed, every hypercyclic operator on complex Hilbert
space possesses a dense, and thus infinite-dimensional hypercyclic subspace. While Bourdon’s technique
immediately extended to complex locally convex spaces, Bès [11] showed that the same result also holds in
the real setting. The final step was recently taken by Wengenroth [57] who was able to extend the result to
arbitrary topological vector spaces.

In fact, Bourdon’s technique can be used to obtain common dense hypercyclic subspaces for countably
many commuting operators onF -spaces, as was noted by Grivaux [34, Section 4]. Using, in addition,
Wengenroth’s ideas one may obtain the following result.

Proposition 1 Let X be a topological vector space andM a non-empty set of commuting operators
T : X → X. If the operatorsT ∈ M share a hypercyclic vector then they share a dense hypercyclic
subspace.

PROOF. We fix a common hypercyclic vectorx ∈ X and an operatorS ∈M. Then

L := span{x, Sx, S2x, . . .}

is a dense subspace ofX. It suffices to show that each non-zero vector inL is hypercyclic for eachT ∈M.
We first note that

L = {p(S)x : p a polynomial}.

Now, by the assumption of commutativity, we have

Tn(p(S)x) = p(S)(Tnx), n ∈ N0,

and{Tnx : n ∈ N0} is dense inX. Hencep(S)x is hypercyclic forT if p(S) has dense range.
We now assume thatX is a vector space overC. Since thenp(S), which we may assume to be non-zero,

factorizes into linear factors it suffices to show that

S − λI

has dense range for eachλ ∈ C, i.e., that the subspace

K := {(S − λI)(y) : y ∈ X}

of X coincides withX.
If this is not the case the quotientX/K is a topological vector space of dimension at least one. Let

q : X → X/K denote the corresponding quotient map. Then

q((S − λI)y) = 0 for all y ∈ X,

hence
q(Sy) = λq(y).

By induction we obtain in particular

q(Snx) = λnq(x) for n ∈ N0.

Since{Snx : n ∈ N0} is dense inX andq is continuous and surjective we conclude that

{λnq(x) : n ∈ N0}

is a dense subset ofX/K. This is clearly a contradiction because this set is, for anyλ, a nowhere dense
subset of a one-dimensional subspace ofX/K. This completes the proof in the complex case.
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The case of real scalars can be treated similarly, or one applies a complexification technique, see [57].
We omit the details. �

The proof also shows that, for any given operatorT ∈ M, one may find a common hypercyclic subspace
that is invariant underT .

The proposition reduces the problem of existence of common dense hypercyclic subspaces for commut-
ing operators to the problem of the existence of just one common hypercyclic vector. The latter problem has
recently attracted some attention. By a classical theorem of Rolewicz [52], the weighted backward shifts

λB : l2 → l2, (x1, x2, x3, . . .) 7→ (λx2, λx3, λx4, . . .)

are hypercyclic for every scalarλ with |λ| > 1, wherel2 is the Hilbert space of square-summable se-
quences. Salas [54] has posed the problem of studying the set of common hypercyclic vectors of the
operatorsλB, |λ| > 1; in particular, it was not even clear if this set is non-empty. The latter question was
answered in the affirmative independently by Abakumov and Gordon [1] and Peris [48]; Abakumov and
Gordon [1] and Costakis and Sambarino [26] have even shown that the set of common hypercyclic vectors
is a denseGδ-set. Costakis and Sambarino [26] have obtained further (uncountable) families of operators
that share hypercyclic vectors. For the commuting families among them Proposition 1 implies then also the
existence of common dense hypercyclic subspaces. In particular we have:

Corollary 1 The operatorsλB : l2 → l2, |λ| > 1, share a common dense invariant hypercyclic sub-
space. �

In the case ofcountablefamilies of hypercyclic operators on anF -space the existence of a common hy-
percyclic vector is an immediate consequence of the Baire Category Theorem. Thus we have the following
result that is due to Grivaux [34, Section 4].

