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Surjective convolution operators on spaces of distributions
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Dedicated to the memory of Klaus Floret

Abstract. We review recent developments in the theory of inductive limits and use them to give a new
and rather easy proof ford¢imander’s characterization of surjective convolution operators on spaces of
Schwartz distributions.

Operadores de convoluci 6n sobreyectivos en espacios de distribuciones

Resumen. Se recuerdan avances recientes en lddete Imites inductivos y se usan para dar una
prueba nueva, y bastante elemental, de la caracteésizdebida a lrmander de los operadores de con-
volucion sobreyectivos en espacios de distribuciones de Schwartz.

1. Introduction and the surjectivity problem

In [6] L. Hormander characterized surjective partial differential and convolution operat&?§on by in-
genious and rather complicated ad hoc methods. Essentially the same proof can be found in his fundamental
treatise [7] where he writes: “We have avoided this terminology [of (LF)-spaces] in order not to encour-
age the once common misconception that familiarity with (LF)-spaces is essential for the understanding of
distribution theory.” His work is an impressive proof of this claim that it is possible to avoid (LF)-spaces.
However, our aim is to show that recent abstract results about inductive limitédié&rspaces can be very
helpful to find and to prove surjectivity results for operators on spaces of distributions.

We start with a very general question. L&t, 2, be open subsets &7 andR? respectively, and let
S 2'(Q2) — 2'(21) be a continuous linear operator with dense range suchSt@t2,)) C &(Q4).
When isS onto?

As suggested by érmander it is helpful to split the investigation into two parts:

(A) Characterizef(Q2;) C S(2'(Q)).
(B) Characterize surjectivity o : 2'(Q;) — 2/(Q1)/&£(Q1).

Step (A) of this program can be done with the aid of classical methods frésheér space theory which

had been applied since the very beginning of distribution theory e.g. by L. Schwartz [14] or B. Malgrange
[9]. These methods are very nicely presented in K. Floret's article [4]. We will indicate below that it is still
possible to refine and to simplify as well the methods as the results but we will mainly concentrate on the
second step (B).
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Since £(,) is dense inZ’(€),) the quotient spac&’(Q,)/&() is completely useless from the
topological point of view but trivially, surjectivity of' is equivalent to the surjectivity of

p. Q) x&() —  7'(h)

' (u, f) — S(u)+ f
Using the isomorphisnX’ x Y/ — (X x Y/, (z,y') — ((z,y) — '(z) + y/(y)) the transpose df is
easily calculated as

Tt 2(Q1) — 2(02) x E' (D)
e o (SYe)e)
and by the Hahn-Banach theorem we have Thi surjective if and only ifl" is a weak isomorphism onto
its range which, by definition, means tHat(7") is a well-located subspace of the (LF)-spae€&s,) x
&'(Q4). This property is reflected by the quotient spaeg,) x &/(Q4)/Im(T") by a condition which
is called weak acyclicity. The classical theory of (LF)-spaces suffered from two problems. The first is
that the description of all continuous seminorms®(f2.) x &’ (2, ) is already rather complicated and the
seminorms on the quotient look even worse. The second problem is that the classical characterization of
weak acyclicity due to Palamodov and Retakh even needs seminorms with peculiar additional properties.
Faced with this situation, &tmander’s scepticism against (LF)-spaces seems to be justified, indeed.
We will show that younger results about (LF)-spaces improve the situation significantly.

2. Abstract properties of (LF)-spaces

We briefly recall basic properties and theorems for (LF)-spaces and derive consequences which are suitable
to obtain characterizations in the situation explained in the introduction. Much more information can be
founde.g.in[1, 12, 16, 17].

By an (LF)-space we mean the unioh = UneN X, of Frechet spaceX,, C X, with continu-
ous inclusions endowed with the finest locally convex topology such that all embediingss X are
continuous. We do not assume a priori tiétis Hausdorff. We have the canonical algebraically exact
seguence

0-Px. HPx. =X -0
neN neN

whered((zn)nen) = (Tn — Zn—1)nen (With 2o = 0) is the difference map angl((z, )nen) = D, cn Zn-
According to Palamodov [11] the inductive spectrgfi, ),y or X is called (weakly) acyclic il is a
(weak) isomorphism onto its range.

