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Abstract. The local Phragmn-Lindebf condition for analytic varieties in complexspace was intro-

duced by Hirmander and plays an important role in various areas of analysis. Recently, new necessary
geometric properties for a variety satisfying this condition were derived by the present authors. These
results are now applied to investigate the homogeneous polynomialth real coefficients that are sta-

ble in the following sense: Whenevgris a holomorphic function that is defined in some neighborhood

of the origin, is real over real points, and hBsas its localization at zero then the zero variktyf) of

/ satisfies the local Phragm-Lindebf condition at the origin. It is shown thdt can only be stable if

V(P) satisfies the local Phragm-Lindebf condition at the origin and if, at each real pointn V' (P)

of modulusl, the localization ofP atx is either linear or an indefinite quadratic form. Further, for poly-
nomialsP in three variables it is shown that these necessary conditions are also sufficient for the stability
of P and therefore characterize the stable polynomials.

Resultados de perturbaci 6n para la condici 6n local de Phragm én-Lindel 6fy
polinomios homog éneos estables

Resumen. La condicbn local de Phragén-Lindebf para variedades antitas complejasi-dimen-
sionales fue introducida porddmander y juega un papel importante en vaéesas del amisis. Re-
cientemente los presentes autores han derivado nuevas propiedadéfrigasmue son necesarias para
gue la variedad satisfaga esta contlici Estos resultados se aplican ahora a investigar los polinomios
homogeneosP con coeficientes reales que son estables en el siguiente sentido: Guesmdaa fundin
holomorfa que est definida en un entorno del origen, es real en los puntos reales, y tiEngomo

su localizaddn en cero, entonces la cero-variedagf) de f satisface la condion local de Phragém-
Lindelof en el origen. Se prueba que puede ser establé®l® si V (P) satisface la condion local de
Phragnén-Lindebf en el origin y si, en cada punto reaken V' (P) de mbdulo1, la localizacon deP en

x es o0 bien lineal o bien una forma cuatica indefinida. Adei@s, para polinomio® de tres variables
se muestra que estas condiciones necesarias soretasuficientes para la estabilidad Bey, por tanto,
caracterizan los polinomios estables.

1. Introduction
The local Phragien-Lindebf conditionPL,,. for analytic varieties itC™ (see Definition 3) was introduced

by Hérmander [7] in his characterization of the linear partial differential operd?of3) which are surjec-
tive on the spacel(R") of all real analytic functions oR". In the intervening yearBL,,. has been shown
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to also be important in the study of other Phragmiindebf conditions, especially those concerned with
the existence of continuous linear right inverses for linear constant coefficient partial differential operators
P(D). For example, it was shown in Meise, Taylor, and Vogt [9] that a homogeneous partial differential
operatorP (D) admits a continuous linear right inverse &(R™) and/orD’(R™) if and only if its zero vari-
ety satisfies the local Phragm-Lindebf condition at the origin. In other work of the present authors ([8],
[5]), it was shown thaPL,.. at each real point of an algebraic variéfyis a necessary condition in order
thatV satisfiesSPL), the most natural extension of the classical Phriaghindebf theorem to algebraic
varieties. Moreover, Vogt [12] has recently shown that the local Pheaginndebf condition characterizes
the existence of continuous linear extension operators for real analytic functions defined on compact real
analytic subvarieties dR"™.

In the recent article [4] new necessary conditionsHay,. were obtained for analytic varieties @
and it was shown that these conditions are sufficient for surfaces. In the present paper we use these results
to investigate when a homogeneous polynorilat Rz, ..., z,] has the following property: Whenever
f is a holomorphic function on some neighborhood of the origif©inthat is real over real points and
hasP as the lowest degree homogeneous polynomial in its Taylor series expansion at zero, then the zero
varietyV(f) of f satisfies the conditioRL;..(0), i.e.,PLj.. at the origin. We call such polynomiadgable
In [4] it was proved that each homogeneous polynomiaé R[zy, ..., 2z,] for which V/(P) has no real
singularities outside the origin (i.€, is of principal type) and for whicly ( P) satisfiesPL;..(0) is stable.
We show here that this condition is only sufficient and th&®) may have singular points outside the
origin. Our main result is the following theorem.

Theorem 1 Forn > 3letP € Rz,..., z,] be homogeneous of degree> 1. If P is stable the/(P)
satisfiesP L, (0) and for eacht € V(P) N S™~! the localizationP; of P at¢ (see Definition 1) satisfies
the following two conditions:

(a) deg P: <2
(b) If deg P: = 2 thenPF% is an indefinite quadratic form.

For n = 3 these conditions are also sufficient..]

The proof of the necessity of the conditions (a) and (b) in Theorem 1 is based on the necessary conditions
for PLy,. derived in [4]. To prove that they are sufficient fer= 3 we show that the sufficient conditions
stated in [4] are fulfiled. More precisely, we show that around each real half line generatedeby
V(P) N S? there exists a complex truncated cdnso thatV’ (P) NT satisfies a hyperbolicity condition. To
achieve this whemn is a singular point o¥/(P), we use condition (b) to find a real analytic transformation
that allows the reduction of the general case to a more special one which is then handled by methods which
were developed in [4].

To illustrate the main result, we provide several examples in Section 4. Example 2 shows that there are
stable polynomials of any degree for which the zero variety has singularities outside the origin. Also we
show in Example 3 that the polynomiB( 1, 22, 23, z4) := 27 + 23 — 23 is stable. Hence, it might be that
the conditions in Theorem 1 are sufficient for any dimengion 3.

2. Preliminaries
In this preliminary section we introduce the basic definitions and notation which will be used subsequently.

