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Abstract. Ideals of extendable and liftable operators are introduced giving a new approach to the
study of the splitting of short exact sequences of Banach spaces. Maximality, duality and closedness with
respect to pointwise bounded limits of the ideals are considered. Several examples are summarized and
the role of£,- and L.-spaces is clarified.

Ideales de operadores que admiten extensi  6n o levantamiento
Resumen. Se introducen los ideales de operadores que admiten extemkgvantamiento y se presenta
una nueva aproximan al estudio de la escisi de sucesiones exactas cortas de espacios de Banach. Se

considera la maximalidad de estos ideales y se investiga si son cerrados respectordtefopuntuales
acotados. Se resumen algunos ejemplos y se clarifica el papel de los eghacifs .

1. Introduction

Let

0 x 1 .w_—%.7 0 (1)
be a short exact sequence of Banacte¢Ret, locally convex, ...) spaces and continuous linear maps (=
operators). Isplitsif ¢ has a right inverse operator. There is an extensive splitting theory in dubhétr
space setting due to Vogt and his collaborators (see [41], [33], [28], [36], [17], [19], [13] etc.) later on it
was extended to some non-metrizable spaces (see [14], [15]). It turns out that for many pairs of natural
Fréchet space&X, Z) every short exact sequence of the form (1) splits. These results have found many
applications, for instance: in the theory of partial differential operators (see, for example, [32], [13], [15]),
for problems of linear extension of smooth and holomorphic functions (see, for example, [36], [18]) as well
as for linear solutions to the division and composition problems (see, for instance, [2] and the reference list
there, [1], [3]). Moreover, the splitting theory is extensively used in the structure theorgdhétrspaces
(see [38], [39], [40], [42], [43], [44], comp. [33]).

In the Banach setting there is a lack of such a theory: for most natural Banach spakZethere are
non-splitting sequences of the form (1) (see [16], [22], [23], [24], [25], [27], [26]). That is why | am more
and more convinced that the operator ideal approach is the proper setting in the Banach case. Let me explain
it by analogy: the class of Echet spaces for which every summable sequence is absolutely summable (=
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nuclear spaces) contains many natural, important in analysis, spaces. The same class in the Banach case
contains only trivial spaces, nevertheless the operator ideal of absolutely summing operators is of great
significance in the theory and applications.

In the same spirit, we introduce the ideals of extendable and liftable operators. In the present paper
we give their definitions as well as the definitions of their natural operator ideal norms. Moreover, we
present several basic properties, some examples and, finally, we explain the faleavfd £ .-spaces
in the theory. The idea of extendable and liftable operators goes back to our Ph.D. thesis (1987) — for a
source of inspiration see also [23, 8.2]. Some of the results were contained in a never published manuscript
[11] based on my Ph.D. thesis, few results were announced without proof in [12]. Recently the interest in
short exact sequences of Banach spaces has revived (see [26], [20], [5], [4], [6]), moreover, a corresponding
set of problems is considered in the vividly developing area of operator spaces (see, for instance, [37], [34],
comp. [21]). That is why | decided to come back to this area and the paper is a consequence of that recent
research.

| believe that the operator ideals of extendable and liftable operators deserve some more attention and
some further research. Any attentive reader will find plenty of natural open questions related to the intro-
duced notions.

2. Preliminaries

We denote byl, A and F the class of all (continuous linear) operators, the ideals of approximable and
finite dimensional operators, respectivelyZIfs an operator ideal, theho A~! and A~! o T denote the
classes of operatofs such thafl’ o S and.S o T', respectively, are i for everyS € A. By Bx we denote

the unit ball of the Banach spacé andix : X — X’ denotes the canonical embedding. A short exact
sequence (1) isometricif j is an isometric embedding and

lg(z)| = inf{||w] : qw = qz,w € W} forallz € W.

We will use very often the classical, and well-known for a long timel]-back and push-outprocedures
summarized in the following result (comp. [10, Cor. 3.2], [14, Prop. 1.7], [5, 1.2, 1.3]).

Proposition 1  Let (1) be a given exact sequence.
(a) (pull-back) Letl" : Y — Z be an operator, then there is a commutative diagram with exact rows:

0 X 2 .w 2.z 0
MT n] TT
0 X w2y 0.

If (1) is isometric, then the second row is isometric as well gid| < |||
(b) (push-out) Lef" : X — Y be an operator, then there is a commutative diagram with exact rows

0 y 2w - 7 0
TT T1T idT

0 x L w 2.z 0.

