RACSAM

Rev. R. Acad. Cien. Serie A. Mat.
Vol. 97 (2), 2003, pp. 223-227
Análisis Matemático / Mathematical Analysis
Comunicación Preliminar / Preliminary Communication

The three-space-problem for locally-m-convex algebras

S. Dierolf and Th. Heintz

Abstract

We prove that a locally convex algebra A with jointly continuous multiplication is already locally-m-convex, if A contains a two-sided ideal I such that both I and the quotient algebra A / I are locally-m-convex. An application to the behaviour of the associated locally-m-convex topology on ideals is given.

El problema de los tres espacios para álgebras localmente-m-convexas

Resumen. Probamos que un álgebra localmente convexa con multiplicación continua es automáticamente localmente-m-convexa, si contiene un ideal bilátero I tal que tanto I como el álgebra cociente A / I son localmente-m-convexas. Se presenta una aplicación al comportamiento de la topología localmente-mconvexa asociada en los ideales.

1. Introduction

There are three reasonable possibilities to extend the classical notion of a normed algebra to algebras provided with a locally convex topology. In fact, let A be an associative real or complex algebra and \mathscr{T} a locally convex topology on A. The weakest requirement on the compatibility of the algebraic and topological structures on A is

1. multiplication $m:(A, \mathscr{T}) \times(A, \mathscr{T}) \longrightarrow(A, \mathscr{T})$ is separately continuous.

A stronger requirement would be
2. the above multiplication m is jointly continuous, or - equivalently - for every 0 -nbhd U in (A, \mathscr{T}) there is another $0-\mathrm{nbh} \mathrm{V}$ in (A, \mathscr{T}) satisfying

$$
V^{2}:=\{x y: x, y \in V\} \subset U
$$

The following requirement is still stronger
3. The 0 -nbhd-filter in (A, \mathscr{T}) has a basis consisting of sets that are stable w.r. to multiplication, i.e. for each 0-nbhd U in (A, \mathscr{T}) there is a 0 -nbhd V in (A, \mathscr{T}) satisfying $V^{2} \subset V \subset U$.

[^0]If \mathscr{T} is metrizable and complete, (1) and (2) are equivalent. We will call an algebra A provided with a locally convex topology satisfying condition (2), a locally convex algebra; if (A, \mathscr{T}) satisfies (3), we will call (A, \mathscr{T}) locally-m-convex (loc-m-conv.). Whereas it is easy to find algebras (A, \mathscr{T}) with (1) but without (2), the few complete metrizable locally convex algebras known to fail (3) are nontrivial and rather famous (see e.g. [1], [7], [8]).

Although many authors deal with algebras satisfying just condition (1), we consider condition (2) a very natural extension of normed algebras, which leads to a category with good properties.

On the other hand, loc-m-conv. algebras (which are nothing else but dense subalgebras of projective limits of normed algebras) are easier to handle. Therefore conditions are welcome, under which a locally convex algebra will "automatically" be already loc-m-conv. We will provide such a condition in form of a three-space- statement.

Notations. Let A be an algebra (always assumed to be associative and real or complex). For a subset C in A let ΓC denote the convex balanced hull. Given $n \in \mathbb{N}$ and subsets C_{1}, \ldots, C_{n} in A, we define $C_{1} \cdots C_{n}:=\left\{x_{1} \cdots x_{n}: x_{j} \in C_{j}\right.$ for all $\left.1 \leq j \leq n\right\}$ and abbreviate $C^{n}:=C \cdots C$ (n factors). It is easy to see that $C_{1}\left(\Gamma C_{2}\right) \cup\left(\Gamma C_{1}\right) C_{2} \subset \Gamma\left(C_{1} C_{2}\right)$ and $\Gamma\left(\left(\Gamma C_{1}\right) \cdot\left(\Gamma C_{2}\right)\right)=\Gamma\left(C_{1} C_{2}\right)$ for all $C_{1}, C_{2} \subset A$.