Throughout the papef,| denotes the Euclidean norm &%, while B" (¢, r) denotes the ball of center
¢ and radius- in C". Whenn = 1 we write B(¢, r) instead ofB* (¢, r).

Definition 1 Let f: B™(¢,r) — C be a holomorphic function. Then
V(f):={z€ B"(&r): f(z) =0}

190



Stability of the local Phragmén-Lindel6f condition

will be called thezero varietyof the functionf.

For 6 € B™(¢,r) thelocalizationfy of f at 6 is defined as the lowest degree homogeneous term in the
Taylor series expansion of at 6.

Thetangent cond, V' (f) of the varietyV (f) at 6 coincides withV (fy) (see Chirka [6], 8.4 Proposi-
tion 1).

An analytic varietyV in C" is defined to be a closed analytic subset of some open €% i(see
Chirka [6], 2.1). ByViing (resp.Vies) we denote the set of all singular (resp. regular) point$/in

Definition 2 LetV be an analytic variety irC™ and let{2 be an open subset df. A functionu : Q —
[—o00, ool is calledplurisubharmonidf it is locally bounded above, plurisubharmonic in the usual sense on
eq, the set of all regular points oV in €, and satisfies

u(z) = limsup u(¢)
(EQregvc_)Z

at the singular points o¥” in 2. By PSH((2) we denote the set of all plurisubharmonic functionsbn

Definition 3 For ¢ € R™ andry > 0 let V be an analytic variety iB™ (£, ro) which containg. We say
that V' satisfies the conditioRL),. () if there exist positive number$ andr, > r1 > ro such that each
u € PSH(V N B"(&,ry)) satisfying

(@) u(z) <1, ze VN B"(,r)and
(B) u(z) <0, ze VNR"NB"(&,r1)
also satisfies
(7) u(z) < Allmz|, z € VN B, r2).
For various equivalent conditions f&L,..(£) we refer to [4], Lemma 3.3.

Definition 4 A simple curvey in C™ is a map~y: ]0, o[ — C™ which for somex > 0 and some; € N
admits a convergent Puiseux series expansion

y(t) =Y gt/ with & = 1.
Jj=q

Then¢, is thetangent vectoto v at the origin. The trace of is defined asr(~y) := ~(]0, «[). Areal simple
curveis a simple curvey satisfyingtr(y) C R™.

Definition 5 LetV < C” be an analytic variety of pure dimensién> 1 which contains the origin, let
v :]0,a[ — C™ be a simple curve, and let> 1. Then fort € |0, o[ we define

1
Vyta ={weCm () +wt? €V} = t—d(V — (1))
and we define thkmit variety T’, 4V of V of orderd along~ as the set

T,aV :={¢eC": (= lim z;, wherez; € V, ; 4 forj € Nand(t;);cnis a
J]—00 -
null-sequence ifo, a[}.
If it is clear from the context we will sometimes writg,; or justV; instead of/, ; 4.

From [3], Theorem 3.2 and Proposition 4.1 we recall the following results.
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Theorem 2 LetV be an analytic variety of pure dimensién> 1 containing the origin, lety be a simple
curve inC™ with tangent vectog at the origin, and letl > 1 be given. Then the following assertions hold:

(a) T, 4V is either empty or an algebraic variety of pure dimension
(b) T,V = TyV —&.
(c) If d > 1thenw € T, 4V ifand only if w + A € T, 4V for each\ € C.

We will also need the following definitions in Section 3.

Definition 6 LetV be an analytic variety if™ which is of pure dimensioh > 1 at { € V. A projection
m: C™ — C" is callednoncharacteristifor V" at € if its rank isk, its image and its kernel are spanned by
real vectors, and’;V Nker m = {0}.

Definition 7 Let~: ]0,a] — R™ be a real simple curve, lef > 1, let U be a subset of”, and let
0 < R < a be given. We call

L(v.d,UR):= |J () +t0)

0<t<R

the conoidwith core~, opening exponent, and profileU, truncated at R, provided that the origin does
not belong to this set.

Definition 8 Let V be an analytic variety of pure dimensidnin C™ which contains the origin, let
be a real simple curve, lef > 1, and let¢ € T, ;V N R"™. We say that/ is (v, d)-hyperbolic at¢
with respect to a projectior: C* — C™, which is noncharacteristic faf’, 4V at ¢, if there exist a zero
neighborhoodJ in C"™ andr > 0 such that: € V NT'(y,d,{ + U, r) is real whenever(z) is real. V is
called (v, d)-hyperbolic at( if it is (v, d)-hyperbolic at{ with respect to some projectionas above.

Definition 9 LetV be an analytic variety of pure dimensiérin C™ and let¢ € V N R™. We say that”
is locally hyperbolicat ¢ if there are a neighborhood’ of ¢ and a projectiont: C* — C™ which is
noncharacteristic fol” at £ such that: € V N U is real whenever(z) is real.

By Hormander [7], 6.5, local hyperbolicity implié3L,..; however, only forn = 2 andn = 3 itis
equivalent taPL,..

3. Results

In this section we state and prove the main results of this paper. Throughout this section the diménsion
assumed to satisfy > 3.

Definition 10 A polynomialP € Rz, ..., z,] is calledstableif P is homogeneous of degree> 1 and
if for each holomorphic functiorf: B™(0,r) — C which is real overB™(0,r) N R™ and for whichP is
the localization off at the origin the variety/( f) satisfiesPLjo.(0).

