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Abstract. For the complex interpolation method, Kouba proved an important interpolation formula for
tensor products of Banach spaces. We give a partial extension of this formula in the injective case for the
Gustavsson–Peetre method of interpolation within the setting of Banach function spaces.

Interpolaci ón de productos tensoriales en espacios de Banach

Resumen. Para el ḿetodo de interpolación complejo, Kouba prob́o una f́ormula importante sobre
productos tensoriales inyectivos de espacios de Banach. Nosotros damos una extensión parcial de esta
fórmula para el ḿetodo de interpolación de Gustavsson-Petree en el contexto de espacios de Banach de
funciones.

1. Introduction

Recent progress in the local theory of Banach spaces allows to study interpolation between spaces of opera-
tors. The most striking result in this area is Kouba’s [19] complex interpolation formula for tensor products
of Banach spaces. A natural question that appears here is whether there are variants of Kouba’s result for
other methods of interpolation. Unfortunately, as one could expect, many difficulties appear, for instance a
delicate problem related to the interpolation of bilinear operators.

The purpose of this note is to prove new abstract results on one-sided interpolation of injective tensor
products of Banach spaces for the Gustavsson–Peetre method of interpolation. We believe that these results
have interests in their own rights; one of our motivations for considering them was to use the powerful result
of Kouba to prove extension and splitting theorems for Fréchet spaces of Rademacher type2 (for details
see [10]).

We now describe the main results of the paper. In Section2 we introduce notations and basic facts. In
Section3 we prove a result (Lemma 1) which shows that under general assumptions on an exact interpo-
lation functor the problem concerning interpolation of injective tensor products for Banach spaces can be
reduced to finite-dimensional spaces.

In Section4 we prove that for finite-dimensional Banach lattices the lower Ovchinnikov method of
interpolation satisfies certain essential estimates, the key to apply Lemma 1. The proof involves bilinear
interpolation theorems, Calderón-Lozanovsky spaces and the description of these spaces for couples of
multipliers from the Hilbert sequence space into2-concave Banach sequence spaces as well as well-known
factorization theorems.
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Finally in Section5, we present applications of the obtained results for the Gustavsson–Peetre method
of interpolation〈·〉ϕ generated by an appropriate function parameterϕ. Our main result of this section
states that under some mild assumptions on the functionϕ the following interpolation formula holds:

〈X0, X1〉ϕ⊗̃εE = 〈X0⊗̃εE,X1⊗̃εE〉ϕ,

where⊗̃ε denotes the injective tensor product,(X0, X1) is a couple of2-concave complex Banach function
spaces andE a Banach space of cotype2. For power functionsϕ(s, t) = s1−θtθ, 0 < θ < 1, we have
〈X0, X1〉ϕ = [X0, X1]θ whenever(X0, X1) is a complex couple. Here as usual[·]θ denotes the complex
method of interpolation (see [5]). Thus the obtained result is a partial extension of a well-known remarkable
result due to Kouba: For a couple(X0, X1) of complex Banach function spaces and a complex Banach
spaceE as above,

[X0, X1]θ⊗̃εE = [X0⊗̃εE,X1⊗̃εE]θ.

In fact, Kouba even proved two-sided results of this type, and not only forε but also for other norms as e.g.
the projective norm. For further one-sided results on interpolation of spaces of operators and tensor products
we refer to [7] and the references therein, where the authors deal with the real method of interpolation
applied for a rather rare class of Banach couples called quasi-linearizable (for examples see, e.g., [3], pp.
464–465).

2. Preliminaries

We shall use standard notation and notions from Banach space theory, as presented e. g. in [16], [21], [22]
and [31]; for tensor products of Banach spaces we refer to [9]. IfE is a Banach space, thenBE is its (closed)
unit ball andE′ its dual, andFin(E) stands for the collection of all its finite-dimensional subspaces. As
usualL(E,F ) denotes the Banach space of all (bounded and linear) operators fromE intoF endowed with
the operator norm. For a Banach spaceE of type2 (resp., cotype2) we writeT2(E) (resp.,C2(E)) for its
(Rademacher) type2 constant (resp., cotype2 constant), and for1 ≤ r ≤ ∞ we denote byM(r)(X) (resp.,
M(r)(X)) ther-convexity (resp.,r-concavity) constant of anr-convex (resp.,r-concave) Banach latticeX.
Recall that for Banach spacesE,F the injective norm onE ⊗ F is defined by

‖z‖E⊗εF := sup{|〈x′ ⊗ y′, z〉|; x′ ∈ BE′ , y′ ∈ BF ′}, z ∈ E ⊗ F,

and withE⊗̃εF we denote the completion ofE ⊗ F endowed with this norm. We will extensively use the
fact that the equalityE ⊗ε F = L(E′, F ) holds isometrically whenever one of the two involved spaces is
finite-dimensional.