2. The three-space-theorem

Theorem 1 Let (A, \mathscr{T}) be a locally convex algebra containing a (two-sided) ideal I, such that I provided with the relative topology $\mathscr{T} \cap I$ and the quotient algebra A / I provided with the quotient topology \mathscr{T} / I are both loc-m-conv. algebras. Then also (A, \mathscr{T}) is loc-m-convex.

Proof. Let $U=\Gamma U$ be a 0 -nbhd in (A, \mathscr{T}). Then we find a 0 -nbhd V in $(I, \mathscr{T} \cap I)$ such that $V^{2} \subset V=$ $\Gamma V \subset U \cap I$. As the restricted multiplication

$$
(A, \mathscr{T}) \times(I, \mathscr{T} \cap I) \longrightarrow(I, \mathscr{T} \cap I)
$$

is continuous, there are 0-nbhds $U_{1}=\Gamma U_{1}$ in (A, \mathscr{T}) and $V_{1}=\Gamma V_{1}$ in $(I, \mathscr{T} \cap I)$ such that $U_{1} V_{1} \subset V$.
First we may assume that $V_{1}^{2} \subset V_{1} \subset V$; next we may assume that $U_{1} \subset U$ and that $\left(U_{1}^{2}+U_{1}\right) \cap I \subset V_{1}$ (observe that there is a 0 -nbhd $\check{\mathrm{U}}=\Gamma \check{\mathrm{U}}$ in (A, \mathscr{T}) such that $\check{\mathrm{U}} \cap I \subset V_{1}$ and we may choose U_{1} so small that $U_{1}^{2} \cup U_{1} \subset \frac{1}{2} \check{\mathrm{U}}$).

Let $q: A \rightarrow A / I$ denote the quotient map. As $(A / I, \mathscr{T} / I)$ is loc-m-conv., there is a 0 -nbhd $W=\Gamma W$ in $(A / I, \mathscr{T} / I)$ satisfying $W^{2} \subset W \subset q\left(U_{1}\right)$.
$U_{2}:=\frac{1}{2}\left(q^{-1}(W) \cap U_{1}\right)$ is a balanced convex 0-nbhd in (A, \mathscr{T}) satisfying $q\left(U_{2}\right)=\frac{1}{2} W$, hence

$$
\begin{gathered}
U_{2}+I=q^{-1}\left(q\left(U_{2}\right)\right)=q^{-1}\left(\frac{1}{2} W\right) \text { and } \\
U_{2}^{2} \subset U_{2}^{2}+I=q^{-1}\left(q\left(U_{2}^{2}\right)\right)=q^{-1}\left(\left(q\left(U_{2}\right)\right)^{2}\right)=q^{-1}\left(\frac{1}{4} W^{2}\right) \subset \frac{1}{2} q^{-1}\left(\frac{1}{2} W\right)=\frac{1}{2} U_{2}+I .
\end{gathered}
$$

As a consequence we obtain

$$
\begin{aligned}
U_{2}^{2} & \subset \frac{1}{2} U_{2}+I \cap\left(U_{2}^{2}-\frac{1}{2} U_{2}\right) \subset \frac{1}{2} U_{2}+I \cap\left(\left(\frac{1}{2} U_{1}\right)^{2}+\frac{1}{2} U_{1}\right) \\
& =\frac{1}{2} U_{2}+\frac{1}{2} I \cap\left(U_{1}^{2}+U_{1}\right) \subset \frac{1}{2} U_{2}+\frac{1}{2} V_{1} \subset \Gamma\left(U_{2} \cup V_{1}\right)
\end{aligned}
$$

Now we prove by induction that $U_{2}^{n} \subset \Gamma\left(U_{2} \cup U_{2} V_{1} \cup V_{1}\right)$ for all $n \in \mathbb{N}$. In fact, the case $n=1$ is clear; assume that the inclusion is true for some $n \in \mathbb{N}$; then, by induction hypothesis,

$$
\begin{aligned}
U_{2}^{n+1} & =U_{2} U_{2}^{n} \subset U_{2} \Gamma\left(U_{2} \cup U_{2} V_{1} \cup V_{1}\right) \subset \Gamma\left(U_{2}^{2} \cup U_{2}^{2} V_{1} \cup U_{2} V_{1}\right) \\
& \subset \Gamma\left(U_{2} \cup V_{1} \cup \Gamma\left(U_{2} \cup V_{1}\right) V_{1} \cup U_{2} V_{1}\right) \subset \Gamma\left(U_{2} \cup V_{1} \cup U_{2} V_{1} \cup V_{1}^{2}\right) \\
& \subset \Gamma\left(U_{2} \cup U_{2} V_{1} \cup V_{1}\right)
\end{aligned}
$$

