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Perturbation results for the local Phragm én-Lindel öf
condition and stable homogeneous polynomials

R. W. Braun, R. Meise and B. A. Taylor

Dedicated to the memory of Klaus Floret

Abstract. The local Phragḿen-Lindel̈of condition for analytic varieties in complexn-space was intro-
duced by Ḧormander and plays an important role in various areas of analysis. Recently, new necessary
geometric properties for a variety satisfying this condition were derived by the present authors. These
results are now applied to investigate the homogeneous polynomialsP with real coefficients that are sta-
ble in the following sense: Wheneverf is a holomorphic function that is defined in some neighborhood
of the origin, is real over real points, and hasP as its localization at zero then the zero varietyV (f) of
f satisfies the local Phragmén-Lindel̈of condition at the origin. It is shown thatP can only be stable if
V (P ) satisfies the local Phragmén-Lindel̈of condition at the origin and if, at each real pointx in V (P )
of modulus1, the localization ofP atx is either linear or an indefinite quadratic form. Further, for poly-
nomialsP in three variables it is shown that these necessary conditions are also sufficient for the stability
of P and therefore characterize the stable polynomials.

Resultados de perturbaci ón para la condici ón local de Phragm én-Lindel öf y
polinomios homog éneos estables

Resumen. La condicíon local de Phragḿen-Lindel̈of para variedades analı́ticas complejasn-dimen-
sionales fue introducida por Ḧormander y juega un papel importante en variasáreas del ańalisis. Re-
cientemente los presentes autores han derivado nuevas propiedades geométricas que son necesarias para
que la variedad satisfaga esta condición. Estos resultados se aplican ahora a investigar los polinomios
homoǵeneosP con coeficientes reales que son estables en el siguiente sentido: Cuandof es una funcíon
holomorfa que está definida en un entorno del origen, es real en los puntos reales, y tiene aP como
su localizacíon en cero, entonces la cero-variedadV (f) def satisface la condición local de Phragḿen-
Lindelöf en el origen. Se prueba queP puede ser estable sólo si V (P ) satisface la condición local de
Phragḿen-Lindel̈of en el origin y si, en cada punto realx enV (P ) de ḿodulo1, la localizacíon deP en
x es o bien lineal o bien una forma cuadrática indefinida. Adeḿas, para polinomiosP de tres variables
se muestra que estas condiciones necesarias son también suficientes para la estabilidad deP y, por tanto,
caracterizan los polinomios estables.

1. Introduction

The local Phragḿen-Lindel̈of conditionPLloc for analytic varieties inCn (see Definition 3) was introduced
by Hörmander [7] in his characterization of the linear partial differential operatorsP (D) which are surjec-
tive on the spaceA(Rn) of all real analytic functions onRn. In the intervening yearsPLloc has been shown
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to also be important in the study of other Phragmén-Lindel̈of conditions, especially those concerned with
the existence of continuous linear right inverses for linear constant coefficient partial differential operators
P (D). For example, it was shown in Meise, Taylor, and Vogt [9] that a homogeneous partial differential
operatorP (D) admits a continuous linear right inverse onE(Rn) and/orD′(Rn) if and only if its zero vari-
ety satisfies the local Phragmén-Lindel̈of condition at the origin. In other work of the present authors ([8],
[5]), it was shown thatPLloc at each real point of an algebraic varietyV is a necessary condition in order
thatV satisfies(SPL), the most natural extension of the classical Phragmén-Lindel̈of theorem to algebraic
varieties. Moreover, Vogt [12] has recently shown that the local Phragmén-Lindel̈of condition characterizes
the existence of continuous linear extension operators for real analytic functions defined on compact real
analytic subvarieties ofRn.

In the recent article [4] new necessary conditions forPLloc were obtained for analytic varieties inCn

and it was shown that these conditions are sufficient for surfaces. In the present paper we use these results
to investigate when a homogeneous polynomialP ∈ R[z1, . . . , zn] has the following property: Whenever
f is a holomorphic function on some neighborhood of the origin inCn that is real over real points and
hasP as the lowest degree homogeneous polynomial in its Taylor series expansion at zero, then the zero
varietyV (f) of f satisfies the conditionPLloc(0), i.e.,PLloc at the origin. We call such polynomialsstable.
In [4] it was proved that each homogeneous polynomialP ∈ R[z1, . . . , zn] for which V (P ) has no real
singularities outside the origin (i.e.,P is of principal type) and for whichV (P ) satisfiesPLloc(0) is stable.
We show here that this condition is only sufficient and thatV (P ) may have singular points outside the
origin. Our main result is the following theorem.

Theorem 1 For n ≥ 3 letP ∈ R[z1, . . . , zn] be homogeneous of degreem ≥ 1. If P is stable thenV (P )
satisfiesPLloc(0) and for eachξ ∈ V (P ) ∩ Sn−1 the localizationPξ of P at ξ (see Definition 1) satisfies
the following two conditions:

(a) degPξ ≤ 2

(b) If degPξ = 2 thenPξ is an indefinite quadratic form.

For n = 3 these conditions are also sufficient.�

The proof of the necessity of the conditions (a) and (b) in Theorem 1 is based on the necessary conditions
for PLloc derived in [4]. To prove that they are sufficient forn = 3 we show that the sufficient conditions
stated in [4] are fulfilled. More precisely, we show that around each real half line generated byx ∈
V (P )∩S2 there exists a complex truncated coneΓ so thatV (P )∩Γ satisfies a hyperbolicity condition. To
achieve this whenx is a singular point ofV (P ), we use condition (b) to find a real analytic transformation
that allows the reduction of the general case to a more special one which is then handled by methods which
were developed in [4].

To illustrate the main result, we provide several examples in Section 4. Example 2 shows that there are
stable polynomials of any degree for which the zero variety has singularities outside the origin. Also we
show in Example 3 that the polynomialP (z1, z2, z3, z4) := z2

1 + z2
2 − z2

3 is stable. Hence, it might be that
the conditions in Theorem 1 are sufficient for any dimensionn ≥ 3.

2. Preliminaries

In this preliminary section we introduce the basic definitions and notation which will be used subsequently.
Throughout the paper,|·| denotes the Euclidean norm onCn, whileBn(ξ, r) denotes the ball of center

ξ and radiusr in Cn. Whenn = 1 we writeB(ξ, r) instead ofB1(ξ, r).

Definition 1 Let f : Bn(ξ, r) → C be a holomorphic function. Then

V (f) := {z ∈ Bn(ξ, r) : f(z) = 0}
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will be called thezero varietyof the functionf .
For θ ∈ Bn(ξ, r) the localizationfθ of f at θ is defined as the lowest degree homogeneous term in the

Taylor series expansion off at θ.
Thetangent coneTθV (f) of the varietyV (f) at θ coincides withV (fθ) (see Chirka [6], 8.4 Proposi-

tion 1).
An analytic varietyV in Cn is defined to be a closed analytic subset of some open set inCn (see

Chirka [6], 2.1). ByVsing (resp.Vreg) we denote the set of all singular (resp. regular) points inV .

Definition 2 LetV be an analytic variety inCn and letΩ be an open subset ofV . A functionu : Ω →
[−∞,∞[ is calledplurisubharmonicif it is locally bounded above, plurisubharmonic in the usual sense on
Ωreg, the set of all regular points ofV in Ω, and satisfies

u(z) = lim sup
ζ∈Ωreg,ζ→z

u(ζ)

at the singular points ofV in Ω. ByPSH(Ω) we denote the set of all plurisubharmonic functions onΩ.

Definition 3 For ξ ∈ Rn andr0 > 0 let V be an analytic variety inBn(ξ, r0) which containsξ. We say
that V satisfies the conditionPLloc(ξ) if there exist positive numbersA andr0 ≥ r1 ≥ r2 such that each
u ∈ PSH(V ∩Bn(ξ, r1)) satisfying

(α) u(z) ≤ 1, z ∈ V ∩Bn(ξ, r1) and

(β) u(z) ≤ 0, z ∈ V ∩ Rn ∩Bn(ξ, r1)

also satisfies

(γ) u(z) ≤ A|Im z|, z ∈ V ∩Bn(ξ, r2).

For various equivalent conditions forPLloc(ξ) we refer to [4], Lemma 3.3.

