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Abstract. For the complex interpolation method, Kouba proved an important interpolation formula for
tensor products of Banach spaces. We give a partial extension of this formula in the injective case for the
Gustavsson—Peetre method of interpolation within the setting of Banach function spaces.

Interpolaci 6n de productos tensoriales en espacios de Banach

Resumen. Para el mdtodo de interpoladin complejo, Kouba prdbuna brmula importante sobre
productos tensoriales inyectivos de espacios de Banach. Nosotros damos unarex@msal de esta
formula para el ratodo de interpolabin de Gustavsson-Petree en el contexto de espacios de Banach de
funciones.

1. Introduction

Recent progress in the local theory of Banach spaces allows to study interpolation between spaces of opera-
tors. The most striking result in this area is Kouba'’s [19] complex interpolation formula for tensor products

of Banach spaces. A natural question that appears here is whether there are variants of Kouba’s result for
other methods of interpolation. Unfortunately, as one could expect, many difficulties appear, for instance a
delicate problem related to the interpolation of bilinear operators.

The purpose of this note is to prove new abstract results on one-sided interpolation of injective tensor
products of Banach spaces for the Gustavsson—Peetre method of interpolation. We believe that these results
have interests in their own rights; one of our motivations for considering them was to use the powerful result
of Kouba to prove extension and splitting theorems fd¥dRet spaces of Rademacher t@pgor details
see [10]).

We now describe the main results of the paper. In Se@&ime introduce notations and basic facts. In
Section3 we prove a result (Lemma 1) which shows that under general assumptions on an exact interpo-
lation functor the problem concerning interpolation of injective tensor products for Banach spaces can be
reduced to finite-dimensional spaces.

In Section4 we prove that for finite-dimensional Banach lattices the lower Ovchinnikov method of
interpolation satisfies certain essential estimates, the key to apply Lemma 1. The proof involves bilinear
interpolation theorems, Caldar-Lozanovsky spaces and the description of these spaces for couples of
multipliers from the Hilbert sequence space idtooncave Banach sequence spaces as well as well-known
factorization theorems.
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Finally in Section5, we present applications of the obtained results for the Gustavsson—Peetre method
of interpolation(-),, generated by an appropriate function parametetOur main result of this section
states that under some mild assumptions on the funetitre following interpolation formula holds:

(X0, X1)p®:E = (Xo®:E, X1®:E),,

where®. denotes the injective tensor produck,y, X;) is a couple oR-concave complex Banach function
spaces andZ a Banach space of coty@e For power functionsp(s,t) = s'=%¢%, 0 < # < 1, we have

(X0, X1)y, = [Xo0, X1]o Whenevern X, X;) is a complex couple. Here as usiiy denotes the complex
method of interpolation (see [5]). Thus the obtained result is a partial extension of a well-known remarkable
result due to Kouba: For a coup{&y, X;) of complex Banach function spaces and a complex Banach
spaceF as above,

(X0, X1]o®.E = [Xo®:E, X1®.Elg.

In fact, Kouba even proved two-sided results of this type, and not onkylat also for other norms as e.g.

the projective norm. For further one-sided results on interpolation of spaces of operators and tensor products
we refer to [7] and the references therein, where the authors deal with the real method of interpolation
applied for a rather rare class of Banach couples called quasi-linearizable (for examples see, e.g., [3], pp.
464-465).

2. Preliminaries

We shall use standard notation and notions from Banach space theory, as presented e. g. in [16], [21], [22]
and [31]; for tensor products of Banach spaces we refer to [#].i4fa Banach space, théy is its (closed)

unit ball andE” its dual, andFin(E) stands for the collection of all its finite-dimensional subspaces. As
usualL(E, F) denotes the Banach space of all (bounded and linear) operatoré&fioto F endowed with

the operator norm. For a Banach spatef type2 (resp., cotype) we write T2 (E) (resp.,Cz(E)) for its
(Rademacher) typ2 constant (resp., cotygeconstant), and for < r < oo we denote byM ) (X) (resp.,

M, (X)) ther-convexity (resp.y-concavity) constant of an-convex (resp4-concave) Banach lattick.

Recall that for Banach spacés I’ the injective norm orE' ® F' is defined by

|zl o, F = sup{|{z' @ ¥/, 2)|; 2’ € Bg/,y' € B}, z€ E®F,

and with E®. F' we denote the completion & © F endowed with this norm. We will extensively use the
fact that the equalityy ®. F' = L(E’, F) holds isometrically whenever one of the two involved spaces is
finite-dimensional.

