
RACSAM
Rev. R. Acad. Cien. Serie A. Mat.
VOL. 97 (2), 2003, pp. 263–272
Análisis Mateḿatico / Mathematical Analysis

Surjective convolution operators on spaces of distributions

L. Frerick and J. Wengenroth

Dedicated to the memory of Klaus Floret

Abstract. We review recent developments in the theory of inductive limits and use them to give a new
and rather easy proof for Ḧormander’s characterization of surjective convolution operators on spaces of
Schwartz distributions.

Operadores de convoluci ón sobreyectivos en espacios de distribuciones

Resumen. Se recuerdan avances recientes en la teorı́a de ĺımites inductivos y se usan para dar una
prueba nueva, y bastante elemental, de la caracterización debida a Ḧormander de los operadores de con-
volución sobreyectivos en espacios de distribuciones de Schwartz.

1. Introduction and the surjectivity problem

In [6] L. Hörmander characterized surjective partial differential and convolution operators onD ′(Ω) by in-
genious and rather complicated ad hoc methods. Essentially the same proof can be found in his fundamental
treatise [7] where he writes: “We have avoided this terminology [of (LF)-spaces] in order not to encour-
age the once common misconception that familiarity with (LF)-spaces is essential for the understanding of
distribution theory.” His work is an impressive proof of this claim that it is possible to avoid (LF)-spaces.
However, our aim is to show that recent abstract results about inductive limits of Fréchet spaces can be very
helpful to find and to prove surjectivity results for operators on spaces of distributions.

We start with a very general question. LetΩ1, Ω2 be open subsets ofRd1 andRd2 respectively, and let
S : D ′(Ω2) → D ′(Ω1) be a continuous linear operator with dense range such thatS(E (Ω2)) ⊆ E (Ω1).
When isS onto?

As suggested by Ḧormander it is helpful to split the investigation into two parts:

(A) CharacterizeE (Ω1) ⊆ S(D ′(Ω2)).

(B) Characterize surjectivity of̃S : D ′(Ω2) → D ′(Ω1)/E (Ω1).

Step (A) of this program can be done with the aid of classical methods from Fréchet space theory which
had been applied since the very beginning of distribution theory e.g. by L. Schwartz [14] or B. Malgrange
[9]. These methods are very nicely presented in K. Floret’s article [4]. We will indicate below that it is still
possible to refine and to simplify as well the methods as the results but we will mainly concentrate on the
second step (B).
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SinceE (Ω1) is dense inD ′(Ω1) the quotient spaceD ′(Ω1)/E (Ω1) is completely useless from the
topological point of view but trivially, surjectivity of̃S is equivalent to the surjectivity of

T :
D ′(Ω2)× E (Ω1) −→ D ′(Ω1)

(u, f) 7−→ S(u) + f

Using the isomorphismX ′ × Y ′ → (X × Y )′, (x′, y′) 7→
(
(x, y) 7→ x′(x) + y′(y)

)
the transpose ofT is

easily calculated as

T t :
D(Ω1) −→ D(Ω2)× E ′(Ω1)
ϕ 7−→ (St(ϕ), ϕ)

and by the Hahn-Banach theorem we have thatT is surjective if and only ifT t is a weak isomorphism onto
its range which, by definition, means thatIm(T t) is a well-located subspace of the (LF)-spaceD(Ω2) ×
E ′(Ω1). This property is reflected by the quotient spaceD(Ω2)× E ′(Ω1)/Im(T t) by a condition which
is called weak acyclicity. The classical theory of (LF)-spaces suffered from two problems. The first is
that the description of all continuous seminorms onD(Ω2)× E ′(Ω1) is already rather complicated and the
seminorms on the quotient look even worse. The second problem is that the classical characterization of
weak acyclicity due to Palamodov and Retakh even needs seminorms with peculiar additional properties.
Faced with this situation, Ḧormander’s scepticism against (LF)-spaces seems to be justified, indeed.

We will show that younger results about (LF)-spaces improve the situation significantly.

2. Abstract properties of (LF)-spaces

We briefly recall basic properties and theorems for (LF)-spaces and derive consequences which are suitable
to obtain characterizations in the situation explained in the introduction. Much more information can be
found e.g. in [1, 12, 16, 17].