Let (Ω,Σ, µ) (or shortly(Ω, µ)) be aσ-finite and complete measure space. As usualL0(µ) denotes
the vector lattice of all (equivalence classes of)µ-measurable real-valued functions defined onΩ, equipped
with the topology of convergence in measure onµ-finite sets. A Banach spaceX = X(µ) is said to be a
Banach function space on(Ω, µ) if X is a subspace ofL0(µ) with the following two properties:

(i) |f | ≤ |g|, with f ∈ L0(µ) andg ∈ X impliesf ∈ X and‖f‖X ≤ ‖g‖X ;

(ii) there existsu ∈ X such thatu > 0 onΩ.

A finite-dimensional real quasi-normed spaceX = (Rn, ‖ · ‖X) is called ann-dimensional lattice if‖ · ‖X
is a lattice quasi-norm. Clearly, if‖ · ‖X is a norm, thenX is a Banach function space in the above sense.

A Banach function spaceX is said to be maximal if its unit ballBX is closed inL0(µ). It is well-known
thatX is maximal if and only ifX = X×× holds isometrically, whereX× stands for the K̈othe dual ofX,
i. e.,

X× :=
{
y ∈ L0(µ); ‖y‖X× := sup

x∈BX

∫
X

|xy| dµ <∞
}
.
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Clearly, for ann-dimensional latticeX (not necessarily normed) the notion of the Köthe dualX× as above
(takingΩ = {1, . . . , n} andµ the counting measure) also makes sense and always gives ann-dimensional
Banach latticeX×.

For basic results and notation from interpolation theory we refer e. g. to [2] and [3]. We recall that a
mappingF from the category of all couples of Banach spaces into the category of all Banach spaces is said
to be an interpolation functor (or a method of interpolation) if for any couple(X0, X1), the Banach space
F(X0, X1) is intermediate with respect to(X0, X1) (i. e.,∆(X) := X0 ∩X1 ↪→ F(X0, X1) ↪→ X0 +X1),
andT : F(X0, X1) → F(Y0, Y1) for all T : (X0, X1) → (Y0, Y1); here as usual the notationT : (X0, X1)
→ (Y0, Y1) means thatT : X0 +X1 → Y0 + Y1 is a linear operator such that forj = 0, 1 the restriction
of T to the spaceXj is a bounded operator fromXj into Yj . If additionally

‖T : F(X0, X1) → F(Y0, Y1)‖ ≤ ‖T : X → Y ‖ := max{‖T : X0 → Y0‖, ‖T : X1 → Y1‖}

holds, thenF is called an exact functor (or an exact method of interpolation).
If X is a Banach space intermediate with respect to a coupleX = (X0, X1), we letX◦ be the closed

hull of ∆(X) in X. A Banach coupleX is called regular ifX◦
j = Xj for j = 0, 1. If F is an interpolation

functor,F◦ is the interpolation functor defined byF◦(X) = F(X)◦. If F = F◦, F is called a regular
interpolation functor.

Throughout the paper the set of all functionsϕ : [0,∞)× [0,∞) → [0,∞) which are non-decreasing in
each variable and homogeneous of degree one (i. e.,ϕ(λs, λt) = λϕ(s, t) for all λ, s, t ≥ 0) is denoted by
Φ, and if additionϕ is concave, then we writeϕ ∈ U . Recall that ifX = (X0, X1) is a couple of Banach
function spaces on(Ω, µ) andϕ ∈ U , the Caldeŕon–Lozanovsky spaceϕ(X) = ϕ(X0, X1) consists of all
x ∈ L0(µ) for which |x| = ϕ(|x0|, |x1|) for somexj ∈ Xj , j = 0, 1. Equipped with the norm

‖x‖ := inf
{

max{‖x0‖X0 , ‖x1‖X1}; |x| = ϕ(|x0|, |x1|), xj ∈ Xj , j = 0, 1
}
,

ϕ(X) forms a Banach function space (see, e. g., [23], [30]). The class of these spaces includes the class
of all Orlicz spaces; for instance, it is easy to see that for each Orlicz functionψ : [0,∞) → [0,∞) the
equality`ψ = ϕ(`1, `∞) holds isometrically, whereϕ(s, t) := t ψ−1(s/t) for t > 0 andϕ(s, 0) := 0. In
the case of the power functionϕθ(s, t) = s1−θtθ, 0 < θ < 1, we obtain the spaceX1−θ

0 Xθ
1 introduced by

Caldeŕon [5]. We note that by a result of Calderón (see [5], p.125), we have that the complex interpolation
space[X0(C), X1(C)]θ = X1−θ

0 Xθ
1 (C) wheneverX0 or X1 is σ-order continuous. Here for a given

Banach function spaceX on (Ω, µ), we denote byX(C) the complexification ofX, i. e., the space of all
complex-valued measurable functionsf onΩ such that|f | ∈ X.