Let (Q, %, 1) (or shortly (Q2, 1)) be ac-finite and complete measure space. As udugdj:) denotes
the vector lattice of all (equivalence classes;ofneasurable real-valued functions definedprequipped
with the topology of convergence in measureyofinite sets. A Banach spac€é = X (u) is said to be a
Banach function space df, ) if X is a subspace df,(x) with the following two properties:

@ [f] < lgl, with f € Lo(p) andg € X implies f € X and||f|x < [|gllx;
(ii) there existsu € X such that: > 0 on (2.

A finite-dimensional real quasi-normed spa€e= (R", || - || x) is called am-dimensional lattice if| - || x

is a lattice quasi-norm. Clearly, fif- || x is a norm, thenX is a Banach function space in the above sense.
A Banach function spac¥ is said to be maximal if its unit baB x is closed inLy (). Itis well-known

that X is maximal if and only ifX = X ** holds isometrically, wheré& > stands for the Kthe dual ofX,

i.e.,

XX = {y € Lo(p); l[yllx> := sup / |lzyl| dp < 00}-
r€Bx JX
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Clearly, for ann-dimensional latticeX (not necessarily normed) the notion of thétke dualX * as above
(takingQ = {1,...,n} andu the counting measure) also makes sense and always givesiamensional
Banach latticeX *.

For basic results and notation from interpolation theory we refer e.g. to [2] and [3]. We recall that a
mappingF from the category of all couples of Banach spaces into the category of all Banach spaces is said
to be an interpolation functor (or a method of interpolation) if for any coy@le, X, ), the Banach space
F(Xy, X ) is intermediate with respect {Xo, X;) (i. e.,A(X) := Xo N X7 — F(Xo, X1) — Xo + X1),
andT : F(Xo, X1) — F(Yo, Y1) forall T : (Xo, X1) — (Yo, Y1); here as usual the notatidh: (Xo, X;)

— (Yo,Y7) means thaf : Xy + X; — Yo + Y7 is alinear operator such that fgr= 0, 1 the restriction
of T' to the spaceX; is a bounded operator froik; into Y;. If additionally

1T : F(Xo, X1) = F(Yo, V)| < IT: X — Y| := max{||T: Xo — Yol|, |T: X1 — Y1}

holds, thenF is called an exact functor (or an exact method of interpolation).

If X is a Banach space intermediate with respect to a calipte (X,, X;), we let X° be the closed
hull of A(X) in X. A Banach coupleX is called regular it = X for j = 0, 1. If 7 is an interpolation
functor, F° is the interpolation functor defined b§°(X) = F(X)°. If F = F°, F is called a regular
interpolation functor.

Throughout the paper the set of all functians [0, co) x [0, c0) — [0, c0) which are non-decreasing in
each variable and homogeneous of degree one ((&s, At) = \p(s,t) for all A, s,t > 0) is denoted by
®, and if additiony is concave, then we write € /. Recall that ifX = (X, X;) is a couple of Banach
function spaces off2, ;1) andy € U, the Caldedn—Lozanovsky space(X) = ¢(Xo, X;) consists of all
x € Lo(p) for which|z| = ¢(|zol, |z1]|) for somez; € X;, j = 0, 1. Equipped with the norm

o[} = inf { max{||zollx,, [z1llx, }s 2| = @(|zol, |21]), x5 € X;, j = 0,1},

©(X) forms a Banach function space (see, e.g., [23], [30]). The class of these spaces includes the class
of all Orlicz spaces; for instance, it is easy to see that for each Orlicz fungtiofD, co) — [0, 00) the
equalityly, = p(¢1, 0 ) holds isometrically, where(s, t) := t¢~(s/t) for t > 0 andy(s,0) := 0. In
the case of the power functiam (s, t) = s' ¢, 0 < < 1, we obtain the spac’} "’ X{ introduced by
Caldebn [5]. We note that by a result of Calder (see [5], p.125), we have that the complex interpolation
space[X,(C), X;(C)]s = X379 X¢(C) wheneverX, or X, is o-order continuous. Here for a given
Banach function spac& on (Q, 1), we denote byX (C) the complexification ofX, i. e., the space of all
complex-valued measurable functiofien 2 such that f| € X.