If fisaholomorphic function o®™ (0, r) for whichV ( f) satisfiesPLy,.(0) then [4], Lemma 3.18, im-
plies that, up to a complex constant factprs real over real points iB™ (0, r). Therefore the requirements
in Definition 10 are reasonable.

192



Stability of the local Phragmén-Lindel6f condition

To derive necessary conditions for a polynonftabe to be stable, we will use the following lemma.

Lemmal LetP € R[z,...,2,] be homogeneous of degréeThen there exists a real linear change of
variables such that in these variablé%z) = 3° | _3 aaz®, Wherea( o, o) = 0anda3p,....0) # 0

PrROOF SinceP does not vanish identically, we can chodgse. .., &, € R"™, linearly independent, so
thatP(¢;) = 1for2 < j <nandP(& ) = 0. With respect to the bas{g;, . . ., ) the polynomialP has
the desired representation.ll

The next lemma is crucial.

Lemma2 If P € R[z,...,z2,] is stable, then the following conditions are satisfied for eaehV (P) N
Sn—t:

(a) V(P;) satisfiesPLy,.(0)
(b) deg P: < 2.
PROOFE (a) This follows from [3], Corollary 6.3 and [4], Proposition 3.5.

(b) To prove (b), we first assume thédg P: = v > 4. Itis no restriction to assume thét= (0,...,0,1).
ExpandP in the form

P\ 20) = 3 pu(2)zp*, (1)
k=v

where the polynomialg;, are either homogeneous of degkeer identically zero and wherng, # 0. Then
pu(2') = Pe(2) (see, e.g., [1], Lemma 3.9). Now let=m + v — 3, b := m + v — 6, and define

Q7 2p) 1= 2220 — 2525,
Sincerv > 4, the degree of) is at leastn + 1. Hence,P is the localization at the origin of the function
f =P+ Q. Sincef is real over real points and singeis stable, the variety’( /) must satisfyPL;,.(0).
To derive a contradiction from this, note that by [4], Proposition 3.5, each limit vafiety/ (f) satisfies
PLioc(n) at each real poing € T, 4V (f). Now definey(t) := ¢£, ¢t > 0, and letd = 3. Then it follows
from a direct calculation oV, ; 4 in Definition 5 (or [3], Lemma 6.1), that

T,aV(f)={2€C": 2] — 25 =0}.
Obviously, this variety is the product &2 andW, where
W= {(z,y) € C*: 2% — y = 0}.

From this it follows easily thalV” has to satisfyPL,,.(0). However, this is not the case byknander [7],
Theorem 6.5. In this particular case, this can also be verified directly/ 1§ parametrized by = ¢3,
y = t2, then the functiorilm¢| = |[Imz/y| vanishes at the real points, but is @t/Im(z,y)|) in any
neighborhood of the origin. Thus, a contradiction has been reached from the assudegtion > 4.
Hence we haveeg P; < 3.

To complete the proof of (b) we now show that also the assumgtigtP: = 3 leads to a contradiction.
To do so we argue as before and expand

P(2, 2,) = p3(2)2" 73 ...+ p(2),

wherep;(z') = Pe(z). By Lemma 1 we can perform a real linear change of coordinat€éirt so that

p3(2') = Z aq(z')*,whereas o, .. o) =0, a,3,0,..0) # 0.
|a|=3

193



R. W. Braun, R. Meise, B. A. Taylor

ThenletQ(2, z,) := 222m~1 and definef := P+ Q. As above, the hypothesis implies thatf) satisfies
PL1oc(0). Next definey(t) := t£, t > 0, andd := 2. Then [3], Lemma 6.1 implies that

TyaV(f) ={z € C" : p3(2') + 2} = 0}.

SinceV (f) satisfiesPLi,.(0) and since € T, 4V (f), [4], Proposition 3.5, implies th&f, ;V ( f)satisfies
PLj,.(0). Since
TyaV(f)={ €C" " ips(2)) + 2§ =0} x C=: W x C,

W also satisfieL,.(0). Now note thatTy W is the zero set of the localization at the origin of the
polynomial defining?’, which shows

ToW ={z' e C" .27 =0}

HenceTy W is a complex manifold. Therefore, [4], Proposition 3.12, implies the following: Whengver
is in ToW N S™~2 and~, : t — tn, then for each projection in C"~! which is noncharacteristic for
T, AW =TyW —n atzero,W is (v,, 1)-hyperbolic ap.

To show that this hyperbolicity condition does not hold foralt ToW N S™~2, note that our assump-
tion onpz implies the following expansion, wheré = (2, 2"):

p3(2) = a1 (z") + 2102(2") + a3(2").

Here the polynomialg; are either homogeneous of degrgel < j < 3, or identically zero. Since
a(,3,,.,00 7 0 we must haveys # 0. Therefore we can choosg’ so thatgz(n”) > 0. Then let
n = (0,7") and note that : C*~* — C"~!, 7(2’) := (0, 2”), is noncharacteristic faF’, ;W at0 since
kerm = {(X,0,...,0) € C"~ ' : X € C}, while Ty (T, 1 W) = To(ToW — n) = TyW and hencéer 7 N
To(Ty, W) = {0}. Therefore our assumption implies that there exists an open zero neighbdrrsaumdh
thatz’ € W NT(y,,1,G,r) is real whenever (2) real.

To show that this does not hold, note that the pointa W for whichw(2’) = ~, (¢) satisfy the equation

0=ps(z") + 27 = L+ a(tn")z} + qa(tn")z1 + gs(tn”").
The discriminant of this quadratic equation is
D(t) = a2(tn")? — 4(1 + qu (1) g3 (t1").