Corollary 2 Countably many commuting hypercyclic operatorsTk, k ∈ N, on anF -space share a com-
mon dense hypercyclic subspace.�

In particular, on the spaceH(C) of entire functions the operatorsD of differentiation andT of translation,

(Df)(z) = f ′(z), (Tf)(z) = f(z + 1),

commute and are hypercyclic by classical theorems of MacLane [46] and Birkhoff [16]. Thus they have a
common dense hypercyclic subspace. This answers positively Problem 1 of Aron, Garcı́a and Maestre [4].

When we consider non-commuting operators new methods are called for to produce common dense hy-
percyclic subspaces. Using techniques that helped her to solve a problem of Halperin, Kitai and Rosenthal,
see Section 4, Grivaux [34] was able to obtain the following important and surprisingly general result.

Theorem 6 Countably many hypercyclic operatorsTk, k ∈ N, on a Banach space always share a common
dense hypercyclic subspace.�

A related result in arbitraryF -spaces with additional assumptions on the operatorsTk is due to Bernal und
Caldeŕon [9, Theorem 3.1].

4. How many operators are hypercyclic?

Experience has shown that hypercyclicity of an operator is not as rare a phenomenon as one might at first
think. Already in 1969, Rolewicz [52] had asked if indeed every, by necessity separable and infinite-
dimensional, Banach space supports a hypercyclic operator. This was answered positively by Ansari [3]
and Bernal [8], while Bonet and Peris [20] extended the result to Fréchet spaces.
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Theorem 7 Every separable infinite-dimensional Fréchet space admits a hypercyclic operator.�

The corresponding problem for chaotic operators has, perhaps surprisingly, a different answer. While
Rolewicz’ weighted backward shifts are simple examples of chaotic operators on Hilbert space, Bonet,
Mart́ınez and Peris [19] have used the work of Gowers and Maurey to produce a counterexample in the
setting of Banach spaces.

Theorem 8 Every separable infinite-dimensional Hilbert space admits a chaotic operator, while there is
a separable reflexive infinite-dimensional Banach space that does not support any chaotic operator.�

Going beyond Fŕechet spaces one encounters additional obstacles: On the spaceϕ =
⊕∞

n=1 C of finite
sequences with its natural inductive limit topology there are even no hypercyclic operators, cf. [20], [36].

In contrast, Bonet, Frerick, Peris and Wengenroth [18] have shown that the spaceϕ supports transitive
operators. Their work was motivated by Bermúdez and Kalton [7] who have shown that, while every
(not necessarily separable) infinite-dimensional Hilbert space supports a transitive operator, there are no
transitive operators onl∞ or, more generally, on any non-reflexive quotient of a von Neumann algebra.

The presumably difficult problem of characterizing those spaces that carry transitive, hypercyclic, or
chaotic operators has not been solved yet, see also [7, p. 1454]. In particular, the existence of hypercyclic
operators in any separable (non-locally convex)F -space is still open, cf. [36, Problem 5].

Suppose now that a space admits hypercyclic operators. Motivated by the fact that the existence of a
single hypercyclicvectorimplies the existence of a dense set of such vectors one might ask if the analogous
statement is true for operators. A simple argument shows that this is not the case, at least if understood in
its most natural sense. To see this, consider an operatorT : X → X on a Banach spaceX with ‖T‖ ≤ 1.
Then we have for everyx ∈ X

‖Tnx‖ ≤ ‖T‖n‖x‖ ≤ ‖x‖, n ∈ N0,

so thatT only has bounded orbits and hence cannot be hypercyclic. Thus, when we endow the spaceL(X)
of all operatorsT : X → X with the operator norm topology then there are no hypercyclic operators in the
closed unit ball{T ∈ L(X) : ‖T‖ ≤ 1}. As a consequence the hypercyclic operators do not form a dense
set inL(X).