For¢ € U we will also need the following duality formula:

p(Xo, X1)™ = @u (X', XT) (1)

with

-
Here,p. denotes the conjugate defined for any U by

eexzoxt) S oo iy < 20 llo, o -

as + [t
in .
60 p(a, B)

Ps(s,t) ==

We havep, € U and(p.). = ¢ (see [23]). For any € @, we define also the functiop* by ¢*(s,t) :=
1/p(1/s,1/t) foranys,t > 0. Itis easy to see that*)* = ¢, andy* < @, foranye € U.

It is well-known that the Caldén—Lozanovsky construction restricted to the class of couples of max-
imal Banach function spaces is an interpolation method in this class. There are many abstract extensions
of this method to arbitrary Banach couples. Of particular interest for our paper are the following two con-
structions by Aronszajn and Gagliardo [1] (see also [2], [3]). Given a cadipied A an intermediate space
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with respect to this couple, two exact interpolation functors are defined by

G(X) = GAD) == { 3. Tuan: Y ITullz_xllanlla < oo}
n=1 n=1

and

HX)=H4{(X):={r € Xo+Xy; Txc A foreveryT: X — A}.

The norms are given by

lellgee) = inf { 3 1Tl xcllanlla; @ = > Tuan }
n=1 n=1

and
2l ) = sup{l|Tz[|la; | Tllx_7 <1},

respectively. Note thaE' is the minimal interpolation functor satisfying — G(A) andH is the maximal

interpolation functor satisfyingl (A) — A. In the particular case when € ® andA = ((o, o0 (277)),
A = loo(p*(1,277)) (resp.,A = (¢1,£:(2")) and A = £1(¢*(1,2"))), the interpolation functon
(resp.,Hf) is called the lower (resp., the upper) Ovchinnikov interpolation method and is denoted by
(resp.,p.)- These were intensively studied in [28] (see also the references therein).

Recall that if (X, X;) is any couple of maximal Banach function spaces, then for@any U the

following identities hold:
©e(Xo, X1) = pu(Xo, X1) = ¢(Xo, X1)

with the the universal constants of equivalence of the norms not dependinguoai( X, X;) (see [28]).

3. Approximation by finite-dimensional spaces

First we show—similar to [19, Section 4] and [14]—that interpolation formulas for tensor products as stated
in the introduction are of a finite-dimensional nature. In order to make the following more readable, let us
introduce another notation: (X, X;) is a Banach coupleX C X, N X; a subspace, and C Fin(X)
is cofinal (i. e., for everyy € Fin(X) there exists\/ € Awith G C M), then the triplg(X,, X1), X,.A)
is called a cofinal interpolation triple (resp., a regular cofinal interpolation triple wheéverdense in
both Xy and X3).

For M € Fin(X) we denote byM, (resp.,M;) the subspacé/ of X, (resp.,X;) endowed with
the induced norm. We call an exact interpolation funckoapproximable on a cofinal interpolation triple
((Xo,X1), X, A) if forany e > 0 and anyH € Fin(X), there existd// € A such thatd ¢ M and for
allz € H,

2]l 7(ato,00) < (1 + )2l £ (x0,%1)-

Note that if in the above definition one considers one-dimensional subspacet/ as well asX =
Xo N X; and A = Fin(X), then approximability ofF on the cofinal interpolation tripl& X, X1 ), Xo N
X1, A) would mean thatF is computable or{ X, X;) in the sense of Brudnyi-Krugljak (see [3]). For
general examples of computable orbit functors we refer to [20].

In the sequel we will need the following result.

Proposition 1  Assume that is an exact interpolation functor computable on a Banach couple-
(X0, X1). ThenF is approximable on any cofinal interpolation trip{&, X, .A).
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PROOF.  Applying Lemma 2.5.27 in [3], we conclude thatis approximable on the cofinal interpolation
triple (X, A(X), Fin(A(X))). Thus, if (X, X, .A) is a cofinal interpolation triple, then the interpolation
property ofF yields the required result. B

Throughout the paper {fM,, M7) and(Ny, N;) are finite-dimensional regular couples afcn inter-
polation functor, then we define the quantities

Lr(Mo, My; No, N1) == || F(Mo ®c No, M1 ®c N1) — F(My, M1) @ F(No, N1)||

and
rx (Mo, Myi; No, N1) = || F (Mo, M1) @ F(No, N1) — F(My ®c No, M1 @ N1)||.

