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Abstract.  We study the representation of distributions (and ultradistributions of Beurling type) of
Ly-growth,1 < p < co, onRY as boundary values of holomorphic functions(@h\ R)™.

(Ultra)distribuciones de crecimiento L, como valor frontera de funciones
holomorfas

Resumen. Estudiamos la representanide distribuciones (y ultradistribuciones de tipo Beurling) en
RY con crecimientd.,, 1 < p < oo, como valor frontera de funciones holomorfas(€n\ R)N.

1. Introduction

Shortly after Schwartz introduced his theory of distributiongth¢ represented distributions on the unit
circle as boundary values of holomorphic functions on its complementary and his results were generalized
by Tillmann. Since then, many authors have been concerned with the problem of representing several
classes of distributions and ultradistributions as boundary values of holomorphic functions. Let us mention
the work of Bengel [1], Carmichael [4], Luszczki and Zielezny [13], Meise [14], Petzsche and Vogt [17],
Tillmann [20] and Vogt [22]. See also the section 4 of the recent paper [12].

In 1994, Carmichael and Pilipdv{6] represented each ultradistributionfof-growth (1 < p < co) in
RY as the boundary value of a holomorphic function satisfying appropriate estimates and conversely, every
such a function is shown to have an ultradistributiorLgfgrowth as boundary value. The boundary value
problem for distributions and ultradistributions b, or L1- growth is more involved. In fact, fgs = 1 or
p = oo, Carmichael and Pilipogionly obtained partial results and their methods did not permit to prove the
surjectivity of the corresponding boundary value operators. They worked in the context of ultradistributions
as they were defined by Komatsu [11].

In [8] the authors completely solved the problem of representing bounded distributions and ultradistri-
butions onR as boundary values of holomorphic functiongdf R. The case of bounded distributions had
not been treated previously in the literature. The lack of nice topological properties of the involved spaces
does not permit us to apply the tensor techniques as in [16, 3.6] in order to extend the results obtained in
[8] to the several variables setting.
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The results of Petzsche and Vogt [17] and the characterizations of ultradistributidnsgodwth re-
cently obtained in [2], which are in the spirit of the ones given by Cioranescu [7] @ntk&-Collado [9],
allow us to define a class of holomorphic functions(@\ R)? having ultradistributions (of Beurling type)
of L,-growth as boundary values and such that the boundary value operator is surjective. We work with
ultradistributions in the sense of Braun, Meise and Taylor [3]. Our approach is different from the one of
Carmichael and Pilipogiand permits a unified treatment of all valuegpincluding the limit casep = 1
andp = oo. Of course the most interesting cases are the extreme vakdes, co. Our results also cover
the classical spacé®;, (RV)) and(Dr__ (RY))’. We would like to emphasize that no satisfactory answer
to the boundary value problem in these cases was previously known.

2. Preliminaries and statement of the problem

First we introduce the spaces of functions and ultradistributions and most of the notation that will be used
in the sequel.

Definition 1 ([3]) A weight function is an increasing continuous function [0, co[— [0, co[ with the
following properties:

() there existd, > 1 with w(2¢t) < L(w(t) + 1) forall ¢ > 0,

O [ <

(7) log(t) = o(w(t)) ast tends toco,

(8) ¢ : t — w(et) is convex.
For most of the results of the paper we have to replace the conditioby the stronger condition

b w(At)
(o) suplimsup )

< o0
For a weight functionv we definew : CV — [0, oo[ by @(z) = w(|z|) and again call this functiosn,
by abuse of notation. Hetle| = Z;.V:l |25

The functiony* : [0, co[— R defined by

@ (s) = jglg{st — ()}

is called theYoung conjugatef .

There is no loss of generality to assume thagnishes on0, 1]. Theny* has only non-negative values
andy** = . Examples of weight functions can be found in [3].

Remark 1 If the weightw(t) is concave for large enough then every equivalent weight satisfies.
See [17, 1.1] for details. &

Definition 2 ([3]) Letw be a weight function. For a compact s€tc RY we let

D) (K) :=={f €D(K) :| f l[ka< oo forevery X >0},

where
|af

| £l ai=sup sup |f ()| eXP< Ap” ( ) ))
zeK aeNé\f
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ThenD(,,)(K), endowed with its natural topology, is adehet space. For a fundamental sequéhce;cn
of compact subsets & we let
Dy (RY) = ind D) (K;).

