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Abstract. Ideals of extendable and liftable operators are introduced giving a new approach to the
study of the splitting of short exact sequences of Banach spaces. Maximality, duality and closedness with
respect to pointwise bounded limits of the ideals are considered. Several examples are summarized and
the role ofL1- andL∞-spaces is clarified.

Ideales de operadores que admiten extensi ón o levantamiento

Resumen. Se introducen los ideales de operadores que admiten extensión o levantamiento y se presenta
una nueva aproximación al estudio de la escisión de sucesiones exactas cortas de espacios de Banach. Se
considera la maximalidad de estos ideales y se investiga si son cerrados respecto de los lı́mites puntuales
acotados. Se resumen algunos ejemplos y se clarifica el papel de los espaciosL1 y L∞.

1. Introduction

Let

0 −−−−→ X
j−−−−→ W

q−−−−→ Z −−−−→ 0 (1)

be a short exact sequence of Banach (Fréchet, locally convex, ...) spaces and continuous linear maps (=
operators). Itsplits if q has a right inverse operator. There is an extensive splitting theory in the Fréchet
space setting due to Vogt and his collaborators (see [41], [33], [28], [36], [17], [19], [13] etc.) later on it
was extended to some non-metrizable spaces (see [14], [15]). It turns out that for many pairs of natural
Fréchet spaces(X, Z) every short exact sequence of the form (1) splits. These results have found many
applications, for instance: in the theory of partial differential operators (see, for example, [32], [13], [15]),
for problems of linear extension of smooth and holomorphic functions (see, for example, [36], [18]) as well
as for linear solutions to the division and composition problems (see, for instance, [2] and the reference list
there, [1], [3]). Moreover, the splitting theory is extensively used in the structure theory of Fréchet spaces
(see [38], [39], [40], [42], [43], [44], comp. [33]).

In the Banach setting there is a lack of such a theory: for most natural Banach spacesX, Z there are
non-splitting sequences of the form (1) (see [16], [22], [23], [24], [25], [27], [26]). That is why I am more
and more convinced that the operator ideal approach is the proper setting in the Banach case. Let me explain
it by analogy: the class of Fréchet spaces for which every summable sequence is absolutely summable (=
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nuclear spaces) contains many natural, important in analysis, spaces. The same class in the Banach case
contains only trivial spaces, nevertheless the operator ideal of absolutely summing operators is of great
significance in the theory and applications.

In the same spirit, we introduce the ideals of extendable and liftable operators. In the present paper
we give their definitions as well as the definitions of their natural operator ideal norms. Moreover, we
present several basic properties, some examples and, finally, we explain the role ofL1- andL∞-spaces
in the theory. The idea of extendable and liftable operators goes back to our Ph.D. thesis (1987) — for a
source of inspiration see also [23, 8.2]. Some of the results were contained in a never published manuscript
[11] based on my Ph.D. thesis, few results were announced without proof in [12]. Recently the interest in
short exact sequences of Banach spaces has revived (see [26], [20], [5], [4], [6]), moreover, a corresponding
set of problems is considered in the vividly developing area of operator spaces (see, for instance, [37], [34],
comp. [21]). That is why I decided to come back to this area and the paper is a consequence of that recent
research.

I believe that the operator ideals of extendable and liftable operators deserve some more attention and
some further research. Any attentive reader will find plenty of natural open questions related to the intro-
duced notions.

2. Preliminaries

We denote byL, A andF the class of all (continuous linear) operators, the ideals of approximable and
finite dimensional operators, respectively. IfI is an operator ideal, thenI ◦ A−1 andA−1 ◦ I denote the
classes of operatorsT such thatT ◦ S andS ◦ T , respectively, are inI for everyS ∈ A. By BX we denote
the unit ball of the Banach spaceX andiX : X → X ′′ denotes the canonical embedding. A short exact
sequence (1) isisometricif j is an isometric embedding and

‖q(x)‖ = inf{‖w‖ : qw = qx,w ∈ W} for all x ∈ W.

We will use very often the classical, and well-known for a long time,pull-backandpush-outprocedures
summarized in the following result (comp. [10, Cor. 3.2], [14, Prop. 1.7], [5, 1.2, 1.3]).