If (1) is isometric then the first row is isometric as well i | < |||
(c) Let

0 X, 2w 2 2z 0
ol ]

0 w1 0
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be a commutative diagram with exact rows. There is a liftinggdd 1, (i.e., an operatoiR, : Z — W,
such thatg; o Ry = R) if and only if there is an extension &f onto W (i.e., an operatofl; : W — X3
such thatT o j = T). If both rows are isometric then we can cho&esuch that||7y|| < ||S|| + || R4l
and we can choosg; such that|Ry|| < ||S|| + ||T1]]. W

For some additional information on operator ideals, absolutely summing operdipepaces, the
Radon-Nikodym property and representable operators we refer to [35], [8], [31], [9], respectively.

3. ldeals of extendable and liftable operators

Let X, Y, Z be given Banach spaces andTét X — Y be an operator. We call' to be Z-extendable
(T € &z) if and only if for every short exact sequence of Banach spaces (1) the/hepends tdl; :
W — Y (i.e.,T = Ty o j). analogously[ is Z-liftable (I" € L) if for every short exact sequence of
Banach spaces

0 —— 7 2 . w_—2 .y .9 )

the magdl’ liftsto 75 : X — W (i.e.,T = goTy). Let us find for a fixed isometric sequence (1) the infimum

of norms ofT7, theney(T) is defined to be the supremum over all (1) of such infima. Moredy€r,) is

defined to be the supremum over all isometric exact sequences (2) of the infima of norms of possible liftings
T.

Theorem 1 The pairs(€z,ez) and(Lz,1,) are Banach operator ideals. Moreovét, € £ if and only
ifez(T) <oocandT € Ly ifandonlyif iz(T) < co. O

Remark 1 Of course,Lz and&; contain the class of nuclear operators (as the smallest Banach operator
ideal). W

Before we prove the result we need the following observation.

Lemmal (a)Let

@z 0

0 — kerQ —L— 1,(I)

be an isometric short exact sequence, then for
éz(T) :=sup{inf{||U1|| : Uy o J=ToRU; : 1(I) =Y} : R:ker@Q — X,|R|| <1}

we have
éz(T) < ez(T) S 3éz(T)

(b) Let
J Q

0 z loo(I) —2— 1o(I))Z —— 0

be an isometric short exact sequence, then for
ZZ(T) s=sup{inf{||Uz2|| : QoUs =S oT\Uy: X = ()} : S:Y = 1(I)/Z,||S]| < 1}
we have

12(T) <lz(T) < 3lz(T).
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PROOFE We will prove only part (b), the other one is analogous.
Let us consider an isometric short exact sequence

0 —— 27 2 w2 .y 0.

clearly,Z embeds isometrically into sonig () so we get the following commutative diagram where rows
are isometric exact and the lowest row is obtained via the pull-back procedure (see Proposition 1):

0 Z —1 () —2— 1.())Z —— 0
idT SIT S’T

0 z 2 w —25 Y ——0
idT T1T T

0 z - w, 25 X —0,

where S; extendsJ onto W, [|S1]] < ||J|] = 1 (l~(I) is injective), S is the map induced by; on
quotients,||S|] < 1. LetUs; : X — I (I) be a lifting of S o T'. By Proposition 1 (c), there is a map
Vi : W7 — Z such thaid,; = V; o j; and, again by Proposition 1 (¢}, has a liftingT, : X — W. ltis
easily seen (Proposition 1 (c)) that

[|Tol| < [IT1|] + [|T1]| + [|Uz]]-

Sincel(T), [|T1|| > ||T|| we getlz(T) < ||T»|| < 31z(T).
LetustakeS : Y — I(I)/Z, ||S]|| < 1. By Proposition 1 (the pull-back procedure) we construct the
following commutative diagram with isometric exact rows:

0 Z (1) —2— 1.())Z —— 0

Jq s S|

0 Z 7 . w 4. v _— o

Thusthe[e Igl X — W,qOT1 =T, HT1|| < lz(T) +e. SinceHSlH <1, HSI OT1|| < lz(T) + e and
thereforelz(T) <iz(T). M

PrROOF OFTHEOREM1. We concentrate on the cla8g, the proof for the class of extendable operators
is analogous.