Sincegs(tn”’) = t3q3(n’”") > 0 and sincey(tn”’)? is either identically zero or homogeneoug iof degree

four, it follows that for smallt the discriminantD(t) is negative. Hence the two roots of the equation

are not real. Since one can solve the equation explicitly one can check that the roots are inside the cone
I'(v4, 1, G, r) whent is small enough. This shows thif is not(~,,, 1)-hyperbolic in contradiction to our
assumption. Hence we must halkgg P <2. W

Lemma 3 LetP € R[z,...,z,] be stable of degreer > 2. If deg P; = 2 for some¢ € V(P)n S"~*
then P is an indefinite real quadratic form.

PROOF  After a real linear change of variables we may assgme (0,...,0,1) and we can expan#
as in (1), where nows (%) = P¢(%',2,). By Lemma 2 (a)V(P¢) and hencéd/(p;) satisfiesPLi.(0).
Sincep, is homogeneous of degrédy hypothesis, it follows from Meise, Taylor, and Vogt [11], Theorem
3.3, thatV/ (p») satisfiesPL(R"!). Therefore it follows from Meise, Taylor, and Vogt [10], Lemma 3 and
Proposition 2, thap, is either an indefinite real quadratic former = p? for some real linear form;. To
complete the proof we show that the latter case cannot occur.

Note that so far we have only used the fact tH&P) satisfiesPLi..(0). Now we will use the stability
hypothesis. If we assume that = p? for some linear fornp; then it is no restriction to assume(z’) =
z1, and hence

P2, zp) = 202 2+ pa(2 )2 2 4 4 i (2).
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Next letQ(2’, z,) := ™1 and definef := P + Q. ThenV(f) satisfiesPLj..(0) sinceP is stable.
To show that this is not the case assume first that 2. Thenf(z) = 27 + 23 andV (f) does not
satisfyPLy..(0) by Hormander [7], Theorem 6.5, or by the direct argument given in the proof of Lemma 2.
To treat the case: > 3, define the real simple curveby ~(¢) := (0,...,0,¢) and letd := %. Then
note that by [3], Lemma 6.1, we have

T,aV(f)={2€C": 2} =0}.

HenceT, ,V (f) is a complex manifold. Therefore it follows from [4], Proposition 3.12, thi@f) must
be (v, d)-hyperbolic at0 € T, 4V (f). To show that this is not the case, define C* — C”, n(z) :=
(0, 2z2,...,2,). Thenr is noncharacteristic fof’, 4V (f) at0, sinceT’, 4V (f) is its own tangent cone.
Hence there exist a zero neighborhdddn C? andr > 0 such that for each € V(f) NT'(v, d, U, r) with
m(z) real,z must be real. To show that this does not hold, consider the equation

0=f(21,0,...,0,t) = 2}t 2 4 £ 43 " p{t™ I,
j=3

whereb; := p;(1,0,...,0),3 < j < m. For0 < ¢t < rletz(t,\) = it3>? + \, where) € C satisfies
|| = t3/2/4. Then
7

1 1
_Byym—2) s o 3/2 9_ = 3/2pm—2 _ m+1
(a8, 3) = #6772 > 922 = A2 =

and

m m
S 5 .. . 1
‘;bﬂl(td)]tm J’ < jz_:g‘bjlitwt’” T < AP

for a suitable constamt. Hence there exists < t, < r such thatd¢!/2 < 7/16 for 0 < t < to. Therefore
the Theorem of Rouéhimplies that fol0 < ¢ < t, there exists: () satisfying f(z1(¢),0,...,0,t) =0

and |z, (t) — it3/?| < t3/2/4. Because of this estimate we hale 2, (t) # 0. Sinced = 4/3, it is

easy to check that for sufficiently small < ¢ < t, the pointw(t) := (z1(¢),0,...,0,t) belongs to
V(f)NT(y,d,U,r)andr(w(t)) is real, whilew(t) is not real, in contradiction to thigy, d)-hyperbolicity
of V(flato e T, 4V (f). N

To derive the necessary conditions for stability in Lemma 2 and Lemma 3 we did not use the full strength
of Definition 10, since the only holomorphic functions which we needed were polynomials.

The following sufficient condition for stability was proved already in [4], Proposition 7.4. Because
of Euler’s rule and the fact that a homogeneous polynofialoes not have any elliptic factorstf(P)
satisfiesPL),.(0), we can reformulate this result as follows.

Proposition 1 LetP € R[zy,..., 2,] be homogeneous of degree> 1. If V(P) satisfiePL;,.(0) and
if deg Pe = 1 for each¢ € V(P) NR", thenP is stable. W

To show that the necessary conditions for stability which we derived so far are sufficientuheh
we need the following lemmas.

Lemma4 Let f: B®(0,7) — C be a holomorphic function, and lét € N satisfyk < n. Group the
variables as: = (s, w,7) € Ck x C"~*~! x C and assume that

f(z) = ZTlfl(s,w) for fo(s,w) = ij(s,w),
1=0 j=2
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wherep; is either zero or homogeneous of degjeéssume furthermore that

k

p2(s,w) = Q(s) == z:)\izf7 A #0forl <i<k.
i=1

Then there exist > 0, a neighborhood’ of zero inC™~*, and holomorphic maps: U — C*,G: U — C,
andR: B*(0,¢) x U — C such thath(0) = 0, G(0) = 0,

fls+h(w,7),w,7) = Q(s) + G(w, ) + R(s,w, ) for|s| <eand(w,r) e U, (2)
and |R(s,w,7)| = O(|s|*(|s| + |w| + |7])). Furthermore:
(a) If all Taylor coefficients off are real, then the same holds farand G.