Definition 4 A simple curveγ in Cn is a mapγ : ]0, α[ → Cn which for someα > 0 and someq ∈ N
admits a convergent Puiseux series expansion

γ(t) =
∞∑

j=q

ξjt
j/q with |ξq| = 1.

Thenξq is thetangent vectorto γ at the origin. The trace ofγ is defined astr(γ) := γ(]0, α[). A real simple
curveis a simple curveγ satisfyingtr(γ) ⊂ Rn.

Definition 5 Let V ⊂ Cn be an analytic variety of pure dimensionk ≥ 1 which contains the origin, let
γ : ]0, α[ → Cn be a simple curve, and letd ≥ 1. Then fort ∈ ]0, α[ we define

Vγ,t,d := {w ∈ Cn : γ(t) + wtd ∈ V } =
1
td

(V − γ(t))

and we define thelimit variety Tγ,dV of V of orderd alongγ as the set

Tγ,dV := {ζ ∈ Cn : ζ = lim
j→∞

zj , wherezj ∈ Vγ,tj ,d for j ∈ N and(tj)j∈N is a

null-sequence in]0, α[}.

If it is clear from the context we will sometimes writeVt,d or justVt instead ofVγ,t,d.

From [3], Theorem 3.2 and Proposition 4.1 we recall the following results.
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Theorem 2 LetV be an analytic variety of pure dimensionk ≥ 1 containing the origin, letγ be a simple
curve inCn with tangent vectorξ at the origin, and letd ≥ 1 be given. Then the following assertions hold:

(a) Tγ,dV is either empty or an algebraic variety of pure dimensionk.

(b) Tγ,1V = T0V − ξ.

(c) If d > 1 thenw ∈ Tγ,dV if and only if w + λξ ∈ Tγ,dV for eachλ ∈ C.

We will also need the following definitions in Section 3.

Definition 6 LetV be an analytic variety inCn which is of pure dimensionk ≥ 1 at ζ ∈ V . A projection
π : Cn → Cn is callednoncharacteristicfor V at ζ if its rank isk, its image and its kernel are spanned by
real vectors, andTζV ∩ kerπ = {0}.

Definition 7 Let γ : ]0, α[ → Rn be a real simple curve, letd ≥ 1, let U be a subset ofCn, and let
0 < R ≤ α be given. We call

Γ(γ, d, U,R) :=
⋃

0<t<R

(γ(t) + tdU)

theconoidwith coreγ, opening exponentd, and profileU , truncated atR, provided that the origin does
not belong to this set.

Definition 8 Let V be an analytic variety of pure dimensionk in Cn which contains the origin, letγ
be a real simple curve, letd ≥ 1, and let ζ ∈ Tγ,dV ∩ Rn. We say thatV is (γ, d)-hyperbolic atζ
with respect to a projectionπ : Cn → Cn, which is noncharacteristic forTγ,dV at ζ, if there exist a zero
neighborhoodU in Cn andr > 0 such thatz ∈ V ∩ Γ(γ, d, ζ + U, r) is real wheneverπ(z) is real. V is
called(γ, d)-hyperbolic atζ if it is (γ, d)-hyperbolic atζ with respect to some projectionπ as above.

Definition 9 LetV be an analytic variety of pure dimensionk in Cn and letξ ∈ V ∩ Rn. We say thatV
is locally hyperbolicat ξ if there are a neighborhoodU of ξ and a projectionπ : Cn → Cn which is
noncharacteristic forV at ξ such thatz ∈ V ∩ U is real wheneverπ(z) is real.

By Hörmander [7], 6.5, local hyperbolicity impliesPLloc; however, only forn = 2 andn = 3 it is
equivalent toPLloc.

3. Results

In this section we state and prove the main results of this paper. Throughout this section the dimensionn is
assumed to satisfyn ≥ 3.

Definition 10 A polynomialP ∈ R[z1, . . . , zn] is calledstableif P is homogeneous of degreem ≥ 1 and
if for each holomorphic functionf : Bn(0, r) → C which is real overBn(0, r) ∩ Rn and for whichP is
the localization off at the origin the varietyV (f) satisfiesPLloc(0).

If f is a holomorphic function onBn(0, r) for whichV (f) satisfiesPLloc(0) then [4], Lemma 3.18, im-
plies that, up to a complex constant factor,f is real over real points inBn(0, r). Therefore the requirements
in Definition 10 are reasonable.

192



Stability of the local Phragmén-Lindelöf condition

To derive necessary conditions for a polynomialP be to be stable, we will use the following lemma.

Lemma 1 LetP ∈ R[z1, . . . , zn] be homogeneous of degree3. Then there exists a real linear change of
variables such that in these variablesP (z) =

∑
|α|=3 aαz

α, wherea(3,0,...,0) = 0 anda(0,3,0,...,0) 6= 0.

PROOF. SinceP does not vanish identically, we can chooseξ1, . . . , ξn ∈ Rn, linearly independent, so
thatP (ξj) = 1 for 2 ≤ j ≤ n andP (ξ1) = 0. With respect to the basis(ξ1, . . . , ξn) the polynomialP has
the desired representation.�

The next lemma is crucial.

Lemma 2 If P ∈ R[z1, . . . , zn] is stable, then the following conditions are satisfied for eachξ ∈ V (P )∩
Sn−1:

(a) V (Pξ) satisfiesPLloc(0)

(b) degPξ ≤ 2.

PROOF. (a) This follows from [3], Corollary 6.3 and [4], Proposition 3.5.
(b) To prove (b), we first assume thatdegPξ = ν ≥ 4. It is no restriction to assume thatξ = (0, . . . , 0, 1).
ExpandP in the form

P (z′, zn) =
m∑

k=ν

pk(z′)zm−k
n , (1)

where the polynomialspk are either homogeneous of degreek or identically zero and wherepν 6≡ 0. Then
pν(z′) = Pξ(z) (see, e.g., [1], Lemma 3.9). Now leta := m+ ν − 3, b := m+ ν − 6, and define

Q(z′, zn) := z2
1z

a
n − z3

2z
b
n.

Sinceν ≥ 4, the degree ofQ is at leastm + 1. Hence,P is the localization at the origin of the function
f := P +Q. Sincef is real over real points and sinceP is stable, the varietyV (f) must satisfyPLloc(0).
To derive a contradiction from this, note that by [4], Proposition 3.5, each limit varietyTγ,dV (f) satisfies
PLloc(η) at each real pointη ∈ Tγ,dV (f). Now defineγ(t) := tξ, t > 0, and letd = 3. Then it follows
from a direct calculation ofVγ,t,d in Definition 5 (or [3], Lemma 6.1), that

Tγ,dV (f) = {z ∈ Cn : z2
1 − z3

2 = 0}.

Obviously, this variety is the product ofCn−2 andW , where

W := {(x, y) ∈ C2 : x2 − y3 = 0}.

From this it follows easily thatW has to satisfyPLloc(0). However, this is not the case by Hörmander [7],
Theorem 6.5. In this particular case, this can also be verified directly: IfW is parametrized byx = t3,
y = t2, then the function|Im t| = |Imx/y| vanishes at the real points, but is notO(|Im(x, y)|) in any
neighborhood of the origin. Thus, a contradiction has been reached from the assumptiondegPξ ≥ 4.
Hence we havedegPξ ≤ 3.

To complete the proof of (b) we now show that also the assumptiondegPξ = 3 leads to a contradiction.
To do so we argue as before and expand

P (z′, zn) = p3(z′)zm−3
n + . . .+ pm(z′),

wherep3(z′) = Pξ(z). By Lemma 1 we can perform a real linear change of coordinates inCn−1 so that

p3(z′) =
∑
|α|=3

aα(z′)α,wherea(3,0,...,0) = 0, a(0,3,0,...,0) 6= 0.
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Then letQ(z′, zn) := z2
1z

m−1
n and definef := P +Q. As above, the hypothesis implies thatV (f) satisfies

PLloc(0). Next defineγ(t) := tξ, t > 0, andd := 2. Then [3], Lemma 6.1 implies that

Tγ,dV (f) = {z ∈ Cn : p3(z′) + z2
1 = 0}.