By an (LF)-space we mean the unionX =
⋃

n∈N Xn of Fréchet spacesXn ⊆ Xn+1 with continu-
ous inclusions endowed with the finest locally convex topology such that all embeddingsXn ↪→ X are
continuous. We do not assume a priori thatX is Hausdorff. We have the canonical algebraically exact
sequence

0 →
⊕
n∈N

Xn
d−→

⊕
n∈N

Xn
σ−→ X → 0

whered((xn)n∈N) = (xn − xn−1)n∈N (with x0 = 0) is the difference map andσ((xn)n∈N) =
∑

n∈N xn.
According to Palamodov [11] the inductive spectrum(Xn)n∈N or X is called (weakly) acyclic ifd is a
(weak) isomorphism onto its range.

The main examples of (weakly) acyclic spaces are strict (LF)-spaces (i.e. the inclusionsXn ↪→ Xn+1

are (weak) homomorphisms) and (LS)- and (LSw)-spaces (i.e. the inclusionsXn ↪→ Xn+1 are (weakly)
compact). IfX, Y , andZ are (LF)-spaces and

0 → X
f−→ Y

g−→ Z → 0

is an algebraically exact complex with continuous mapsf andg we obtain from a diagram chase (see e.g.
[13] or [15, theorems 1.4 and 1.5]):

(1) If Z is (weakly) acyclic thenf is a (weak) homomorphism,

(2) the converse holds ifY is (weakly) acyclic.

This result gives the link to our original problem sincef is a weak homomorphism if and only if the
transposed mapf t : Y ′ → X ′ is surjective. Note that due to the open mapping theoremg is automatically
a quotient map and hence,gt : Z ′ → Ker(f t) is always an algebraic isomorphism. We therefore have
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good knowledge aboutZ ′ even though we may fail to have a concrete description of the quotient space
Z = Y/f(X).

Till now, we used only the Hahn-Banach theorem to reformulate our problem. This can be useful only if
we have evaluable conditions ensuring (weak) acyclicity. A classical characterization is due to Palamodov
[11] and Retakh [13]:

An (LF)-spaceZ = indZn is (weakly) acyclic if and only if there are absolutely convex0-
neighbourhoodsUn ∈ U0(Zn) and integersmn ≥ n such thatUn ⊆ Un+1 and the (weak)
topologies ofZk andZmn coincide onUn for all k ≥ mn.

As a necessary condition this result is very useful. For instance, it implies that acyclic (LF)-spaces
are complete. There are however only very few applications of the sufficiency part. There are many more
characterizations of (weak) acyclicity ifZ satisfies a certain stability property which typically holds a
priori. Z is called boundedly stable if on each set which is bounded in some stepZn all but finitely many
of the topologies ofZm coincide. Implicitly, this notion appeared at several places, the name was given by
Bierstedt [1]. The most obvious example is an inductive limit of Montel spaces, since a compact set does
not admit coarser Hausdorff topologies.

For this class we have the following result essentially proved in [16].

Theorem 1 For a boundedly stable (LF)-spaceZ = indZn the following conditions are equivalent.

1. Z is acyclic.

2. Z is weakly acyclic.

3. Z is complete and Hausdorff.

4. Z is sequentially retractive, i.e. each null sequence inZ converges to0 in some stepZn.

5. Z is regular, i.e. each bounded subset ofZ is contained and bounded in some step.

6. Z is α-regular, i.e. each bounded subset ofZ is contained in some step.

7. Z is β-regular, i.e. each bounded subset ofZ which is contained in some step is bounded in some
step.

8. The fundamental systems(‖ · ‖n,N )N∈N of seminorms forZn satisfy(P?
3):

∀ n ∈ N ∃ m ≥ n ∀ k ≥ m ∃ N ∈ N ∀ M ∈ N ∃ K ∈ N ∀ z ∈ Zn

‖z‖m,M ≤ K (‖z‖n,N + ‖z‖k,K) .

9. The following closed neighbourhood condition holds:

∀ n ∈ N ∃ m ≥ n ∀ k ≥ m ∃ U ∈ U0(Zn) U
Zk ⊆ Zm. �

In our situation all conditions of the theorem involve the cokernel off (i.e. the quotientZ = Y/f(X))
and in the next section we will indeed use a description of the quotient which is good enough to check the
last item of theorem 1. However, let us state a variant ofα-regularity which avoids the quotient.