Proposition 1 Let (1) be a given exact sequence.
(a) (pull-back) LetT : Y → Z be an operator, then there is a commutative diagram with exact rows:

0 −−−−→ X
j−−−−→ W

q−−−−→ Z −−−−→ 0

id

x T1

x T

x
0 −−−−→ X

j1−−−−→ W1
q1−−−−→ Y −−−−→ 0.

If (1) is isometric, then the second row is isometric as well and‖T1‖ ≤ ‖T‖.
(b) (push-out) LetT : X → Y be an operator, then there is a commutative diagram with exact rows

0 −−−−→ Y
j1−−−−→ W1

q1−−−−→ Z −−−−→ 0

T

x T1

x id

x
0 −−−−→ X

J−−−−→ W
q−−−−→ Z −−−−→ 0.

If (1) is isometric then the first row is isometric as well and‖T1‖ ≤ ‖T‖.
(c) Let

0 −−−−→ X1
j1−−−−→ W1

q1−−−−→ Z1 −−−−→ 0

T

x S

x R

x
0 −−−−→ X

j−−−−→ W
q−−−−→ Z −−−−→ 0
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be a commutative diagram with exact rows. There is a lifting ofR to W1 (i.e., an operatorR1 : Z → W1

such thatq1 ◦ R1 = R) if and only if there is an extension ofT ontoW (i.e., an operatorT1 : W → X1

such thatT1 ◦ j = T ). If both rows are isometric then we can chooseT1 such that‖T1‖ ≤ ‖S‖ + ‖R1‖
and we can chooseR1 such that‖R1‖ ≤ ‖S‖+ ‖T1‖. �

For some additional information on operator ideals, absolutely summing operators,Lp-spaces, the
Radon-Nikodym property and representable operators we refer to [35], [8], [31], [9], respectively.

3. Ideals of extendable and liftable operators

Let X, Y , Z be given Banach spaces and letT : X → Y be an operator. We callT to beZ-extendable
(T ∈ EZ) if and only if for every short exact sequence of Banach spaces (1) the mapT extends toT1 :
W → Y (i.e., T = T1 ◦ j). analogously,T is Z-liftable (T ∈ LZ) if for every short exact sequence of
Banach spaces

0 −−−−→ Z
j−−−−→ W

q−−−−→ Y −−−−→ 0 (2)

the mapT lifts to T2 : X → W (i.e.,T = q◦T2). Let us find for a fixed isometric sequence (1) the infimum
of norms ofT1, theneZ(T ) is defined to be the supremum over all (1) of such infima. Moreover,lZ(T ) is
defined to be the supremum over all isometric exact sequences (2) of the infima of norms of possible liftings
T2.

Theorem 1 The pairs(EZ , eZ) and(LZ , lZ) are Banach operator ideals. Moreover,T ∈ EZ if and only
if eZ(T ) < ∞ andT ∈ LZ if and only if lZ(T ) < ∞. �

Remark 1 Of course,LZ andEZ contain the class of nuclear operators (as the smallest Banach operator
ideal). �

Before we prove the result we need the following observation.

Lemma 1 (a) Let

0 −−−−→ ker Q
J−−−−→ l1(I)

Q−−−−→ Z −−−−→ 0

be an isometric short exact sequence, then for

ẽZ(T ) := sup{inf{‖U1‖ : U1 ◦ J = T ◦R,U1 : l1(I) → Y } : R : kerQ → X, ‖R‖ ≤ 1}

we have

ẽZ(T ) ≤ eZ(T ) ≤ 3ẽZ(T ).

(b) Let

0 −−−−→ Z
J−−−−→ l∞(I)

Q−−−−→ l∞(I)/Z −−−−→ 0

be an isometric short exact sequence, then for

l̃Z(T ) := sup{inf{‖U2‖ : Q ◦ U2 = S ◦ T,U2 : X → l∞(I)} : S : Y → l∞(I)/Z, ‖S‖ ≤ 1}

we have

l̃Z(T ) ≤ lZ(T ) ≤ 3l̃Z(T ).
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PROOF. We will prove only part (b), the other one is analogous.
Let us consider an isometric short exact sequence

0 −−−−→ Z
j−−−−→ W

q−−−−→ Y −−−−→ 0.

clearly,Z embeds isometrically into somel∞(I) so we get the following commutative diagram where rows
are isometric exact and the lowest row is obtained via the pull-back procedure (see Proposition 1):