(b) If Q is the localization off at 0, then|h(w, 7)| = O(|(w, 7)|?) and |G(w, 7)| = O(|(w, 7)[?).

PROOF.  Denote by2! the vector( 2L, ..., 2L). We claim the existence of a functidnand a neighbor-
hoodU of zero satisfying
g—f(h(w,T),w,T) =0 for(w,7)eU. 3)
S

To prove this claim, note first that

hence%(o, 0,0) = 0. To verify the remaining hypothesis of the implicit function theorem we also have

to check that the Jacobi matrix @E with respect to the-variables is invertible at the origin. It is easy to
see that this matrix is the Hessian ff,0,0) ats = 0 and that this Hessian is the Hessianthfhence
invertible by hypothesis. This proves the existencé ahdU as in (3).

For sufficiently smalk define

Gw,7) = f(h(w,7),w,7) for(w,7) e U,
R(s,w,7) = f(s+ h(w,7),w,7) — Q(s) — G(w, ) for|s| <eand(w,7) € U.
Then (2) is obvious.

Define F(s,w, ) := f(s + h(w, ), w, ) and insert (3) into its Taylor series expansion with respect
to s for fixed (w, 7) € U:

F(s,w,7) = F(O,w,7) + 90 (0,10,7)s+ O(1sP) = G(w, ) + O(1sP),

where theO-estimates are locally uniform ifw, 7). So far, we have proved thaR(s, w, )| = O(]s|?).
To improve this bound, consider

R(s,0,0) = f(5,0,0) = Q(s) = > _p;(s,0).
j=3

Hence|R(s,0,0)| = O(|s|?). Together with the estimate?(s,w, )| = O(|s|?) we have proved the
assertion concerning.

Claim (a) follows from the real implicit function theorem. To prove (b), note first that the implicit
function theorem states that the entries&/8f(0, 0) are linear combinations of elements of the form

0% f
szazl

(0,0), 1<j<k<l<n.
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Since the localization off at 0 is @, all of these derivatives vanish, and it follows tHa{w, )| =
O(|(w, 7)|?). To prove the second assertion, recall the definitio6'of

G(w,7) = Q(h(w, 7))+ Y _ pj(h(w,7),w) + > 7 fi(h(w, ), w).
Jj=3 =1

The first term isO(|(w, 7)|*) since|h(w, 7)| = O(|(w,7)|?). The second one i®(|(w, 7)|?) since the
degree op; is j. The last term vanishes of order at lezisince the hypotheses of (b) imply tha{(0,0) = 0
and thatf; vanishes at least of orderat the origin. W

Lemma5 Letp > 0,letR: B(0,p)® — C be a holomorphic function which for sorie> 0 satisfies the
estimate

|R(z,y,2)| < Cl(z,9)(|(z,9)| + [21),  (2,9,2) € B(0,p)?,
and defing;: B(0,p)® — C by

g(xa Y, Z) = IZ - y2 + R(SC, y,Z).
Then there exist8 < § < p such that the map
m: V(g) N (B(0,0) x B(0,38) x B(0,8)) — B(0,8)*, 7(z,y,2) = (x,2),

is a two sheeted branched cover with branch lo€( 0)} x B(0,4). If R is real for real (z,y, z) then
(z,y, 2) is real whenr (x, y, 2) is real.

PrROOF Choosé) < ¢ < min(p, 1) so small that
C(3)" (30+0) < 1.
Then fix(z, z) € B(0,6)? andA € C with |A| = 2§ and note that

2% =N = (30)° - 8° = (39)".

Hence the estimate fd? and the choice of imply
IR(z, A, 2)] < C(28)° (26 +68) < £62 < (35)” < 2% = N2|.

Therefore Roucl's theorem shows thgt— g(z,y, 2) andy — x? — y? have the same number of zeros in
the disk|y| < 24. Hencer is a two sheeted branched cover. The estimatéfimplies thaty — ¢(0,y, 2)
has a zero of orde aty = 0 for eachz € B(0,§). To show that for(z, z) € B(0,§)? with z # 0 the
functiony — g(, y, z) has two different zeros, fix with |A\| = 1|z| and set

y(z, 2, \) =2+ A\

Then
2% —y(z, 2, A)?| = |22 — A| > flz|f|z| = Glf*.

Hence the estimate fd® and the choice of imply
2
|R(z,y(x,2,),2)] < C (§lz2])” (Flz] +6) < f5lal* < |2* — y(z,2,2)?|.
Therefore Roucl’s theorem implies that the functian — ¢g(z,y, z) has exactly one zero in the disk
B(z, Y|z|) € B(0,26). Since we can argue in the same way usjtig, z, ) := —z + A, we proved

the first assertion of the lemma. The second one follows from it by the real implicit function theorem and
analytic continuation. H
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Theorem 3 Let P € R[z, y, z] be homogeneous of degree> 1. P is stable if and only ifP satisfies the
following three conditions

(@) V(P) satisfiesPLj,.(0).
(b) Foreach¢ € V(P)N S?, deg P < 2.
(c) If deg P = 2for & € V(P) N S? thenP is an indefinite quadratic form.

PROOFE The necessity of the conditions (a)—(c) follows from the definition of stability and the Lemmas 2
and 3. To prove the sufficiency of the conditions (a)—(c), fix any holomorphic fungtiaB*(0,r) — C
which is real over real points and satisfigs= P. To show thal’” := V'(f) satisfiesPLj..(0) let

M :={€€V(P)nS*:degP; =2}.