Corollary 1 Let f : X → Y be an injective continuous linear map from an (LF)-spaceX to an acyclic
inductive limitY = indYn of Fréchet-Schwartz spacesYn such thatIm(f) is stepwise closed, i.e.Im(f) ∩
Yn is closed inYn for eachn ∈ N. The following conditions are equivalent:

1. f is a homomorphism.
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2. f t is surjective.

3. For every sequence(yk)k∈N in Y converging pointwise to0 on ker(f t)) there aren ∈ N and a
sequence(xk)k∈N in X such thatyk − f(xk) ∈ Yn for eachk ∈ N. �

The proof is rather easily obtained from theorem 1 by noting thatY/f(X) is an (LF)-space (sinceIm(f)
is stepwise closed) which is boundedly stable (since quotients of Fréchet-Schwartz spaces are Montel) and
thatα-regularity is equivalent to the fact that each weak null sequence is contained in some step.

In our problem from the first section the spaceY is is the product ofD(Ω2) – which is certainly an
acyclic (LF)-space with Fŕechet-Schwartz steps – andE ′(Ω1) – which is an (LS)-space. It follows from the
next lemma (which is probably known, but we indicate the proof since we do not have a precise reference)
that (LS)-spaces are acyclic inductive limits of Fréchet-Schwartz spaces and thus, the corollary is applicable
in our situation.

Lemma 1 For every compact subsetK of a Fréchet spaceX there is a Fŕechet-Schwartz spaceY ⊆ X
with continuous inclusion such thatK is compact inY .

PROOF. There is a null sequence(xn)n∈N in X with K ⊆ Γ({xn : n ∈ N}) and there is an increasing
sequence of scalars1 ≤ αn → ∞ such that(αnxn)n∈N still converges to0. Form ∈ N we setKm =
Γ({ m

√
αnxn : n ∈ N}) and endow its linear spanYm with the Banach space topology havingKm as the

unit ball. We thus obtainYm+1 ⊆ Ym and from k
√
αn/ m

√
αn −→ 0 we obtain thatKk is compact inYm

for k > m, henceY =
⋂

m∈N Ym is a a Fŕechet-Schwartz space which is continuously embedded inX.
Finally,K is compact inY sinceαn tends to∞. �

We finish this general section with two results which are helpful in connection with step (A) of the
introduction. The first one is called “Grothendieck-Floret factorization theorem” in [12]. Floret’s proof
[3] was based on a tricky lemma of Grothendieck but the result can also be proved by straightforward
arguments.

Proposition 1 LetZ = indZn be a regular inductive limit of locally convex spaces andT : X → Z a
(weakly) continuous operator from a semi-metrizable locally convex spaceX to Z. Then there isn ∈ N
such thatT acts continuously fromX toZn.

PROOF. Assuming the contrary and using thatX is bornological we find bounded setsBn in X such that
T (Bn) is not a bounded subset ofZn. Moreover, there are scalarsαn > 0 such thatB =

⋃
n∈N αnBn is

bounded inX. Hence there isn ∈ N such thatαnT (Bn) ⊆ T (B) is bounded inZn, a contradiction. �

The last abstract result we need is an improvement of Meise’s and Vogt’s surjectivity criterion [10,
section 26.1] and appeared in [5]:

Proposition 2 Let T : X → Y be a continuous linear operator with dense range from a Fréchet space
X to a Fréchet-Schwartz spaceY and assume that for eachU ∈ U0(X) there isV ∈ U0(Y ) with

(T t)−1(U◦) ⊆ [V ◦]

(the linear span ofV ◦). ThenT is surjective. �

3. Surjectivity modulo smooth functions

We will now use theorem 1 for step (B) of the program mentioned in the introduction, i.e. to characterize
surjectivity of

T :
D ′(Ω2)× E (Ω1) −→ D ′(Ω1)

(u, f) 7−→ S(u) + f

In this situation we say thatS is surjective modE . The Hahn-Banach theorem gives the following result.
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Lemma 2 The following conditions are equivalent.

1. {(h,−S(h)) : h ∈ E (Ω2)} is dense inker(T ).

2. {(St(ϕ), ϕ) : ϕ ∈ D(Ω1)} is dense in{(f, u) ∈ D(Ω2)× E ′(Ω1) : St(u) = f}.