0 −−−−→ Z
J−−−−→ l∞(I)

Q−−−−→ l∞(I)/Z −−−−→ 0

id

x S1

x S

x
0 −−−−→ Z

j−−−−→ W
q−−−−→ Y −−−−→ 0

id

x T1

x T

x
0 −−−−→ Z

j1−−−−→ W1
q1−−−−→ X −−−−→ 0,

whereS1 extendsJ onto W , ‖S1‖ ≤ ||J || = 1 (l∞(I) is injective), S is the map induced byS1 on
quotients,||S|| ≤ 1. Let U2 : X → l∞(I) be a lifting of S ◦ T . By Proposition 1 (c), there is a map
V1 : W1 → Z such thatidZ = V1 ◦ j1 and, again by Proposition 1 (c),T has a liftingT2 : X → W . It is
easily seen (Proposition 1 (c)) that

||T2|| ≤ ||T1||+ ||T1||+ ||U2||.

Sincel̃Z(T ), ||T1|| ≥ ||T || we getlZ(T ) ≤ ||T2|| ≤ 3l̃Z(T ).
Let us takeS : Y → l∞(I)/Z, ||S|| ≤ 1. By Proposition 1 (the pull-back procedure) we construct the

following commutative diagram with isometric exact rows:

0 −−−−→ Z
J−−−−→ l∞(I)

Q−−−−→ l∞(I)/Z −−−−→ 0

id

x S1

x S

x
0 −−−−→ Z

j−−−−→ W
q−−−−→ Y −−−−→ 0.

Thus there isT1 : X → W , q ◦ T1 = T , ||T1|| ≤ lZ(T ) + ε. Since||S1|| ≤ 1, ||S1 ◦ T1|| ≤ lZ(T ) + ε and
thereforẽlZ(T ) ≤ lZ(T ). �

PROOF OFTHEOREM 1. We concentrate on the classLZ , the proof for the class of extendable operators
is analogous.

First, we observe that the classLZ is an operator ideal. Clearly,LZ(X, Y ) is a linear space. Moreover,
if T ∈ LZ(X, Y ) andU ∈ L(W,X) then obviouslyT ◦ U ∈ LZ(W,Y ). Now, assume thatS : Y → W
and let

0 −−−−→ Z
j1−−−−→ W1

q1−−−−→ W −−−−→ 0

be an exact sequence. Then we construct the following commutative diagram

0 −−−−→ Z
j1−−−−→ W1

q1−−−−→ W −−−−→ 0

id

x S1

x S

x
0 −−−−→ Z

j2−−−−→ W2
q2−−−−→ Y −−−−→ 0,

where the lower row is obtained via the pull-back procedure (see Proposition 1). Clearly, ifT ∈ LZ(X, Y )
then there exists a liftingT1 : X → W2, q2 ◦ T1 = T andS1 ◦ T1 is a lifting of S ◦ T . ThusS ◦ T ∈
LZ(X, W ).
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Looking at the construction above, it is easily seen that bothlZ andl̃Z are operator ideal norms whenever
they are defined (and, by Lemma 1, they are defined on the same classes of operators).

Assume thatlZ(T ) < ∞, we will prove thatT ∈ LZ(X, Y ). Let us take an arbitrary exact sequence

0 −−−−→ Z
j−−−−→ W

q−−−−→ Y −−−−→ 0.

By renorming we may assume that Z is an isometric subspace ofW . The image of the unit ballBW via q
contains some ball ofY . Thus defining a new norm onY as some multiplicity of the original norm we may
assume thatq(BW ) contains the unit ballBY . Taking as the new unit ball ofW the setBW ∩ q−1(BY ) we
get an isometric short exact sequence (andY with the new norm is isometric toY with the previous norm).
ThereforeT has a liftingT1 : X → W , T1 ◦ q = T , and, of course,T1 is a lifting of T for the original short
exact sequence.

Assume thatT ∈ LZ(X, Y ). We define on the spaceL(Y, l∞(I)/Z) a new norm:

∆(S) := inf ||U1||+ ||S||,

whereU1 is a lifting of S ◦ T , i.e.,Q ◦ U1 = S ◦ T . SinceS ◦ T ∈ LZ , thus∆(S) is a well defined norm.
One proves easily that,L(Y, l∞(I)/Z) is complete equipped with the norm∆(·). Therefore, by the Open
Mapping Theorem, for some constantC independent ofS:

inf ||U1|| ≤ ∆(S) ≤ C||S||

and
l̃Z(T ) ≤ C < ∞.