If M = (, the theorem follows from Proposition 1. M # ( we want to derive the theorem from [4],
Theorem 7.3. To show that its hypotheses are fulfilled, note firstfifldt= V (P) satisfiesPL,.(0) by
(a). Furthermore]p V' has multiplicity one, or equivalently? is square-free, sincg;: is square-free by (c)
and the localization of a product is the product of the localizations of its factors.

Next we claim that all the other hypotheses of [4], Theorem 7.3, are trivially satisfied, because the set
C, defined in [4], 5.1, is empty for the variet( f). Hence the present theorem follows from [4], Theorem
7.3, once we show = ().

By the definition of the sef we haveC = () if we prove the following assertion:

For eacht € M there exist € S?\(T,V U T¢(ToV)), a zero neighborhoot! in C* 4)
andr > 0 such that there is at most one branch of theenh R? contained in the
conel'(ve, 1, U, ),

wherey, : t — t¢ and where

B¢ = {(a?,y,z) eVv(f): g—g(x,y,z) = 0}.

To prove (4), fix¢ € M. After a real linear change of variables, we may assume(tha(0, 0, 1) and that
P is represented as in (1), namely

m

P(z,y,2) =Y pi(x,y)2" ",
k=2

wherepy(z,y) = P:(z,y, 2) is an indefinite real quadratic form. Hence we may perform a further real
linear change of thér, y)-variables to obtaip, (z,y) = 2 — y2. Then define for # 0

1
g(w,y,z) = Zimf(xzayzaz)

and note that forv € N3 with |a| > m we have

1

Zm

(xz,yz,2)* = Zlol=mgaa oy

Hence the assumptions grimply

m oo
9@y, 2) =2 =y + > prlm,y) + Y #gi(@,y).
k=3 j=1
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This shows thay extends to a holomorphic function in some neighborhood of the origi¥irwhich we

also denote by. It is easy to check that satisfies the hypotheses of Lemma 4. Hence this lemma implies
the existence op > 0, e > 0, and of holomorphic functions: B(0, p) — C2, G: B(0,p) — C, and

R: B(0,¢)? — C satisfying

9((x,y) + h(2),2) = 2® —y* + G(2) + R(z,y,2), (2,9,2) € B(0,€)* x B(0,p) (5)
as well as
h0) =0, |G(2)|=0(z]), and |R(z,y,2)| = O(|(z,y)]>(|(x,y)| +|2)).

Sincef has real Taylor coefficients, so doandG by Lemma 4 (a).
Next leth = (h,, h,) and define

V() == (the(t), thy(),t), 0<t<p.

Since|h(t)| = O(]t]), the tangent vectors of and of+.(t) := (0,0,t) at zero coincide. Hence for each
0 < ro < 1 and each zero neighborho6d in C? with U, ¢ B3(0, %) there exist a zero neighborhoéd
and0 < r < 1 so that

I'(ve,1,U,7r) CT'(v, 1,Up, 1o).

Therefore it suffices to prove (4) for some cone with cerelo do so, assume < t < p, || < et, and
In| < et and note that the definition gfand (5) imply

FE+thy(t),n+thy(t),t) = tmg<§ +ha(t), T + hy(t),t)

m ((5)2 — (1) +G(t) +R(§>’Z7t)) )

since|¢/t| < e and|n/t| < e. Now consider two cases:

Case 1.G = 0.
In this case Lemma 5 implies that in a suitable cdite, 1, Uy, po) we have exactly one real branch curve
of V for the projectionz, y, z) — (z, z). Hence (4) holds in this case.

Case 2:G # 0.

In this case the properties 6f imply the existence of € N such thatG(z) = Z;‘;l a;jz’, wherea; € R
anda; # 0. In the sequel we assumg > 0. If ¢; < 0, thenz andy have to be interchanged. Since
a; > 0 we can choose( > 0 such that=(t) > 0 for 0 < ¢t < o¢. Moreover, we can choos¢ > 0 and

0 < p1 < psuch that

(6)

G(2)] < Alzl, [2] < pr.
The properties o2 imply the existence of’ > 0 such that
[R(z,y,2)] < Cl(a,y)* (|(z, )| +12]), (z,9.2) € B(0,p)*.
Next choosd < o < g9 and0 < § < p; so small that the following conditions are fulfilled:
Ao+ C(30)*(30 +0) <36 and C(§+0)< 1.
Then we claim that for eacft, t) € R? satisfying0 < ¢t < o and|¢| < 6t the function
N f(€+thy(t),n+ thy(t),t)

has exactly two distinct real zergs(¢, t) andny (&, t) satisfying|n; (£, t)| < 26t. From this claim it follows
that there exists a cold&, 1, Uy, o) so that the projection of V NI'(v,1,Uy, o), w(z,y, 2) = (z, 2), has
no real branch curve, so that (4) holds also in this case.
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To prove our claim, note that by (6) it is an obvious consequence of the following assertion
For each) < t < o and each-§ < x < ¢ the equation @)
q(z,y,t) == 2® — > + G(t) + R(z,y,t) = 0
has exactly two real solutiong, y, satisfying|y;| < 26, j = 1,2.
To prove (7) note first that far € C, |z| < é and0 < t < o the choice ofd ando together with the
estimates for7 and R imply that forA € C with |A| = 2§ we have the estimate

G(t) + Rz, \, )| < At + C|(z, M) (|(z, \)] + 1)
< At+C(36)%(30 + 1) < 30% < 462 — |z* < 2% — ).
Hence Roucé’s theorem implies thaj — ¢(z,y,t) has exactly two zeros in the digk(0, 26). To show
that these zeros are different and real whésreal, note that our choices @f, o, andn imply the following
estimate fo) < t < g and—§ < x < ¢:
g(2,0,t) = 22+ G(t) + R(z,0,t) > 2% + G(t) — C(jz]> + |2[2t) > & + G(t) > 0,
q(x, £20,1) 22 — (20)% + G(t) + R(z, £26,1)
—30% 4+ At + C(|z| 4+ 20)2(Jx| + 26 + 1)
—362 4 Ao + C(38)2(36 + o) < 0.