Forϕ ∈ U we will also need the following duality formula:

ϕ(X0, X1)× = ϕ∗(X×
0 , X

×
1 ) (1)

with
‖ · ‖ϕ∗(X×

0 ,X
×
1 ) ≤ ‖ · ‖ϕ(X0,X1)× ≤ 2 ‖ · ‖ϕ∗(X×

0 ,X
×
1 ).

Here,ϕ∗ denotes the conjugate defined for anyϕ ∈ U by

ϕ∗(s, t) := inf
α,β>0

αs+ βt

ϕ(α, β)
.

We haveϕ∗ ∈ U and(ϕ∗)∗ = ϕ (see [23]). For anyϕ ∈ Φ, we define also the functionϕ∗ by ϕ∗(s, t) :=
1/ϕ(1/s, 1/t) for anys, t > 0. It is easy to see that(ϕ∗)∗ = ϕ, andϕ∗ � ϕ∗ for anyϕ ∈ U .

It is well-known that the Calderón–Lozanovsky construction restricted to the class of couples of max-
imal Banach function spaces is an interpolation method in this class. There are many abstract extensions
of this method to arbitrary Banach couples. Of particular interest for our paper are the following two con-
structions by Aronszajn and Gagliardo [1] (see also [2], [3]). Given a coupleA andA an intermediate space
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with respect to this couple, two exact interpolation functors are defined by

G(X) = GAA(X) :=
{ ∞∑
n=1

Tnan;
∞∑
n=1

‖Tn‖A→X‖an‖A <∞
}

and
H(X) = HA

A (X) := {x ∈ X0 +X1; Tx ∈ A for every T : X → A}.

The norms are given by

‖x‖G(X) = inf
{ ∞∑
n=1

‖Tn‖A→X‖an‖A; x =
∞∑
n=1

Tnan

}
and

‖x‖H(X) = sup{‖Tx‖A; ‖T‖X→A ≤ 1},

respectively. Note thatG is the minimal interpolation functor satisfyingA ↪→ G(A) andH is the maximal
interpolation functor satisfyingH(A) ↪→ A. In the particular case whenϕ ∈ Φ andA = (`∞, `∞(2−n)),
A = `∞(ϕ∗(1, 2−n)) (resp.,A = (`1, `1(2n)) andA = `1(ϕ∗(1, 2n)) ), the interpolation functorGAA
(resp.,HA

A ) is called the lower (resp., the upper) Ovchinnikov interpolation method and is denoted byϕ`
(resp.,ϕu). These were intensively studied in [28] (see also the references therein).

Recall that if(X0, X1) is any couple of maximal Banach function spaces, then for anyϕ ∈ U the
following identities hold:

ϕ`(X0, X1) = ϕu(X0, X1) = ϕ(X0, X1)

with the the universal constants of equivalence of the norms not depending onϕ and(X0, X1) (see [28]).

3. Approximation by finite-dimensional spaces

First we show—similar to [19, Section 4] and [14]—that interpolation formulas for tensor products as stated
in the introduction are of a finite-dimensional nature. In order to make the following more readable, let us
introduce another notation: If(X0, X1) is a Banach couple,X ⊂ X0 ∩X1 a subspace, andA ⊂ Fin(X)
is cofinal (i. e., for everyG ∈ Fin(X) there existsM ∈ A with G ⊂M ), then the triple((X0, X1), X,A)
is called a cofinal interpolation triple (resp., a regular cofinal interpolation triple wheneverX is dense in
bothX0 andX1).

For M ∈ Fin(X) we denote byM0 (resp.,M1) the subspaceM of X0 (resp.,X1) endowed with
the induced norm. We call an exact interpolation functorF approximable on a cofinal interpolation triple
((X0, X1), X,A) if for any ε > 0 and anyH ∈ Fin(X), there existsM ∈ A such thatH ⊂ M and for
all x ∈ H,

‖x‖F(M0,M1) ≤ (1 + ε)‖x‖F(X0,X1).