3. If w ∈ D ′(Ω2) satisfiesS(w) ∈ E (Ω1) then〈S(w), u〉 = 〈w,St(u)〉 holds for eachu ∈ E ′(Ω1)
with St(u) ∈ D(Ω2). �

The equivalent conditions of the lemma are satisfied by convolution operatorsS = µ∗ which can be
seen by regularization: If(f, u) ∈ D(Ω2)× E ′(Ω1) satisfiesSt(u) = f anden is an approximate identity
then(St(en ∗ u), en ∗ u) = (en ∗ St(u), en ∗ u) converges to to(f, u) in D(Ω2)× E ′(Ω1).

We have a necessary condition for surjectivity modE which, for convolution operators, is due to
Hörmander:

Proposition 3 If S is surjective modE and satisfies the conditions of lemma 2 thenS is invertible, i.e.{
u ∈ E ′(Ω1) : St(u) ∈ D(Ω2)

}
⊆ D(Ω1).

PROOF. If T is surjective thenIm(T t) = {(St(ϕ), ϕ) : ϕ ∈ D(Ω1)} is closed and dense in{(f, u) ∈
D(Ω2)× E ′(Ω1) : St(u) = f}. This gives the conclusion.�

Of course, invertibility implies the conditions of lemma 2. Moreover, it is automatically satisfied if
S is a partial differential operator with constant coefficients. On the other hand, the ordinary differential
operatorS = xdx is surjective onD ′(R) but it is not invertible sinceSt(δ) = 0.

Invertibility helps to overcome the first problem mentioned at the end of the introduction, i.e. to find an
explicit description of the cokernel ofT t. We define

R :
D(Ω2)× E ′(Ω1) −→ E ′(Ω2)

(ϕ, u) 7−→ ϕ− St(u)

Then invertibility precisely meansker(R) = Im(T t). The spacesYn = D(Kn)×E ′
n(Mn) (where(Kn)n∈N

and (Mn)n∈N are compact exhaustionsΩ2 andΩ1 respectively, such thatSt(E ′(Mn)) ⊆ E ′(Kn), and
E ′

n(Mn) denotes the space of distributions with support inMn and order less thann) constitute a defining
spectrum ofY = D(Ω2) × E ′(Ω1) and if we endowIm(R) with the (LF)-space topology indR(Yn) we
obtain an algebraically exact sequence

0 −→ D(Ω1)
T t

−→ D(Ω2)× E ′(Ω1)
R−→ Im(R) −→ 0

to which we can apply the abstract results of section 2. In this way we obtain Hörmander’s characterization
when a convolution operator is surjective modulo smooth functions:

Theorem 2 A convolution operatorS = µ∗ is surjective modE if and only if it is invertible and(Ω2,Ω1)
is S-convex for singular supports, i.e. for each compact setK ⊆ Ω2 there is a compact setM ⊆ Ω1 such
that eachu ∈ E ′(Ω1) with St(u)|Ω2\K ∈ E (Ω2 \K) satisfiesu|Ω1\M ∈ E (Ω1 \M).

PROOF. We first show necessity of the convexity condition for singular supports. Assuming that it does
not hold we find a compact setK ⊆ Ω2 and a sequenceuk ∈ E ′(Ω1) with St(uk)|Ω2\K ∈ E (Ω2 \K) such
thatuk|Ω1\Mk

6∈ E (Ω1 \Mk). Forming the convolution with the fundamental solution of an appropriate
power of the Laplace operator (which does not change the singular support), cutting off, and multiplying
with positive constants we may assumeSt(uk) ∈ C k(Ω2), St(uk) → 0 in C m(Ω2) for k →∞ and a fixed
m ∈ N to be determined later, and thatSt(uk)|Ω2\K → 0.
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We choose a cut-off functionχ ∈ D(Ω2) which takes the value1 in a neighbourhood ofK and set
ϕk = (χ− 1)St(uk) ∈ D(Ω2). To apply item (3) of corollary 1 to the sequence((ϕk, uk))k∈N we have to
check that for each(w, f) ∈ ker(T ) (i.e.w ∈ D ′(Ω2) satisfiesS(w) = f ∈ E (Ω1)) the sequence

ck = 〈w,ϕk〉+ 〈f, uk〉

converges to0. To prove this claim it is enough to justify theformalcalculationck = 〈S((χ− 1)w), uk〉+
〈S(w), uk〉 = 〈χw, St(uk)〉 for largek ∈ N since this expression tends to0 asχw has compact support
and thus defines a continuous linear functional on someC m(Ω2) in whichSt(uk) is a null sequence.