The main examples of (weakly) acyclic spaces are strict (LF)-spaces (i.e. the incliSjors X, 1
are (weak) homomorphisms) and (LS)- and {)Spaces (i.e. the inclusions,, — X, ; are (weakly)
compact). IfX, Y, andZ are (LF)-spaces and

0o-x -1y 9% 70

is an algebraically exact complex with continuous m@@ndg we obtain from a diagram chase (see e.g.
[13] or [15, theorems 1.4 and 1.5]):

(1) If Zis (weakly) acyclic thery is a (weak) homomorphism,
(2) the converse holds ¥ is (weakly) acyclic.

This result gives the link to our original problem singeis a weak homomorphism if and only if the
transposed map’ : Y’ — X' is surjective. Note that due to the open mapping theayésrautomatically
a quotient map and hencg’ : Z' — Ker(f!) is always an algebraic isomorphism. We therefore have
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good knowledge about’ even though we may fail to have a concrete description of the quotient space
Z=Y/f(X).

Till now, we used only the Hahn-Banach theorem to reformulate our problem. This can be useful only if
we have evaluable conditions ensuring (weak) acyclicity. A classical characterization is due to Palamodov
[11] and Retakh [13]:

An (LF)-spaceZ = ind Z, is (weakly) acyclic if and only if there are absolutely conex
neighbourhood¥/,, € %,(Z,) and integersn,, > n such thatU,, C U, ., and the (weak)
topologies ofZ;, andZ,,,, coincide onl,, for all & > m,,.

As a necessary condition this result is very useful. For instance, it implies that acyclic (LF)-spaces
are complete. There are however only very few applications of the sufficiency part. There are many more
characterizations of (weak) acyclicity # satisfies a certain stability property which typically holds a
priori. Z is called boundedly stable if on each set which is bounded in someZstefl but finitely many
of the topologies of,, coincide. Implicitly, this notion appeared at several places, the name was given by
Bierstedt [1]. The most obvious example is an inductive limit of Montel spaces, since a compact set does
not admit coarser Hausdorff topologies.

For this class we have the following result essentially proved in [16].

Theorem 1 For a boundedly stable (LF)-space = ind Z,, the following conditions are equivalent.
1. Zis acyclic.
. Z is weakly acyclic.

. Z is complete and Hausdorff.

2
3
4. Z is sequentially retractive, i.e. each null sequenc&ioonverges t® in some stef,,.
5. Zisregular, i.e. each bounded subsetbfs contained and bounded in some step.
6. Z is a-regular, i.e. each bounded subset®fs contained in some step.

7

. Z is B-regular, i.e. each bounded subset&fwhich is contained in some step is bounded in some
step.

8. The fundamental systertis: ||,,,n ) nen Of Seminorms foZ,, satisfy(Ps):

VneNdm>nVEiE>m dNeNYVMeNdKeNVY 22,

12 llm,nr < K ([|2]ln,5 + [|]

kK ) -

9. The following closed neighbourhood condition holds:
VneNdm>nV k>m 3 U e %(Z,) UZkQZm. [ ]

In our situation all conditions of the theorem involve the cokernef @fe. the quotienZ = Y/ f(X))
and in the next section we will indeed use a description of the quotient which is good enough to check the
last item of theorem 1. However, let us state a variant-oégularity which avoids the quotient.

Corollary 1 Let f : X — Y be an injective continuous linear map from an (LF)-spdc¢o an acyclic
inductive limitY” = indY,, of Fréchet-Schwartz spac&s such thafim( f) is stepwise closed, i.&n(f) N
Y, is closed inY,, for eachn € N. The following conditions are equivalent:

1. fis a homomorphism.
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2. ftis surjective.

3. For every sequenc@y)ren in Y converging pointwise tO on ker(f*)) there aren € N and a
sequencézy)ren in X such thaty, — f(xx) € Y, foreachk e N. 1

The proof is rather easily obtained from theorem 1 by notinghet( X ) is an (LF)-space (sinden( f)
is stepwise closed) which is boundedly stable (since quotientsaahEt-Schwartz spaces are Montel) and
thata-regularity is equivalent to the fact that each weak null sequence is contained in some step.

In our problem from the first section the spaces is the product of2(22) — which is certainly an
acyclic (LF)-space with Fachet-Schwartz steps — adfd(€2; ) — which is an (LS)-space. It follows from the
next lemma (which is probably known, but we indicate the proof since we do not have a precise reference)
that (LS)-spaces are acyclic inductive limits o€Ehet-Schwartz spaces and thus, the corollary is applicable
in our situation.