Before we state and prove the following lemma which plays an essential role in the proof of the main re-
sult of the paper, we first note that(if, £, ) and(Fy, Fi) are two Banach couples, théh®. F;, j = 0, 1,
is continuously embedded (i, + E,)®.(Fy + F1) (see [9, 4.3]). In consequendd;®. Fy, E1®.F})
is a Banach couple.

Lemmal LetA := ((Ey, E1),E, A) and B := ((Fy, F1), F, B) be regular cofinal interpolation triples
andF be an exact interpolation functor.

(i) f Lr(A, B) := supyeasupyen fr (Mo, M1; No, N1) < co and F is approximable on the cofinal
interpolation triple((Ey®. Fy, B1®.F1), E ® F,C)withC :== {M ® N; M € A, N € B}, then

F(Eo®:Fo, E\®:F1) — F(Eo, E)&:F (Fo, Fy).

(i) If Rr(A, B) :=supyeasupyep re(Mo, Mi; No, N1) < co andF is approximable on both cofinal
interpolation triplesA and B, then

F(Eo, E1)®:F(Fy, F1) — F(Ey®:Fy, Ey®.FY).

PrROOE From the definition of an approximable interpolation functor and the density assumptions we
conclude thalz @ F is dense inF(Ey, E1)®.F(Fy, F1) and inF(Ey®. Fy, E1®. F1 ), hence, in order to
prove (i) and (ii), respectively, it is sufficient to show that for a gives £ ® F

HZ”]-'(EO,EI)@)E}'(FO,Fl) < Lz(4,B) HZH}'(E0®5FO,E1®EF1) (2)

and
||Z||f(E0®5F0,E1®5F1) < Rr(A,B) ”Z”]-'(Eo,El)@E]-'(FO,Fl)a 3)

respectively. We start with (2). By the assumption Brand the fact that the injective norm respects
subspaces, there exisf € A andN € B suchthat € M ® N and

2l 7 (Mow. No My @ Ny) < (L +€) 121 £ (o, Fo Er 6. 1) -
Here, by the mapping property of the injective norm,

121l 2o, )3 F (7o, 71) < N2l 2 (00,001 0. F (N0 M)

< Lr(A, B)||2]| #(Mo®. No, My @2 Ny
< +e)Lr(A B) 12l 7 g0s. Fo 18, F1)-

In order to show (3) let € G ® H for someG € Fin(E), H € Fin(F'), and choose by the assumption
on F subspaced/ € AandN € B suchthatG ¢ M, H Cc N and

(G |- Ml 7(E0,20)) = F (Mo, My)|| < V1+e,
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ICH, || - |7, 71)) = F(No, N1)|| < vV1+e.
Then, by the mapping property,
G - 7(go,80)) @ (H || - |l 2(ro,) = F (Mo, M) @ F(No, Ni)|| <1 +¢,

hence, since the injective norm respects subspaces,

120l 2 (a0, vy 0. F (o, 81y < (L4 €) |2l 7 (Bo, By 0. F(Fo -
By the usual interpolation theorem we obtain
||Z||f(E0®6FO,E1®EF1) < ||Z||J-‘(J\40®EN0,IV11®5N1)

< Rr(A, B) |12l 7 (Mo, M1 )0 F(NouN)
< (1+¢) Re(A, B) |2l 7By, B ). F(Fo, FL)»

which proves (3). &

4. The finite-dimensional case

The first result needed is based on bilinear Cdldet.ozanovsky interpolation, which was studied in [26].

Proposition 2 Lety € U be such that for som€ > 0 and all s, > 0

©(1,5) p(1,t) < Cop(1,st).

Then there exists a constabt > 0 such that for each finite-dimensional Banach spa@nd each couple
(My, M,) of n-dimensional Banach lattices,

€¢£(M(),M1;N,N) S D

PROOF Consider fori = 0, 1 the bilinear mapping®; : L(M],N) x M/ — N, ®;(T,z') := Tz’. Note
thato(1, s) v (1,t) < C . (1, st); indeed,

.. oal+ Bt ol + Bt

1 (1, t) = (1, f — - — 1,
e(1,5) o« (1,1) = o(1,5) O e R a@(l,ﬁ/a)so( 5)
<C inf al + [t . al + (st _

a5>0 ap(L, B/as) >0 (a, B)

Then we may apply [26, 3.4] to obtain

C.(1,st).