SinceV (f) satisfiesPLloc(0) and since0 ∈ Tγ,dV (f), [4], Proposition 3.5, implies thatTγ,dV (f)satisfies
PLloc(0). Since

Tγ,dV (f) = {z′ ∈ Cn−1 : p3(z′) + z2
1 = 0} × C =: W × C,

W also satisfiesPLloc(0). Now note thatT0W is the zero set of the localization at the origin of the
polynomial definingW , which shows

T0W = {z′ ∈ Cn−1 : z2
1 = 0}.

HenceT0W is a complex manifold. Therefore, [4], Proposition 3.12, implies the following: Wheneverη
is in T0W ∩ Sn−2 andγη : t 7→ tη, then for each projectionπ in Cn−1 which is noncharacteristic for
Tγη,1W = T0W − η at zero,W is (γη, 1)-hyperbolic at0.

To show that this hyperbolicity condition does not hold for allη ∈ T0W ∩ Sn−2, note that our assump-
tion onp3 implies the following expansion, wherez′ = (z1, z′′):

p3(z′) = z2
1q1(z

′′) + z1q2(z′′) + q3(z′′).

Here the polynomialsqj are either homogeneous of degreej, 1 ≤ j ≤ 3, or identically zero. Since
a(0,3,0,...,0) 6= 0 we must haveq3 6≡ 0. Therefore we can chooseη′′ so thatq3(η′′) > 0. Then let
η := (0, η′′) and note thatπ : Cn−1 → Cn−1, π(z′) := (0, z′′), is noncharacteristic forTγη,1W at 0 since
kerπ = {(λ, 0, . . . , 0) ∈ Cn−1 : λ ∈ C}, while T0(Tγη,1W ) = T0(T0W − η) = T0W and hencekerπ ∩
T0(Tγη,1W ) = {0}. Therefore our assumption implies that there exists an open zero neighborhoodG such
thatz′ ∈W ∩ Γ(γη, 1, G, r) is real wheneverπ(z′) real.

To show that this does not hold, note that the pointsz′ inW for whichπ(z′) = γη(t) satisfy the equation

0 = p3(z′) + z2
1 = (1 + q1(tη′′))z2

1 + q2(tη′′)z1 + q3(tη′′).

The discriminant of this quadratic equation is

D(t) = q2(tη′′)2 − 4(1 + q1(tη′′))q3(tη′′).

Sinceq3(tη′′) = t3q3(η′′) > 0 and sinceq2(tη′′)2 is either identically zero or homogeneous int of degree
four, it follows that for smallt the discriminantD(t) is negative. Hence the two roots of the equation
are not real. Since one can solve the equation explicitly one can check that the roots are inside the cone
Γ(γη, 1, G, r) whent is small enough. This shows thatW is not(γη, 1)-hyperbolic in contradiction to our
assumption. Hence we must havedegPξ ≤ 2. �

Lemma 3 LetP ∈ R[z1, . . . , zn] be stable of degreem ≥ 2. If degPξ = 2 for someξ ∈ V (P ) ∩ Sn−1

thenPξ is an indefinite real quadratic form.

PROOF. After a real linear change of variables we may assumeξ = (0, . . . , 0, 1) and we can expandP
as in (1), where nowp2(z′) = Pξ(z′, zn). By Lemma 2 (a),V (Pξ) and henceV (p2) satisfiesPLloc(0).
Sincep2 is homogeneous of degree2 by hypothesis, it follows from Meise, Taylor, and Vogt [11], Theorem
3.3, thatV (p2) satisfiesPL(Rn−1). Therefore it follows from Meise, Taylor, and Vogt [10], Lemma 3 and
Proposition 2, thatp2 is either an indefinite real quadratic form orp2 = p2

1 for some real linear formp1. To
complete the proof we show that the latter case cannot occur.

Note that so far we have only used the fact thatV (P ) satisfiesPLloc(0). Now we will use the stability
hypothesis. If we assume thatp2 = p2

1 for some linear formp1 then it is no restriction to assumep1(z′) =
z1, and hence

P (z′, zn) = z2
1z

m−2
n + p3(z′)zm−3

n + . . .+ pm(z′).
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Next letQ(z′, zn) := zm+1
n and definef := P +Q. ThenV (f) satisfiesPLloc(0) sinceP is stable.

To show that this is not the case assume first thatm = 2. Thenf(z) = z2
1 + z3

n andV (f) does not
satisfyPLloc(0) by Hörmander [7], Theorem 6.5, or by the direct argument given in the proof of Lemma 2.

To treat the casem ≥ 3, define the real simple curveγ by γ(t) := (0, . . . , 0, t) and letd := 4
3 . Then

note that by [3], Lemma 6.1, we have

Tγ,dV (f) = {z ∈ Cn : z2
1 = 0}.

HenceTγ,dV (f) is a complex manifold. Therefore it follows from [4], Proposition 3.12, thatV (f) must
be (γ, d)-hyperbolic at0 ∈ Tγ,dV (f). To show that this is not the case, defineπ : Cn → Cn, π(z) :=
(0, z2, . . . , zn). Thenπ is noncharacteristic forTγ,dV (f) at 0, sinceTγ,dV (f) is its own tangent cone.
Hence there exist a zero neighborhoodU in C3 andr > 0 such that for eachz ∈ V (f) ∩ Γ(γ, d, U, r) with
π(z) real,z must be real. To show that this does not hold, consider the equation

0 = f(z1, 0, . . . , 0, t) = z2
1t

m−2 + tm+1 +
m∑

j=3

bjz
j
1t

m−j ,

wherebj := pj(1, 0, . . . , 0), 3 ≤ j ≤ m. For 0 < t < r let z1(t, λ) = it3/2 + λ, whereλ ∈ C satisfies
|λ| = t3/2/4. Then

|(z1(t, λ)− t3)tm−2| ≥ 1
4
t3/2(2− 1

4
)t3/2tm−2 =

7
16
tm+1

and ∣∣∣ m∑
j=3

bjz1(t, λ)jtm−j
∣∣∣ ≤ m∑

j=3

|bj |
5
4
t3j/2tm−j ≤ Atm+1+ 1

2

for a suitable constantA. Hence there exists0 < t0 < r such thatAt1/2 < 7/16 for 0 < t ≤ t0. Therefore
the Theorem of Rouch́e implies that for0 < t ≤ t0 there existsz1(t) satisfyingf(z1(t), 0, . . . , 0, t) = 0
and |z1(t) − it3/2| < t3/2/4. Because of this estimate we haveIm z1(t) 6= 0. Sinced = 4/3, it is
easy to check that for sufficiently small0 < t < t0 the pointw(t) := (z1(t), 0, . . . , 0, t) belongs to
V (f) ∩ Γ(γ, d, U, r) andπ(w(t)) is real, whilew(t) is not real, in contradiction to the(γ, d)-hyperbolicity
of V (f) at0 ∈ Tγ,dV (f). �

To derive the necessary conditions for stability in Lemma 2 and Lemma 3 we did not use the full strength
of Definition 10, since the only holomorphic functions which we needed were polynomials.

The following sufficient condition for stability was proved already in [4], Proposition 7.4. Because
of Euler’s rule and the fact that a homogeneous polynomialP does not have any elliptic factors ifV (P )
satisfiesPLloc(0), we can reformulate this result as follows.

Proposition 1 LetP ∈ R[z1, . . . , zn] be homogeneous of degreem ≥ 1. If V (P ) satisfiesPLloc(0) and
if degPξ = 1 for eachξ ∈ V (P ) ∩ Rn, thenP is stable. �

To show that the necessary conditions for stability which we derived so far are sufficient whenn = 3,
we need the following lemmas.

Lemma 4 Let f : Bn(0, r) → C be a holomorphic function, and letk ∈ N satisfyk < n. Group the
variables asz = (s, w, τ) ∈ Ck × Cn−k−1 × C and assume that

f(z) =
∞∑

l=0

τ lfl(s, w) for f0(s, w) =
∞∑

j=2

pj(s, w),
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wherepj is either zero or homogeneous of degreej. Assume furthermore that

p2(s, w) = Q(s) :=
k∑

i=1

λiz
2
i , λi 6= 0 for 1 ≤ i ≤ k.

Then there existε > 0, a neighborhoodU of zero inCn−k, and holomorphic mapsh : U → Ck,G : U → C,
andR : Bk(0, ε)× U → C such thath(0) = 0,G(0) = 0,

f(s+ h(w, τ), w, τ) = Q(s) +G(w, τ) +R(s, w, τ) for |s| < ε and(w, τ) ∈ U , (2)

and |R(s, w, τ)| = O(|s|2(|s|+ |w|+ |τ |)). Furthermore:

(a) If all Taylor coefficients off are real, then the same holds forh andG.