IN A

From these estimates it is obvious that the equagiony,t) = 0 has at least two real solutions. This
completes the proof of (7) and of the theoremll

Note that Theorem 1 now follows from Lemma 2, Lemma 3, and Theorem 3.

Note that the full generality of [4], Theorem 7.3, is not needed to prove Theorem 3. In fact, the present
proof shows—in the notation of [4]—that fgras in the proof of Theorem 3 and eacke V (f) N S? the
variety V(f) is (v¢, 1)-hyperbolic at0 € T, 1V (f), wherey.(t) := t¢. Hence [4], Lemma 5.7, implies
that V(f) satisfiesPL(V (f),T'(v¢,1, G¢,7¢)) for a suitable zero neighborhoda#: andr. > 0 and for
each¢ € V(f)NnS2. From this and [4], Lemma 5.13, it follows thEY( f) satisfiesPLy,.(0), becausé’(f)
also satisfieRPLj..(0). The latter assertion follows from tHe., 1)-hyperbolicity stated above and [2],
Theorem 10, as it was indicated at the beginning of the proof of [4], Theorem 5.3.

4. Examples

In this section we provide some examples to illustrate the results of the previous section.

Example 1 Forn > 3 andm > 1 the polynomials’,,, defined by

Po(z1,...,2,) = Zz]m -z

are stable.

ProoFr  This follows from Proposition 1, sinagrad P,,,(z) # 0 for eachz € C™\{0} and sincéV’(P,,)
satisfiesPL,.(0) by Meise, Taylor, and Vogt [9], Example 4.9, and [11], Theorem 3.3

In Example 1 stable polynomialsin> 3 variables of any degree are given. However, their varieties are
manifolds outside the origin. The next example shows that there are stable polynomials in three variables
of any degreen > 2 for which the zero varieties have singular points outside the origin.
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Example 2 Form € N, m > 2, defineP,, € R[z,y, z] by
Py(z,y,2) =2 =y, Ps3(z,y,2):= (" —y*)z + 2(a® + )
Po(z,y,2) = (x2 — yz)zm_2 +am 4y e, om >4l
Then
V(Prn)sing N S* = {(0,0,1), (0,0, -1)}
and P, is stable for eachn > 2 and irreducible form > 3.

PrROOF  To derive this from Theorem 3, note first that the assertion obviously holds fer2. Form > 3
we claim thatP,, andgrad P, both vanish oriR? exactly on the linel := {(0,0,¢) : t € R}. To prove
this claim, note that

grad P3(z,y,2) = (2x2 + 32° + y*, y(—22 + 22), 2% — ¢?)

and form > 4

grad P, (z,y,2) =
(1(22”‘*2 + m:cmfz), yz(722m73 + (m— 1)ym*3), (m — 2)(x2 — y2)zm73 + ymfl).

From this it follows easily thaf®,, andgrad P,, both vanish onl.. Hence our claim is proved once we
show that for¢ = (x, vy, 2) € R? satisfyingP,,(¢) = 0 andgrad P,,(¢) = 0 we haver = 0 = y.

To show this forn = 3, note first that the vanishing of the last componentiafl P; impliesz? = 2.
Hence the vanishing d?;(¢) implies

0=P5) = (2° — )z + z(2? + ¢*) = 22°

and hence: = 0 andy = 0.
Assume now thatn > 4 and thatP,,(¢) andgrad P,,(¢) = 0, where¢ = (x,y,2) € S%. We claim
x =y = 0 and assume for contradiction that 0. Then the first component gfad P,,({) = 0 implies
Zm—? _ _%x'm—27 (8)
sincez andz are real. In particulary is odd. We insert (8) into the second componergafl P,,({) =0
and multiply byy to get

my*c™ % = (1 —m)zy™ L. 9)

On the other hand, we insert (8) ini%,(¢) = 0 and get
_ E m T 2,.m—=2_ _ _,m—1
(1 2)3: —|—2ym 2y . (10)
Now equations (9) and (10) are combined to get a relation betweenly, namely

o (m-1)(m-2) ,
= —F—I". 11
Y m(m — 3) ’ (11)
This showsy # 0, sincez # 0. The next step is to divide (9) by? and to insert (11) into the result. This
calculation yields

(m—1)(m—2\"V2
m(m — 3) ) =t '

ma™ % = (1—m) (
Sincez # 0, this equation leads te = «z for a suitablen. Sincem is odd, the exponerftn — 3)/2 is an

integer, andx € Q. On the other hand, we know from (8) that= (—m/2)'/(™~2) which is not rational
for oddm by Eisenstein’s criterion. So the assumptiog: 0 was false.
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If x = 0 andz = 0, then the third component gfad P,,,(¢) = 0 impliesy = 0. We still have to treat
x = 0andz # 0. In that case the second equatiorgedd P,,,(¢) = 0 andP,,,(¢) = 0 imply

yz (=22" 3+ (m—1)y"?) =0 and y’z (- +y"?) =0,

respectively. Sg = 0, which is the claim, or the terms in parentheses vanish. The latter case yields a linear
system iny™ 3 andz™~3 with determinantlet (:% ””1‘1) =m — 3 # 0. Hence also in that cage= 0.
The statement about the singular locug%f and hence the first assertion of the example is proved.

