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Abstract. Inthese notes we report on recent progress in the theory of hypercyclic and chaotic operators.
Our discussion will be guided by the following fundamental problems: How do we recognize hypercyclic
operators? How many vectors are hypercyclic? How many operators are hypercyclic? How big can
non-dense orbits be?

Avances recientes en hiperciclicidad

Resumen. En estas notas informamos acerca de progresos recientes enidadeasperadores
hiperdclicos y caticos. Nuestro estudio ha sido guiado por los siguientes problemasng, (2cono-
cemos los operadores hipiicos? ¢ Cantos vectores son hipécticos? ¢Cantos operadores son
hiperdclicos? ¢ Q@ tamano tienen lawbitas no densas?

1. Prologue: The basic concepts

Hypercyclicity is the study of linear operators that possess a dense orbit. Although the first examples of
hypercyclic operators date back to the first half of the last century, a systematic study of this concept has
only been undertaken since the mid-eighties. Seminal papers like the unpublished but widely disseminated
thesis of Kitai [43], a highly original and broad investigation by Godefroy and Shapiro [32] and deep
operator-theoretic contributions by Herrero [40], [41] were instrumental in creating a flourishing new area
of analysis.

The survey [36] of 1999 tried to give a complete synopsis of hypercyclicity and the related area of
universality. The intervening years have seen remarkable major advances. In particular, G. Costakis, A.
Peris and S. Grivaux have solved two of the fipeoblems mentioned in [36]. Additionally, many other
noteworthy results have been obtained and a number of foundational issues have been clarified. In this note
we want to present some of these new developments.

For an updated bibliography on hypercyclicity and related areas such as universal functions, chaotic
operators, transitive operators, supercyclic operators or hypercyclic semigroups the interested reader is
referred to [37]. A very readable and detailed introduction to hypercyclicity from the point of view of linear
dynamics is provided by unpublished notes of J. H. Shapiro [56].

The most general setting for hypercyclicity is that of a (real or complex) topological vector space, which
will always be assumed to be Hausdorff. Depending on the result one wants to obtain additional structure
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like local convexity, metrizability, completeness or normability is needed. Since the Baire Category The-
orem is vital in the more fundamental results on hypercyclicity, the underlying space is often assumed to
be anF-spacethat is, a complete metrizable topological vector space. In general, however, the reader will
lose very little on assuming that we are working in Banach spaces. Throughoutppg@iorwe mean a
continuous linear mapping.

Definition 1 Let X be a topological vector space. Then an operafor X — X is calledhypercyclicif
there is a vector: € X whoseorbit underT’,

orb(T, z) := {z, Tz, T?z,.. .},
is dense inX. Every such vectar is calledhypercyclicfor T'.

Since the definition requires a countable dense s&t hypercyclicity can only occur in separable spaces.
Another, less obvious, restriction is that the spatéas to be infinite-dimensional as there are no hyper-
cyclic operators ilRYN or CY, cf. [36, Proposition 11].

Hypercyclicity is closely related to the well-known concept of transitivity from topological dynamics.

Definition 2 Let X be a topological vector space. Then an operator X — X is called(topologically)
transitiveif for each pairU and V' of non-empty open subsetsXfthere is some € N with

T"(U)NV #0.

It is easy to see that every hypercyclic operator is transitive, but the converse need not be true, see [17] or
[7, Example] for simple examples. In many spaces, however, the two concepts coincide, cf. [56, 1.10] or
[36, Theorem 3].

Theorem 1 (Birkhoff Transitivity Theorem) Let X be a separabld’-space. Then an operatdr :
X — X is hypercyclic if and only if it is transitive. B

The result follows from an application of the Baire Category Theorem. The breakdown of the theorem for
general spaces has recently led to an increased interest in transitive operators in their own right. We will
return to this in Section 4.

There are several concepts of chaos for not necessarily linear mappings in the literature. Since many of
them require, among others, the existence of a dense orbit it seems natural to introduce a notion of chaos
into the theory of hypercyclicity. The first to consider this problem were Godefroy and Shapiro [32] who
took up a definition of chaos due to Devaney [28, p. 50].FWspaces, the following has by now been
generally accepted as the right notion of chaos in hypercyclicity; recall that azpaint is calledperiodic
for a mappingl’ : X — X if TN x = z for someN € N.