(b) If Q is the localization off at 0, then|h(w, τ)| = O(|(w, τ)|2) and |G(w, τ)| = O(|(w, τ)|3).

PROOF. Denote by∂f
∂s the vector

(
∂f
∂z1

, . . . , ∂f
∂zk

)
. We claim the existence of a functionh and a neighbor-

hoodU of zero satisfying
∂f

∂s
(h(w, τ), w, τ) = 0 for (w, τ) ∈ U . (3)

To prove this claim, note first that
∂f

∂s
(s, 0, 0) =

∞∑
j=2

∂pj

∂s
(s, 0),

hence∂f
∂s (0, 0, 0) = 0. To verify the remaining hypothesis of the implicit function theorem we also have

to check that the Jacobi matrix of∂f
∂s with respect to thes-variables is invertible at the origin. It is easy to

see that this matrix is the Hessian off(·, 0, 0) at s = 0 and that this Hessian is the Hessian ofQ, hence
invertible by hypothesis. This proves the existence ofh andU as in (3).

For sufficiently smallε define

G(w, τ) = f(h(w, τ), w, τ) for (w, τ) ∈ U ,

R(s, w, τ) = f(s+ h(w, τ), w, τ)−Q(s)−G(w, τ) for |s| < ε and(w, τ) ∈ U .

Then (2) is obvious.
DefineF (s, w, τ) := f(s + h(w, τ), w, τ) and insert (3) into its Taylor series expansion with respect

to s for fixed (w, τ) ∈ U :

F (s, w, τ) = F (0, w, τ) +
∂F

∂s
(0, w, τ)s+O(|s|2) = G(w, τ) +O(|s|2),

where theO-estimates are locally uniform in(w, τ). So far, we have proved that|R(s, w, τ)| = O(|s|2).
To improve this bound, consider

R(s, 0, 0) = f(s, 0, 0)−Q(s) =
∞∑

j=3

pj(s, 0).

Hence|R(s, 0, 0)| = O(|s|3). Together with the estimate|R(s, w, τ)| = O(|s|2) we have proved the
assertion concerningR.

Claim (a) follows from the real implicit function theorem. To prove (b), note first that the implicit
function theorem states that the entries of∇h(0, 0) are linear combinations of elements of the form

∂2f

∂zj∂zl
(0, 0), 1 ≤ j ≤ k < l ≤ n.
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Since the localization off at 0 is Q, all of these derivatives vanish, and it follows that|h(w, τ)| =
O(|(w, τ)|2). To prove the second assertion, recall the definition ofG:

G(w, τ) = Q(h(w, τ)) +
∞∑

j=3

pj(h(w, τ), w) +
∞∑

l=1

τ lfl(h(w, τ), w).

The first term isO(|(w, τ)|4) since|h(w, τ)| = O(|(w, τ)|2). The second one isO(|(w, τ)|3) since the
degree ofpj is j. The last term vanishes of order at least3 since the hypotheses of (b) imply thatf2(0, 0) = 0
and thatf1 vanishes at least of order2 at the origin. �

Lemma 5 Letρ > 0, letR : B(0, ρ)3 → C be a holomorphic function which for someC > 0 satisfies the
estimate

|R(x, y, z)| ≤ C|(x, y)|2
(
|(x, y)|+ |z|

)
, (x, y, z) ∈ B(0, ρ)3,

and defineg : B(0, ρ)3 → C by

g(x, y, z) := x2 − y2 +R(x, y, z).

Then there exists0 < δ < ρ such that the map

π : V (g) ∩
(
B(0, δ)×B(0, 5

4δ)×B(0, δ)
)
→ B(0, δ)2, π(x, y, z) = (x, z),

is a two sheeted branched cover with branch locus{(0, 0)} × B(0, δ). If R is real for real (x, y, z) then
(x, y, z) is real whenπ(x, y, z) is real.

PROOF. Choose0 < δ < min(ρ, 1) so small that

C
(

9
4

)2 (
9
4δ + δ

)
< 7

16 .

Then fix(x, z) ∈ B(0, δ)2 andλ ∈ C with |λ| = 5
4δ and note that

|x2 − λ2| ≥
(

5
4δ

)2 − δ2 =
(

3
4δ

)2
.

Hence the estimate forR and the choice ofδ imply

|R(x, λ, z)| ≤ C
(

9
4δ

)2 (
9
4δ + δ

)
< 7

16δ
2 <

(
3
4δ

)2 ≤ |x2 − λ2|.

Therefore Rouch́e’s theorem shows thaty 7→ g(x, y, z) andy 7→ x2− y2 have the same number of zeros in
the disk|y| < 5

4δ. Henceπ is a two sheeted branched cover. The estimate forR implies thaty 7→ g(0, y, z)
has a zero of order2 at y = 0 for eachz ∈ B(0, δ). To show that for(x, z) ∈ B(0, δ)2 with x 6= 0 the
functiony 7→ g(x, y, z) has two different zeros, fixλ with |λ| = 1

4 |x| and set

y(x, z, λ) := x+ λ.

Then
|x2 − y(x, z, λ)2| = |λ||2x− λ| ≥ 1

4 |x|
7
4 |x| =

7
16 |x|

2.

Hence the estimate forR and the choice ofδ imply

|R(x, y(x, z, λ), z)| ≤ C
(

9
4 |x|

)2 (
9
4 |x|+ δ

)
< 7

16 |x|
2 < |x2 − y(x, z, λ)2|.

Therefore Rouch́e’s theorem implies that the functiony 7→ g(x, y, z) has exactly one zero in the disk
B(x, 1

4 |x|) ⊂ B(0, 5
4δ). Since we can argue in the same way usingy(x, z, λ) := −x + λ, we proved

the first assertion of the lemma. The second one follows from it by the real implicit function theorem and
analytic continuation. �
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Theorem 3 LetP ∈ R[x, y, z] be homogeneous of degreem ≥ 1. P is stable if and only ifP satisfies the
following three conditions

(a) V (P ) satisfiesPLloc(0).

(b) For eachξ ∈ V (P ) ∩ S2, degPξ ≤ 2.

(c) If degPξ = 2 for ξ ∈ V (P ) ∩ S2 thenPξ is an indefinite quadratic form.

PROOF. The necessity of the conditions (a)–(c) follows from the definition of stability and the Lemmas 2
and 3. To prove the sufficiency of the conditions (a)–(c), fix any holomorphic functionf : B3(0, r) → C
which is real over real points and satisfiesf0 = P . To show thatV := V (f) satisfiesPLloc(0) let

M := {ξ ∈ V (P ) ∩ S2 : degPξ = 2}.

If M = ∅, the theorem follows from Proposition 1. IfM 6= ∅ we want to derive the theorem from [4],
Theorem 7.3. To show that its hypotheses are fulfilled, note first thatT0V = V (P ) satisfiesPLloc(0) by
(a). Furthermore,T0V has multiplicity one, or equivalently,P is square-free, sincePξ is square-free by (c)
and the localization of a product is the product of the localizations of its factors.

Next we claim that all the other hypotheses of [4], Theorem 7.3, are trivially satisfied, because the set
C, defined in [4], 5.1, is empty for the varietyV (f). Hence the present theorem follows from [4], Theorem
7.3, once we showC = ∅.

By the definition of the setC we haveC = ∅ if we prove the following assertion:

For eachζ ∈M there existξ ∈ S2\(T0V ∪ Tζ(T0V )), a zero neighborhoodU in C3

andr > 0 such that there is at most one branch of the setBξ ∩ R3 contained in the
coneΓ(γζ , 1, U, r),

(4)

whereγζ : t 7→ tζ and where

Bξ :=
{

(x, y, z) ∈ V (f) :
∂f

∂ξ
(x, y, z) = 0

}
.

To prove (4), fixζ ∈M . After a real linear change of variables, we may assume thatζ = (0, 0, 1) and that
P is represented as in (1), namely

P (x, y, z) =
m∑

k=2

pk(x, y)zm−k,

wherep2(x, y) = Pζ(x, y, z) is an indefinite real quadratic form. Hence we may perform a further real
linear change of the(x, y)-variables to obtainp2(x, y) = x2 − y2. Then define forz 6= 0

g(x, y, z) =
1
zm

f(xz, yz, z)

and note that forα ∈ N3
0 with |α| ≥ m we have

1
zm

(xz, yz, z)α = z|α|−mxαxyαy .