First, we observe that the clasg is an operator ideal. Clearlf, (X, Y) is a linear space. Moreover,
if T € Lz(X,Y)andU € L(W, X) then obviousyI' o U € Lz(W,Y). Now, assume thef : Y — W
and let

0 z LW W 0
be an exact sequence. Then we construct the following commutative diagram

0 z 1w 4w 0
idT sj ST
0 Z W, 2y 0,

where the lower row is obtained via the pull-back procedure (see Proposition 1). Cle@rly, £, (X,Y)
then there exists a liftind} : X — W5, go o1y = T andS; o T is a lifting of S o T. ThusS o T €
Lz(X,W).
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Looking at the construction above, itis easily seen that bptindi ; are operator ideal norms whenever
they are defined (and, by Lemma 1, they are defined on the same classes of operators).
Assume that (T') < oo, we will prove thatl” € £,(X,Y). Let us take an arbitrary exact sequence

0 —— 27— w2y 0.

By renorming we may assume that Z is an isometric subspa®é.ofhe image of the unit balByy, via ¢
contains some ball df . Thus defining a new norm dr as some multiplicity of the original norm we may
assume that( By, ) contains the unit balBy-. Taking as the new unit ball 3’ the setBy N ¢~ (By ) we
get an isometric short exact sequence (&ngith the new norm is isometric tg with the previous norm).
Thereforel™ has a liftingTy : X — W, Ty oq = T, and, of course[} is a lifting of T" for the original short
exact sequence.

Assume thaf” € £z(X,Y). We define on the spadqY, [ (I)/Z) a new norm:

A(S) :=inf ||U1]|| + ||S]],

whereU; is aliftingof So T, i.e.,QoU; = SoT. SinceSo T € Lz, thusA(S) is a well defined norm.
One proves easily thal,(Y, . (I)/Z) is complete equipped with the norf(-). Therefore, by the Open
Mapping Theorem, for some constantindependent of':

inf [|Uh ]| < A(S) < C[S]]

and

lz(T) < (C < 0.

Using the direct sum

0 Z Z0Y Y 0

one observes easily thigt(T') > ||T||. Thus if(T,,) is a Cauchy series with respecttg then it has a norm
limit 7" and clearly we will find a sequence of lifting#/,,) (whereU,, is a lifting of T,, for eachn € N)
which is also Cauchy ifi - || and converges to a lifting of 7. Thereforel ; is complete with respect to
lz. 1

4. Properties of the ideals

First, we show that, under some natural assumptions, both ideals are closed with respect to pointwise limits
of bounded nets.

Theorem 2 (a) Let(7;);cr be aez-bounded net of operatofs; : X — Y pointwise convergent to an
operator?. If Y is complemented in its bidual, th&his Z-extendable,

ez(T) < Asupez(T;),
iel

where) is the projection constant af in Y.
(b) Let(T;);cr be alz-bounded net of operatofE; : X — Y pointwise convergent to an operatdt
If Z is complemented in its bidual, th@his Z-liftable,

lz(T) < 3/\Suplz(Ti),
el

where) is the projection constant ¢f in Z”.
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Remark 2 The part (b) was announced in the author’s paper [12] without proof and the proof is contained
in the author’s preprint [11]. A “space” version was published in [26, Prop. 3.H].

PROOFE (a) Let

0 X 2w "2z 0
be an isometric short exact sequence. Of course, for everyl there is an extensioty; : W — Y,
[|U:l| < (1+¢e)ez(T;). By the classical Lindenstrauss compactness argument (see [29], [30, proof of Th.
2.1, page 12]), there is a subnet (@f;);c; pointwise weak-star convergentt : W — Y, ||U]|| <
(1 +¢)sup;crez(T;). Clearly,U is an extensiondl’ : X — Y". If P:Y" =Y ,||P|| < (14+¢))\ isa
projection, thenP o U is an extension df’ we are looking for.
(b) Let

0 z 21w 1.y 0
be an isometric short exact sequence. Clearly, one can produce the following commutative diagram where
the lowest row is obtained from the middle one by the pull-back procedure (see Proposition 1)

11 "
J

0 7" —— W LY 0
iZT in in

0 z 4w 1.y 0
| | a

0 zZ W -t X 0.