Definition 3 Let X be anF-space. Then an operat@i : X — X is calledchaoticif
(i) it has a dense orbit, that is, it is hypercyclic, and
(ii) it has a dense set of periodic points.

One may increase the symmetry between the two defining conditions by noting that condition (i) is equiv-
alent to the existence of a dense set of hypercyclic vectors. This follows from the facttHzsfa dense
orbit then so does every vectdf*z because o, ) \ orb(T', T"z) is finite, and the vector"x, n € N,
form a dense set.
As a consequence we see that in every neighbourhood of any poihtliere are hypercyclic points
and periodic points, which corresponds to the intuitive idea of chaos as the precarious alliance of regularity
and irregularity.
Devaney'’s definition of chaos had in fact required a third condition, the so-caiegitive dependence
on initial conditions.From the above discussion it is not surprising that, even for non-linear mappings, this
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condition follows from (i) and (ii), as was shown by Banks et al. [5]. Earlier, Godefroy and Shapiro [32,
Proposition 6.1] had shown that for linear mappings hypercyclicity alone implies sensitive dependence on
initial conditions.

BeyondF-spaces the appropriate definition of a chaotic operator is still under discussion. It seems that
condition (i) should then be replaced by the requirementhiattransitive, which may then however lead
to chaotic operators that are no longer hypercyclic, cf. Bonet [17]. Definitions of chaos for unbounded
operators were recently proposed bysBChan and Seubert [14] and by deLaubenfels, Emamirad and the
author [27].

For further discussions of linear chaos we refer to Shapiro [56] and Feldman [30].

2. How do we recognize hypercyclic operators?

Throughout this sectioX will always be a separablE-space.

For certain special operators the Birkhoff Transitivity Theorem leads to a simple verification of their
hypercyclicity, see the discussion at the end of Section 2 of [10]. In the vast majority of cases, however,
a different and a priori only sufficient condition has been applied successfully in the literature to obtain
hypercyclicity.

Theorem 2 (Hypercyclicity Criterion)  LetT : X — X be an operator. If there are dense subsgts
and Z of X and an increasing sequen¢ey, ) of positive integers such that

(i) foreachy € Y, Ty — 0,
(i) for eachz € Z there is a sequende:y) in X with

xp — 0 and Tz — 2z,
thenT is hypercyclic ®

We have given here a reformulation of the usual statement of the criterion, cf. [15, Definition 1.2] or [36,
Theorem 4]. In the present form it brings out more clearly that hypercyclicity is caused by intertwining
collapse (in (i)) with blow-up (in (ii)).

The Hypercyclicity Criterion has evolved through a series of papers, starting with Kitai's thesis [43] and
the independent investigation of Gethner and Shapiro [31] in the 1980’s; an early form had already been
given by J@ [42] in 1978.

In recent years, several variants of the criterion have been considered, see [36, Remark 3], [49, Theorem
1.1] and [29, Theorem 3.2]. All of them, however, were shown to be equivalent to the Hypercyclicity
Criterion as stated above, see Peris [49, Theorem 2.3], Feldman [29, comment after Theorem 3.2] and
Bermidez, Bonilla and Peris [6, Section 2]. For additional interesting discussions we refer to Grivaux [35].

The effectiveness of the Hypercyclicity Criterion is such that, to date, every known hypercyclic operator
in fact satisfies the Criterion. This has led to the following, cf. [36, Problem 1].

Great open problem in hypercyclicity = Does every hypercyclic operator satisfy the Hypercyclicity Cri-
terion?

The problem has so far evaded all attempts at being resolved. This has motivated the search for equivalent
but less technical forms of the Hypercyclicity Criterion. The following result was obtained independently
by Bernal and the author,&8, Saldivia, and L&, see [10, Remark 3.5] and [44].