19+ 0 (L(M5, N), L(M{, N)) x (px)e(Mg, My) — N|| < D,

where® (T, z') := T'z’ andC} is some constant not dependinganSince(y.. )¢ (M, M) = wi(Mo, M7)’
by (1), this shows that

||90€(‘C(M67 N)7 E(M{a N)) — E(‘/’Z(MOa Ml)/7 N)H <D,
the conclusion. W
The counterpart of the preceding proposition:fgy is as in [14] based on factorization.

Proposition 3 Lety € U. Then there exist§' > 0 such that for any finite-dimensional Banach space
and any couplé My, M;) of n-dimensional Banach lattices,

To (Mo, M1; N,N) < C C2(N)*? max{Mz)(My), Mz (M;)}"/2.
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Before giving the proof we collect some facts about powers of finite-dimensional lattice8.<For< oo

and am-dimensional latticeX,

1/r

Il = lll=" %, = eR"

defines a lattice quasi-norm d&"*; the n-dimensional lattic§R™, || - ||,-) will be denoted byX”. Note
that in the normed casE" is again normed whenev@I(™2x(1.r)(X) = 1 (recall thatM¥) (X)) = 1).
For ann-dimensional normed lattic&” we denote byM (¢35, X) the vector spac®™ equipped with the
corresponding multiplier norm, i. €A xr(ep, x) == [|Dx : €5 — X|| for A € R", whereDyp = Ay,
u € R™. Itis easy to prove that
M (6, X) = ((X*)%))V? (4)
holds isometrically (see e. g. [11, 3.5]; note that there the assumifign(X') = 1 is superfluous).
For any functionf : [0, 00) x [0, 00) — [0, 00) andr > 0, we define the functiorf(") := (f,.)", where
Fr(s,t) = f(sY7,87),
and
fr(s,t) :== f(s,t)".
If additionally f is non-decreasing in each variable and homogeneous function of degree one, we define
by
- . s t
Tty = inf (54 5) flan)
for s,t > 0. Note thatf € ¢/ andf < f < 2f.

Lemma 2 Let X, Xy, X; ben-dimensional normed lattices and € ¢/. Then the following identities
hold, with universal constants involved in the equivalence of norms only:

(i) Foranyr > 0, itis p(Xo, X1)" = () (X7, XT).
(i) p(M(ly, Xo), M4y, X1)) = M(£3,p(Xo, X1)) wheneveiM z)(Xo) = M2)(X1) = 1.

PrROOF The proof of (i) is straightforward. To see (ii), first observe that part (i) and (4) together with (1)
lead to

M (83, ¢(Xo, X1)) = (((p(Xo0, X1))?) )2 = (0 (X5, X79)%) ) /2
= ()@ (X5, (X79)%)) )2
= () @) (X)), (X792))) /2
= (((p)@)2) /2 (M (L5, Xo), M(£3, X1))-

Here, the constants occurring in the equivalence of nhorms do not depend on the parameégers; and
. Therefore, it is enough to show that the function

(002 = ((((£4)2)*))1/2) "2

is equivalent tap. Indeed, taking into account thi3 — ¢%|| = v/2, we have

1/2+ﬁt1/2)2

*(2) ) = (o, 1/2 41/2)\2 — inf (as

()7 (5:8) = (puls/%,87/7)) P S o
= i a2s+ﬂ2t_ - as+ [t

= a0 P(@ B abo p(allZ, B2

= ((p2)*)x(s:8) = (¢ (5, 1),
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hence,

() @)) VD (s,) = (9®)0)) V2 (s,8) = (o) (s,1)
(((02)")1/2(s, )2 = (((92))?(5%, 1)1/

@2(527752) = @(Svt)v

the conclusion. W

Lemma 3 If (X, X;) is a couple of2-concave Banach function spaces, afdan exact interpolation
functor such that
F(l2(Xo), la(X1)) — £2(F(Xo, X1)), (5)

thenF(X,, X1) is also2-concave, and in this case
M 2)(F(Xo, X1)) < C max{Mz)(Xo), M(2)(X1)},
whereC > 0 is a constant depending on the functBrand the norm of the embedding(®) only.