Finally, the set $\tilde{U}:=\Gamma\left(\bigcup_{n \in \mathbb{N}} U_{2}^{n}\right)$ is clearly a 0 -nbhd in (A, \mathscr{T}) satisfying $\tilde{U}^{2} \subset \tilde{U}$; moreover

$$
\tilde{U} \subset \Gamma\left(U_{2} \cup U_{2} V_{1} \cup V_{1}\right) \subset \Gamma\left(U_{2} \cup V\right) \subset \Gamma\left(U_{1} \cup V\right) \subset \Gamma U \subset U,
$$

which finishes the proof.
Remark 1 Without the assumption of (A, \mathscr{T}) having continuous multiplication, the 3 -space-statement of the theorem becomes wrong, as has been shown in [4].

3. An application

As local-m-convexity is stable under the formation of initial topologies w.r. to linear multiplicative maps, for every locally convex algebra (A, \mathscr{T}) there is a strongest loc-m-conv. topology \mathscr{T}_{m} on A coarser that \mathscr{T}. The formation of this "associated loc-m-convex topology" induces a functor from the category of locally convex algebras and linear multiplicative continuous maps into the category of loc-m-convex algebras and linear multiplicative continuous maps:

$$
\begin{aligned}
(A, \mathscr{T}) & \rightsquigarrow\left(A, \mathscr{T}_{m}\right) ; \\
(A, \mathscr{T}) \xrightarrow{f}(B, \mathscr{S}) & \rightsquigarrow\left(A, \mathscr{T}_{m}\right) \xrightarrow{f}\left(B, \mathscr{S}_{m}\right) .
\end{aligned}
$$

If (A, \mathscr{T}) is a locally convex algebra and $I \subset A$ an ideal, then $\mathscr{T}_{m} / I=(\mathscr{T} / I)_{m}$ (by a general device and also by immediate verification).

On the other hand, the functional property only yields that $(\mathscr{T} \cap I)_{m} \supset \mathscr{T}_{m} \cap I$. The following example shows that this inclusion may be strict.

Example 1 (see [5, 4.12])
Let $(A, \mathscr{T})=(A, \cdot, \mathscr{T})$ be a locally convex algebra with unit element $e \neq 0$, and let $A_{\text {nil }}$ denote the linear space A provided with 0 -multiplication (so that ($A_{\text {nil }}, \mathscr{T}$) is even loc-m-convex). The maps

$$
\begin{aligned}
& A \longrightarrow L\left(A_{\text {nil }}\right):=\{f: A \rightarrow A \text { linear }\}, \\
& a \mapsto(b \mapsto a b) \text { and } a \mapsto(b \mapsto b \cdot a),
\end{aligned}
$$

respectively, satisfy the conditions of the second proposition in [4] for $B:=(A, \cdot)$ and $C:=A_{\text {nil }}$. Consequently by loc.cit., the corresponding semidirect product $E:=A_{\text {nil }} \times_{s}(A, \cdot)$ is an algebra, which is a locally convex algebra w.r. to the product topology $\mathscr{S}:=\mathscr{T} \times \mathscr{T} . I:=A \times\{0\}$ is an ideal in E and has 0 -multiplication, whence $(I, \mathscr{S} \cap I)$ is loc-m-convex, i.e. $(\mathscr{S} \cap I)_{m}=\mathscr{S} \cap I$. On the other hand, we will show that $\mathscr{S}_{m}=\mathscr{T}_{m} \times \mathscr{T}_{m}$.