Now, onL(X) there is another natural, and weaker topology, the strong operator topology (SOT) in
which convergence is defined as pointwise convergence at everyx ∈ X. Thus the question comes to
life again: Is the set of hypercyclic operators SOT-dense inL(X), whereX is, say, a separable infinite-
dimensional Banach space? In [23], Chan succeeded in giving a positive answer in Hilbert space, which
was generalized by B̀es and Chan [12] to Fréchet spaces. In a subsequent paper Bès and Chan [13] note
that these results are in fact a consequence of the following very general statement on SOT-density that is
due to Hadwin, Nordgren, Radjavi and Rosenthal [38].

Proposition 2 LetX be a separable Fŕechet space andT : X → X an operator. If

(LI) for everyn ∈ N there arex1, . . . , xn ∈ X such that

x1, . . . , xn, Tx1, . . . , Txn

is linearly independent,

then the set
{S−1TS : S : X → X an isomorphism}

is SOT-dense inL(X). �

This result allowed B̀es and Chan [13], among other things, to give a new proof of their earlier results and
to extend them to chaotic operators.
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Theorem 9 LetX be separable infinite-dimensional Fréchet space.

(a) The set of hypercyclic operators onX is SOT-dense inL(X).

(b) The set of chaotic operators onX is either empty or SOT-dense inL(X).

PROOF. It follows from Theorem 5 that the sets described in (a) and (b) are invariant under the mapping
T 7→ S−1TS, whereS : X → X is an isomorphism. Now letT be an operator in one of these sets. Then
T possesses a hypercyclic vectorx. This implies that for eachn ∈ N

x, T 2x, T 4x, . . . , T 2n−2x, Tx, T 3x, T 5x, . . . , T 2n−1x

is linearly independent because otherwise someTmx would be a linear combination ofx, Tx, . . . , Tm−1x,
which would imply that the orbit ofx underT lies in some finite-dimensional subspace ofX; this is clearly
impossible. HenceT satisfies condition (LI) so that by the previous proposition the sets in (a) and (b) are
either empty or SOT-dense inL(X). To complete the proof we remark that by Theorem 7 every separable
infinite-dimensional Fŕechet space admits a hypercyclic operator.�

In spite of what was said before some density results are possible even under the stronger operator norm
topology inL(X) whenX is a complex separable infinite-dimensional Hilbert space. By Chan [23] the
linear span of the set of hypercyclic operators is norm dense inL(X) which was improved independently
by Bès and Chan [13] and León [45] who showed that the set of sums of two hypercyclic operators is norm
dense inL(X). This led these authors to ask if every operator onX is in fact the sum of two hypercyclic,
or even of two chaotic operators. Grivaux [33] could recently answer these questions positively. Her deep
result is the more remarkable in that it breaks down for general Banach spaces, as she has shown by using
the work of Gowers and Maurey.

Theorem 10 (a) Every operator on a complex separable infinite-dimensional Hilbert space is the sum of
two chaotic, and hence of two hypercyclic operators.

(b) There is a separable infinite-dimensional Banach space on which not every operator is the sum of
two hypercyclic operators. �

The question of abundance of hypercyclic operators can also be interpreted in a different direction, where
we will now consider Banach spaces. Since hypercyclicity is defined by the existence of a dense orbit one
may ask if such orbits may be prescribed. Now, every dense orbit is linearly independent as we have seen
in the proof of Theorem 9; so the question becomes if for every dense linearly independent sequence in a
Banach spaceX there exists a, necessarily hypercyclic, operatorT onX and anx ∈ X such that the orbit
orb(T, x) contains the given sequence. This problem was raised in 1985 by Halperin, Kitai and Rosenthal
[39], see also [36, Problem 6], who had given a positive answer in Hilbert space. Grivaux [34] was recently
able to solve the problem for general Banach spaces. Her proof is based on the following result that should
also be of independent interest.

Proposition 3 Let (xn) and (yn) be two dense linearly independent sequences in a Banach spaceX.
Then there exists an isomorphismS onX such that

{Sxn : n ∈ N} = {yn : n ∈ N}. �

This result enabled Grivaux to solve the problem of Halperin, Kitai and Rosenthal by distorting an arbitrary
hypercyclic operator.