For every: € I there is a liftingU; : X — W of T, ||U;|]] < (1 + ¢€)iz(T;). By the Lindenstrauss
compactness argument as in (a), there is a subn@f,0fc; pointwise weak-star convergentd: X —

W, |U|| < (1 +¢€)sup;c; lz(T;). By Proposition 1 (c)jz has an extensioR ontoW;. If P : Z" — Z

is a projection, therP o R is a projection ofi¥; onto Z and again, by Proposition 1 (cJ; has a lifting

into W. Analyzing the estimates in the used proposition we get the estimates on the norm of the obtained
lifting. W

Let us recall that for Banach operator idgalve defineZ™®* := 4= 07 o AL,

Corollary 1 LetY be a complemented subspace of its bidual.
(@) If X or Z has the bounded approximation property then

Ez0 ATHX,Y) = E(X,Y).
(b) If Y has the the bounded approximation property then
A7 o E4(X,Y) = E4(X,Y).
(c) If Y and X or Z have the bounded approximation property then
EZ(X,Y) =EF(X,Y).

Corollary 2 Let Z be a complemented subspace of its bidual.
@ Ly o A7t =Ly
(b) If Y has the bounded approximation property then

A o Ly(X,Y) = L(X,Y).
(c) If Y has the bounded approximation property then
Lz(X,Y) = LE(X,Y).
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PROOF OFCOROLLARY 1 AND 2. Assume tha has the bounded approximation property then there
is a bounded family of finite dimensional operatd);c; C L(X,X), ||Si|| < C for everyi € I,
pointwisely tending to identity. I’ € £7 o A~! thenez(T o S;) < C; for some fixedC; and every
1 € I (comp. [35, 8.7.5]). By Theorem 2 (a); € £ and this proves 1 (a) foK having the bounded
approximation property. The proof for 1 (b) and 2 (b) is completely analogous. Conditions (c) follow
immediately from (a) and (b) in both corollaries

1 (a), Z has the bounded approximation property: et £z o A~1(X,Y). There exists a family of
finite dimensional operator(sS;);c; on Z tending pointwisely to the identity]S;|| < C for everyi € I.
We defineZ; := ImS;, R; : Z; — Z the natural embedding. Let us consider an isometric short exact
sequence

0 x 1 .w_—2.7 0
For everyi € I there is a finite dimensional spatié C W such thay(By;,) 2 (1 - (3dim Z;)~!)By,.
Thus takingX;; := j—l(Wi N j(X)) we obtain the following commutative diagram:

0 X 1 ow 2.z 0
AT BT RT
0 X; w; Z; 0.

Modifying the norm ori¥; and X; we may obtain new finite dimensional spa&&g X; and the following
diagram with both rows isometric exact afd; ||, || B;|| < (1 — (2dim Z;)~1)

0 X L w4,z 0
0 X W; Z; 0.

Finally, we construct the following commutative diagram with exact rows:

0 Y” W Z" 0
‘S

0 Y Wi Z 0
qdal

0 X w Z 0
A, B, T R, T

0 X; W; Z; 0
T S

0 X, v, 7 0,

where the second row is obtained from the third one via the push-out procedure and the last one from
the fourth one via the pull-back procedure (see Proposition 1). Sinee £7 o A~1(X,Y), we have
ez(ToA;) < Cy,whereC; does not depend ar(comp. [35, 8.7.5]). By Proposition 1 (dR;0S; : Z — Z
has a liftingS; : Z — Wy, ||Si|| < C, for everyi € I. SincesS; tends pointwisely tdd, by the
Lindenstrauss compactness argument (see [29], cite[proof of Th. 2.1, page 12]L1), there is a weak-star
pointwise cluster point ofS;) denoted byl/ : Z — W/ which is a lifting ofi, : Z — Z". Clearly, by
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Proposition 1 (c)iy o T has an extensioti; : W — Y” and if P : Y” — Y is a projection,P o U; is an
extension off". Thereforel' € £2(X,Y).
2 (a): Let
0 z 2w “2-Y 0
be an isometric exact sequence. We construct the following commutative diagram with isometric exact rows

.71 "

0 7" 24— w" Ly 0
iZT ,L-WT in

0 7z 2w .y 0
o 1]

0 Z W, X 0,

where the lowest row is obtained via the pull-back procedure (see Propositioif1E £, o A1 (X,Y)

then for every finite dimensional subspa&e C X the mapT|x, has a lifting.S; : X; — W with

[|S;]] < C, C does not depend oh Defining S;(z) = 0 for z ¢ X,; we may assume th&; : X — W.