The dualDy,, (RY) of D,y (RY) is endowed with its strong topology. The elementdof, ( (RN) are
called uItrad|str| utions of Beurling type

We denote by, (R") the set of all functiong € C>(R") such that] f || x,»< oo for every compact
K inRY and for everyA > 0.

Definition 3 ([2]) Foreveryl <p < oo,k € Nandg € C®(RY), v ,(¢) is defined as follows

ald) = sup 0l exp (ke (1))

aeNy

where|.||,, denotes the usual norm i, (RY).

If 1 < p < oo the spaceD;, (.,)(R") is the set of allC>-functions on R™ such thaty, ,(¢) < co

for eachk € N. A functiong € C*°(RY) isin By__ (,)(RY) wheny; o (¢) < oo, for everyk € N. We
denote byD; _ (., (RY) the subspace d8;,__ (.,)(R") consisting of those functionse B;,__ () (R") for
which 1‘1m |p(®)(z)| = 0 for eacha € N,
The topology oDy, (. (RM), 1 < p < o0, is generated by the family of seminorfig; , }ren. Also, we
consider on3;,__ (.. (R") the topology associated Wity o }ken. ThenDy () (RY), 1 < p < oo and
Bi. () (RY) are Fechet spaces.

For the definition of the spacé®, (RY), 1 < p < oo, we refer to [19, VI,8].

Remark 2 (a) CIearIyDLm(w)(RN) is continuously contained i, (RY), 1 < p < co. Hence, if

¢ €Dp, (@) (RY),1<p< o0, then| llim |(®) ()| = 0, for eacho € N}

(b) The inclusionD,, (RY) € Dy () (RY) C &, (RY) are continuous and dense, and for p <
q < 00, Dy, (w)(RY) is continuously contained iP, (., (RY).

(c) Although the paper [2] was written in the one variable setting, all the results in its section 2 also hold
for N > 1 with the same proofs. B

The dual ofDy () (R™) will be denoted bY DL, (w) (RM))’" and it will be endowed with the strong
topology. SinceD,)(R") is continuously and densely embeddedl:if)p?(w)(RN) then(Dy, () (RN)Y
can be identified with a subspace®f (RY). The elements of D, (.,,(RY))" are known asiltradistri-

butions of Beurling type ok, -growthwherep’ is the conjugate exponent pf The ultradistributions of
L..-growth are calledbounded ultradistributions of Beurling type

The classical cas®;, (R") is formally not a particular case of what we present here sing¢g =
log(1 + t) does not satisfy propertyy). However, all our results also hold in this case after minor modifi-
cations.

Let G € H(CY) be an entire function such thiaig |G (z)| = O(w(|2])) as|z| tends to infinity. Then

|a|%¢<a>
al

Tolg) = Y (i) (0)

aeNY

defines an ultradistributio; € Sgw)(RN ). The operator

G(D) : D,y (RY) — D, (RY), G(D) :=Tg v
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is called arultradifferential operatorof (w)-class. We note that, for everye &£, (R"),

|a|mf<a>

al

(GD)H))= Y (i) ().

aeNY

It can be easily shown that there are consta@its 0 andk € N such that & (°)| < Ce ke (7))
As in [9, Proposition 2.4] it can be shown that each ultradifferential opea{dr) of (w)-class defines a
continuous linear mapping fromLm(w)(RN) into itself, for everyl < p < oo and also fronBLw(w)(]RN)

into itself. ThusG(D) is also a continuous linear operator fr¢@;, ) (R"))" into itself.

The problem we are concerned with consists in finding a weighted sp}aﬁgp of holomorphic func-
tions on(C \ R)" such that the ma : 1. , — (D, (.)(RY)) given by

<T(f),p >= lim N{ Z HJJ (x +ioe)} p(z) dz

e—0t
oce{-1,1}N j=1

is a well-defined, linear, continuous and surjective operator. The description of the appropriate space of
holomorphic functions and its basic properties is the aim of the section 3, while the boundary value operator
is investigated in section 4.

3. The spaces M. and HY

In [8] we defined the weightetl B)-spaces of holomorphic functions @h\ R, H,,~, and we showed that
T :Hu- — (Dr, ) (R)) given by

<T(f),p>= lim [ (f(z+ic) — f(x —ie))p(x)ds

e—0t Jr

is well-defined, continuous, linear and surjective. The natural extensitip ofo the several variables case
and for arbitraryl < p < oo leads to the following definition. In what follows; will be either a weight
function orw(t) = log(1 +t), ¢t > 0.