2Adding as third condition that there is a dense subEedf X such that
(iii) for eachw € W there is somer € NwithT"w = w
we obtain a criterion for chaos.
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Theorem 3 An operator? : X — X satisfies the Hypercyclicity Criterion if and only if for each pé&ir
andV of non-empty open subsetsXfand each neighbourhodd” of zero inX there is some: € N with

T U)NW £ 0 and T"(W)NV #£0. W

This condition, which is in the spirit of the definition of transitivity, was introduced by Godefroy and
Shapiro, who had already shown that it is implied by the Hypercyclicity Criterion, see [32, Corollaries 1.3
and 1.4].

The Hypercyclicity Criterion has recently helped to solve an open problem in a surprising way. By a
well-known theorem of Ansari [2], [3, Note 3] every pow&", N < N, of a hypercyclic operatdr is
itself hypercyclic, that is, there is somec X such that the seT*Nx : k = 0,1,2,...} is dense inX,
see also Section 5. One might ask if the sequel(k@§);, can be replaced here by arbitrary increasing
sequencesn;,) for which sup, (nx+1 — ni) < oco. Peris and Saldivia [51] have shown that this is indeed
so (only) for operatorg’ that satisfy the Hypercyclicity Criterion.

Theorem 4 LetT : X — X be an operator. Then the following assertions are equivalent:

(i) For any increasing sequendey,) of positive integers witBup,,(nx+1 — nx) < oo there is some
x € X such that the sefT™#x : £k =0,1,2,...} is dense inX.

(i) T satisfies the Hypercyclicity Criterion.

In Banach spaces this result was obtained independently by Grivaux [35], whose approach also led to a new
proof of Theorem 3. We give here a proof of Theorem 4, a variant of that by Peris and Saldivia [51], that is
in turn based on Theorem 3.

ProOOFR (i) = (i). Let T satisfy the Hypercyclicity Criterion with sequen¢e;) and dense subsets
andZ. Let (my,) be an increasing sequence of positive integers with, (my+1 — mx) < co. Thenitis
easy to see that there is somve> 0 and subsequencék, ) and(k;,) such thati, = my, — N for all v.
Hence we have foralj € Y

Ty = TNT™ ey — 0,

and for eachr € Z there is a sequende,) in X with 2, — 0 and
Ty, = TNT ™ gy, — TNz

HenceT satisfies the Hypercyclicity Criterion with sequer{ee,, ) and dense subsetsandT™ (Z); note
that7T necessarily has dense range. This implies (i), see, for example, [36, Theorem 2].

(i) = (ii). We shall show that assertion (i) implies the condition stated in Theorem 3U lagtd V/
be non-empty open subsets Bfand W a neighbourhood of zero iX. We choose non-empty open sets
Uy cU Vy c VandW; ¢ W suchthat; — Uy ¢ W andV; — Wy C V. SinceT is hypercyclic
there is somen € N such thatl™ (W) N V; # (. Hence there is a non-empty open Bét C W, with
(W) C V1.

Now, by (i) there is someé € N such thatl'*+#(U;) N Wy # () fori = 0,...,m (otherwise we could
find an increasing sequengey,) with ny 1 — ng, < m+ 1 andT™ (U;) N We = @ for all k). In particular
we have

THU)NWy £ 0 and T™(Uy) N Wy # 0.

Writing n = [ + m we obtain
T (U)NW # 0

and
T"(W)NV > TH™U, — U) N (Vi = Wa) = (T™THUL) — TH™(U)) N (Vi — W)
O (TTHU) N VL) — (TH™U)NWa) # 0. B
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Another useful method for deriving the hypercyclicity of an operator consists in relating it to a known
hypercyclic operator by means of a commutative diagram. This approach is well known in topological
dynamics but its full potential in hypercyclicity was first realized by Mtz and Peris [47, Lemma 2.1].