Hence the assumptions onf imply

g(x, y, z) = x2 − y2 +
m∑

k=3

pk(x, y) +
∞∑

j=1

zjgj(x, y).
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This shows thatg extends to a holomorphic function in some neighborhood of the origin inC3, which we
also denote byg. It is easy to check thatg satisfies the hypotheses of Lemma 4. Hence this lemma implies
the existence ofρ > 0, ε > 0, and of holomorphic functionsh : B(0, ρ) → C2, G : B(0, ρ) → C, and
R : B(0, ε)2 → C satisfying

g((x, y) + h(z), z) = x2 − y2 +G(z) +R(x, y, z), (x, y, z) ∈ B(0, ε)2 ×B(0, ρ) (5)

as well as

h(0) = 0, |G(z)| = O(|z|), and |R(x, y, z)| = O(|(x, y)|2(|(x, y)|+ |z|)).

Sincef has real Taylor coefficients, so doh andG by Lemma 4 (a).
Next leth = (hx, hy) and define

γ(t) := (thx(t), thy(t), t), 0 ≤ t < ρ.

Since|h(t)| = O(|t|), the tangent vectors ofγ and ofγζ(t) := (0, 0, t) at zero coincide. Hence for each
0 < r0 < 1 and each zero neighborhoodU0 in C3 with U0 ⊂ B3(0, 1

2 ) there exist a zero neighborhoodU
and0 < r < 1 so that

Γ(γζ , 1, U, r) ⊂ Γ(γ, 1, U0, r0).

Therefore it suffices to prove (4) for some cone with coreγ. To do so, assume0 < t < ρ, |ξ| < εt, and
|η| < εt and note that the definition ofg and (5) imply

f(ξ + thx(t), η + thy(t), t) = tmg
(

ξ
t + hx(t), η

t + hy(t), t
)

= tm
((

ξ
t

)2

−
(

η
t

)2 +G(t) +R
(

ξ
t ,

η
t , t

))
,

(6)

since|ξ/t| < ε and|η/t| < ε. Now consider two cases:

Case 1:G ≡ 0.
In this case Lemma 5 implies that in a suitable coneΓ(γ, 1, U0, ρ0) we have exactly one real branch curve
of V for the projection(x, y, z) 7→ (x, z). Hence (4) holds in this case.

Case 2:G 6≡ 0.
In this case the properties ofG imply the existence ofl ∈ N such thatG(z) =

∑∞
j=l ajz

j , whereaj ∈ R
andal 6= 0. In the sequel we assumeal > 0. If al < 0, thenx andy have to be interchanged. Since
al > 0 we can chooseσ0 > 0 such thatG(t) > 0 for 0 < t < σ0. Moreover, we can chooseA > 0 and
0 < ρ1 < ρ such that

|G(z)| ≤ A|z|, |z| < ρ1.

The properties ofR imply the existence ofC > 0 such that

|R(x, y, z)| ≤ C|(x, y)|2 (|(x, y)|+ |z|) , (x, y, z) ∈ B(0, ρ)3.

Next choose0 < σ ≤ σ0 and0 < δ < ρ1 so small that the following conditions are fulfilled:

Aσ + C(3δ)2(3δ + σ) < 3δ2 and C(δ + σ) < 1
2 .

Then we claim that for each(ξ, t) ∈ R2 satisfying0 < t < σ and|ξ| < δt the function

η 7→ f(ξ + thx(t), η + thy(t), t)

has exactly two distinct real zerosη1(ξ, t) andη2(ξ, t) satisfying|ηj(ξ, t)| < 2δt. From this claim it follows
that there exists a coneΓ(γ, 1, U0, σ) so that the projectionπ of V ∩Γ(γ, 1, U0, σ), π(x, y, z) = (x, z), has
no real branch curve, so that (4) holds also in this case.
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To prove our claim, note that by (6) it is an obvious consequence of the following assertion

For each0 < t < σ and each−δ < x < δ the equation

q(x, y, t) := x2 − y2 +G(t) +R(x, y, t) = 0

has exactly two real solutionsy1, y2 satisfying|yj | < 2δ, j = 1, 2.

(7)

To prove (7) note first that forx ∈ C, |x| < δ and0 < t < σ the choice ofδ andσ together with the
estimates forG andR imply that forλ ∈ C with |λ| = 2δ we have the estimate

|G(t) +R(x, λ, t)| ≤ At+ C|(x, λ)|2(|(x, λ)|+ t)

≤ At+ C(3δ)2(3δ + t) < 3δ2 ≤ 4δ2 − |x|2 ≤ |x2 − y2|.

Hence Rouch́e’s theorem implies thaty 7→ q(x, y, t) has exactly two zeros in the diskB(0, 2δ). To show
that these zeros are different and real whenx is real, note that our choices ofσ0, σ, andη imply the following
estimate for0 < t < σ and−δ < x < δ:

q(x, 0, t) = x2 +G(t) +R(x, 0, t) ≥ x2 +G(t)− C(|x|3 + |x|2t) ≥ x2

2 +G(t) > 0,

q(x,±2δ, t) = x2 − (2δ)2 +G(t) +R(x,±2δ, t)

≤ −3δ2 +At+ C(|x|+ 2δ)2(|x|+ 2δ + t)

≤ −3δ2 +Aσ + C(3δ)2(3δ + σ) < 0.

From these estimates it is obvious that the equationq(x, y, t) = 0 has at least two real solutions. This
completes the proof of (7) and of the theorem.�

Note that Theorem 1 now follows from Lemma 2, Lemma 3, and Theorem 3.

Note that the full generality of [4], Theorem 7.3, is not needed to prove Theorem 3. In fact, the present
proof shows—in the notation of [4]—that forf as in the proof of Theorem 3 and eachζ ∈ V (f) ∩ S2 the
varietyV (f) is (γζ , 1)-hyperbolic at0 ∈ Tγζ ,1V (f), whereγζ(t) := tζ. Hence [4], Lemma 5.7, implies
thatV (f) satisfiesPL(V (f),Γ(γζ , 1, Gζ , rζ)) for a suitable zero neighborhoodGζ andrζ > 0 and for
eachζ ∈ V (f)∩S2. From this and [4], Lemma 5.13, it follows thatV (f) satisfiesPLloc(0), becauseV (f)
also satisfiesRPLloc(0). The latter assertion follows from the(γζ , 1)-hyperbolicity stated above and [2],
Theorem 10, as it was indicated at the beginning of the proof of [4], Theorem 5.3.

4. Examples

In this section we provide some examples to illustrate the results of the previous section.

Example 1 For n ≥ 3 andm ≥ 1 the polynomialsPm, defined by

Pm(z1, . . . , zn) :=
n−1∑
j=1

zm
j − zm

n

are stable.

PROOF. This follows from Proposition 1, sincegradPm(z) 6= 0 for eachz ∈ Cn\{0} and sinceV (Pm)
satisfiesPLloc(0) by Meise, Taylor, and Vogt [9], Example 4.9, and [11], Theorem 3.3.�

In Example 1 stable polynomials inn ≥ 3 variables of any degree are given. However, their varieties are
manifolds outside the origin. The next example shows that there are stable polynomials in three variables
of any degreem ≥ 2 for which the zero varieties have singular points outside the origin.
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Example 2 For m ∈ N,m ≥ 2, definePm ∈ R[x, y, z] by

P2(x, y, z) := x2 − y2, P3(x, y, z) := (x2 − y2)z + x(x2 + y2)

Pm(x, y, z) := (x2 − y2)zm−2 + xm + ym−1z, m ≥ 4.

Then
V (Pm)sing ∩ S2 = {(0, 0, 1), (0, 0,−1)}

andPm is stable for eachm ≥ 2 and irreducible form ≥ 3.

PROOF. To derive this from Theorem 3, note first that the assertion obviously holds form = 2. Form ≥ 3
we claim thatPm andgradPm both vanish onR3 exactly on the lineL := {(0, 0, t) : t ∈ R}. To prove
this claim, note that

gradP3(x, y, z) = (2xz + 3x2 + y2, y(−2z + 2x), x2 − y2)

and form ≥ 4

gradPm(x, y, z) =(
x(2zm−2 +mxm−2), yz(−2zm−3 + (m− 1)ym−3), (m− 2)(x2 − y2)zm−3 + ym−1

)
.