Definition 4 For s > 0, w*(s) is defined by

w*(s) := sup{w(t) — st}.
>0

The functionw* is continuous, convex and decreasing. Since each weight functiatisfies that (¢) =
o(t) wheret tends toco, w*(s) < oo forall s > 0.

N
Giveny € RY with y; # 0 forall 1 < j < N, we denotes™(y) := Y _ w*(Jy;1).
j=1
Definition 5 Foragivenw, 1 < p < oo andN € N, we define

HY. = {f € H((C\R)N): [flupx < oo for somek € N}

where y
Flua i=sup | £+ iy) [y exp (—klyl = k().
Yy

ThenH]). , is an(LB)-space.
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(Ultra)distributions of Ly-growth as boundary values of holomorphic functions

Remark 3 Forw(t) = log(1 +¢), t > 0, we have thatv*(s) = 0 for s > 1 while w*(s) = s — log(es)
wheneve < s < 1. Therefore, it is easy to see that in this casg = Hﬁ}’*’p can be described as

HY ={f € H(C\R)N) : |f|px < oo for somek € N}

where
k

Flpe = sup | S +iy) e 2yl Hlyg . n

For any weighty, H)' C HJ. , and given two weights < w we havett). , ¢ HJ).  with continuous
inclusions.

Since we can represent (ultra)distributiond.gfgrowth as a (infinite) linear combination of derivatives
of functions inL,,, we will show that the spaces just defined are stable under (ultra)differential operators.

Lemmal (1) Foreachf € 1) and eachn € Nj) we havef(®) € HY'.
(2) Foreachf € H)). , and each ultradifferential operata®(D) of class(w) we haveG(D) f € HL. ,

PROOF Let f € H,~ ,(RY) be given. We fixy € RY such thaty; # 0 for everyl < j < N and we put
p; = 3|y;]. Let D, be the polidisc of poliradiup := (p1, ..., pn). For eache € RY and eachy € NY,
by the Cauchy integral formula

FO (2 4+ iy) = f( x‘f"jﬁ‘*‘ £) de.
The functiongg (z) := W belongs taL,(RY) and
!
FO+iy) = (QSW /D 9¢(-) ds.
Therefore v
!
|76+ in) o= o maxlge b [T @mos).
J=1

ok €2FIWIFR"(GE) for some constarit € N,

. 1
Sincel| ge ||, < oo+t | fle

N o
. 2 J
| 7O+ i) lp < [flop al MR GO T <|y |) '
J

If w(t) =log(1+¢) (t > 0) this gives (1). To show (2), le¥(D) be an ultradifferential operator of class
(w). ThenG(D)g = Y ang® where|a,| < Cem¢" (5D < o™ 25" (51 for someC > 0 and

aeNy
somem € N. Thus

GOV +iy) lly < Y laal | /90 +iy) Il

aeNYY
. @

%—mw(ﬁﬂ vy
< e 3 ] (|y ) oMyl ()
]

aeN)y  j=1
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That s,

N > % QO @i w( lyjl
” G(D)f( —|—zy) H;DS C |f|w,p,k H (Z aj! oM (+5) <2> ) e2k|y;i‘+kw (W)

j=1 \a;=0 1451
To finish it is enough to proceed as in [8, Prop.1l

It is clear now that, giverf € H;,V andy € RV, y; # 0for1 < j < N, the functionf (- + iy) belongs
to Dy (RY)for1l < p < occandf(-+iy) € Br_(RY) for p = co. A similar result holds for arbitrary
weight functionsu.

Corollary 1 (1) Foreveryl < p < oo and eachf € HJ. , we havef(- + iy) € Dy () (RY).
(2) Eachf € H].  satisfiesf (- + iy) € By ) (RY).

PROOF Letl <p<ocandf e H]).  begiven. TherZ(D)f(. +iy) € L,(RY) for every ultradiffer-
ential operator7 (D) of (w)—class. Now it is enough to apply [2, Corollary 2.2] to concludell

Now, it is easy to show that the spadeg. p increase withp.

Corollary 2 For a fixed functionv andp < ¢ we haver). , c HJ. , with continuous inclusion.