By the Lindenstrauss compactness argument as in the proof of 1 (a), there is a weak-star pointwise cluster
point.S € L(X,W") which is a lifting ofiy o T. By Proposition 1, has an extensioty : W; — Z”

and using a projectiof’ : Z"” — Z, the operato’ o U : W; — Z extendsd . Again by Proposition 1,
TliftstoWandT € Lz(X,Y). N

Let us recall that for any operator ide&awe defineZd"*! .= {T': T’ € T}.

Theorem 3 For every Banach spacg the following equality holds:
Lo = (E7)Me,
Remark 3 IngeneralLy; # (£z/)%". For instance,
idy /ey € Lo = (&)™ but  idy_jey & Loo. W

PROOF LetT € Lz (X,Y) and let

0 —— Vv — w2 .,7_ .0

be an isometric short exact sequence. We ligveT : X — Y"” € L, and it has a liftingl; : X — W’
with respecttg/’ : W' — Y (ker j' ~ Z'). SinceT” o i§, =T} o j”, we get

T'=T oiyoiyr =T]0j" oiyr =T, oiwoj and T' € &z.
To prove the other inclusion, we assume that (£7)1"(X,Y), i.e.,T" € £z(Y', X"). Let

0 —— 272 1 . w_2 .y .9

be an isometric short exact sequence. By duality and the pull-back procedure applied to the operator
Z — Z" (see Proposition 1) we get the following commutative diagram

/ v

0 YN L W —— Z" 0
idT zT iz T
0 y 2w -2 7 0.
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ClearlyT” extends td; : W, — X', Ty oj; = T'. Dualizing once again we get the following commutative
diagram with exact rows:

0 70— wy Iy 0
(iz)' T il T idT

0 zm L wr Ly 0
i | iw | |

0 7z i w Loy 0

It is easily seen that
(iz) 0iz =idz  and  (i' ciw)(W) = (1) ' (iv (V).
Moreover, ifz € ker(i’ o iy ) thenz € ker ¢, thusz = j(z) for somez € Z’ and
o (iz) oiz(z) =i oiw(z) =0

which implies that: = 0. We have proved that o iy is an embedding onto a closed subspac@&/gf
hence it is a topological embedding. Singe 77 = T”, we obtain

T1(X) € (1) iy (V) = (¢ o iw)(W)

and we observe that
T= qo (iloiw)_l OT{‘x.

Thereforel' € L. N

5. Examples
In this section we summarize several examples of extendable and liftable operators.

Example 1 For an arbitrary Banach space every map factorizing through an injective space (for in-
stance/ (1), Lo (1), C(K), K extremally disconnected) belongség. In particular, £ contains:

e all 2-absolutely summing operators (comp. [8, Cor. 2.16]l
Let us recall thatl’ : X — Y is Radon-Nikodymif it maps eachu-continuousX -valued measure

of finite variation into au-differentiableY -valued measure, whegeis an arbitrary probability measure
(comp. also [35, 24.2.6]).

Example 2 For an arbitrary Banach space every map factorizing through (I) belongs toLz. In
particular, £ contains:

o all Radon-Nikodym operatofE : X — Y, whereX is an abstractl;-space (comp. [26, Fact]);

e every compositiofi'o S, whereT' is a 2-absolutely summing operator afds an absolutely summing
operator. W
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Indeed, ifX ~ L, (u), u finite, then every Radon-Nikodym operator is representable and, by the Lewis-
Stegall theorem (see the proof of [9, Th. II.1.8]) it factorizes throlighThe general case follows from
the Kakutani representation theorem (in fact, every absfiactpace is ari;-sum of a family of spaces
(L1(pi))ier with p; finite).

If T o S then, by the Pietsch Factorization Theorem [8, Th. 2.83fctorizes through a subspace of
Ly (w). Since every 2-absolutely summing operator is extendable (see Example 1 Abogeactorizes

through a magR : Ly — Lo which is clearly Radon-Nikodym [9, Cor. 111.2.13].