From this it follows easily thatPm andgradPm both vanish onL. Hence our claim is proved once we
show that forζ = (x, y, z) ∈ R3 satisfyingPm(ζ) = 0 andgradPm(ζ) = 0 we havex = 0 = y.

To show this form = 3, note first that the vanishing of the last component ofgradP3 impliesx2 = y2.
Hence the vanishing ofP3(ζ) implies

0 = P3(ζ) = (x2 − y2)z + x(x2 + y2) = 2x3

and hencex = 0 andy = 0.
Assume now thatm ≥ 4 and thatPm(ζ) andgradPm(ζ) = 0, whereζ = (x, y, z) ∈ S2. We claim

x = y = 0 and assume for contradiction thatx 6= 0. Then the first component ofgradPm(ζ) = 0 implies

zm−2 = −m
2
xm−2, (8)

sincex andz are real. In particular,m is odd. We insert (8) into the second component ofgradPm(ζ) = 0
and multiply byy to get

my2xm−2 = (1−m)zym−1. (9)

On the other hand, we insert (8) intoPm(ζ) = 0 and get(
1− m

2

)
xm +

m

2
y2xm−2 = −zym−1. (10)

Now equations (9) and (10) are combined to get a relation betweenx andy, namely

y2 =
(m− 1)(m− 2)
m(m− 3)

x2. (11)

This showsy 6= 0, sincex 6= 0. The next step is to divide (9) byy2 and to insert (11) into the result. This
calculation yields

mxm−2 = (1−m)
(

(m− 1)(m− 2)
m(m− 3)

)(m−3)/2

zxm−3.

Sincex 6= 0, this equation leads tox = αz for a suitableα. Sincem is odd, the exponent(m− 3)/2 is an
integer, andα ∈ Q. On the other hand, we know from (8) that1

α = (−m/2)1/(m−2), which is not rational
for oddm by Eisenstein’s criterion. So the assumptionx 6= 0 was false.
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If x = 0 andz = 0, then the third component ofgradPm(ζ) = 0 impliesy = 0. We still have to treat
x = 0 andz 6= 0. In that case the second equation ofgradPm(ζ) = 0 andPm(ζ) = 0 imply

yz
(
−2zm−3 + (m− 1)ym−3

)
= 0 and y2z

(
−zm−3 + ym−3

)
= 0,

respectively. Soy = 0, which is the claim, or the terms in parentheses vanish. The latter case yields a linear
system inym−3 andzm−3 with determinantdet

(−2 m−1
−1 1

)
= m − 3 6= 0. Hence also in that casey = 0.

The statement about the singular locus ofPm and hence the first assertion of the example is proved.
To derive the stability ofPm for m ≥ 3 from this fact, we want to apply Theorem 3. Since the

localization ofPm at the points in the set{(0, 0,+1), (0, 0,−1)} = V (Pm)sing ∩ S2 equalsx2 − y2 or
(−1)m−2(x2− y2), the conditions (b) and (c) of Theorem 3 are fulfilled. To show that also condition (a) of
Theorem 3 is satisfied, namely thatV (Pm) satisfiesPLloc(0), notice first thatPm is irreducible form ≥ 3.
To see this form ≥ 4 write Pm as a polynomial inC[y, z][x], i.e.,

Pm(x, y, z) = xm + zm−2x2 + (ym−1z − y2zm−2).

Then each term except the leading one is a multiple ofz, the absolute term is not a multiple ofz2, and
z is a prime element inC[y, z]. Hence Eisenstein’s criterion implies thatPm is irreducible form ≥ 4.
ConsideringP3 as an element ofC[x, z][y], a similar argument shows that alsoP3 is irreducible.

Now note that by the irreducibility ofPm it follows from Meise, Taylor, and Vogt [11], Corollary
3.14 and Theorem 3.3, thatV (Pm) satisfiesPLloc(0) if and only if it satisfies the condition(HPL). By
Hörmander [7], Theorem 6.5, this holds if for eachξ ∈ V (Pm)∩S2 the varietyV (Pm) is locally hyperbolic
at ξ or equivalently satisfiesPLloc(ξ). SincegradPm(ξ) 6= 0 for eachξ ∈ Cn\L by our claim, it suffices
to show thatV (Pm) satisfiesPLloc(0, 0,±1). By [4], Lemma 6.1, this holds if and only if the zero variety
of the reduction ofPm at (0, 0,±1), defined by

q±(x, y) := Pm(x, y,±1)

satisfiesPLloc(0). Now note that

q3±(x, y) = ±(x2 − y2) + x3 + xy2, qm±(x, y) = (±1)m(x2 − y2) + xm ± ym−1, m ≥ 4.

From these equations it follows easily thatV (qm±) ⊂ C2 is locally hyperbolic at0, hence satisfies
PLloc(0). Therefore,V (Pm) satisfiesPLloc(0) for m ≥ 3. Since we have shown that all the hypothe-
ses of Theorem 3 are satisfied, the stability ofPm now follows from Theorem 3. �

To provide an example of a stable polynomialP in four variables for whichV (P )sing ∩ S3 6= ∅ we
need some preparation. First we extend [1], Lemma 5.8.

Lemma 6 Denote byD the open unit disk inC and assume that forn, k ∈ N and0 ≤ ε ≤ 1
2 the function

v ∈ PSH(Dn × Dk) satisfies the following two conditions:

(i) v(z, w) ≤ 1, (z, w) ∈ Dn × Dk,

(ii) v(z, w) ≤ 0 if (z, w) is real and‖z‖∞ ≥ ε.

Then for eachλ < 1 there exists a constantCλ > 0 such that for eachν, 1 ≤ ν ≤ n, the following estimate
holds onDn × Dk:

(iii) v(z, w) ≤ Cλ

(∑n
j=1,j 6=ν |Imwj |+ |Im

√
z2
ν − ε2|

)
, (z, w) ∈ (λDn)× (λDk).
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PROOF. Denote byh the harmonic measure for the real axis in the unit disk and denote bykε the function
which is harmonic in the unit disk with the real intervals[−1,−ε] and[ε, 1] removed, and with boundary
values1 on |ζ| = 1 and0 on [−1,−ε] ∪ [ε, 1]. Then fixν, 1 ≤ ν ≤ n, and fix

(z1, . . . , zν−1, zν+1, . . . , zn, w) ∈ (Dn−1 × Dk) ∩ (Rn−1 × Rk)

and consider the function
φ : D → [−∞,∞[, φ(zν) := v(z, w).

Note that the hypotheses onv and the properties ofkε imply

φ(zν) ≤ kε(zν), zν ∈ D.

Next fix zν ∈ D and consider the function

ψ : Dn−1 × Dk → [−∞,∞[, ψ(z′, w) := v(z, w)− kε(zν),

wherez′ = (z1, . . . , zν−1, zν+1, . . . , zn). Note that the estimates forv and forφ imply ψ ≤ 1 and
ψ(z′, w) ≤ 0 whenever(z′, w) is real. Hence the maximum principle implies

ψ(z′, w) ≤
∑
j 6=ν

h(zj) +
k∑

j=1

h(wj).

By the definition ofψ, this implies

v(z, w) ≤
∑
j 6=ν

h(zj) +
k∑

j=1

h(wj) + kε(zν), (z, w) ∈ Dn × Dk.

Now (iii) follows from known estimates forh andkε (see, e.g., [1], Lemma 5.8). �

From [4], Definition 5.5, we recall:

Definition 11 LetV ⊂ Cn be an analytic variety of pure dimensionk which contains the origin, letγ be
a real simple curve inCn, d ≥ 1,R > 0,D an open set inCn, and letΓ := Γ(γ, d,D,R) be a conoid. We
say thatV satisfies the conditionPL(V,Γ) if the following holds: For each compact setK ⊂ D there exist
A0, r0 > 0 such that eachu ∈ PSH(V ∩ Γ) which satisfies

(α) u(z) ≤ |z|d, z ∈ V ∩ Γ

(β) u(z) ≤ 0, z ∈ V ∩ Γ ∩ Rn

also satisfies

(γ) u(z) ≤ A0|Im z|, z ∈ V ∩ Γ(γ, d,K,R) ∩Bn(0, r0).