Lemma 1 For every compact subs@f of a Fréchet spaceX there is a FEchet-Schwartz spad C X
with continuous inclusion such théaf is compact iny”.

PROOF There is a null sequende,,),en in X with K C I'({z,, : n € N}) and there is an increasing
sequence of scalals< «,, — oo such that(a,x, )nen Still converges td). Form € N we setK,, =
I'({ x/a,zy, : n € N}) and endow its linear spali,, with the Banach space topology haviig, as the
unit ball. We thus obtaif,,+1 C Y, and from {/a,,/ t/a;, — 0 we obtain thati<;, is compact inY,,
for k > m, henceY” = [, .y Yo is @ a Féchet-Schwartz space which is continuously embedded.in
Finally, K is compact inY” sinceq,, tends toco. B

We finish this general section with two results which are helpful in connection with step (A) of the
introduction. The first one is called “Grothendieck-Floret factorization theorem” in [12]. Floret’s proof
[3] was based on a tricky lemma of Grothendieck but the result can also be proved by straightforward
arguments.

Proposition 1 LetZ = indZ,, be a regular inductive limit of locally convex spaces ahd X — Z a
(weakly) continuous operator from a semi-metrizable locally convex sjatteZ. Then there is» € N
such thatl" acts continuously fronX to Z,,.

PROOE Assuming the contrary and using thatis bornological we find bounded sé®, in X such that
T'(B,) is not a bounded subset 4f,. Moreover, there are scalatis, > 0 such thatB = (J,, . @n B, is
bounded inX. Hence there is € N such thai,, T(B,,) C T(B) is bounded inZ,,, a contradiction. H

The last abstract result we need is an improvement of Meise’s and Vogt's surjectivity criterion [10,
section 26.1] and appeared in [5]:

Proposition 2 LetT : X — Y be a continuous linear operator with dense range from adhet space
X to a Fréchet-Schwartz spadé and assume that for eadh € 7% (X) there isV € % (Y") with

(TH=HU°) S [V°]

(the linear span of/°). ThenT is surjective. B

3. Surjectivity modulo smooth functions

We will now use theorem 1 for step (B) of the program mentioned in the introduction, i.e. to characterize
surjectivity of
.@/(Qg) X g(Ql) — @/(Ql)

(u, f) — S(u)+ f

In this situation we say theff is surjective mod¢’. The Hahn-Banach theorem gives the following result.

T:
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Lemma 2 The following conditions are equivalent.
1. {(h,—S(h)): h € &(Q)} is dense irker(T).
2. {(St(p),p): ¢ € D()}isdensein(f,u) € 2(Qa) x &' (1) : St(u) = f}.

3. Ifw € 2'(Qs) satisfiesS(w) € &(Q4) then(S(w),u) = (w, S*(u)) holds for eachu € &”()
with S*(u) € 2(Q). W

The equivalent conditions of the lemma are satisfied by convolution opeigters.+ which can be
seen by regularization: Iff,u) € 2(Q2) x &' () satisfiesS?(u) = f ande,, is an approximate identity
then(St(e, * u), e, x u) = (e, * St(u), e, * u) converges to tdf, u) in 2(z) x &' ().

We have a necessary condition for surjectivity m&dwhich, for convolution operators, is due to
Hoérmander:

Proposition 3  If S is surjective mo@’ and satisfies the conditions of lemma 2 titeis invertible, i.e.
{u € (g)/(Ql) : St(u) € @(Qz)} - @(Ql)

PrROOF If T is surjective thedm(T?) = {(S'(¢),¢) : ¢ € 2(21)} is closed and dense i(f,u) €
D(Q2) x &' (1) : St(u) = f}. This gives the conclusion.®

Of course, invertibility implies the conditions of lemma 2. Moreover, it is automatically satisfied if
S is a partial differential operator with constant coefficients. On the other hand, the ordinary differential
operatorS = zdx is surjective onZ’(R) but it is not invertible since’(5) = 0.