Note that if in the above definition one considers one-dimensional subspacesH only as well asX =
X0 ∩X1 andA = Fin(X), then approximability ofF on the cofinal interpolation triple((X0, X1), X0 ∩
X1,A) would mean thatF is computable on(X0, X1) in the sense of Brudnyi-Krugljak (see [3]). For
general examples of computable orbit functors we refer to [20].

In the sequel we will need the following result.

Proposition 1 Assume thatF is an exact interpolation functor computable on a Banach coupleX =
(X0, X1). ThenF is approximable on any cofinal interpolation triple(X,X,A).
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PROOF. Applying Lemma 2.5.27 in [3], we conclude thatF is approximable on the cofinal interpolation
triple (X,∆(X),Fin(∆(X))). Thus, if (X,X,A) is a cofinal interpolation triple, then the interpolation
property ofF yields the required result. �

Throughout the paper if(M0,M1) and(N0, N1) are finite-dimensional regular couples andF an inter-
polation functor, then we define the quantities

`F (M0,M1;N0, N1) := ‖F(M0 ⊗ε N0,M1 ⊗ε N1) ↪→ F(M0,M1)⊗ε F(N0, N1)‖

and
rF (M0,M1;N0, N1) := ‖F(M0,M1)⊗ε F(N0, N1) ↪→ F(M0 ⊗ε N0,M1 ⊗ε N1)‖.

Before we state and prove the following lemma which plays an essential role in the proof of the main re-
sult of the paper, we first note that if(E0, E1) and(F0, F1) are two Banach couples, thenEj⊗̃εFj , j = 0, 1,
is continuously embedded in(E0 + E1)⊗̃ε(F0 + F1) (see [9, 4.3]). In consequence,(E0⊗̃εF0, E1⊗̃εF1)
is a Banach couple.

Lemma 1 LetA := ((E0, E1), E,A) andB := ((F0, F1), F,B) be regular cofinal interpolation triples
andF be an exact interpolation functor.

(i) If LF (A,B) := supM∈A supN∈B `F (M0,M1;N0, N1) < ∞ andF is approximable on the cofinal
interpolation triple((E0⊗̃εF0, E1⊗̃εF1), E ⊗ F, C) with C := {M ⊗N ; M ∈ A, N ∈ B}, then

F(E0⊗̃εF0, E1⊗̃εF1) ↪→ F(E0, E1)⊗̃εF(F0, F1).

(ii) If RF (A,B) := supM∈A supN∈B rF (M0,M1;N0, N1) <∞ andF is approximable on both cofinal
interpolation triplesA andB, then

F(E0, E1)⊗̃εF(F0, F1) ↪→ F(E0⊗̃εF0, E1⊗̃εF1).

PROOF. From the definition of an approximable interpolation functor and the density assumptions we
conclude thatE ⊗ F is dense inF(E0, E1)⊗̃εF(F0, F1) and inF(E0⊗̃εF0, E1⊗̃εF1), hence, in order to
prove (i) and (ii), respectively, it is sufficient to show that for a givenz ∈ E ⊗ F

‖z‖F(E0,E1)⊗̃εF(F0,F1)
≤ LF (A,B) ‖z‖F(E0⊗̃εF0,E1⊗̃εF1)

(2)

and
‖z‖F(E0⊗̃εF0,E1⊗̃εF1)

≤ RF (A,B) ‖z‖F(E0,E1)⊗̃εF(F0,F1)
, (3)

respectively. We start with (2). By the assumption onF and the fact that the injective norm respects
subspaces, there existM ∈ A andN ∈ B such thatz ∈M ⊗N and

‖z‖F(M0⊗εN0,M1⊗εN1) ≤ (1 + ε) ‖z‖F(E0⊗̃εF0,E1⊗̃εF1)
.

Here, by the mapping property of the injective norm,

‖z‖F(E0,E1)⊗̃εF(F0,F1)
≤ ‖z‖F(M0,M1)⊗εF(N0,N1)

≤ LF (A,B)‖z‖F(M0⊗εN0,M1⊗εN1)

≤ (1 + ε)LF (A,B) ‖z‖F(E0⊗̃εF0,E1⊗̃εF1)
.

In order to show (3) letz ∈ G ⊗H for someG ∈ Fin(E),H ∈ Fin(F ), and choose by the assumption
onF subspacesM ∈ A andN ∈ B such thatG ⊂M,H ⊂ N and

‖(G, ‖ · ‖F(E0,E1)) ↪→ F(M0,M1)‖ ≤
√

1 + ε,
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‖(H, ‖ · ‖F(F0,F1)) ↪→ F(N0, N1)‖ ≤
√

1 + ε.