Example 3 The polynomialP ∈ R[x, y, z, w], defined by

P (x, y, z, w) := x2 + y2 − z2,

is stable.

PROOF. To prove this, fix a holomorphic functionF with real Taylor coefficients whose localization at
the origin isP . By Lemma 4 there areε1, ε2 > 0 and holomorphic functionsh, ξ, η, ζ : B(0, ε1) → C and
g : B3(0, ε2) → C, all with real Taylor coefficients, such that for all(x, y, z, w) ∈ B3(0, ε2)×B(0, ε1)

F (x+ ξ(w), y + η(w), z + ζ(w), w) = P (x, y, z) + h(w) + g(x, y, z, w),

max
(
|ξ(w)|, |η(w)|, |ζ(w)|

)
= O(|w|2),

|h(w)| = O(|w|3),
|g(x, y, z, w)| = O

(
|(x, y, z)|2|w|+ |(x, y, z)|3). (12)
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Setf(x, y, z, w) := F (x + ξ(w), y + η(w), z + ζ(w), w). Sinceξ, η, andζ have real Taylor coefficients
and vanish at the origin, it is easy to see thatV (F ) satisfiesPLloc(0) if and only if V := V (f) does.

To show thatV satisfiesPLloc(0), note first thatV (P ) = V (P̃ ) × C, whereP̃ is the polynomialP
considered as an element ofR[x, y, z]. Hence it follows from Proposition 1 thatV (P ) satisfiesPLloc(0).
SincePLloc(0) implies the conditionRPLloc(0), defined in [4], 3.6, it follows from [4], Lemma 5.13, that
V satisfiesPLloc(0) if we show that for eachξ ∈ V (P )∩S3 there exist an open zero neighborhoodGξ and
rξ > 0 so that forγξ : t 7→ tξ, the varietyV satisfiesPL(V,Γ(γξ, 1, Gξ, rξ)). To show that this condition
is fulfilled, note thatgradP vanishes exactly on the lineL := {(0, 0, 0, λ) : λ ∈ C}. Hence it follows from
[4], Lemma 7.2, that for eachξ ∈ V (P ) ∩ S3, ξ 6= ξ± := (0, 0, 0,±1), V satisfiesPL(V,Γ), for a suitable
coneΓ = Γ(γξ, 1, Gξ, rξ). Hence it remains to show that this condition also holds forξ+ andξ−. To do so,
we consider two cases.

Case 1:h ≡ 0
From (12) and the particular form off it follows as in the proof of Lemma 5 that the projectionπ defined by
(x, y, z, w) 7→ (x, y, 0, w) provides a two sheeted branched cover ofV ∩U with branch locus{(0, 0, 0)}×
B(0, δ) in a suitable neighborhoodU and that(x, y, z, w) is real whenπ(x, y, z, w) is real. This implies
thatV is (γξ± , 1)-hyperbolic at0. Hence it follows from [4], Lemma 5.7, that there exists a coneΓ =
Γ(γξ± , 1, Gξ± , rξ±) so thatV satisfiesPL(V,Γ). By the preceding, this shows thatV satisfiesPLloc(0) in
this case.

Case 2:h 6≡ 0
The present hypothesis and (12) imply the existence ofk ∈ N, k ≥ 3, such thath(w) =

∑∞
j=k bjw

j , where

bk 6= 0. From this and [3], Lemma 6.1, it follows that forδ := k
2 ≥

3
2 we have

Tγξ± ,dV = {(x, y, z, w) ∈ C4 : x2 + y2 − z2 = 0}, 1 ≤ d < δ

and
Tγξ± ,δV = {(x, y, z, w) ∈ C4 : p±(x, y, z, 1) = 0},

where
p±(x, y, z, w) := x2 + y2 − z2 + bk(±w)k.

Sincebk 6= 0 by hypothesis in this case, we have

grad p±(ζ) 6= 0 for eachζ ∈ Tγξ± ,δV ∩ R4. (13)

Next choose0 < ρ1 < r so small that

|h(w)| ≤ 2|bk||w|k for |w| ≤ ρ1. (14)

According to (12) we may chooseρ1 also so small that there existsC > 0 such that

|g(x, y, z, w)| ≤ C|(x, y, z)|2(|(x, y, z)|+ |w|), (x, y, z, w) ∈ B(0, ρ1)4. (15)

Now choose0 < ε < ρ1/2 and0 < ρ < ρ1 so small that

C

(
9
4

)2 (
9
4
ε+ 1

)
ρ <

1
4

and2|bk|
1
ε2
ρk−2 <

1
4
,

and chooseD > 1 so large that

(1 + ε)k2|bk| <
D2

4
.

Then we claim

Whenever0 < t < ρ and (x, y) ∈ R2 satisfiesDtδ < |(x, y)| < εt then z 7→
f(x, y, z, t) has exactly two distinct zeros in the diskB(0, 5

ε t). These zeros are real
and satisfy|z| < 5

4 |(x, y)|.

(16)
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To prove this claim, fix(x, y) as in (16) and assume thatλ ∈ C satisfies|λ| = 5
4εt. Then

|x2 + y2 − λ2| ≥
(

5
4
εt

)2

− (εt)2 =
(

3
4
εt

)2

.

The estimates (14) and (15) together with the choice ofε andρ imply

|h(t) + g(x, y, λ, t)| ≤ 2|bk|tk + C
(

9
4εt

)2 (
9
4εt+ t

)
≤

[
2|bk|ε−2ρk−2 + C( 9

4 )2
(

9
4ε+ 1

)
ρ
]
ε2t2

<
(

3
4εt

)2 ≤ |x2 + y2 + λ2|.

Hence the first statement in (16) follows from Rouché’s theorem. To prove the second one, note that for
x, y real, the present choices imply

f(x, y, 0, t) = x2 + y2 + h(t) + g(x, y, 0, t)

≥ x2 + y2 − 2|bk|tk − C|(x, y)|2(|(x, y)|+ t)

≥ x2 + y2 − 1
4D

2tk − 1
4 (x2 + y2) ≥ 1

2 (x2 + y2) > 0,

while

f(x, y,± 5
4 |(x, y)|, t) = −( 5

4 )2(x2 + y2) + x2 + y2 + h(t) + g(x, y,± 5
4 |(x, y)|, t)

≤ − 9
16 (x2 + y2) + 2|bk|tk + C( 9

4 )2|(x, y)|2( 9
4 |(x, y)|+ t)

≤ − 9
16 (x2 + y2) + 1

4D
2tk + 1

4 (x2 + y2) ≤ − 1
16 (x2 + y2) < 0.

Obviously, these estimates imply the second assertion.
Next we claim that the following assertion holds:

There existS > 7D andρ > 0 so that if0 < t < ρ, (x, y, z, w) ∈ t[B(0, ε)2 ×
B(0, 5

4ε)×B(0, ε)], (x, y, z, t+ w) ∈ V , and‖(x, y)‖∞ ≤ 3Dtδ then|z| < Stδ.
(17)

To prove this, letε > 0 andD > 1 be as before. Shrinkingρ > 0 if necessary, we may assume that

18C(1 + 3ε)ρ < 1 and C[(1 + 7ε)ρ+
5
4
ερ] <

1
4
.

Then we chooseS > 7D so large that

6C(1 + 7ε)ρ <
S

4
. (18)

Assume now that there exists(x, y, z, t+ w) ∈ V which satisfies the conditions in (17) whileStδ ≤ |z| <
5
4εt. Then our choices and (14) together with (15) and the obvious estimate|(x, y, z)| ≤ |(x, y)|+ |z| imply

|z|2 = |x2 + y2 + h(t+ w) + g(x, y, z, t+ w)|
≤ 18D2t2δ + 2(1 + ε)k|bk|tk + C(|(x, y, z)|3 + |(x, y, z)|2|t+ w|)
≤ (18 + 1

4 )D2t2δ + C[(|(x, y)|+ (1 + ε)t)|(x, y)|2

+ (3|(x, y)|+ 2|t+ w|)|(x, y)||z|+ (3|(x, y)|+ |t+ w|+ |z|)|z|2]
≤ 19D2t2δ + C(1 + 3ε)18ρD2t2δ + C(1 + 7ε)6ρDtδ|z|+ C

[
(1 + 7ε)ρ+ 5

4ερ
]
|z|2

≤ 20D2t2δ + 1
4St

δ|z|+ 1
4 |z|

2 < 3
4 |z|

2.