Theorem 5 LetX andY be F-spacesand : Y — Y, T : X — X operators. Suppose that there is a
continuous mapping¢ : Y — X of dense range such that the following diagram commutes:

y — 5 Ly

gz{ l¢
x . x,

that is, we havel’ o ¢ = ¢ o S. If S is hypercyclic, satisfies the Hypercyclicity Criterion or is chaotic,
respectively, theff’ has the same property.fe Y is hypercyclic or periodic fofs theng(y) is hypercyclic
or periodic forT', respectively. B

We note that, with a proof as in [47], the result remains true for any topological vector sfaeesl
Y, independently of whether in the definition of chaos we use the concept of hypercyclicity or that of
transitivity.

In the language of topological dynamics,is called aguasi-factor ofS and.S a quasi-extension df’,
see [56, Definition 1.12]. In the case whEris a dense subspace &f, whereY” carries a possibly stronger
topology than the one inherited froi, and¢ : Y — X is the canonical injection we get Shapiro’s
Hypercyclicity Comparison PrincipleT” : X — X is hypercyclic ifT'ly : Y — Y is well-defined,
continuous and hypercyclic. We refer to [55, p. 111] and [36, Proposition 9].

3. How many vectors are hypercyclic?

The simple answer to the question is: Many — if there are any. Of course, there are operators with no
hypercyclic vectors like the identity operator. But as soon as an operator is hypercyclic the set of hypercyclic
vectors becomes huge, in several respects. First one may note that for every hypercyclic Gpefator

X on any topological vector spacé

the set of hypercyclic vectors ofis dense

because, as we had seen in the introductory section, with any veatso everyI'™x, n € N, has a dense
orbit. Next, if X is anF'-space then it is not difficult to see that

the set of hypercyclic vectors @ is a dense’s-set, hence has a complement of first Baire
category

which has as an immediate consequence that
every vector inX is the sum of two hypercyclic vectors fBr

see [36, Proposition 8(a)].

This final observation, however, seems to impose, in general, a restriction on the size of the set of all
hypercyclic vectors: If, after adding the non-hypercyclic zero vector, this set becomes a linear subspace then
every non-zero vector iX is hypercyclic, which is very rarely the case. Defininlgygercyclic subspacas
one in which every non-zero vector is hypercyclic we must therefore conclude that the set of all hypercyclic

3In the case of the Hypercyclicity Criterion, the proof given in [47] requires #f@) = 0. In fact, this can be assumed without
loss of generality. For, i(0) = z¢ is arbitrary then the commutativity of the diagram implies thais a fixed point ofl". When we
now definey(y) = ¢(y) — xo for y € Y then the assumptions of the theorem also hold/foand we have)(0) = 0. | am grateful
to Alfredo Peris for this clarification.
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vectors is in most cases no hypercyclic subspace. This suggested the problem if, nonetheless, the set
of hypercyclic vectors contains hypercyclic subspaces of high dimensions. Quite surprisingly, Herrero
[40] and Bourdon [21] showed independently that, indeed, every hypercyclic operator on complex Hilbert
space possesses a dense, and thus infinite-dimensional hypercyclic subspace. While Bourdon'’s technique
immediately extended to complex locally convex spaceés, [R1] showed that the same result also holds in
the real setting. The final step was recently taken by Wengenroth [57] who was able to extend the result to
arbitrary topological vector spaces.

In fact, Bourdon'’s technique can be used to obtain common dense hypercyclic subspaces for countably
many commuting operators afi-spaces, as was noted by Grivaux [34, Section 4]. Using, in addition,
Wengenroth's ideas one may obtain the following result.

Proposition 1 Let X be a topological vector space antt a non-empty set of commuting operators
T : X — X. If the operatorsI’ € M share a hypercyclic vector then they share a dense hypercyclic
subspace.

PROOF We fix a common hypercyclic vectarc X and an operata$ € M. Then
L := spar{z, Sz, S*z,...}

is a dense subspace &f. It suffices to show that each non-zero vectoLiis hypercyclic for eacli’ € M.
We first note that
L = {p(S)z : p apolynomia}.