Then, by the mapping property,

‖(G, ‖ · ‖F(E0,E1))⊗ε (H, ‖ · ‖F(F0,F1)) ↪→ F(M0,M1)⊗ε F(N0, N1)‖ ≤ 1 + ε,

hence, since the injective norm respects subspaces,

‖z‖F(M0,M1)⊗εF(N0,N1) ≤ (1 + ε) ‖z‖F(E0,E1)⊗εF(F0,F1).

By the usual interpolation theorem we obtain

‖z‖F(E0⊗̃εF0,E1⊗̃εF1)
≤ ‖z‖F(M0⊗εN0,M1⊗εN1)

≤ RF (A,B) ‖z‖F(M0,M1)⊗εF(N0,N1)

≤ (1 + ε)RF (A,B) ‖z‖F(E0,E1)⊗εF(F0,F1),

which proves (3). �

4. The finite-dimensional case

The first result needed is based on bilinear Calderón–Lozanovsky interpolation, which was studied in [26].

Proposition 2 Letϕ ∈ U be such that for someC > 0 and alls, t > 0

ϕ(1, s)ϕ(1, t) ≤ C ϕ(1, st).

Then there exists a constantD > 0 such that for each finite-dimensional Banach spaceNand each couple
(M0,M1) of n-dimensional Banach lattices,

`ϕ`
(M0,M1;N,N) ≤ D.

PROOF. Consider fori = 0, 1 the bilinear mappingsΦi : L(M ′
i , N)×M ′

i → N, Φi(T, x′) := Tx′. Note
thatϕ(1, s)ϕ∗(1, t) ≤ C ϕ∗(1, st); indeed,

ϕ(1, s)ϕ∗(1, t) = ϕ(1, s) inf
α,β>0

α1 + βt

ϕ(α, β)
= inf
α,β>0

α1 + βt

αϕ(1, β/α)
ϕ(1, s)

≤ C inf
α,β>0

α1 + βt

αϕ(1, β/αs)
= inf
α,β>0

α1 + βst

ϕ(α, β)
= C ϕ∗(1, st).

Then we may apply [26, 3.4] to obtain

‖Φ : ϕ`(L(M ′
0, N),L(M ′

1, N))× (ϕ∗)`(M ′
0,M

′
1) → N‖ ≤ D,

whereΦ(T, x′) := Tx′ andC1 is some constant not depending onϕ. Since(ϕ∗)`(M ′
0,M

′
1) = ϕ`(M0,M1)′

by (1), this shows that

‖ϕ`(L(M ′
0, N),L(M ′

1, N)) ↪→ L(ϕ`(M0,M1)′, N)‖ ≤ D,

the conclusion. �

The counterpart of the preceding proposition forrϕ`
is as in [14] based on factorization.

Proposition 3 Letϕ ∈ U . Then there existsC > 0 such that for any finite-dimensional Banach spaceN
and any couple(M0,M1) of n-dimensional Banach lattices,

rϕ`
(M0,M1;N,N) ≤ CC2(N)3/2 max{M(2)(M0),M(2)(M1)}7/2.
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Before giving the proof we collect some facts about powers of finite-dimensional lattices. For0 < r < ∞
and ann-dimensional latticeX,

‖x‖r := ‖|x|1/r‖rX , x ∈ Rn

defines a lattice quasi-norm onRn; then-dimensional lattice(Rn, ‖ · ‖r) will be denoted byXr. Note
that in the normed caseXr is again normed wheneverM(max(1,r))(X) = 1 (recall thatM(1)(X) = 1).
For ann-dimensional normed latticeX we denote byM(`n2 , X) the vector spaceRn equipped with the
corresponding multiplier norm, i. e.,‖λ‖M(`n2 ,X) := ‖Dλ : `n2 → X‖ for λ ∈ Rn, whereDλµ := λµ,
µ ∈ Rn. It is easy to prove that

M(`n2 , X) = (((X×)2)×)1/2 (4)

holds isometrically (see e. g. [11, 3.5]; note that there the assumptionM(2)(X) = 1 is superfluous).
For any functionf : [0,∞)× [0,∞) → [0,∞) andr > 0, we define the functionf (r) := (fr)r, where

fr(s, t) := f(s1/r, t1/r),

and
fr(s, t) := f(s, t)r.