PROOF We denote byX (¢2) as usual the Kthe—Bochner space of all strongly measurable functions
with values in/, such that||z(-)|[, € X, endowed with the nornfjz||x,) := [|[|z(-)|le|x, and by
X[¢2] the space of all sequencés,) C X such that(z,,(t)) € ¢; forallt € Q and||(z,(-))|le, € X,
endowed with the norm(x,,) || xe.] := [l|(z(-))lle, || x. Now for j = 0, 1, 2-concavity of X ; means that
X;[lz] — £2(X;) and that the norm of this embedding then eqddis, (X ;). It is well-known that

F(Xo(l2), X1(£2)) = F(Xo, X1)(£2)

holds isometrically and that for any Banach function sp&cehe space (¢») and X [¢] are isomorphic
to each other in a natural way, with universal constants (see [4] and also [6]), which gives

F(Xolta], X1[l2]) = F(Xo, X1)[l2]

with only universal constants involved in the equivalence of norms. Hence, by the interpolation property of
F and the assumption (5),

F(Xo, X1)[l2] = F(Xo[la], Xa[lo]) — F(l2(Xo), £2(X1)) — £2(F(Xo, X1)),
with norm less or equal thal max{M ) (Xo), M(2)(X1)}, with C described as in the above.l
Corollary 1 Let(Xy, X;) be a couple og-concave Banach function spaces and /. Thenyp(Xo, X1)

is 2-concave, and
M z)(¢(Xo, X1)) < C max{Mz)(Xo), M(2)(X1)},

whereC > 0 is some constant not depending on the couilg, X ).

PROOE This an immediate consequence of the above lemma and the following fact2-amcave
Banach function space contains no isomorphic copy,pfo it is a maximal space (see, e.g., [21]), and
next (see, e. g., [24]), for any € & and any Banach coupleX,, X)

u(la(Xo), £2(X1)) = La(pu(Xo, X1)),

and (see [28])
pu(Xo, X1) = ©(Xo, X1)

whenever Xy, X;) is a couple of maximal Banach function spaces. Here the constants of the norms of the
involved inclusion maps do not depend prand (X, X;). N
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Now we are prepared to give the proof of Proposition 3. We have to show that for giveri/,
there existsC > 0 such that for any finite-dimensional Banach spateand any coupld My, M7) of
n-dimensional Banach lattices,

IL(N', pe(Mo, My)) = @e(L(N', M), L(N', M)
< C C2(N)*? max{Mq)(Mo), Mgy (M;)}7/2.

LetT € L(N', pe(My, My)) andn := dim(My) = dim(M;). Then by Pisier’s factorization theorem (see
[29]), T factors as follows:

N’ —>90Z MOaMl)

N\, R

where||Ty || | T2]| < (2 C2(N) Ca(pe( Mo, Ml)))3/2. Furthermore, by a variant of the Maurey—Rosenthal
factorization theorem (see [8]); factors as follows:

15
T we(Mo, M)
Ro\{ %
ly

where|| Ry ||| Dall £ v2M2)(¢e(Mo, My)). Taking R := RyT} and using Corollary 1, this gives us a
factorization

N’ —>90/ MOle)

PN

where||R||[|[Dx]| < C C2(N)*? max{M;a) (M), M(2)(M;)}*/2, with C > 0 some constant not de-
pending ony. With this, consider foi = 0,1 the mappingsp; : M (¢35, M;) — L(N', M;), ®;(D,,) :=
D, R, with norm less or equadlR|| each. Then by interpolation and Lemma 2 (ii),
1@ = M(E5, (Mo, M1)) = pe(L(N', My), £(N', M))|| < D max{Mz)(Mo), M) (M)} | R
where®(D,,) := D, R, andD > 0 is some universal constant. Hence,
TN eceon,mo),conr vy = IRl e(n mo),£087,01)
< D max{Mz)(Mo), M) (M)} || R | DAl
< C' D Ca(N)*? max{M g (Mp), Mgy (M;)}7/?,
which gives the claim. B

We conclude this section with a technical result needed in the proof of our main result. Two Banach
couplesX andY are called isomorphic if there exist operatits X — Y and7T~! : Y — X such that
TT 'y, =idy, andT~'T|x, = idx, (j = 0,1). Given isomorphic Banach couplé§andY’, d(X,Y)
is defined by
d(X,Y) = wf{| T+ 1T Iy _x}
where the infimum is taken over all isomorphisms betwéermndY. We omit the easy proof of the
following lemma.
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Lemma 4 Let(My, M), (Uy, Ur) and (Ny, N1), (Vo, V1) be pairs of finite-dimensional regular Banach
couples of the same dimensions, respectively. Then the following inequalities hold true for any exact inter-
polation functorf:

(i) £x(Mo, M1; No, N1) < d(M,U)d(N,V) Lr(Uy, Uy; Vo, V1).
(i) r#(Mo, My; No, Nv) < d(M,U)d(N,V)re(Us, Ur; Vo, V).