PROOF.  SinceDy,, .y (RY) C Dy, ()(RY) C B () (RY) with continuous inclusions ([2]), we de-
duce from Corollary 1 that for every € H[. , there is a continuous seminormon Dy, (.,)(RY) such
that||f(. + iy)|l; < Y(f(. + iy)) for everyy € RY with y; # 0for 1 < j < N. Hence there is an
ultradifferential operato; (D) of (w)—class and there is a positive constahsatisfying

1F(+iy)lly < CIGD)f(-+ iy)lly

forally € RN withy; # 0forall 1 < j < N ([2, 2.0.4]). SinceG(D)f € Hffp then it easily follows
that f ¢ HY [ |

* e
whq

4. Boundary values

In this section we will show that each functionty}. , has an element dD;, , (.,)(RY))', 5+, =1, as
boundary value and that, conversely, each (ultra)distributian,ejrowth can be obtainedp as the boundary
value of a suitablef in ] . From now onw will be either a weight function satisfyin@v, ) or w(t) =
log(1+1t),t>0.

We first observe that eaghe H2. p belongs thi}C)oo and, after applying [22] fow(t) = log(1 + t)
and [17] forw a weight function satisfyinga, ), we have the following result

Lemma 2 The boundary value operat@r : Hf}ﬁm — DEW)(RN) given by
N
<T(e>=tm [ Y ([o)friod) o) da
e—0t JrN ce{—11}N j=1

is a well-defined, continuous and linear mapping. Mored@éf) € (Dy, (.)(RY))’ for eachf Hfﬂm
andT is continuous as a map from)). _ into (Dy, () (R"))". Thereforel is also continuous fror]. ,
into (D, ) (RY))'.
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(Ultra)distributions of Ly-growth as boundary values of holomorphic functions

PrROOFE Infact, T is nothing else but the restriction of the boundary value operator considered in [17] and
[22]. Now it is enough to proceed as in the first part of the proof of Theorem 3 in H].

Next, we show that the boundary value of a functiortf). p IS an (ultra)distribution of_,,-growth.

Proposition 1 T(HJ. ) is contained D, , (.)(R"))" with . + - = 1. Moreover,

T(f) = elir(% Z HO'J (x +ioe)
oc{—-1,1}N j=1

in the weak topology((DLp,,(w)(}RN))’, DL, () (RM)).

PROOFE First we assume thdf = 1 and thatw is a weight function. Giverf € H}J*J, we choosé: € N
andC > 0 such that )

max(|| f(- +iy) [loo, || F(- +iy) IIp) < Ce ) 1)
for 0 < y < 2. Without loss of generality we may assume tlfats 0 in the lower half-plane. We will
show that{f(- + ie) : 0 < e < 1} is a bounded set ifDy, , (.)(R))" and that'(f) = ¢ € L,(R) for
everyp € D, (R). We put fic(x) := f(x + ie). Letp € D(w (R) be given and leb > 0 be such that
supp ¢ C] — b,b[. By [17, 3.4] we findp € D((—b,b) x (—1, 1)) such that
M) or =
i 0 Ny el
i) sup |=—¢(x + iy) e CF)
(ii) S 15z (z +1y)
Applying Stokes’ theorem to the functidh (¢) := f(§ + ie)p(x — £) in the rectangleD,, := [z — 2b,z +
2b] x [0, 1] we get that

< 00.

(fie x 0)(x) = 22/ f(z —t—i—z(v—i—e))aaz o(t — 1) d(t,v).
whereD := [—2b, 2b] x [0, 1]. Therefore

(t — )| d(t,v),

||f“w||p<2/ £G4t +0) Iy | o

from where we conclude thdtf,c *+ ¢ : 0 < € < 1} is a bounded set i, (R), which shows thaf f;. :

0 < e < 1} is bounded ir(DLp“(w)(R))’ ([2]), hence equicontinuos. Moreover, for every null sequence
of positive numberge,,),, one has(T(f) * ¢)(z) = lim,(fi, * ¢)(z) pointwise and there i€’ > 0

with |(fi, * ¢)(z)| < C for everyn € N and eachr € R. Using Lebesgue’s dominated convergence
theorem we get thaf(T'(f) * ©)X[-n,n) : 7 € N} is bounded inL,(R), henceT(f) * ¢ € L,(R)
andT'(f) € (Dr,, () (R))". Let us take a O-neighbourhoddin Dy, , (,)(R) such thatl’(f) € V' and

fie € V2 for0 < e < 1 and letr denote the topology of pointwise convergence on the dense subspace
D(,)(R) of DLP,,(M)(R). Then the weak topology and coincide on the equicontinuous sEf. Since

< T(f),p >= lime_g [ fic(z)p(z)dz for everyp € D (R) we get thatl'(f) is the limit of (f;) in

the weak topology.