If additionally f is non-decreasing in each variable and homogeneous function of degree one, we definef
by

f(s, t) := inf
α,β>0

( s
α

+
t

β

)
f(α, β)

for s, t ≥ 0. Note thatf ∈ U andf ≤ f ≤ 2f .

Lemma 2 Let X,X0, X1 be n-dimensional normed lattices andϕ ∈ U . Then the following identities
hold, with universal constants involved in the equivalence of norms only:

(i) For anyr > 0, it is ϕ(X0, X1)r = ϕ(r) (Xr
0 , X

r
1 ).

(ii) ϕ(M(`n2 , X0),M(`n2 , X1)) = M(`n2 , ϕ(X0, X1)) wheneverM(2)(X0) = M(2)(X1) = 1.

PROOF. The proof of (i) is straightforward. To see (ii), first observe that part (i) and (4) together with (1)
lead to

M(`n2 , ϕ(X0, X1)) = (((ϕ(X0, X1)×)2)×)1/2 = (((ϕ∗(X×
0 , X

×
1 ))2)×)1/2

= (((ϕ∗)(2) ((X×
0 )2, (X×

1 )2))×)1/2

= ((ϕ∗)(2))∗ (((X×
0 )2)×, ((X×

1 )2)×))1/2

= (((ϕ∗)(2))∗)(1/2) (M(`n2 , X0),M(`n2 , X1)).

Here, the constants occurring in the equivalence of norms do not depend on the parametersn,X0, X1 and
ϕ. Therefore, it is enough to show that the function

(((ϕ∗)(2))∗)(1/2) = (((((ϕ∗)2)2)∗)1/2)1/2

is equivalent toϕ. Indeed, taking into account that‖`22 ↪→ `21‖ =
√

2, we have

(ϕ∗)(2)(s, t) = (ϕ∗(s1/2, t1/2))2 = inf
α,β>0

(αs1/2 + βt1/2)2

ϕ(α, β)2

� inf
α,β>0

α2s+ β2t

ϕ(α, β)2
= inf
α,β>0

αs+ βt

ϕ(α1/2, β1/2)2

= ((ϕ2)2)∗(s, t) = (ϕ(2))∗(s, t),
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hence,

((ϕ∗)(2))∗)(1/2)(s, t) � ((ϕ(2))∗)∗)(1/2)(s, t) = (ϕ(2))(1/2)(s, t)

= (((ϕ2)2)1/2(s, t))1/2 = (((ϕ2))2(s2, t2))1/2

= ϕ2(s2, t2) = ϕ(s, t),

the conclusion. �

Lemma 3 If (X0, X1) is a couple of2-concave Banach function spaces, andF an exact interpolation
functor such that

F(`2(X0), `2(X1)) ↪→ `2(F(X0, X1)), (5)

thenF(X0, X1) is also2-concave, and in this case

M(2)(F(X0, X1)) ≤ C max{M(2)(X0),M(2)(X1)},

whereC > 0 is a constant depending on the functorF and the norm of the embedding in(5) only.

PROOF. We denote byX(`2) as usual the K̈othe–Bochner space of all strongly measurable functionsx
with values in`2 such that‖x(·)‖`2 ∈ X, endowed with the norm‖x‖X(`2) := ‖‖x(·)‖`2‖X , and by
X[`2] the space of all sequences(xn) ⊂ X such that(xn(t)) ∈ `2 for all t ∈ Ω and‖(xn(·))‖`2 ∈ X,
endowed with the norm‖(xn)‖X[`2] := ‖‖(xn(·))‖`2‖X . Now for j = 0, 1, 2-concavity ofXj means that
Xj [`2] ↪→ `2(Xj) and that the norm of this embedding then equalsM(2)(Xj). It is well-known that

F(X0(`2), X1(`2)) = F(X0, X1)(`2)

holds isometrically and that for any Banach function spaceX, the spacesX(`2) andX[`2] are isomorphic
to each other in a natural way, with universal constants (see [4] and also [6]), which gives

F(X0[`2], X1[`2]) = F(X0, X1)[`2]

with only universal constants involved in the equivalence of norms. Hence, by the interpolation property of
F and the assumption (5),

F(X0, X1)[`2] = F(X0[`2], X1[`2]) ↪→ F(`2(X0), `2(X1)) ↪→ `2(F(X0, X1)),

with norm less or equal thanC max{M(2)(X0),M(2)(X1)}, with C described as in the above.�

Corollary 1 Let (X0, X1) be a couple of2-concave Banach function spaces andϕ ∈ U . Thenϕ(X0, X1)
is 2-concave, and

M(2)(ϕ(X0, X1)) ≤ C max{M(2)(X0),M(2)(X1)},

whereC > 0 is some constant not depending on the couple(X0, X1).