Using the direct sum

0 −−−−→ Z −−−−→ Z ⊕ Y −−−−→ Y −−−−→ 0

one observes easily thatlZ(T ) ≥ ||T ||. Thus if(Tn) is a Cauchy series with respect tolZ , then it has a norm
limit T and clearly we will find a sequence of liftings(Un) (whereUn is a lifting of Tn for eachn ∈ N)
which is also Cauchy in|| · || and converges to a liftingU of T . ThereforeLZ is complete with respect to
lZ . �

4. Properties of the ideals

First, we show that, under some natural assumptions, both ideals are closed with respect to pointwise limits
of bounded nets.

Theorem 2 (a) Let (Ti)i∈I be aeZ-bounded net of operatorsTi : X → Y pointwise convergent to an
operatorT . If Y is complemented in its bidual, thenT is Z-extendable,

eZ(T ) ≤ λ sup
i∈I

eZ(Ti),

whereλ is the projection constant ofY in Y ′′.
(b) Let(Ti)i∈I be alZ-bounded net of operatorsTi : X → Y pointwise convergent to an operatorT .

If Z is complemented in its bidual, thenT is Z-liftable,

lZ(T ) ≤ 3λ sup
i∈I

lZ(Ti),

whereλ is the projection constant ofZ in Z ′′.
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Remark 2 The part (b) was announced in the author’s paper [12] without proof and the proof is contained
in the author’s preprint [11]. A “space” version was published in [26, Prop. 3.3].�

PROOF. (a) Let

0 −−−−→ X
j−−−−→ W

q−−−−→ Z −−−−→ 0
be an isometric short exact sequence. Of course, for everyi ∈ I there is an extensionUi : W → Y ,
||Ui|| ≤ (1 + ε)eZ(Ti). By the classical Lindenstrauss compactness argument (see [29], [30, proof of Th.
2.1, page 12]), there is a subnet of(Ui)i∈I pointwise weak-star convergent toU : W → Y ′′, ||U || ≤
(1 + ε) supi∈I eZ(Ti). Clearly,U is an extension ofT : X → Y ′′. If P : Y ′′ → Y , ||P || ≤ (1 + ε)λ, is a
projection, thenP ◦ U is an extension ofT we are looking for.

(b) Let

0 −−−−→ Z
j−−−−→ W

q−−−−→ Y −−−−→ 0
be an isometric short exact sequence. Clearly, one can produce the following commutative diagram where
the lowest row is obtained from the middle one by the pull-back procedure (see Proposition 1)

0 −−−−→ Z ′′
j′′−−−−→ W ′′ q′′−−−−→ Y ′′ −−−−→ 0

iZ

x iW

x iY

x
0 −−−−→ Z

j−−−−→ W
q−−−−→ Y −−−−→ 0

id

x x T

x
0 −−−−→ Z

j1−−−−→ W1
q1−−−−→ X −−−−→ 0.

For everyi ∈ I there is a liftingUi : X → W of Ti, ||Ui|| ≤ (1 + ε)lZ(Ti). By the Lindenstrauss
compactness argument as in (a), there is a subnet of(Ui)i∈I pointwise weak-star convergent toU : X →
W ′′, ||U || ≤ (1 + ε) supi∈I lZ(Ti). By Proposition 1 (c),iZ has an extensionR ontoW1. If P : Z ′′ → Z
is a projection, thenP ◦ R is a projection ofW1 ontoZ and again, by Proposition 1 (c),T has a lifting
into W . Analyzing the estimates in the used proposition we get the estimates on the norm of the obtained
lifting. �

Let us recall that for Banach operator idealI we defineImax := A−1 ◦ I ◦ A−1.

Corollary 1 LetY be a complemented subspace of its bidual.
(a) If X or Z has the bounded approximation property then

EZ ◦ A−1(X, Y ) = EZ(X, Y ).

(b) If Y has the the bounded approximation property then

A−1 ◦ EZ(X, Y ) = EZ(X, Y ).

(c) If Y andX or Z have the bounded approximation property then

EZ(X, Y ) = Emax
Z (X, Y ).