Invertibility helps to overcome the first problem mentioned at the end of the introduction, i.e. to find an
explicit description of the cokernel @ft. We define

R, D) xEQ) — ()
' (o, u) — o —S5'(u)

Then invertibility precisely mearig:r(R) = Im(7"). The space¥,, = 2(K,,)x &, (M,,) (where( K, )nen
and (M,,),en are compact exhaustiofs, and(2; respectively, such that*(&”(M,,)) C &'(K,,), and
&' (M,,) denotes the space of distributions with supporddp and order less than) constitute a defining
spectrum ofY” = 2(Q2) x £'(Q1) and if we endowlm(R) with the (LF)-space topology in&(Y,,) we
obtain an algebraically exact sequence

0— 2(0) 15 2(2) x €' () 25 Im(R) — 0

to which we can apply the abstract results of section 2. In this way we obtamé&hder’s characterization
when a convolution operator is surjective modulo smooth functions:

Theorem 2 A convolution operatof = px is surjective mod’ if and only if it is invertible and 2., Q)
is S-convex for singular supports, i.e. for each compactiset 2, there is a compact sét/ C 2, such
that eachu € &”(Q1) with S*(u)|o,\ k € &(Q2 \ K) satisfiesu|q,\ar € £(Q1 \ M).

PrOOF We first show necessity of the convexity condition for singular supports. Assuming that it does
not hold we find a compact s&f C 2, and a sequenag, € &'(2;) with S*(uy)|o,\x € & (2 \ K) such
thatug|o,\ar, & € (1 \ My). Forming the convolution with the fundamental solution of an appropriate
power of the Laplace operator (which does not change the singular support), cutting off, and multiplying
with positive constants we may assussféu;,) € €% (), St (ux) — 0in €™ (£y) for k — oo and a fixed

m € N to be determined later, and thgt(us)|o,\x — 0.
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We choose a cut-off functiog € 2(Q3) which takes the valué in a neighbourhood of¢ and set
or = (x — 1)S*(ug) € 2(Q2). To apply item (3) of corollary 1 to the sequen¢ey, ux))ren We have to
check that for eaclw, f) € ker(T) (i.e.w € 2'(€:) satisfiesS(w) = f € &(£1)) the sequence

cr = (w, or) + (f, ur)

converges td. To prove this claim it is enough to justify tfiermal calculationc, = (S((x — 1)w), ug) +
(S(w),ur) = {xw,S*(ux)) for largek € N since this expression tends @as yw has compact support
and thus defines a continuous linear functional on s@ffi€();) in which S*(u;) is a null sequence.

Note thatS((x — 1)w) a priori only belong€?’(€2;) and thus the expressid§'((x — 1)w), ux) does
not make sense. Howevergyf is an approximate identity we have for larges N

ce = lim (e, xw, (x — 1)S"(ug)) + (en * S(w), u)

n—oo

= lim (x(en * w), 8 (u)) = (xw, 5" ()

sincex(e, * w) converges tocw in the sequentially retractivéLB)-spaces” (€22) and thus in some of the
steps and in particular in the strong dual of sc#i&(25).

From corollary 1 we now obtain elemenfs € () such that the sequen€ey, ux) — T(fx) =
(or — S*(fx),ur — fx) belongs to some step of the (LF)-spagé,) x &’(Q) hence the supports of
uy, — fi are contained in some fixed compact 3£tC Q; and thusuy|o,\x € (1 \ M) forall k € N,
a contradiction.

To prove the sufficiency part of the theorem we will check item (9) of theorem 1 for the (LF)-space
Z =Im(R) = ind R(Y,) as defined above, i.e. for eaghe N there ism > n such that for eack > m

there is 20-neighbourhood in Y, with BT * C R(Yys1).
From the convexity condition for singular supports we obtain

VneNdm >n YV ue éa/(ﬂl) St(u)\%\K” €EEC*® = U‘Q2\J\4m IS

Next we use invertibility to deduce for each compact 36tC ; andk € N that the Fechet space

X ={u € (M) : S'(u) € &)} coincides algebraically (and by the closed graph theorem also
topologically) with the Fechet space?(M) and obtain that for every € N there areU € %(&}.(M))

ands € Nsuchthat/n(S*)~1(V;) C W,. (where(V;)sen and(W,.),.cy are the canonica@kneighbourhood
bases oft’(£22) andZ (M), respectively), and by forming the convolution with an approximate identity we
obtain (forr = 0)

VkeNdseNVue& (M) S'(u)eb = uc?.