Now, by the assumption of commutativity, we have
T"(p(S)x) = p(S)(T"x), n € Ny,

and{T"z : n € Ny} is dense inX. Hencep(S)x is hypercyclic forT if p(S) has dense range.
We now assume tha is a vector space ovér. Since them(S), which we may assume to be non-zero,
factorizes into linear factors it suffices to show that

S —AI

has dense range for eagte C, i.e., that the subspace

K:={(5-A)(y):yc X}

of X coincides withX .
If this is not the case the quotief/ K is a topological vector space of dimension at least one. Let
q : X — X/K denote the corresponding quotient map. Then

q((S—=A)y)=0 forall y € X,

hence
q(Sy) = Aq(y).
By induction we obtain in particular

q(S"z) = \"q(z) for n € Ny.
Since{S™z : n € Ny} is dense inX andgq is continuous and surjective we conclude that
{\"q(x) :n € No}

is a dense subset &/ K. This is clearly a contradiction because this set is, for ang nowhere dense
subset of a one-dimensional subspac&@fC. This completes the proof in the complex case.
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The case of real scalars can be treated similarly, or one applies a complexification technique, see [57].
We omit the details. B

The proof also shows that, for any given operafoe M, one may find a common hypercyclic subspace
that is invariant under'.

The proposition reduces the problem of existence of common dense hypercyclic subspaces for commut-
ing operators to the problem of the existence of just one common hypercyclic vector. The latter problem has
recently attracted some attention. By a classical theorem of Rolewicz [52], the weighted backward shifts

AB : 12 =12 (21,29, 23,...) — (A\z2, Ax3, A2y, . . .)

are hypercyclic for every scalar with |\| > 1, wherel? is the Hilbert space of square-summable se-
quences. Salas [54] has posed the problem of studying the set of common hypercyclic vectors of the
operators\B, |\| > 1; in particular, it was not even clear if this set is non-empty. The latter question was
answered in the affirmative independently by Abakumov and Gordon [1] and Peris [48]; Abakumov and
Gordon [1] and Costakis and Sambarino [26] have even shown that the set of common hypercyclic vectors
is a densé7s-set. Costakis and Sambarino [26] have obtained further (uncountable) families of operators
that share hypercyclic vectors. For the commuting families among them Proposition 1 implies then also the
existence of common dense hypercyclic subspaces. In particular we have:

Corollary 1 The operators\B : [?> — [?,|\| > 1, share a common dense invariant hypercyclic sub-
space. &

In the case otountablefamilies of hypercyclic operators on drtspace the existence of a common hy-
percyclic vector is an immediate consequence of the Baire Category Theorem. Thus we have the following
result that is due to Grivaux [34, Section 4].

Corollary 2 Countably many commuting hypercyclic operatdysk € N, on anF'-space share a com-
mon dense hypercyclic subspacd

In particular, on the spacH (C) of entire functions the operator3 of differentiation andl” of translation,

(Df)(2) = f'(2), (Tf)(2) = f(z+ 1),

commute and are hypercyclic by classical theorems of MacLane [46] and Birkhoff [16]. Thus they have a
common dense hypercyclic subspace. This answers positively Problem 1 of Arorg &aitdMaestre [4].

When we consider non-commuting operators new methods are called for to produce common dense hy-
percyclic subspaces. Using techniques that helped her to solve a problem of Halperin, Kitai and Rosenthal,
see Section 4, Grivaux [34] was able to obtain the following important and surprisingly general result.

Theorem 6 Countably many hypercyclic operatdfs, & € N, on a Banach space always share a common
dense hypercyclic subspacell

A related result in arbitrary’-spaces with additional assumptions on the operdtpis due to Bernal und
Caldebn [9, Theorem 3.1].

4. How many operators are hypercyclic?

Experience has shown that hypercyclicity of an operator is not as rare a phenomenon as one might at first
think. Already in 1969, Rolewicz [52] had asked if indeed every, by necessity separable and infinite-
dimensional, Banach space supports a hypercyclic operator. This was answered positively by Ansari [3]
and Bernal [8], while Bonet and Peris [20] extended the resultéoltet spaces.
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Theorem 7 Every separable infinite-dimensional&eahet space admits a hypercyclic operatoll

The corresponding problem for chaotic operators has, perhaps surprisingly, a different answer. While
Rolewicz’ weighted backward shifts are simple examples of chaotic operators on Hilbert space, Bonet,
Martinez and Peris [19] have used the work of Gowers and Maurey to produce a counterexample in the
setting of Banach spaces.