If w(t) =log(1+t), giveny € D(R) we choose: € N satisfying (1) and we put

9¢

1 plk+1)
Then8 (xz,y) = Lot ()

5 i (iy)* and we proceed as above. See [16, 2.2].
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For N > 1 andw a weight function, let € {—1,1}" andf € Hi}’w be given. We want to show that
lim+ f(-+ieo) € (Dr, ()(RY)) and that{ f(- + iec) : 0 < e < 1} is bounded iN(Dy, , () (RY))".
e—0 P p’>
To do this, letA be a real invertible matrix such thate; = 0. We putg := fo Aandy := Vo
Afor ¥ € D, (RY) and we denotef;c,(z) := f(z + ico). Then, for each(zs,...,an) € RV,
g(,x2,...,zn) € H(C\R) and

(fico * ¥)(Ax) = |detA| / g(x +t +ieey)p(—t)dt.
RN

Letb > 0 satisfysupp ¢ C [-b,b]". Since{p(-,z2,...,2n) : (z2,...,2x5) € RN¥~1} is bounded in

D) (R) we may find®(z, z2,...,2n), 2 € C, 2’ := (x2,...,2n) € RYV~! having compact support such
that

() ©(-, zo,...,zn) € D((=b,b) x (—%, %)) and®(\, xo,...,xn) = (=, —x2,...,—xN), A ER.

.0 . . 0

(ii) 5@(;:,@7 ...,z N) is continuous an*ﬁazé(z,x’) < Ce

As in the one-dimensional case, one can show {hAt, = ¥)(A4:) : 0 < € < 1} is bounded inL,(RY),
therefore{(fico * ¥) : 0 < € < 1} is bounded inL,(RY) and, again as foN = 1, the conclusion follows.

In the caseNV > 1 andw(t) = log(1l + t), we chooser, A, f, ¥, ¢ andb as above. Foy € R and

—z)(iy)’.

r € RN we putz = x; + iy, ' = (22,...,2x) ande(xy,y, T2, ..., TN) =

2l
j=
Then (1) ger

0 1(—-1 0 .
%qs(zaxl) = 5 k! 8;1:’““ @(_x)(ly)k'
: 1

Now, we proceed as in the case of a weight function W

Our next aim is to show that the boundary value map is surjective. S}ifﬁiep is closed under
(ultra)differential operators and each (ultra)distributiongfgrowth is essentially of the forn/(D) f,
where G(D) is a (ultra)differential operator anfl € L,(RY) ([2] and [19]), it suffices to show that
L,(RY) c T(H)) and, afortiori,L,,(RY) c T(HY, ).

Given N € N we denote by 5 the Banach space

Gy = {f € H(C\RM): | = sup||f<+zy>||1e'y'Hlyl<o<>}

j=1

ClearlyGy ® Gy C Gn4+1 and the canonical bilinear map, x Gy — G471 induces a continuous
linear mapi : G1&,Gn — Gny1.

Lemma 3 There exists a continuous linear mgp D(RY*!) — D(R)&,.D(RYN) such that its restric-
tion to D(R) ® D(RY) is the identity.

PrRoOOF From a well known result of Grothendieck [10], for each compg&at R the bilinear map

D(K) x D(KN) — D(EN+),
(o) — oY

induces an isomorphism of &het spaces betwe@ K )&, D(KY) andD(KVN+1), from where we con-
clude. H

Proposition 2 For eachN € N there exists a continuous linear operatsx, : D(RY) — Gy such
thatT o Sy gives the identity o®(R").
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(Ultra)distributions of Ly-growth as boundary values of holomorphic functions

PROOFE We proceed by induction oN.
For N = 1, eachy € D(R) satisfiesp = —ie (e ) + iy , hencep = T'(S1(p)), where

L[ e, e [ el
Si(p)(2) = g/}R (t— Z)2dt Cor /R (t— Z)2dt’

for Imz # 0[8, 2.3]. Fory # Olwe‘putKy(t) = 1/(2n(t +1iy)?). Then givenz = x + iy, y # 0, we have
S1(p)(2) = (p* K,)(z) — e (ep x K,)(x). Thus,

|
. e
I S1()(- +1y) W< O [ ¢ llos -

ly
ly|
This shows that; : D(R) — G, is well-defined, linear and continuous.