Corollary 2 LetZ be a complemented subspace of its bidual.
(a)LZ ◦ A−1 = LZ .
(b) If Y has the bounded approximation property then

A−1 ◦ LZ(X, Y ) = LZ(X, Y ).

(c) If Y has the bounded approximation property then

LZ(X, Y ) = Lmax
Z (X, Y ).
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PROOF OFCOROLLARY 1 AND 2. Assume thatX has the bounded approximation property then there
is a bounded family of finite dimensional operators(Si)i∈I ⊆ L(X, X), ||Si|| ≤ C for every i ∈ I,
pointwisely tending to identity. IfT ∈ EZ ◦ A−1 theneZ(T ◦ Si) ≤ C1 for some fixedC1 and every
i ∈ I (comp. [35, 8.7.5]). By Theorem 2 (a),T ∈ EZ and this proves 1 (a) forX having the bounded
approximation property. The proof for 1 (b) and 2 (b) is completely analogous. Conditions (c) follow
immediately from (a) and (b) in both corollaries

1 (a),Z has the bounded approximation property: LetT ∈ EZ ◦ A−1(X, Y ). There exists a family of
finite dimensional operators(Si)i∈I on Z tending pointwisely to the identity,||Si|| ≤ C for everyi ∈ I.
We defineZi := ImSi, Ri : Zi → Z the natural embedding. Let us consider an isometric short exact
sequence

0 −−−−→ X
j−−−−→ W

q−−−−→ Z −−−−→ 0

For everyi ∈ I there is a finite dimensional spacẽWi ⊆ W such thatq(BW̃i
) ⊇ (1 − (3 dim Zi)−1)BZi

.

Thus takingX̃i := j−1(W̃i ∩ j(X)) we obtain the following commutative diagram:

0 −−−−→ X
j−−−−→ W

q−−−−→ Z −−−−→ 0

Ai

x Bi

x Ri

x
0 −−−−→ X̃i −−−−→ W̃i −−−−→ Zi −−−−→ 0.

Modifying the norm onW̃i andX̃i we may obtain new finite dimensional spacesWi, Xi and the following
diagram with both rows isometric exact and||Ai||, ||Bi|| ≤ (1− (2 dim Zi)−1)

0 −−−−→ X
j−−−−→ W

q−−−−→ Z −−−−→ 0

Ai

x Bi

x Ri

x
0 −−−−→ Xi −−−−→ Wi −−−−→ Zi −−−−→ 0.

Finally, we construct the following commutative diagram with exact rows:

0 −−−−→ Y ′′ −−−−→ W ′′
1 −−−−→ Z ′′ −−−−→ 0

iY

x iW1

x iZ

x
0 −−−−→ Y −−−−→ W1 −−−−→ Z −−−−→ 0

T

x T1

x id

x
0 −−−−→ X −−−−→ W −−−−→ Z −−−−→ 0

Ai

x Bi

x Ri

x
0 −−−−→ Xi −−−−→ Wi −−−−→ Zi −−−−→ 0

id

x x Si

x
0 −−−−→ Xi −−−−→ Vi −−−−→ Z −−−−→ 0,

where the second row is obtained from the third one via the push-out procedure and the last one from
the fourth one via the pull-back procedure (see Proposition 1). SinceT ∈ EZ ◦ A−1(X, Y ), we have
eZ(T ◦Ai) ≤ C1, whereC1 does not depend oni (comp. [35, 8.7.5]). By Proposition 1 (c),Ri◦Si : Z → Z
has a lifting S̃i : Z → W1, ||S̃i|| ≤ C2 for every i ∈ I. SinceSi tends pointwisely toidZ , by the
Lindenstrauss compactness argument (see [29], cite[proof of Th. 2.1, page 12]L1), there is a weak-star
pointwise cluster point of(S̃i) denoted byU : Z → W ′′

1 which is a lifting of iZ : Z → Z ′′. Clearly, by
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Proposition 1 (c),iY ◦ T has an extensionU1 : W → Y ′′ and ifP : Y ′′ → Y is a projection,P ◦ U1 is an
extension ofT . ThereforeT ∈ EZ(X, Y ).