Theorem 8 Every separable infinite-dimensional Hilbert space admits a chaotic operator, while there is
a separable reflexive infinite-dimensional Banach space that does not support any chaotic opdator.

Going beyond Fechet spaces one encounters additional obstacles: On thespac€, -, C of finite
sequences with its natural inductive limit topology there are even no hypercyclic operators, cf. [20], [36].

In contrast, Bonet, Frerick, Peris and Wengenroth [18] have shown that thesgapports transitive
operators. Their work was motivated by Bdrdez and Kalton [7] who have shown that, while every
(not necessarily separable) infinite-dimensional Hilbert space supports a transitive operator, there are no
transitive operators off° or, more generally, on any non-reflexive quotient of a von Neumann algebra.

The presumably difficult problem of characterizing those spaces that carry transitive, hypercyclic, or
chaotic operators has not been solved yet, see also [7, p. 1454]. In particular, the existence of hypercyclic
operators in any separable (non-locally convEx$pace is still open, cf. [36, Problem 5].

Suppose now that a space admits hypercyclic operators. Motivated by the fact that the existence of a
single hypercyclicvectorimplies the existence of a dense set of such vectors one might ask if the analogous
statement is true for operators. A simple argument shows that this is not the case, at least if understood in
its most natural sense. To see this, consider an opefaicX — X on a Banach spac¥ with |7 < 1.

Then we have for every € X

[Tz < T[] < llll, n € No,

so thatT" only has bounded orbits and hence cannot be hypercyclic. Thus, when we endow the(space
of all operatordl’ : X — X with the operator norm topology then there are no hypercyclic operators in the
closed unitbal{T € L(X) : ||T|| < 1}. As a consequence the hypercyclic operators do not form a dense
setinL(X).

Now, on L(X) there is another natural, and weaker topology, the strong operator topology (SOT) in
which convergence is defined as pointwise convergence at everyX. Thus the question comes to
life again: Is the set of hypercyclic operators SOT-densé&(iX ), where X is, say, a separable infinite-
dimensional Banach space? In [23], Chan succeeded in giving a positive answer in Hilbert space, which
was generalized by & and Chan [12] to Echet spaces. In a subsequent papes &1d Chan [13] note
that these results are in fact a consequence of the following very general statement on SOT-density that is
due to Hadwin, Nordgren, Radjavi and Rosenthal [38].

Proposition 2 Let X be a separable Frchet space and : X — X an operator. If

(LI) for everyn € N there arez,...,z, € X such that
Tlyeees Ty Ty, .., Ty
is linearly independent,

then the set
{S7!TS : S: X — X anisomorphism

is SOT-dense il (X). W

This result allowed Bs and Chan [13], among other things, to give a new proof of their earlier results and
to extend them to chaotic operators.
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Theorem 9 Let X be separable infinite-dimensional&ehet space.
(a) The set of hypercyclic operators dais SOT-dense i (X).
(b) The set of chaotic operators o%i is either empty or SOT-denseir{ X).

ProoF It follows from Theorem 5 that the sets described in (a) and (b) are invariant under the mapping
T — S~'TS, whereS : X — X is an isomorphism. Now I&f' be an operator in one of these sets. Then
T possesses a hypercyclic veciorThis implies that for each € N

v, Tz, T x,... T 2z, Te, T3z, T%x,..., T 1z

is linearly independent because otherwise s@ifte: would be a linear combination of Tz, ..., T 'z,

which would imply that the orbit of underT lies in some finite-dimensional subspace)@fthls is clearly
impossible. Henc& satisfies condition (LI) so that by the previous proposition the sets in (a) and (b) are
either empty or SOT-dense i X). To complete the proof we remark that by Theorem 7 every separable
infinite-dimensional Fechet space admits a hypercyclic operatoll

In spite of what was said before some density results are possible even under the stronger operator norm
topology in L(X) when X is a complex separable infinite-dimensional Hilbert space. By Chan [23] the
linear span of the set of hypercyclic operators is norm dendg ) which was improved independently

by Bes and Chan [13] and be [45] who showed that the set of sums of two hypercyclic operators is norm
dense inL(X). This led these authors to ask if every operatot®rs in fact the sum of two hypercyclic,

or even of two chaotic operators. Grivaux [33] could recently answer these questions positively. Her deep
result is the more remarkable in that it breaks down for general Banach spaces, as she has shown by using
the work of Gowers and Maurey.