Fork > m+1 we choose > s = s(k) such that the unit baiB,, ; of the Banach spac&/ (K,) (of ¢ times
continuously differentiable functions di, with support ink,,) is relatively compact ir;; (K,,) and set

U = B, N 2(K,) x the unit ball of&), (M,,) € % (Yy).
Estimating the closure iR(Y}) by the closure in the relative topology inducedd%((2,) we obtain from
the fact that the Minkowski sum of two compact sets is closed

R(Y%) ———&"(Q2)

R(U) " CR(U) NR(Yi) € (%5 (Kn) + S'(&,(My))) N R(Yr).-

Given g in the set on the left hand side we thus fifide 4§(K,,), v € &,(M,), ¢ € 2(K}), and
w € &} (My) with

g=F+8"()=¢+5w)
henceSt(u—w) = p—f € €* which impliesu—w € ¢, and the singular support 6f (u—w) is contained
in K, which implies that. — w is smooth outsidé/,,,. Using once more a cut-off function € 2(M,,,+1)
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with valuel in a neighbourhood afZ,,, we obtaing = ¢+ S*((1 —v)(w —u)) + S*(¢(w — u) +u), where
v=1v(w—u)+u€ & (Mytr)andf = ¢+ S((1 — ) (w—u)) € 2(Q) has support ifk,, 1 since
the supports ofy and S*(v) are there. Thereforg = f + S*(v) € R(Y,,+1) and this proves the closed
neighbourhood condition of theorem 18

Remark 1 1. The sufficiency part of the theorem used the assumptiorbtisah convolution operator
only to deduce from invertibility the “quantitative” formulation

VkeNdseNYuec& (M) S'(u)ecb* = uc%.

If we redefine invertibility for general linear operators by this condition we obtain that any invertible
continuous linear operatdt : 2'(Q3) — 2/(1) with S(&(Q2)) C &(€) is surjective mods’
provided thai(Q, 1) is S-convex for singular supports.

2. If S = px is an invertible convolution operator one can us&dander's complex analytic results
[7, 16.3.9 and 10] and Ehrenpreis’ [2] solution of the division problerRnto get a fundamental
solution of ix. Using this, one can see that already the inital topologyXor= {u € &' (M) :
St(u) € £(Q2)} with respect taS* : X — &(Qs) coincides with the Fechet space topology of
2(M) and from this one gets the same condition as above without the a priori bound on the order of
w!
VkeNdseNVuecé&' (M) S(u)ec6*=uce. N

4. The Cauchy problem for regular right hand side

We now briefly explain how to proceed with step (A) of the program mentioned in the introduction. We
will give an extension and quite simple proofs (at least for some partspohlinder’s characterization for
the surjectivity ofS : £(Q3) — £(€1). Hormander proved that this holds if the equatiiu) = f can be
solved withu € 2'(2.) for eachf € £(€). Here we show that this also equivalent to the solvability of
the equation i’ (Q,) for eachf € 2(21) U2 (Q27) whereQ); is an appropriate complex neighbourhood
of £ (this improves a result of Langenbruch [8] who required solvability of those equatiefigiy)).

For an open se; C R? we call an open sg@* C C? with Q C Q* admissibleif 2#(C?) is dense
in 22(2*) and for every compact sét C Q* there is a compact sétf C Q such that each € &'(2)
which is carried byC' (see [7, section 9.1]) has its supportif. The following characterization is proved
by standard duality:

Proposition 4 Q* C C? is admissible fof2 C Q* N R4 if and only if for eachU € %,(#(Q*)) there

is a compact sed C Q with 2(Q\ M) C (U)g(m wherer : 27(Q*) — &(Q) denotes the restriction
map. W

The main example below for admissible sets is essentially due to Langenbruch [8]. It can be proved by
forming the convolution with the Gaul3-kernel.

Example 1 For any open sef2 C R the set
QO ={x+iy: z € Qand|y| < dist(xz,0Q)}

is admissible fof2. W

Theorem 3 For a convolution operatoS = ux : 2'(Q2) — 2'(£1) the following conditions are equiv-
alent:
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1. §5:&(Q) — &(8) is surjective.

2. £(Q1) C S(2'(Q22)).