Note thatS((χ − 1)w) a priori only belongsD ′(Ω1) and thus the expression〈S((χ − 1)w), uk〉 does
not make sense. However, ifen is an approximate identity we have for largek ∈ N

ck = lim
n→∞

〈en ∗ w, (χ− 1)St(uk)〉+ 〈en ∗ S(w), uk〉

= lim
n→∞

〈χ(en ∗ w), St(uk)〉 = 〈χw, St(uk)〉

sinceχ(en ∗ w) converges toχw in thesequentially retractive(LB)-spaceE ′(Ω2) and thus in some of the
steps and in particular in the strong dual of someC m(Ω2).

From corollary 1 we now obtain elementsfk ∈ D(Ω1) such that the sequence(ϕk, uk) − T t(fk) =
(ϕk − St(fk), uk − fk) belongs to some step of the (LF)-spaceD(Ω2) × E ′(Ω1) hence the supports of
uk − fk are contained in some fixed compact setM ⊆ Ω1 and thusuk|Ω1\M ∈ E (Ω1 \M) for all k ∈ N,
a contradiction.

To prove the sufficiency part of the theorem we will check item (9) of theorem 1 for the (LF)-space
Z = Im(R) = indR(Yn) as defined above, i.e. for eachn ∈ N there ism ≥ n such that for eachk ≥ m

there is a0-neighbourhoodU in Yn with R(U)
R(Yk)

⊆ R(Ym+1).
From the convexity condition for singular supports we obtain

∀ n ∈ N ∃ m ≥ n ∀ u ∈ E ′(Ω1) St(u)|Ω2\Kn
∈ C∞ =⇒ u|Ω2\Mm

∈ C∞

Next we use invertibility to deduce for each compact setM ⊆ Ω1 andk ∈ N that the Fŕechet space
X = {u ∈ E ′

k(M) : St(u) ∈ E (Ω2)} coincides algebraically (and by the closed graph theorem also
topologically) with the Fŕechet spaceD(M) and obtain that for everyr ∈ N there areU ∈ U0(E ′

k(M))
ands ∈ N such thatU∩(St)−1(Vs) ⊆Wr (where(Vs)s∈N and(Wr)r∈N are the canonical0-neighbourhood
bases ofE (Ω2) andD(M), respectively), and by forming the convolution with an approximate identity we
obtain (forr = 0)

∀ k ∈ N ∃ s ∈ N ∀ u ∈ E ′
k(Mk) St(u) ∈ C s =⇒ u ∈ C .

Fork ≥ m+1 we chooset > s = s(k) such that the unit ballBn,t of the Banach spaceC t
0 (Kn) (of t times

continuously differentiable functions onΩ2 with support inKn) is relatively compact inC s
0 (Kn) and set

U = Bn,t ∩D(Kn)× the unit ball ofE ′
n(Mn) ∈ U0(Yn).

Estimating the closure inR(Yk) by the closure in the relative topology induced byE ′(Ω2) we obtain from
the fact that the Minkowski sum of two compact sets is closed

R(U)
R(Yk)

⊆ R(U)
E ′(Ω2) ∩R(Yk) ⊆

(
C s

0 (Kn) + St(E ′
n(Mn))

)
∩R(Yk).

Given g in the set on the left hand side we thus findf ∈ C s
0 (Kn), u ∈ E ′

n(Mn), ϕ ∈ D(Kk), and
w ∈ E ′

k(Mk) with
g = f + St(u) = ϕ+ St(w)

henceSt(u−w) = ϕ−f ∈ C s which impliesu−w ∈ C , and the singular support ofSt(u−w) is contained
inKn which implies thatu−w is smooth outsideMm. Using once more a cut-off functionψ ∈ D(Mm+1)
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with value1 in a neighbourhood ofMm we obtaing = ϕ+St((1−ψ)(w−u))+St(ψ(w−u)+u), where
v = ψ(w − u) + u ∈ E ′

n(Mm+1) andf = ϕ+ St((1− ψ)(w − u)) ∈ D(Ω2) has support inKm+1 since
the supports ofg andSt(v) are there. Thereforeg = f + St(v) ∈ R(Ym+1) and this proves the closed
neighbourhood condition of theorem 1.�

Remark 1 1. The sufficiency part of the theorem used the assumption thatS is a convolution operator
only to deduce from invertibility the “quantitative” formulation

∀ k ∈ N ∃ s ∈ N ∀ u ∈ E ′
k(Mk) St(u) ∈ C s =⇒ u ∈ C .