PROOF. This an immediate consequence of the above lemma and the following facts: any2-concave
Banach function space contains no isomorphic copy ofc0, so it is a maximal space (see, e. g., [21]), and
next (see, e. g., [24]), for anyϕ ∈ U and any Banach couple(X0, X1)

ϕu(`2(X0), `2(X1)) ↪→ `2(ϕu(X0, X1)),

and (see [28])
ϕu(X0, X1) = ϕ(X0, X1)

whenever(X0, X1) is a couple of maximal Banach function spaces. Here the constants of the norms of the
involved inclusion maps do not depend onϕ and(X0, X1). �
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Now we are prepared to give the proof of Proposition 3. We have to show that for givenϕ ∈ U ,
there existsC > 0 such that for any finite-dimensional Banach spaceN and any couple(M0,M1) of
n-dimensional Banach lattices,

‖L(N ′, ϕ`(M0,M1)) ↪→ ϕ`(L(N ′,M0),L(N ′,M1))‖
≤ CC2(N)3/2 max{M(2)(M0),M(2)(M1)}7/2.

Let T ∈ L(N ′, ϕ`(M0,M1)) andn := dim(M0) = dim(M1). Then by Pisier’s factorization theorem (see
[29]), T factors as follows:

N ′
T

//

T1 ��@
@@

@@
@@

@ ϕ`(M0,M1)

`n2

T2

::tttttttttt

where‖T1‖ ‖T2‖ ≤ (2C2(N)C2(ϕ`(M0,M1)))3/2. Furthermore, by a variant of the Maurey–Rosenthal
factorization theorem (see [8]),T2 factors as follows:

`n2
T2

//

R0 ��?
??

??
??

ϕ`(M0,M1)

`n2

Dλ

::tttttttttt

where‖R0‖‖Dλ‖ ≤
√

2M(2)(ϕ`(M0,M1)). TakingR := R0T1 and using Corollary 1, this gives us a
factorization

N ′
T

//

R ��@
@@

@@
@@

@ ϕ`(M0,M1)

`n2

Dλ

::tttttttttt

where‖R‖ ‖Dλ‖ ≤ CC2(N)3/2 max{M(2)(M0),M(2)(M1)}5/2, with C > 0 some constant not de-
pending onϕ. With this, consider fori = 0, 1 the mappingsΦi : M(`n2 ,Mi) → L(N ′,Mi), Φi(Dµ) :=
DµR, with norm less or equal‖R‖ each. Then by interpolation and Lemma 2 (ii),

‖Φ : M(`n2 , ϕ(M0,M1)) → ϕ`(L(N ′,M0),L(N ′,M1))‖ ≤ D max{M(2)(M0),M(2)(M1)} ‖R‖,

whereΦ(Dµ) := DµR, andD > 0 is some universal constant. Hence,

‖T‖ϕ`(L(N ′,M0),L(N ′,M1)) = ‖DλR‖ϕ`(L(N ′,M0),L(N ′,M1))

≤ D max{M(2)(M0),M(2)(M1)} ‖R‖ ‖Dλ‖
≤ C DC2(N)3/2 max{M(2)(M0),M(2)(M1)}7/2,

which gives the claim. �

We conclude this section with a technical result needed in the proof of our main result. Two Banach
couplesX andY are called isomorphic if there exist operatorsT : X → Y andT−1 : Y → X such that
TT−1|Yj

= idYj
andT−1T |Xj

= idXj
(j = 0, 1). Given isomorphic Banach couplesX andY , d(X,Y )

is defined by
d(X,Y ) := inf{‖T‖X→Y ‖T

−1‖Y→X},
where the infimum is taken over all isomorphisms betweenX andY . We omit the easy proof of the
following lemma.
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Lemma 4 Let (M0,M1), (U0, U1) and(N0, N1), (V0, V1) be pairs of finite-dimensional regular Banach
couples of the same dimensions, respectively. Then the following inequalities hold true for any exact inter-
polation functorF :

(i) `F (M0,M1;N0, N1) ≤ d(M,U) d(N,V ) `F (U0, U1;V0, V1).

(ii) rF (M0,M1;N0, N1) ≤ d(M,U) d(N,V ) rF (U0, U1;V0, V1).

5. The Gustavsson–Peetre method

In this section we prove our main result on interpolation formulas for injective tensor products with respect
to the Gustavsson–Peetre functorGϕ.