Theorem 10 (@) Every operator on a complex separable infinite-dimensional Hilbert space is the sum of
two chaotic, and hence of two hypercyclic operators.

(b) There is a separable infinite-dimensional Banach space on which not every operator is the sum of
two hypercyclic operators. B

The question of abundance of hypercyclic operators can also be interpreted in a different direction, where
we will now consider Banach spaces. Since hypercyclicity is defined by the existence of a dense orbit one
may ask if such orbits may be prescribed. Now, every dense orbit is linearly independent as we have seen
in the proof of Theorem 9; so the question becomes if for every dense linearly independent sequence in a
Banach spac& there exists a, necessarily hypercyclic, operdtan X and anz € X such that the orbit

orb(7T, z) contains the given sequence. This problem was raised in 1985 by Halperin, Kitai and Rosenthal
[39], see also [36, Problem 6], who had given a positive answer in Hilbert space. Grivaux [34] was recently
able to solve the problem for general Banach spaces. Her proof is based on the following result that should
also be of independent interest.

Proposition 3 Let (z,,) and (y,) be two dense linearly independent sequences in a Banach space
Then there exists an isomorphighon X such that

{Sz,:neN}={y,:neN}. R

This result enabled Grivaux to solve the problem of Halperin, Kitai and Rosenthal by distorting an arbitrary
hypercyclic operator.

Theorem 11 LetX be a Banach space arig,,) a dense linearly independent sequenc&inThen there
exists a, necessarily hypercyclic, operaioon X and anx € X such that

orb(T, x) = {y, : n € N}.
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PrRoOF. By the Theorem of Ansari and Bernal, see Theorem 7, there exists a hypercyclic oﬁé'nator

X; note thatX is necessarily separable and infinite-dimensionat. iff a hypercyclic vector fof then its

orbit {T"Z : n € Ny} is a dense linearly independent sequence. By the preceding proposition there exists
an isomorphisnd on X such that

{Syn:neN} = {I"% :n € Ny}.
We now consider the operatér= S=1TS on X and the vector: = S~'Z. Then we have fon € Ny
Tz = S~ 'T"Se = S~'T"Z,

so that
orb(T,z) = {T"z :n € No} = {yn, : n € N}

which had to be shown. H

Grivaux also showed that the operafocan always be chosen in such a way that one maytakey, .

In an interesting addition to Grivaux’s work, Bonet, Frerick, Peris and Wengenroth [18] have shown
that neither Proposition 3 nor Theorem 11 extends to arbitraghat spaces. In fact, one may even find a
counterexample to Theorem 11 in the space CV of all complex sequences.

In Section 3 we have seen that every hypercyclic operator on a Banach space has a dense hypercyclic
subspace. As a consequence of Theorem 11 Grivaux proved that, conversely, every dense subspace of
countable infinite dimension in a Banach spacés a hypercyclic invariant subspace of some operator on
X. This, in turn, implies the following, see Grivaux [34].

Theorem 12 Let X be a normed space of countable infinite dimension. Then there exists an oférator
on X so that each non-zero vector i is hypercyclic forfT". In other words;I" has no non-trivial invariant
closed subset. B

This result cannot be extended to separable normed spaces. In fact, Bonet, Frerick, Peris and Wengen-
roth [18] have shown, using a theorem of Valdivia, that every separable infinite-dimensiénhéFspace
contains a hyperplane that supports no transitive, hence no hypercyclic, operator.