Theorem 11 LetX be a Banach space and(yn) a dense linearly independent sequence inX. Then there
exists a, necessarily hypercyclic, operatorT onX and anx ∈ X such that

orb(T, x) = {yn : n ∈ N}.
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PROOF. By the Theorem of Ansari and Bernal, see Theorem 7, there exists a hypercyclic operatorT̃ in
X; note thatX is necessarily separable and infinite-dimensional. Ifx̃ is a hypercyclic vector for̃T then its
orbit {T̃nx̃ : n ∈ N0} is a dense linearly independent sequence. By the preceding proposition there exists
an isomorphismS onX such that

{Syn : n ∈ N} = {T̃nx̃ : n ∈ N0}.

We now consider the operatorT = S−1T̃ S onX and the vectorx = S−1x̃. Then we have forn ∈ N0

Tnx = S−1T̃nSx = S−1T̃nx̃,

so that
orb(T, x) = {Tnx : n ∈ N0} = {yn : n ∈ N}

which had to be shown. �

Grivaux also showed that the operatorT can always be chosen in such a way that one may takex = y1.
In an interesting addition to Grivaux’s work, Bonet, Frerick, Peris and Wengenroth [18] have shown

that neither Proposition 3 nor Theorem 11 extends to arbitrary Fréchet spaces. In fact, one may even find a
counterexample to Theorem 11 in the spaceω = CN of all complex sequences.

In Section 3 we have seen that every hypercyclic operator on a Banach space has a dense hypercyclic
subspace. As a consequence of Theorem 11 Grivaux proved that, conversely, every dense subspace of
countable infinite dimension in a Banach spaceX is a hypercyclic invariant subspace of some operator on
X. This, in turn, implies the following, see Grivaux [34].

Theorem 12 Let X be a normed space of countable infinite dimension. Then there exists an operatorT
onX so that each non-zero vector inX is hypercyclic forT . In other words,T has no non-trivial invariant
closed subset. �

This result cannot be extended to separable normed spaces. In fact, Bonet, Frerick, Peris and Wengen-
roth [18] have shown, using a theorem of Valdivia, that every separable infinite-dimensional Fréchet space
contains a hyperplane that supports no transitive, hence no hypercyclic, operator.

5. How big can non-dense orbits be?

Suppose that a given operator isnot hypercyclic. The question one might then ask is how big its orbits can
be without ever becoming dense. Possibly the first one to look at a problem of this type was Herrero [41]
who, instead of demanding the density of one orbit, allowed to take the union of finitely many orbits,

N⋃
i=1

orb(T, xi) = {Tnxi : n ∈ N0, i = 1, . . . , N},

for obtaining a dense set. Such an operatorT is calledmulti-hypercyclic. In fact, Herrero conjectured that,
in Hilbert space, this situation can only occur ifT is already hypercyclic, more precisely, if one of thexi

alone has a dense orbit, see also [36, Problem 4].
A particular case of this conjecture was considered by Ansari. Suppose thatT is a hypercyclic operator

on a locally convex spaceX, and letN ∈ N, N ≥ 2. Then the operatorTN is multi-hypercyclic. To see
this one has to note that for allx ∈ X

orb(T, x) =
N⋃

i=1

orb(TN , xi)
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with xi = T i−1x; and this set will be dense ifx is hypercyclic forT . Now, Ansari [2], [3, Note 3] has
shown that in this case Herrero’s conjecture is true:TN is hypercyclic andx1 = x is hypercyclic forTN

wheneverx is hypercyclic forT . ThusT andTN have the same hypercyclic vectors.
The full conjecture of Herrero was settled in the affirmative independently by Costakis [25] and Peris

[50] for general locally convex spaces. Finally, Wengenroth [57] showed how to extend the result to arbi-
trary topological vector spaces.