If we redefine invertibility for general linear operators by this condition we obtain that any invertible
continuous linear operatorS : D ′(Ω2) → D ′(Ω1) with S(E (Ω2)) ⊆ E (Ω1) is surjective modE
provided that(Ω2,Ω1) is S-convex for singular supports.

2. If S = µ∗ is an invertible convolution operator one can use Hörmander’s complex analytic results
[7, 16.3.9 and 10] and Ehrenpreis’ [2] solution of the division problem inRd to get a fundamental
solution of µ̌∗. Using this, one can see that already the inital topology onX = {u ∈ E ′(M) :
St(u) ∈ E (Ω2)} with respect toSt : X → E (Ω2) coincides with the Fŕechet space topology of
D(M) and from this one gets the same condition as above without the a priori bound on the order of
u:

∀ k ∈ N ∃ s ∈ N ∀ u ∈ E ′(Mk) St(u) ∈ C s =⇒ u ∈ C . �

4. The Cauchy problem for regular right hand side

We now briefly explain how to proceed with step (A) of the program mentioned in the introduction. We
will give an extension and quite simple proofs (at least for some parts) of Hörmander’s characterization for
the surjectivity ofS : E (Ω2) → E (Ω1). Hörmander proved that this holds if the equationS(u) = f can be
solved withu ∈ D ′(Ω2) for eachf ∈ E (Ω1). Here we show that this also equivalent to the solvability of
the equation inD ′(Ω2) for eachf ∈ D(Ω1)∪H (Ω∗1) whereΩ∗1 is an appropriate complex neighbourhood
of Ω1 (this improves a result of Langenbruch [8] who required solvability of those equations inE (Ω2)).

For an open setΩ1 ⊆ Rd we call an open setΩ∗ ⊆ Cd with Ω ⊆ Ω∗ admissibleif H (Cd) is dense
in H (Ω∗) and for every compact setC ⊆ Ω∗ there is a compact setM ⊆ Ω such that eachu ∈ E ′(Ω)
which is carried byC (see [7, section 9.1]) has its support inM . The following characterization is proved
by standard duality:

Proposition 4 Ω∗ ⊆ Cd is admissible forΩ ⊆ Ω∗ ∩ Rd if and only if for eachU ∈ U0(H (Ω∗)) there

is a compact setM ⊆ Ω with D(Ω \M) ⊆ r(U)
E (Ω)

wherer : H (Ω∗) → E (Ω) denotes the restriction
map. �

The main example below for admissible sets is essentially due to Langenbruch [8]. It can be proved by
forming the convolution with the Gauß-kernel.

Example 1 For any open setΩ ⊆ Rd the set

Ω∗ = {x+ iy : x ∈ Ω and|y| < dist(x, ∂Ω)}

is admissible forΩ. �

Theorem 3 For a convolution operatorS = µ∗ : D ′(Ω2) → D ′(Ω1) the following conditions are equiv-
alent:
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1. S : E (Ω2) → E (Ω1) is surjective.

2. E (Ω1) ⊆ S(D ′(Ω2)).

3. There is an open setΩ∗1 which is admissible forΩ1 such that

r(H (Ω∗1)) ∪D(Ω1) ⊆ S(D ′(Ω2)).

4. S is invertible and the pair(Ω2,Ω1) isS-convex for supports, i.e. for each compact setK ⊆ Ω2 there
is a compact setM ⊆ Ω1 such that eachψ ∈ D(Ω1) with suppSt(u) ⊆ K satisfiessuppu ⊆M .

PROOF. Trivially, (3) follows from (2) and (2) from (1), and we have nothing new for the proof that
D(Ω1) ⊆ S(D ′(Ω2)) implies invertibility, see [7, theorem 16.5.1], but we would like to mention Flo-
ret’s result that invertibility is equivalent to the fact thatSt has stepwise closed range. We will use the
Grothendieck-Floret factorization theorem to prove that(Ω2,Ω1) isS-convex wheneverr(H (Ω∗1)) is con-
tained inS(D ′(Ω2)). For a compact setK ⊆ Ω2 we endow the spaceX = {ψ ∈ D(Ω1) : suppSt(ψ) ⊆
K} with the (metrizable) initial topology with respect to the (injective) mapSt : X → D(K) and consider
the map

T : X → H (Ω∗1)
′
β , ψ 7→ (f 7→

∫
Ω1

ψf dλ).