2 (a): Let

0 −−−−→ Z
j−−−−→ W

q−−−−→ Y −−−−→ 0
be an isometric exact sequence. We construct the following commutative diagram with isometric exact rows

0 −−−−→ Z ′′
j′′−−−−→ W ′′ q′′−−−−→ Y ′′ −−−−→ 0

iZ

x iW

x iY

x
0 −−−−→ Z

j−−−−→ W
q−−−−→ Y −−−−→ 0

idZ

x x T

x
0 −−−−→ Z −−−−→ W1 −−−−→ X −−−−→ 0,

where the lowest row is obtained via the pull-back procedure (see Proposition 1). IfT ∈ LZ ◦ A−1(X, Y )
then for every finite dimensional subspaceXi ⊆ X the mapT |Xi has a liftingSi : Xi → W with
||Si|| ≤ C, C does not depend oni. DefiningSi(x) = 0 for x 6∈ Xi we may assume thatSi : X → W .
By the Lindenstrauss compactness argument as in the proof of 1 (a), there is a weak-star pointwise cluster
point S ∈ L(X, W ′′) which is a lifting of iY ◦ T . By Proposition 1,iZ has an extensionU : W1 → Z ′′

and using a projectionP : Z ′′ → Z, the operatorP ◦ U : W1 → Z extendsidZ . Again by Proposition 1,
T lifts to W andT ∈ LZ(X, Y ). �

Let us recall that for any operator idealI we defineIdual := {T : T ′ ∈ I}.

Theorem 3 For every Banach spaceZ the following equality holds:

LZ′ = (EZ)dual.

Remark 3 In general,LZ 6= (EZ′)dual. For instance,

idl∞/c0 ∈ Ll∞ = (El1)
dual but idl∞/c0 6∈ Lc0 . �

PROOF. Let T ∈ LZ′(X, Y ) and let

0 −−−−→ Y ′ j−−−−→ W
q−−−−→ Z −−−−→ 0

be an isometric short exact sequence. We haveiY ◦ T : X → Y ′′ ∈ LZ′ and it has a liftingT1 : X → W ′

with respect toj′ : W ′ → Y ′′ (ker j′ ' Z ′). SinceT ′ ◦ i′Y = T ′1 ◦ j′′, we get

T ′ = T ′ ◦ i′Y ◦ iY ′ = T ′1 ◦ j′′ ◦ iY ′ = T ′1 ◦ iW ◦ j and T ′ ∈ EZ .

To prove the other inclusion, we assume thatT ∈ (EZ)dual(X, Y ), i.e.,T ′ ∈ EZ(Y ′, X ′). Let

0 −−−−→ Z ′
j−−−−→ W

q−−−−→ Y −−−−→ 0

be an isometric short exact sequence. By duality and the pull-back procedure applied to the operatoriZ :
Z → Z ′′ (see Proposition 1) we get the following commutative diagram

0 −−−−→ Y ′ q′−−−−→ W ′ j′−−−−→ Z ′′ −−−−→ 0

id

x i

x iZ

x
0 −−−−→ Y ′ j1−−−−→ W1

q1−−−−→ Z −−−−→ 0.
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ClearlyT ′ extends toT1 : W1 → X ′, T1◦j1 = T ′. Dualizing once again we get the following commutative
diagram with exact rows:

0 −−−−→ Z ′
q′1−−−−→ W ′

1

j′1−−−−→ Y ′′ −−−−→ 0

(iZ)′
x i′

x id

x
0 −−−−→ Z ′′′

j′′−−−−→ W ′′ q′′−−−−→ Y ′′ −−−−→ 0

iZ′

x iW

x iY

x
0 −−−−→ Z ′

j−−−−→ W
q−−−−→ Y −−−−→ 0.

It is easily seen that

(iZ)′ ◦ iZ′ = idZ′ and (i′ ◦ iW )(W ) = (j′1)
−1(iY (Y )).

Moreover, ifx ∈ ker(i′ ◦ iW ) thenx ∈ ker q, thusx = j(z) for somez ∈ Z ′ and

q′1 ◦ (iZ)′ ◦ iZ′(z) = i′ ◦ iW (x) = 0

which implies thatz = 0. We have proved thati′ ◦ iW is an embedding onto a closed subspace ofW ′
1,

hence it is a topological embedding. Sincej′1 ◦ T ′1 = T ′′, we obtain

T ′1(X) ⊆ (j′1)
−1(iY (Y )) = (i′ ◦ iW )(W )

and we observe that
T = q ◦ (i′ ◦ iW )−1 ◦ T ′1|X .