5. The Gustavsson—Peetre method

In this section we prove our main result on interpolation formulas for injective tensor products with respect
to the Gustavsson—Peetre funo@y.

A Banach coupléEy, E) is said to have an unconditional basis if there is a sequengein Ey N E;
which forms an unconditional basis ity and £, . Further, following [25], a Banach couplé = (X, X1)
is said to have local unconditional structure (l.u.st.) if there exists a positive constant(X) such that
for any regular finite-dimensional sub-cougky, A;) of X there is a regular finite-dimensional sub-couple
B = (Bo, B1) D (Ao, 41) (i.e., B; D A; for j = 0,1) of X, isomorphic to a Banach couple with a
monotone unconditional basis and such W@, £) < \. The smallesi with this property is called the
l.u.st. constant oK and is denoted by [UX).

In what follows for anyy € ® we denote byG, the exact interpolation functaf4 with A :=
(co,c0(27™)) and A := ¢o(p*(1,27™)) defined onZ. Note that ifp € ® is a non-degenerate function
(i.e.,p(1,t) — 0andy(t,1) — 0 ast — 0), thenG,, coincides with the Gustavsson—Peetre method of
interpolation(-), studied in [17] (see also [18], [28]).

Theorem 1 Lety € ® be a non-degenerate functiofiXy, X;) a couple of Banach function spaces and
E a Banach space.

(i) If (Xo,X7)isregular andp(1,s) p(1,t) < Cp(1,st) for someC > 0 and all s, ¢ > 0, then

Gap(XO(g)sE; X1®EE) — GW(X07X1)®EE'

(i) If Xo, Xy are 2-concave and? has cotype, then

GW(X(), X1)®EE — ch(XO@EEaXl@eE)-

In particular, if ¢, Xo, X; and E satisfy the assumptions of (i) and (ii), then we have the equality
Gy(X0, X1)®:E = Gp(Xo®:E, X1 E).

PrRoOF.  Note first that since =  we haveG, = G, hence, we may assume without loss of generality
thaty € U. Moreover, since it is well-known that a Banach function space of non-trivial concavity has an
order-continuous norm, the simple functions in such a space are dense. In consequence, thg @ouple
both considered cases is regular.

We start with the proof of (ii): It follows from Propositiahin [25] that any couple of Banach function
spaces has l.u.st. with l.u.st. constanThis shows that there exists a regular cofinal interpolation triple

A= (X,A(X),A)
with A C Fin(A(X)) containing such finite-dimensional subspadésor which the coupleg My, M;)
with My = M; = M is isomorphic to a Banach coup{é/y, N1) with a monotone unconditional basis,
andd(M, N) < 2. ltis clear that
B = ((E,E),E, Fin(E))
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forms a regular cofinal interpolation triple. Singeis non-degenerate, we conclude from [18] or [20]
that G, is a computable functor. By Proposition 1 this yields that is approximable on any cofinal
interpolation triple, in particular ol and B. By Lemma 1, (ii) it remains to show that

Rg,(A,B) = sup sup rg, (Mo, M1;N,N) < oo.
MEA NeFin(E)

Again, sincep is non-degenerate, for any coupleof Banach function spaces

Go(Y) = (p0)°(Y),

with universal constants for the equivalence of norms neither dependiggnon onY (see [18] or [28],
p. 466). This implies that

GLPZQOZ

on the class of all regular finite-dimensional couples of Banach spaces, with universal constants for the
equivalence of norms. Now the conclusion follows from Lemma 4, (ii) and Proposition 3 (not®lthat
respects sublattices aith, subspaces).

The proof of (i) is similar: We now apply the first instead of the second part of Lemma 1. In the proof
of (ii) we saw thatG, is approximable on every cofinal interpolation triple, in particular on

(Xo®.E, X18.E), A(X) ® E,C),

where
C={M®N; MeA NecFin(E)}

and.A as in the proof of (ii). Hence, by Lemma 1, (i) it suffices to check that

Lg,(A,B):= sup sup Lg, (Mo, Mi;N,N) < oco.
MEA NeFin(E)

But this, similar to what was done in the proof of (ii), follows from Lemma 4, (i) and Propositionl.
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