This map is weakly continuous since the restriction toΩ1 of each elementf ∈ H (Ω∗1)
′′ = H (Ω∗1) is of

the formf = S(w) for somew ∈ D ′(Ω2). SinceH (Ω∗1)
′
β is a regular inductive limit of the Banach spaces

[U◦], U ∈ U0(H (Ω∗1)), we find a0-neighbourhoodU in H (Ω∗1) such thatT mapsX into [U◦]. From

proposition 4 we get a compact setM ⊆ Ω1 with (∗) D(Ω1 \M) ⊆ r(U)
E (Ω1)

.
Forψ ∈ D(Ω1) with suppSt(ψ) ⊆ K andε > 0 we decomposeψ = ψ1 + ψ2 with test functionsψk

such that

suppψ1 ⊆ Ω1 \M, suppψ2 ⊆ {x ∈ Ω1 : d(x,M) < ε}, and
∫

Ω1

|ψ1ψ2| dλ < ε

(which can be easily done byψ1 = χψ for an appropriate cut-off functionχ). We will show
∫
Ω1
|ψ1|2 dλ <

ε (sinceε > 0 is arbitrary we conclude from this
∫
Ω1\M |ψ|2 dλ = 0, hence suppψ ⊆M ). Using(∗) above

(and the fact that the left hand side is a linear space) we findfn ∈ 1
nU with fn → ψ1 uniformly on the

compact set suppψ. We then get∫
Ω1

|ψ1|2 dλ = lim
n→∞

∫
Ω1

ψfn dλ−
∫

Ω1

ψ2ψ1 dλ ≤ lim
n→∞

〈T (ψ), fn〉+ ε = ε.

Finally, we use the surjectivity criterion proposition 2 to prove that (4) implies (1). Sinceµ 6= 0 the
convolutions operatorSt is injective onE ′(Ω1), henceS : E (Ω2) → E (Ω1) has dense range. We have to
show that for each equicontinuous setU◦ in E ′(Ω2) there is an equicontinuous setV ◦ in E ′(Ω1) with with
(St)−1(U◦) ⊆ [V ◦], i.e. for each compact setK ⊆ Ω2 andk ∈ N there are a compact setM ⊆ Ω1 and
m ∈ N with (St)−1(E ′

k(K)) ⊆ E ′
m(M).

It follows by regularization that the definition of invertibility does not change ifD(Ω1) is replaced by
E ′(Ω1), we thus get for a compact setK ⊆ Ω2 a compact setM ⊆ Ω1 with (St)−1(E ′(K)) ⊆ E ′(M). To
get control on the orders we use invertibility in the formulation

∀ M ⊆ Ω1 compact ∃ s ∈ N ∀ u ∈ E ′(M) St(u) ∈ C s =⇒ u ∈ C .

obtained in the second part of remark 1.
Given k ∈ N and u ∈ E ′(M) with St(u) ∈ E ′

k(K) we take the fundamental solutionEp of an
appropriate powerp (which only depends onk) of the Laplace operator such thatEp ∗ St(u) ∈ C s. If
ψ ∈ D(Ω1) takes the value1 in a neighbourhood ofM we obtain

St(ψ(Ep ∗ u)) = St((ψ − 1)(Ep ∗ u)) + Ep ∗ St(u) ∈ C s
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since the first summand is evenC∞. By invertibility, ψ(Ep ∗ u) ∈ C hence(Ep ∗ u)|M ∈ C and therefore
u ∈ E ′

m(M) for somem depending only onp. �

Remark 2 In condition (3) of the preceding theorem we can replaceH (Ω∗1) by any Fŕechet spaceZ such
that there is a “restriction operator”r : Z → E (Ω1) which satisfies the condition of proposition 4, i.e. for

eachU ∈ U0(Z) there is a compact setM ⊆ Ω1 with D(Ω1 \M) ⊆ r(U)
E (Ω1)

. �

Remark 3 We have chosen the formulation of the results for convolution operators in such a way that one
can read off from the proofs where translation invariance is really needed for regularizations and which
parts carry over to general linear operators.

Our approach is not restricted toD ′(Ω). The techniques developed here allow applications e.g. to spaces
D ′

(w)(Ω) of ultradistributions of Beurling type. We will investigate surjectivity questions for convolution
operators on such spaces elsewhere.�
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