Theorem 13 Every multi-hypercyclic operatorT on a topological vector space is hypercyclic. More
precisely, if

N⋃
i=1

orb(T, xi)

is dense inX thenorb(T, xi) is dense for somei ∈ {1, . . . , N}. �

The argument given above then implies the following extension of Ansari’s result.

Theorem 14 If an operatorT on a topological vector space is hypercyclic then so isTN for everyN ≥ 2.
In fact,T andTN have the same hypercyclic vectors.�

The beginning of the proof of Theorem 13 might be like this. Suppose that there arex1, . . . , xN ∈ X such
that

X =
N⋃

i=1

orb(T, xi),

which equals
N⋃

i=1

orb(T, xi).

We may assume thatN is chosen minimal. IfN = 1 we are done. Otherwise we have that

X \
N−1⋃
i=1

orb(T, xi)

is non-empty. On the other hand, this set is open and, by necessity, contained inorb(T, xN ). This implies
that the closure of orb(T, xN ) has an interior point, that is, orb(T, xN ) is somewhere dense. From here
the proof proceeds, but Peris [50] wondered if, for locally convex spaces, this statement in itself suffices to
make orb(T, xN ) dense and henceT hypercyclic. This question was answered positively by Bourdon and
Feldman [22], the final extension to topological vector spaces is once more due to Wengenroth [57].

Theorem 15 If an operatorT on a topological vector space has a somewhere dense orbit then this orbit
is dense andT is hypercyclic. �

The result can also be phrased like this: any orbit of any operator on a topological vector space is either
nowhere dense or dense – a strikingly simple and general statement.

For a more detailed exposition of the work of Costakis, Peris, Bourdon and Feldman we refer to Shapiro
[56, Section 8].

The question posed in the heading of this section has also been studied in other directions. Answering
a question of Feldman [29], Chan and Sanders [24] have given an example of an operator in Hilbert space
that has a weakly dense but not norm-dense orbit; in fact their operator has no dense orbits, that is, it is not
hypercyclic. On the other hand, Feldman [29] has considered orbits in Banach spacesX that come within
bounded distance of every point, that is, orbits that meet every ball of radiusR in X, whereR > 0 is a
suitable preassigned number. He has shown that, even in Hilbert space, an orbit may come within bounded
distance of every point without being dense, but he has also shown that every operator in a Banach space
that possesses such an orbit must be hypercyclic.
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6. Epilogue: Further work

In this note we have discussed some of the recent progress in hypercyclicity. The selection of material was
motivated by personal preferences and is by no means exhaustive. Work that we have not touched upon
here includes investigations on

– closed hypercyclic subspaces,

– supercyclic operators,

– hypercyclic semigroups of operators;

in addition, many papers construct and investigate

– specific hypercyclic operators and universal families.

The interested reader is referred to the updated bibliography [37].
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587–595.

[21] Bourdon, P. S. (1993). Invariant manifolds of hypercyclic vectors,Proc. Amer. Math. Soc., 118, 845–847.

[22] Bourdon, P. S. and Feldman, N. S. (2003). Somewhere dense orbits are everywhere dense,Indiana Univ. Math.
J., 52, 811–819.

[23] Chan, K. C. (2002). The density of hypercyclic operators on a Hilbert space,J. Operator Theory, 47, 131–143.

[24] Chan, K. C. and Sanders, R. A weakly hypercyclic operator that is not norm hypercyclic,J. Operator Theory, (to
appear).

[25] Costakis, G. (2000). On a conjecture of D. Herrero concerning hypercyclic operators,C. R. Acad. Sci. Paris Śer.
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approximation theory(Proc. Colloq., Budapest, 1976), Vol. I, 451–458, North-Holland, Amsterdam.

[43] Kitai, C. (1982).Invariant closed sets of linear operators, Thesis, Univ. of Toronto, Toronto.

[44] León-Saavedra, F. Notes about the hypercyclicity criterion,preprint.

[45] León-Saavedra, F. Sums of hypercyclic operators,preprint.

[46] MacLane, G. R. (1952/53). Sequences of derivatives and normal families,J. Analyse Math., 2, 72–87.
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