Let us assume that the claim is true for We defineSy 1 :=io (S1<§<>7TSN) o 7, which is linear and
continuous. To show th&to Sy . gives the identity oD(RV*1), itis enough to see th&l o Sy 1) (1 ®
v2) = (p1 @ 2) as distributions whenever; € D(R) andys € D(RY), and again it is sufficient to check
this equality orD(R) ® D(RY), which is very easy. B

In the sequel, for each compagtc RY andm € N, we denote byD™ (K) the set of allC™-functions
f such thatuppf C K.

Corollary 3 For each compact C RY, there arem € N and a continuous linear magy x :
D™(K) — Gy such that for every' € D™(K) and eachy € D(RY) we have thatT o Sy (T'), ) =
(T, ¢).

PROOF.  Let B be the closed unit ball iRY. We take an even functiape D(B),n > 0, with ||  ||;= 1.
Forn € N we definen, (t) := n’Vn(nt) and we putk; := K + B. Using the continuity ofSy, we find
¢ € N such that

ISn(@) 1 <1l @ Ik )
for eachy € D(K7). We putm = 24, If I' € D™(K), thenl * n,, € D(K1),
[T ke < I T Ik (3)

and (T * n,),, converges td’ in D*(K;). It follows from (2) that(Sy (T * n,,)) is a Cauchy sequence in
G n, hence it converges and we may define

Sy ()= lim Sy(T*ny,).

Thus,Sn k : D™ (K) — Gy is well defined, linear and by (2) and (3), it is continuousll
From now on, iff is a function, we denote bj the map defined by (z) = f(—z).

Forg € Gy andf € L,(RY) we put

(g )z +iy) :=/ glx —t +iy) f(t)dt.

RN

Theng x f € HIJ)V. Moreover, we have the following result.

Proposition 3 Let1l < p < oo, ¥ € D(RY) and f € L,(R") be given. Therby (¢)  f € H) and
T(Sn(¥) = f) =9 = f.

251



C. Fernandez, A. Galbis, M.C. Gomez-Collado

PROOF Giveno € {—1,1}", ¢ > 0 andy € D(RY), one has thaf « ¢ € D (RY) and

((Sn(¥) * f)(- +ioe), ) = (Sn(¥)(- +ioe), f + ).

SinceSy(y) € HY C Hé\,’, p’ being the conjugate number pf it suffices to apply Proposition 1 for
w(t) = log(1 + t) and Proposition 2. W

The following lemma permit us to get a similar result foe .

Lemma 4 Let K be a compact set iR and lety) € D(K) be given. Ther$;(¢) € H(C \ K) and, for
some positive constantsandC,

19, () (¢  ie)| < |f

whenevetz| > Aand0 < e < 1.

PrROOF ltis clear from the definition of;. N

Proposition 4 GivenI' € D(RY) and f € Loo(RY) we haveSy(T) * f € HY andT(Sn(T) = f) =
I f.

PROOF We already know thabx (') * f € HY. To see thal'(Sy(T) * f) = T * f we proceed
in two steps. First, lelX' be a compact set iR and lety, ..., oy € D(K) be given. We consider
= @ - ®pn and we putf; := Si(¢;) € Hi. ThenF := Sy(T) is given by F(z1,...,2n) =
[1:_, fi(2)). Letus check thal (F = f) =T+ f. We observe that

N
Z (HUJ) (x + ioe) H (fj(x; +ie) — fi(z; —ie)).

oce{—1,1}N

From Lemma 4, we choos a compact subset iR, K C K, andC > 0 such that

. C
‘fj(xj +ie)| < W

wheneverr ¢ K and0 < € < 1. Letyy € D(R) be identically one on a neighborhood &f. For each
¥ € D(RY) and eaclt) < ¢ < 1 we have,

« > Ha; (z +ioe)) * f.9)

oe{—-1, 1}N Jj=1

N
= Hfgwﬁle Filwy —ie)), T = nlay) +n(x))(f* )
j=1

j=1
= () + Ix(e) + I3(e),

where

=

N
Ife) = (]| i(a +ie) = fi(w; —ie)), (Hn(wj))(f*l/})%

.
Il
s

N
(fi(aj +ie) = fix; —ie), [T =n(x))(f =),

&
@
i
E]z

ECH

I
—
.