ThereforeT ∈ LZ′ . �

5. Examples

In this section we summarize several examples of extendable and liftable operators.

Example 1 For an arbitrary Banach spaceZ every map factorizing through an injective space (for in-
stance,l∞(I), L∞(µ), C(K), K extremally disconnected) belongs toEZ . In particular,EZ contains:

• all 2-absolutely summing operators (comp. [8, Cor. 2.16]).�

Let us recall thatT : X → Y is Radon-Nikodymif it maps eachµ-continuousX-valued measure
of finite variation into aµ-differentiableY -valued measure, whereµ is an arbitrary probability measure
(comp. also [35, 24.2.6]).

Example 2 For an arbitrary Banach spaceZ every map factorizing throughl1(I) belongs toLZ . In
particular,LZ contains:

• all Radon-Nikodym operatorsT : X → Y , whereX is an abstractL1-space (comp. [26, Fact]);

• every compositionT ◦S, whereT is a 2-absolutely summing operator andS is an absolutely summing
operator. �
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Indeed, ifX ' L1(µ), µ finite, then every Radon-Nikodym operator is representable and, by the Lewis-
Stegall theorem (see the proof of [9, Th. III.1.8]) it factorizes throughl1. The general case follows from
the Kakutani representation theorem (in fact, every abstractL1-space is anl1-sum of a family of spaces
(L1(µi))i∈I with µi finite).

If T ◦ S then, by the Pietsch Factorization Theorem [8, Th. 2.13],S factorizes through a subspace of
L1(µ). Since every 2-absolutely summing operator is extendable (see Example 1 above)T ◦ S factorizes

through a mapR : L1 → L2 which is clearly Radon-Nikodym [9, Cor. III.2.13].

Example 3 For an arbitrary Banach spaceZ every weakly compact mapT : X → Y , X anL∞-space,
belongs toEZ . In particular,EZ contains:

• all p-absolutely summing operatorsT : C(K) → Y (1 ≤ p < ∞). �

Indeed, by [7, Cor. 1],T factorizes through a mapS : X → W , W reflexive. Moreover,S is a
pointwise limit of maps factorizing through finite dimensionall∞ spaces (with an upper bounds on norms).
SinceW is reflexive then Theorem 2 (a) implies thatS ∈ EZ . It is known thatp-absolutely summing
operators are weakly compact [8, Th. 2.17].

Example 4 (Comp. Lindenstrauss [29]) For an arbitrary Banach spaceZ complemented in its bidual
every mapT factorizing through anL1-space belongs toLZ . In particular,LZ contains:

• all absolutely summing operatorT : C(K) → Y . �

Indeed,T is a pointwise limit of maps factorizing through finite dimensionall1 spaces. Then the result
follows from Theorem 2 (b). IfT : C(K) → Y is absolutely summing thenT factorizes throughL1 (see
[8, Cor. 2.15]).

Example 5 For everyL1-spaceZ every weakly compact map belongs toEZ . �

Indeed, every weakly compact map factorizes through a reflexive space [7, Cor. 1] and we apply Lin-
denstrauss [29] (idW ∈ EZ for every reflexiveW ).

Example 6 Every separable map belongs toLc0(I) for any setI. �

To prove the above statement, let us consider a short exact sequence

0 −−−−→ c0(I)
j−−−−→ W

q−−−−→ Y −−−−→ 0.

We consider a separable mapT : X → Y whereT (X) ⊆ Y1, Y1 separable Banach subspace ofY . Clearly,
there is a separable subspaceW1 of W such thatq(BW1) ⊇ (1− ε)BY1 . TakingZ := j−1(W1) we obtain
a separable subspace ofc0(I). Without loss of generality (enlargingZ if necessary) we may assume that
Z ' c0. We get the following commutative diagram where the lowest row is obtained via the pull-back
procedure (see Proposition 1)

0 −−−−→ c0(I)
j−−−−→ W

q−−−−→ Y −−−−→ 0x x x
0 −−−−→ Z −−−−→ W1 −−−−→ Y1 −−−−→ 0

id

x x T

x
0 −−−−→ Z −−−−→ W2 −−−−→ X −−−−→ 0.