5. How big can non-dense orbits be?

Suppose that a given operatomnist hypercyclic. The question one might then ask is how big its orbits can
be without ever becoming dense. Possibly the first one to look at a problem of this type was Herrero [41]
who, instead of demanding the density of one orbit, allowed to take the union of finitely many orbits,

N
U orb(T,z;) = {T"x; : n € Ng,i=1,...,N},

i=1

for obtaining a dense set. Such an operdtas calledmulti-hypercyclic In fact, Herrero conjectured that,
in Hilbert space, this situation can only occufTifis already hypercyclic, more precisely, if one of the
alone has a dense orbit, see also [36, Problem 4].

A particular case of this conjecture was considered by Ansari. SupposE thathypercyclic operator
on a locally convex spac¥, and letN € N, N > 2. Then the operatdf”V is multi-hypercyclic. To see
this one has to note that for alle X

N
orb(T, z) = | orb(TN, ;)
=1
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with z; = T 'z; and this set will be dense if is hypercyclic forT. Now, Ansari [2], [3, Note 3] has
shown that in this case Herrero’s conjecture is i€’ is hypercyclic ands; = « is hypercyclic forT™
whenevet is hypercyclic forT. ThusT andT™ have the same hypercyclic vectors.

The full conjecture of Herrero was settled in the affirmative independently by Costakis [25] and Peris
[50] for general locally convex spaces. Finally, Wengenroth [57] showed how to extend the result to arbi-
trary topological vector spaces.

Theorem 13 Every multi-hypercyclic operatdf’ on a topological vector space is hypercyclic. More
precisely, if

N
J o7, )
i=1
is dense inX thenorb(T, z;) is dense for somee {1,...,N}. A

The argument given above then implies the following extension of Ansari’s result.

Theorem 14 If an operatorT on a topological vector space is hypercyclic then s6isfor everyN > 2.
In fact,7 and 7™ have the same hypercyclic vectordli

The beginning of the proof of Theorem 13 might be like this. Suppose that therg,are, =y € X such

that
N

X = U orb(T, .%‘i)7
=1
which equals

N
J ort(T, ;).
=1
We may assume tha¥{ is chosen minimal. IfV = 1 we are done. Otherwise we have that

N-1
X\ | orb(T, z;)
i=1

is non-empty. On the other hand, this set is open and, by necessity, contagredlin: x). This implies

that the closure of orlf", x ;) has an interior point, that is, ofB, z) is somewhere dense. From here

the proof proceeds, but Peris [50] wondered if, for locally convex spaces, this statement in itself suffices to
make orlfT, x ;) dense and hencE hypercyclic. This question was answered positively by Bourdon and
Feldman [22], the final extension to topological vector spaces is once more due to Wengenroth [57].

Theorem 15 If an operator? on a topological vector space has a somewhere dense orbit then this orbit
is dense and’ is hypercyclic. &

The result can also be phrased like this: any orbit of any operator on a topological vector space is either
nowhere dense or dense — a strikingly simple and general statement.

For a more detailed exposition of the work of Costakis, Peris, Bourdon and Feldman we refer to Shapiro
[56, Section 8].

The question posed in the heading of this section has also been studied in other directions. Answering
a question of Feldman [29], Chan and Sanders [24] have given an example of an operator in Hilbert space
that has a weakly dense but not norm-dense orbit; in fact their operator has no dense orbits, that is, it is not
hypercyclic. On the other hand, Feldman [29] has considered orbits in Banach spétaiscome within
bounded distance of every point, that is, orbits that meet every ball of rédinsX, whereR > 0 is a
suitable preassigned number. He has shown that, even in Hilbert space, an orbit may come within bounded
distance of every point without being dense, but he has also shown that every operator in a Banach space
that possesses such an orbit must be hypercyclic.
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6. Epilogue: Further work

In this note we have discussed some of the recent progress in hypercyclicity. The selection of material was
motivated by personal preferences and is by no means exhaustive. Work that we have not touched upon
here includes investigations on

— closed hypercyclic subspaces,
— supercyclic operators,
— hypercyclic semigroups of operators;
in addition, many papers construct and investigate
— specific hypercyclic operators and universal families.

The interested reader is referred to the updated bibliography [37].
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