From this contradiction, it follows that no such point can exist, hence (17) holds.
To interpret (16) and (17), letγ := γξ+ , γ0 : t 7→ (0, 0, t), Γ(ε, σ) := Γ(γ, 1, B(0, ε)2 × B(0, σ) ×

B(0, ε), ρ), andΓ′ := Γ′(γ0, 1, B(0, ε)3, ρ). Then (16) proves the existence of0 < ε < 1
4 , 0 < σ < 4ε,
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ρ > 0, andD > 1 such that(x, y, z, w) ∈ V ∩ Γ(ε, σ) and(x, y, w) ∈ R3 ∩ (Γ′ \ Γ′(γ, δ, B(0, D)3, 1))
implies (x, y, z, w) ∈ R4. Moreover, (17) proves that|z| < Stδ whenever(x, y, z, w) ∈ V ∩ Γ(ε, σ)
satisfies(x, y, w) ∈ Γ′(γ0, δ, B(0, 2D)3, 1).

Now we are going to use the assertions derived so far to show thatV satisfies a weaker variant of
PL(V,Γ). To do so fixu ∈ PSH(V ∩ Γ) and assume thatu satisfies the conditions (α) and (β) of Defini-
tion 11. Then defineφ : Γ′ → [−∞,∞[ by

φ(x, y, w) := max{u(x, y, z, w) : (x, y, z, w) ∈ Γ ∩ V }.

If we choose0 < ε < 1
4 and0 < σ < 4ε small enough, then the projectionπ : (x, y, z, w) 7→ (x, y, 0, w)

will be proper onV ∩ Γ(ε, σ
2 ), in particular it will be proper onV ∩ Γ(ε, σ). Hence it follows from

Hörmander, [7], Lemma 4.4, thatφ is plurisubharmonic onΓ′ = Γ(ε, σ)′. Next we note that condition (α)
of Definition 11, applied tou, implies the existence of a constantM , not depending onu, such that

φ(x, y, w) ≤M |(x, y, w)|, (x, y, w) ∈ Γ′. (19)

Furthermore, the considerations above and condition (β) of Definition 11, applied tou, imply

φ(x, y, w) ≤ 0 if (x, y, w) ∈ Γ′ ∩ R3 and‖(x, y)‖∞ ≥ Dtδ. (20)

Shrinkingρ if necessary , we may assume that8Dρδ−1 ≤ ε. Next fix 0 < t < ρ and define

v : D3 → [−∞,∞[, v(ξ, η, w) :=
1

2Mt
φ(εξt, εηt, t+ εwt).

Then the estimate (19) and0 < ε < 1
4 imply

v(ξ, η, w) ≤ 1
2Mt

Mt
(
ε2 + ε2 + (1 + ε)2

) 1
2 ≤ 1, (ξ, η, w) ∈ D3,

while (20) implies

v(ξ, η, w) ≤ 0 if (ξ, η, w) is real and‖(ξ, η)‖∞ ≥ D

ε
tδ−1.

By Lemma 6 these estimates imply the existence ofC ≥ 1 so that for‖(ξ, η, w)‖∞ ≤ 2
3 we have

v(ξ, η, w) ≤ C

(
|Im η|+ |Imw|+

∣∣∣∣Im √
ξ2 −

(
D
ε t

δ−1
)2

∣∣∣∣)
v(ξ, η, w) ≤ C

(
|Im ξ|+ |Imw|+

∣∣∣∣Im √
η2 −

(
D
ε t

δ−1
)2

∣∣∣∣) .

By the definition ofv, these estimates imply that for0 < t < ρ and(x, y, w) ∈ C, ‖(x, y, w)‖∞ < 2ε
3 t we

get

φ(x, y, t+ w)≤ CM
ε

(
|Im y|+ |Imw|+ |Im

√
x2 − (Dtδ)2|

)
φ(x, y, t+ w)≤ CM

ε

(
|Imx|+ |Imw|+ |Im

√
y2 − (Dtδ)2|

) (21)

Now we apply [1], Lemma 5.7, to get the existence ofC1 > 0, not depending onφ, so that

φ(x, y, t+ w) ≤ C1M

ε

(
|Imw|+ |Imx|+ |Im y|+Dtδ

)
(22)

and

φ(x, y, t+ w) ≤ C1M

ε
|Im(x, y, w)| if ‖(x, y)‖∞ ≥ 2Dtδ. (23)
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We claim that these estimates imply the existence ofC2 > 0 (not depending onφ) so that

φ(θ) ≤ C2|Im θ|, θ ∈ Γ′1\Γ′2, (24)

where forγ0(t) := (0, 0, t), we let

Γ′1 := Γ′(γ0, 1, B(0,
ε

2
)3, ρ), Γ′2 := Γ′(γ0, δ, B(0, 2D)3, ρ).

To show this, fixθ = (x, y, t+ iβ) ∈ Γ′1 and assumeβ ∈ R. If ‖(x, y)‖∞ ≥ 2Dtδ then (24) follows from
(23). If ‖(x, y)‖∞ < 2Dtδ and|β| < 2Dtδ thenζ ∈ Γ′2 and there is nothing to prove. If‖(x, y)‖∞ < 2Dtδ

and|β| > 2Dtδ then (22) implies

φ(θ) = φ(x, y, t+ iβ) ≤ C1M

ε
(|β|+ 5Dtδ) ≤ 4C1M

ε
|β| ≤ 4C1M

ε
|Im θ|.

This shows that (24) holds for an appropriate constantC2.
Now letΓ0 := Γ(γ, 1, B(0, ε

2 )2×B(0, σ)×B(0, ε
2 ), ρ) and note that the definition ofφ and the estimate

(24) imply that forζ ∈ V ∩ Γ0, ζ = (ζ1, ζ2, ζ3, ζ4) we have

u(ζ) ≤ φ(ζ1, ζ2, ζ3) ≤ C2|Im(ζ1, ζ2, ζ3)| ≤ C2|Im ζ|, (25)

whenever(ζ1, ζ2, ζ3) ∈ Γ′1\Γ′2. To show that (25) even holds for allζ ∈ V ∩ Γ0 and a possibly larger
constantC2, it therefore suffices to show that (25) holds wheneverζ ∈ V ∩ Γ0 and(ζ1, ζ2, ζ3) ∈ Γ′3 :=
Γ′(γ0, δ, B(0, 5

2D)3, ρ). To prove this note that by (17) each point(x, y, z, t + w) ∈ V ∩ Γ0 which satisfies
‖(x, y)‖∞ < 3Dtδ already satisfies|z| < Stδ. Hence we get (25) for allζ ∈ V ∩ Γ0 if we show

u(ζ) ≤ C3|Im ζ|, ζ ∈ Γ(γ, δ, B(0,
5
2
D)2 ×B(0,

3
2
S)×B(0,

5
2
D), ρ) (26)

and a suitable constantC3.
To prove (26) letG0 := B(0, 3D)2 × B(0, 2S)× B(0, 3D) and note that from (22) and the definition

of φ we get the existence of some constantB > 0 so that

u(ζ) ≤ B|ζ|δ, ζ ∈ Γ(γ, δ,G0, ρ). (27)

Then we note that (13) and [4], Lemma 7.2, imply that at each pointκ ∈ Tγ,dV ∩ R4 the varietyV is
(γ, d)-hyperbolic. Hence [4], Lemma 5.7, implies that for each suchκ there is a zero neighborhoodGκ

such thatPL(V,Γ(γ, δ, κ + Gκ, rκ)) holds. Now an application of [4], Lemma 5.6, shows thatV satisfies
PL(V,Γ(γ, δ,G0, ρ)) sinceB(0, 5

2D)2 × B(0, 3
2S) × B(0, 5

2D) is a relatively compact subset ofG0, we
get (26). Altogether we proved that there existsA ≥ 1 such that for eachu ∈ PSH(V ∩Γ′) andζ ∈ V ∩Γ0

we have
u(ζ) ≤ A|Im ζ|.

This is enough to apply [4], Lemma 5.10. The caseγ = γ− is treated in the same way. �
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