In fact, $\mathscr{T}_{m} \times \mathscr{T}_{m}$ is loc-m-convex by loc. cit, hence $\mathscr{T}_{m} \times \mathscr{T}_{m} \subset \mathscr{S}_{m}$.
Conversely, let p be a submultiplicative continuous seminorm on (E, \mathscr{S}), then $p(a, 0)=p((e, 0)(0, a)) \leq$ $p(e, 0) p(0, a)$ for all $a \in A$. Thus $p(\cdot, 0)$ is dominated by $p(0, \cdot)$ which is a submultiplicative continuous seminorm on (A, \cdot, \mathscr{T}), hence \mathscr{T}_{m}-continuous. From this we obtain that $\mathscr{S}_{m} \cap I=\left(\mathscr{T}_{m} \times \mathscr{T}_{m}\right) \cap I$. Since $\left(E / I, \mathscr{S}_{m} / I\right)=\left(E / I,(\mathscr{S} / I)_{m}\right)$ is canonically topologically algebra-isomorphic to $\left(A, \mathscr{T}_{m}\right)$, we obtain that $\mathscr{S}_{m} / I=\left(\mathscr{T}_{m} \times \mathscr{T}_{m}\right) / I$.

Now, [3, lemma 1] yields $\mathscr{S}_{m}=\mathscr{T}_{m} \times \mathscr{T}_{m}$. In particular we have

$$
(\mathscr{S} \cap I)_{m}=\mathscr{S}_{m} \cap I \Longleftrightarrow \mathscr{T}=\mathscr{T}_{m} .
$$

So any locally convex unital algebra (A, \mathscr{T}) that fails to be loc-m-convex, provides a counter example of the announced kind.

In contrast to this example we have the following
Proposition 1 Let (A, \mathscr{T}) be a locally convex algebra containing an ideal I such that $(A / I, \mathscr{T} / I)$ is loc-m-convex. Then $\mathscr{T}_{m} \cap I=(\mathscr{T} \cap I)_{m}$.

Proof. The set

$$
\left\{\Gamma(U \cup V): U \text { a } 0-\operatorname{nbhd} \text { in }(A, \mathscr{T}), V \text { a } 0-\operatorname{nbhd} \text { in }\left(I,(\mathscr{T} \cap I)_{m}\right)\right\}
$$

is a 0-basis for a locally convex topology \mathscr{R} on A, satisfying $\mathscr{R} \cap I=(\mathscr{T} \cap I)_{m}$ and $\mathscr{R} / I=\mathscr{T} / I$; in fact, \mathscr{R} is the strongest locally convex topology on A, satisfying $\mathscr{R} \subset \mathscr{T}$ and $\mathscr{R} \cap I \subset(\mathscr{T} \cap I)_{m}$ (cf. [2], [6]).
(A, \mathscr{R}) is even a locally convex algebra. In order to show this, let 0 -nbhds $U=\Gamma U$ in (A, \mathscr{T}) and $V=\Gamma V$ in $\left(I,(\mathscr{T} \cap I)_{m}\right)$ be given; we may assume that $V^{2} \subset V$. By continuity of multiplication there are 0-nbhds $U_{1}=\Gamma U_{1} \subset U$ in (A, \mathscr{T}) and $V_{1}=\Gamma V_{1} \subset V$ in $(I, \mathscr{T} \cap I)$ such that $U_{1} V_{1} \cup V_{1} U_{1} \subset V$, where we may assume that $U_{1}^{2} \subset U$.

As $V_{1} \subset V$ and $V^{m} \subset V$ for all $m \in \mathbb{N}$, we obtain that $U_{1} V_{1}^{n} \cup V_{1}^{n} U_{1} \subset V$ for all $n \in \mathbb{N}$. Therefore the 0 -nbhd

$$
\tilde{V}:=\Gamma \bigcup_{n \in \mathbb{N}} V_{1}^{n} \text { in }\left(I,(\mathscr{T} \cap I)_{m}\right)
$$