3. There is an open sék; which is admissible fof2; such that
r(A(Q7)) U Z2(2) € S(Z'(22)).

4. Sisinvertible and the paifQ2,, Q1) is S-convex for supports, i.e. for each compact&eg (2, there
is a compact sed/ C Q; such that each) € 2(Q;) with suppS*(u) C K satisfiessuppu C M.

PrROOFE Trivially, (3) follows from (2) and (2) from (1), and we have nothing new for the proof that
2(21) C S(2'(922)) implies invertibility, see [7, theorem 16.5.1], but we would like to mention Flo-
ret’s result that invertibility is equivalent to the fact théit has stepwise closed range. We will use the
Grothendieck-Floret factorization theorem to prove {lf&f, ;) is S-convex whenever(#(€)})) is con-
tained inS(2’'(Q2)). For a compact sek C 2, we endow the spack = {¢) € 2(Q;) : suppS*(y)) C

K} with the (metrizable) initial topology with respect to the (injective) n#8p X — 2(K) and consider
the map

T:X =) ¢ (f— A P f dA).

This map is weakly continuous since the restrictioif2toof each element € 7(Q3)"” = s(Q3) is of
the formf = S(w) for somew € 2'(€22). Sinces#’(Q27); is a regular inductive limit of the Banach spaces
[U°], U € % (2£(93)), we find a0-neighbourhood in s#(€2;) such thatl’ mapsX into [U°]. From
proposition 4 we get a compact et C Q; with (x) 2(2; \ M) C r(U)g o,

Fory € 2(Q) with suppSt(¢) C K ande > 0 we decompose = 11 + 1, With test functions)y,
such that

SUpp’l/)l c ) \ M, SUpp’l/)g - {l’ ISV d(I,M) < E}, and/ \1/111/}2| d\ < e
2

(which can be easily done by = x for an appropriate cut-off functiog). We will showfQl |1 |2 dX <
e (sincee > 0 is arbitrary we conclude from thﬁh\M |2 dX\ = 0, hence supp C M). Using(*) above
(and the fact that the left hand side is a linear space) we fiind %U with f,, — %, uniformly on the

compact set supp. We then get

P = tim [ wpdd- [ vt <l (W), f) b=
Ql n—oo Ql n—oo

(951
Finally, we use the surjectivity criterion proposition 2 to prove that (4) implies (1). Singe0 the
convolutions operata$? is injective on&”(£21), henceS : &(Q2) — &(£21) has dense range. We have to
show that for each equicontinuous 8&tin &”(2) there is an equicontinuous Sét in &”(€2;) with with
(SH)~Y(U®°) C [V°], i.e. for each compact sé&f C Q, andk € N there are a compact s&f C ; and

m € Nwith (") ~1(&/(K)) C &,,(M).

It follows by regularization that the definition of invertibility does not chang&{f2,) is replaced by
&' (), we thus get for a compact skt C Q, a compact sed C Q; with (S*)~1(&'(K)) C &'(M). To
get control on the orders we use invertibility in the formulation

VYV MCQicompact d seN VY ue &' (M) S'(u) €€ = uec%.

obtained in the second part of remark 1.

Givenk € Nandu € &'(M) with S'(u) € &/(K) we take the fundamental solutiaii, of an
appropriate powep (which only depends o) of the Laplace operator such thay, « S*(u) € €*. If
P € 2(§;) takes the valué in a neighbourhood af/ we obtain

St(z/J(Ep xu)) =S (Y —1)(Ep*u)) + E, x S*(u) € €°
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since the first summand is eveit. By invertibility, ¢ (E, « u) € € hence(E, x u)|y € € and therefore
u € &' (M) for somem depending only op. W

Remark 2 In condition (3) of the preceding theorem we can repla€€;) by any Féchet spac€ such

that there is a “restriction operator”: Z — & (2;) which satisfies the condition of proposition 4, i.e. for

eachU € % (Z) there is a compact s@ff C Q; with 2(Q; \ M) C r(U)g(Ql). ]

Remark 3 We have chosen the formulation of the results for convolution operators in such a way that one
can read off from the proofs where translation invariance is really needed for regularizations and which
parts carry over to general linear operators.

Our approach is not restricted @/ (€2). The techniques developed here allow applications e.g. to spaces
@éw)(ﬂ) of ultradistributions of Beurling type. We will investigate surjectivity questions for convolution
operators on such spaces elsewhel.
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