By Sobczyk’s Theorem, the middle row splits, thereforeT has a lifting.
The classes ofL1- andL∞-spaces play a special role in the theory. In particular, only forZ belonging

to these classes the idealsEZ orLZ can be closed.
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Theorem 4 (a) The following assertions are equivalent:

(i) Z is anL1-space;

(ii) EZ contains all weakly compact operators;

(iii) EZ ⊇ A;

(iv) eZ and|| · || are equivalent onA;

(v) eZ and|| · || are equivalent onF .

(b) The following assertions are equivalent:

(i) Z is anL∞-space;

(ii) LZ ⊇ A;

(iii) lZ and|| · || are equivalent onA;

(iv) lZ and|| · || are equivalent onF .

PROOF. By [35, Th. 6.1.6] it follows that three last conditions are equivalent for any Banach operator
ideal.

(a) (i)⇒(ii): See Example 5. (ii)⇒(iii): Obvious.
(iii)⇒(i): Let Y be an arbitrary Banach space such thatY ′ has the bounded approximation property.

then, by Corollary 1,
EZ(Y ′, Y ′) = EZ ◦ A−1(Y ′, Y ′) = L(Y ′, Y ′).

In particular,idY ′ ∈ EZ , thus, by Theorem 3,idY ∈ LZ′ . We have proved that every short exact sequence

0 −−−−→ Z ′ −−−−→ W −−−−→ Y −−−−→ 0

splits whenever the dualY ′ of Y has the bounded approximation property.
Let us takeY arbitrary and define asY0 an l2-direct sum of all finite dimensional subspaces ofY .

Clearly, Y ′
0 has the bounded approximation property andidY0 ∈ LZ′ which implies thatlZ′(idW ) ≤

lZ′(idY0) for every finite dimensional subspaceW of Y . Using again the Lindenstrauss compactness argu-
ments (comp. [29], [30]), we show that alsoidY ∈ LZ′ , thusZ ′ is injective (andL∞-space) and therefore
Z is anL1-space.

(b) (i)⇒(iv): Let
0 −−−−→ Z −−−−→ W −−−−→ Y −−−−→ 0

be an isometric short exact sequence. IfY is finite dimensional, we observe as in the proof of Corollary 1
(a), that there is commutative diagram with exact rows

0 −−−−→ Z
j−−−−→ W

q−−−−→ Y −−−−→ 0

J

x x id

x
0 −−−−→ Z1 −−−−→ W1 −−−−→ Y −−−−→ 0,

whereZ1 is finite dimensional. SinceZ is anL∞-space, we may assume thatZ1 is a finite dimensionall∞
space. Thus the lower row splits and, by Proposition 1 (c), the upper row splits as well (we have a control
on the norms of the right inverse forq).

(iv)⇒(i): We apply [24, Th. 6.1 (5) and remarks before].�
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[15] Dománski, P., Vogt, D. (2000). Distributional complexes split for positive dimensions,J. reine angew. Math., 522,
63–79.

[16] Enflo, P., Lindenstrauss, J., Pisier, G. (1975). On the three space problem,Math. Scand., 36, 199–210.

[17] Frerick, L. (1996), A splitting theorem for nuclear Fréchet spaces, in:Functional analysis, Proc. First Interna-
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[29] Lindenstrauss, J. (1964). On certain subspaces ofl1, Bull. Acad. Sci. Polon. Ser. Sci. Math., 12, 539–542.

[30] Lindenstrauss, J. (1964).Extension of compact operators, Mem. Amer. Math. Soc., 48.

[31] Lindenstrauss, J., Tzafriri, L. (1973).Classical Banach Spaces, Lecture Notes Math.338, Springer, Berlin.

[32] Meise, R., Taylor, B. A., Vogt, D. (1990). Characterization of the linear partial differential operators with constant
coefficients that admit a continuous linear right inverse,Ann. Inst. Fourier (Grenoble), 40, 619–655.

[33] Meise, R., Vogt, D. (1997).Introduction to Functional Analysis, Clarendon Press, Oxford.

[34] Oikhberg, T., Rosenthal, H. P. (2001). Extension properties for the space of compact operators,J. Funct. Anal.,
179, 251–308.

[35] Pietsch, A. (1978).Operator Ideals, DVW, Berlin.

[36] Poppenberg, M., Vogt, D. (1995). A tame splitting theorem for exact sequences of Fréchet spaces,Math. Z., 219,
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