A Banach couple(E0, E1) is said to have an unconditional basis if there is a sequence{en} in E0 ∩ E1

which forms an unconditional basis inE0 andE1. Further, following [25], a Banach coupleX = (X0, X1)
is said to have local unconditional structure (l.u.st.) if there exists a positive constantλ = λ(X) such that
for any regular finite-dimensional sub-couple(A0, A1) ofX there is a regular finite-dimensional sub-couple
B = (B0, B1) ⊃ (A0, A1) (i. e.,Bj ⊃ Aj for j = 0, 1) of X, isomorphic to a Banach coupleE with a
monotone unconditional basis and such thatd(B,E) ≤ λ. The smallestλ with this property is called the
l.u.st. constant ofX and is denoted by lu(X).

In what follows for anyϕ ∈ Φ we denote byGϕ the exact interpolation functorGAA with A :=
(c0, c0(2−n)) andA := c0(ϕ∗(1, 2−n)) defined onZ. Note that ifϕ ∈ Φ is a non-degenerate function
(i. e.,ϕ(1, t) → 0 andϕ(t, 1) → 0 ast → 0), thenGϕ coincides with the Gustavsson–Peetre method of
interpolation〈·〉ϕ studied in [17] (see also [18], [28]).

Theorem 1 Letϕ ∈ Φ be a non-degenerate function,(X0, X1) a couple of Banach function spaces and
E a Banach space.

(i) If (X0, X1) is regular andϕ(1, s)ϕ(1, t) ≤ C ϕ(1, st) for someC > 0 and alls, t > 0, then

Gϕ(X0⊗̃εE,X1⊗̃εE) ↪→ Gϕ(X0, X1)⊗̃εE.

(ii) If X0, X1 are2-concave andE has cotype2, then

Gϕ(X0, X1)⊗̃εE ↪→ Gϕ(X0⊗̃εE,X1⊗̃εE).

In particular, if ϕ,X0, X1 andE satisfy the assumptions of (i) and (ii), then we have the equality

Gϕ(X0, X1)⊗̃εE = Gϕ(X0⊗̃εE,X1⊗̃εE).

PROOF. Note first that sinceϕ � ϕ we haveGϕ = Gϕ, hence, we may assume without loss of generality
thatϕ ∈ U . Moreover, since it is well-known that a Banach function space of non-trivial concavity has an
order-continuous norm, the simple functions in such a space are dense. In consequence, the coupleX in
both considered cases is regular.

We start with the proof of (ii): It follows from Proposition3 in [25] that any couple of Banach function
spaces has l.u.st. with l.u.st. constant1. This shows that there exists a regular cofinal interpolation triple

A = (X,∆(X),A)

with A ⊂ Fin(∆(X)) containing such finite-dimensional subspacesM for which the couple(M0,M1)
with M0 = M1 = M is isomorphic to a Banach couple(N0, N1) with a monotone unconditional basis,
andd(M,N) ≤ 2. It is clear that

B := ((E,E), E,Fin(E))
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forms a regular cofinal interpolation triple. Sinceϕ is non-degenerate, we conclude from [18] or [20]
thatGϕ is a computable functor. By Proposition 1 this yields thatGϕ is approximable on any cofinal
interpolation triple, in particular onA andB. By Lemma 1, (ii) it remains to show that

RGϕ(A,B) = sup
M∈A

sup
N∈Fin(E)

rGϕ(M0,M1;N,N) <∞.

Again, sinceϕ is non-degenerate, for any coupleY of Banach function spaces

Gϕ(Y ) = (ϕ`)◦(Y ),

with universal constants for the equivalence of norms neither depending onϕ nor onY (see [18] or [28],
p. 466). This implies that

Gϕ = ϕ`

on the class of all regular finite-dimensional couples of Banach spaces, with universal constants for the
equivalence of norms. Now the conclusion follows from Lemma 4, (ii) and Proposition 3 (note thatM(2)

respects sublattices andC2 subspaces).
The proof of (i) is similar: We now apply the first instead of the second part of Lemma 1. In the proof

of (ii) we saw thatGϕ is approximable on every cofinal interpolation triple, in particular on

((X0⊗̃εE,X1⊗̃εE),∆(X)⊗ E, C),

where
C := {M ⊗N ; M ∈ A, N ∈ Fin(E)}

andA as in the proof of (ii). Hence, by Lemma 1, (i) it suffices to check that

LGϕ
(A,B) := sup

M∈A
sup

N∈Fin(E)

`Gϕ
(M0,M1;N,N) <∞.

But this, similar to what was done in the proof of (ii), follows from Lemma 4, (i) and Proposition 2.�
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