Example 3 For an arbitrary Banach spac& every weakly compact map: X — Y, X an L, -space,
belongs ta;. In particular, £ contains:

e all p-absolutely summing operatofs: C(K) - Y (1 <p< o). N
Indeed, by [7, Cor. 1]I factorizes through a mag : X — W, W reflexive. Moreover,S is a
pointwise limit of maps factorizing through finite dimensiohal spaces (with an upper bounds on norms).

SinceV is reflexive then Theorem 2 (a) implies théite £;. It is known thatp-absolutely summing
operators are weakly compact [8, Th. 2.17].

Example 4 (Comp. Lindenstrauss [29]) For an arbitrary Banach spa€ecomplemented in its bidual
every mapl’ factorizing through anC;-space belongs td ;. In particular, £z contains:

¢ all absolutely summing operatdr: C(K) - Y. R

Indeed,T" is a pointwise limit of maps factorizing through finite dimensiohapaces. Then the result
follows from Theorem 2 (b). I : C(K) — Y is absolutely summing thef factorizes througtL, (see
[8, Cor. 2.15]).

Example 5 For everyL;-spaceZ every weakly compact map belong<ie B

Indeed, every weakly compact map factorizes through a reflexive space [7, Cor. 1] and we apply Lin-
denstrauss [29]idw € &7 for every reflexivell).

Example 6 Every separable map belongsfg, ;) forany set/. W

To prove the above statement, let us consider a short exact sequence

0 —— col) —2— W —2 -y 0.

We consider a separable m@p X — Y whereT'(X) C Y3, Y; separable Banach subspacé&ofClearly,

there is a separable subspa®e of W such thay(By,) 2 (1 — €)By,. TakingZ := j (W) we obtain

a separable subspace®{ ). Without loss of generality (enlarging if necessary) we may assume that

7 ~ ¢o. We get the following commutative diagram where the lowest row is obtained via the pull-back
procedure (see Proposition 1)

0 —— ¢o(1) J W 1 Y 0
I I I

0 —— Z 14} Y, 0
idT | 7|

0 —— Z Wy X 0.

By Sobczyk's Theorem, the middle row splits, therefdrbas a lifting.
The classes of ;- and L.-spaces play a special role in the theory. In particular, onlyZftrelonging
to these classes the idedls or £z can be closed.
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Theorem 4 (a) The following assertions are equivalent:
(i) Zisan/L,-space;
(iiy &z contains all weakly compact operators;
(i) €7 2 A
(iv) ez and|| - || are equivalent or4;
(V) ez and|| - || are equivalent orf.
(b) The following assertions are equivalent:
() Zisan/l..-space;
(i) Lz 2 A
(iii) {7 and|| - || are equivalent om4;
(iv) Iz and|| - || are equivalent orF.

PrROOF By [35, Th. 6.1.6] it follows that three last conditions are equivalent for any Banach operator
ideal.
(@) (i)=(ii): See Example 5. (iig>(iii): Obvious.
(iii) =(i): Let Y be an arbitrary Banach space such tHathas the bounded approximation property.
then, by Corollary 1,
ExY'Y)=Ez0 ALY Y) =LY, Y.

In particular,idy: € £z, thus, by Theorem 3dy € Lz,. We have proved that every short exact sequence

0 A w Y 0

splits whenever the dudl’ of Y has the bounded approximation property.

Let us takeY arbitrary and define a¥;, an l>-direct sum of all finite dimensional subspacesYaf
Clearly, Yy has the bounded approximation property add, € Lz which implies thatlz (idw) <
Iz (idy,) for every finite dimensional subspai of Y. Using again the Lindenstrauss compactness argu-
ments (comp. [29], [30]), we show that alsb- € L/, thusZ’ is injective (andl..-space) and therefore
Z is anL-space.

(b) ()=(iv): Let

0 Z W Y 0

be an isometric short exact sequenceY’lis finite dimensional, we observe as in the proof of Corollary 1
(a), that there is commutative diagram with exact rows

0 zZ L w1y 0
JT T idT
0 Z W, Y 0,

whereZ; is finite dimensional. Sincg is anL..-space, we may assume tHatis a finite dimensional,,
space. Thus the lower row splits and, by Proposition 1 (c), the upper row splits as well (we have a control
on the norms of the right inverse fgy.

(iv)=-(i): We apply [24, Th. 6.1 (5) and remarks before]ll
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