I
—
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andI;(e) consists of the remaining terms.
Since(]‘[?f:1 n(z;))(f * ) € DRY) and H;.V:l n(x;) is identically one on a neighborhood of the
support ofT’,
lim Iy (e) = (L, f x9)) = (T * f, ).

e—0t
Using thaf[ [’ (1 —n(x;)) has support iR \ K)~ and[[;_, (1—7(z;))(f*¥) € Leo(RY), and on
account of the given estimates for the functigijs outside ofK, we may apply Lebesgue’s convergence
theorem to get that
lim+ I(e) = 0.
e—0

Now, we observe thal; (¢) is a sum of integrals of the form

[ o Usrio— syt ienne) ([ TIUsio (e —icnte,)Fev)in)s

JESm "¢ S
whereS,, is a proper subset dfl, ..., N}, Z denotes the coordinates corresponding to indic@rjrand
Z are the remaining coordinates. Without loss of generality we f8ke= {1,...,m}. Sincef x ¢ €

By (RY), one has that

N
{( H n(xj))(f*1/})(3;1,...,xm,...) (x1y. o xm) ER™Y

j=m+1
is a bounded subset &f(RV~"). Also
N

{ I (FiC+io)—fi(-—ie) :0<e<1}

Jj=m+1

is bounded i Dy, (RV-™))", hence

N

{ / (I (s +i0) = fi(w; —ion(z;))(F +¥)dw 10 < e < 1}
T j=ma

is a bounded set if, (R™). As before we conclude thaiﬁ%l+ I5(e) = 0. Consequentl{l’(F x f) = T f.

To finish, we fix a compack in R, f € L.,(R"), and we consider the continuous linear map

’

R:D(KN) — (D, (RY))

given by R(T") = T(Sn(T) x f) — T' * f. SinceR vanishes on the dense sub®dtk) ® ... ® D(K), R
must be identically zero, that i%,(Sy (') * f) =T * f foreveryl' € D(KY). R

Our next result gives the surjectivity of the boundary value operator in the case of distributibps of
growth. Forl < p < oo, this follows from Tillman [21], Luszczki and Zielezny [13] and Bengel [1].
However, their methods did not work fpr= 1, co. Our approach permits a unified treatment of all values
of p.

Theorem 1 For 1 < p < oo, the boundary value operator
T:H) — (Dg,, (RY))

is surjective.
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PROOF Sincer,V is stable under differential operators and on account of [19, Th.XXV] it is enough
to show thatL,(R") c T(H,'). Let B be the closed unit ball ifR". Then, there aren € N and
Sn.p : D™(B) — Gy continuous and linear such thto Sy p = Id. Now, we can find a differential
operatorP (D) and two functionsl € D™(B) andy € D(RY) such thatt = P(D)¥ + ¢. Therefore,
givenf € L,(RY) we havef = P(D)(¥ x f) + ¢ * f. We takeF := P(D)(Sy.5(V) * f) + Snx(p) * f.
ThenF € H)Y and

T(F) = P(D)T(Sn.5(¥) * f) + T(Sn(p) * f)-
Clearly, T(Sn(¢) * f) = ¢ = f. On the other hand$y 5(¥) = lim, Sv(¥,), where the convergence
is in Gy for a suitable sequendd,,) c D(RY) as in the proof of Corollary 3. Therefor§y (V) *
f = lim, Sy(¥,) = f, where the convergence is#,)’, and, sincel is continuousT’(Sy,p(¥) * f) =
lim,, (¥,, * f). Here the convergence is iR’ (RY), but since(¥,,),, converges to¥ in L;(RY) then
(U, * f), converges tab x f in L,(RY) and we concludd'(F) = f. H

Theorem 2 Letw be aweight function satisfying:; ) and1 < p < co. Then the boundary value operator
T:HY. , — (DL, @) (RY)) is surjective.

PROOF.  For everyu € (Dr, (v) (RN))’ there are an ultradifferential operat6i( D) of (w)—class and
f € L,(RY) such thayy = G(D)f ([2, 2.1]). By Theorem 1, there i8 € H] C H2. , with T(F) = .
ThenG(D)F € HY. , onaccount of Lemma 1 aflfl(G(D)F) = . M
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