(observe that $\tilde{V}^{2} \subset \tilde{V}$ and \tilde{V} is a 0-nbhd in $(I, \mathscr{T} \cap I)$) satisfies $\tilde{V} U_{1} \cup U_{1} \tilde{V} \subset V$.
Now $W:=\Gamma\left(U_{1} \cup \tilde{V}\right)$ is a 0-nbhd in (A, \mathscr{R}) and $W^{2} \subset \Gamma\left(U_{1}^{2} \cup U_{1} \tilde{V} \cup \tilde{V} U_{1} \cup \tilde{V}^{2}\right) \subset \Gamma(U \cup V)$.
From the theorem we now obtain that (A, \mathscr{R}) is even loc-m-convex, hence $\mathscr{R} \subset \mathscr{T}_{m}$, which implies

$$
(\mathscr{T} \cap I)_{m}=\mathscr{R} \cap I \subset \mathscr{T}_{m} \cap I \subset(\mathscr{T} \cap I)_{m} .
$$

Remark 2 A different, easier sufficient condition for $(\mathscr{T} \cap I)_{m}=\mathscr{T}_{m} \cap I$ would be the hypothesis that $(\mathscr{T} \cap I)_{m}$ is the initial topology on I w.r. to a family of multiplicative linear surjections from I onto loc-m-convex algebras with unit element.

In fact, given a locally convex algebra (A, \mathscr{T}), containing an ideal I, a loc-m-convex algebra (B, \mathscr{S}) with unit $e \neq 0$ and a linear multiplicative continuous surjection $f:\left(I,(\mathscr{T} \cap I)_{m}\right) \longrightarrow(B, \mathscr{S})$, there is $y \in I$ such that $f(y)=e$. Define $f: A \longrightarrow B, x \mapsto f(x y)$. It is easy to see that f is a linear multiplicative $\mathscr{T}-\mathscr{S}$-continuous extension of f, uniquely determined by f.

If $(\mathscr{T} \cap I)_{m}$ is the initial topology on I w.r. to $\left(f_{c}: I \longrightarrow\left(B_{c}, \mathscr{S}_{c}\right)\right)_{c \in J}$ as above, then the initial topology \mathscr{S} on A w.r. to $\left(\tilde{f}_{c}: A \longrightarrow\left(B_{c}, \mathscr{S}_{c}\right)\right)_{c \in J}$ is loc-m-conv., $\mathscr{S} \subset J, \mathscr{S} \cap I=(\mathscr{T} \cap I)_{m}$, hence $\mathscr{S} \subset \mathscr{T}_{m}$ and $(\mathscr{T} \cap I)_{m}=\mathscr{S} \cap I \subset \mathscr{T}_{m} \cap I \subset(\mathscr{T} \cap I)_{m}$.

References

[1] Arens, R. (1946) The space L^{ω} and convex topological rings, Bull. Amer. Math. Soc .,52, 931-935.
[2] Dierolf, S. (1980) A note on the lifting of linear and locally convex topologies on a quotient, Collect. Math., 31, 193-198.
[3] Dierolf, S., Schwanengel, U. (1979) Examples of locally compact non-compact minimal topological groups, Pacific J. Math., 82, 349-355.
[4] Dierolf, S., Khin Aye Aye, Schröder K. H. (1999) Semidirect products of locally convex algebras and the three-space-problem, Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.), 93, 185-187.
[5] Heintz, T. (2001) Locally Convex and m-convex Algebras. Dissertation Unviersität Trier.
[6] Köthe, G. (1966) Hebbare lokalkonvexe Räume, Math. Ann., 165, 181-195.
[7] Render, H., Sauer, A. (1996) Algebras of holomorphic functions with Hadamard multiplication, Studia Math., 118, 77-100.
[8] Zelazko, W. (1985) A non-m-convex algebra on which operate all entire functions, Ann. Polon. Math., 46, 389394.

S. Dierolf
FB IV - Mathematik
Universit"at Trier
D-54286 Trier. Germany
Th. Heintz
dierolfs@uni-trier.de Thomas.Heintz@lblux.lu

[^0]: Presentado por José Bonet.
 Recibido: 28 de Febrero de 2003. Aceptado: 15 de Mayo de 2003
 Palabras clave / Keywords: 3-space-problem, locally convex algebras, locally m-convex algebras
 Mathematics Subject Classifications: 46H05, 46H10
 (c) 2003 Real Academia de Ciencias, España.