To derive the stability ofP,, for m > 3 from this fact, we want to apply Theorem 3. Since the
localization of P,,, at the points in the seft(0,0,+1), (0,0, —1)} = V(P,,)sing N S? equalsz? — y? or
(—1)m=2(2? — y?), the conditions (b) and (c) of Theorem 3 are fulfilled. To show that also condition (a) of
Theorem 3 is satisfied, namely tHat P,,,) satisfiesPL,.(0), notice first that?,, is irreducible form > 3.

To see this forn > 4 write P, as a polynomial irC[y, z|[], i.e.,

P (z,y,z) =2™ 4+ 222 g (ymly y2zm,—2).

Then each term except the leading one is a multiple,dhe absolute term is not a multiple of, and
z is a prime element iC[y, z]. Hence Eisenstein’s criterion implies th&}, is irreducible form > 4.
ConsideringP; as an element df [z, z|[y], a similar argument shows that al8 is irreducible.

Now note that by the irreducibility of?,, it follows from Meise, Taylor, and Vogt [11], Corollary
3.14 and Theorem 3.3, th&t(P,,) satisfiesPL,,.(0) if and only if it satisfies the conditioQHPL). By
Hormander [7], Theorem 6.5, this holds if for egch V (P,,)N.S? the varietyV ( P,,) is locally hyperbolic
at¢ or equivalently satisfieBLo.(€). Sincegrad P,,(€) # 0 for each¢ € C™\ L by our claim, it suffices
to show that (P,,) satisfiesP1L,.(0,0,+1). By [4], Lemma 6.1, this holds if and only if the zero variety
of the reduction of?,, at (0,0, +1), defined by

4z (7, y) = P (z,y,£1)
satisfiesPL,.(0). Now note that
G (z,y) = £(2% — %) + 2% + 297, gx(z,y) = ()™ (2® —9?) + 2™ £y, m > 4.
From these equations it follows easily thé(q,,+) C C? is locally hyperbolic at0, hence satisfies

PLjoc(0). Therefore,V(P,,) satisfiesPLj,.(0) for m > 3. Since we have shown that all the hypothe-
ses of Theorem 3 are satisfied, the stability?pf now follows from Theorem 3. B

To provide an example of a stable polynomialin four variables for which/ (P)gne N S # 0 we
need some preparation. First we extend [1], Lemma 5.8.

Lemma 6 Denote byD the open unit disk il and assume that fot, £k € Nand0 < e < % the function
v € PSH(D™ x D*) satisfies the following two conditions:

(i) v(z,w) <1, (z,w) € D" x D¥,
(i) v(z,w) <0if (z,w) is real and||z|| o > €.

Then for each\ < 1 there exists a constadt, > 0 such that for eacly, 1 < v < n, the following estimate
holds onD™ x D*:

(i) v(z,w) < Cy (Z?Zl,j#yﬁmwﬂ + |Im /22 — 62|), (z,w) € (AD™) x (ADF).
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PrRoOF Denote byh the harmonic measure for the real axis in the unit disk and denaite thye function
which is harmonic in the unit disk with the real intervélsl, —e¢] and[e, 1] removed, and with boundary
valuesl on|¢| = 1and0 on[—1, —€] U [e, 1]. Then fixv, 1 < v < n, and fix

(Z1y -y 21y 21 - ooy 2y w) € (D71 x DF) N (R x R¥)

and consider the function
¢:D— [—o0,00[, @(z,) :=v(z,w).
Note that the hypotheses orand the properties df, imply
o(z0) < ke(z,), 2z, €D.

Next fix z,, € D and consider the function

DX DY — [—o0,00[,  Y(2 w) = v(z,w) — ke(2),
wherez’ = (z1,...,2u-1,204+1,.-.,2,). Note that the estimates far and for¢ imply v+ < 1 and
¥(z',w) < 0whenever(z’, w) is real. Hence the maximum principle implies

k

V(' w) <D h(z) + Y h(w;).

v j=1

By the definition ofi, this implies

k
v(z,w) < h(z) + > h(w)) +ke(z,), (z,w) € D" x D,
J#v j=1
Now (iii) follows from known estimates fok andk. (see, e.g., [1], Lemma 5.8). &
From [4], Definition 5.5, we recall:

Definition 11 LetV C C™ be an analytic variety of pure dimensiénwhich contains the origin, lef be
areal simple curve irC™, d > 1, R > 0, D an open set itC", and letl" := I'(v, d, D, R) be a conoid. We
say thatV” satisfies the conditioRL(V, T") if the following holds: For each compact skt C D there exist
Ag, 9 > 0 such that eachh € PSH(V N T') which satisfies

(@) u(z) <|z|4, zeVNT
(B) u(z) <0, zeVNI'NR"
also satisfies
(7) u(z) < AplImz|, ze€eVNT(y,d,K,R)NB"(0,rp).
Example 3 The polynomialP € Rz, y, z, w], defined by
P(z,y,z,w) = a® +y? — 2%,
is stable.

PROOE To prove this, fix a holomorphic functiofl with real Taylor coefficients whose localization at
the origin isP. By Lemma 4 there are;, e5 > 0 and holomorphic functions, &, 1, (: B(0,¢;) — C and
g: B3(0,e2) — C, all with real Taylor coefficients, such that for &lt, y, 2, w) € B3(0, e2) x B(0,¢1)

F(z +&{(w), y +n(w), z + ((w), w) = P(z,y, 2) + h(w) + g(z,y, z,w),
max (|&(w)], [n(w)], [¢(w)]) = O(jw]?),
h(w)] = O(|w]*),
lg(z,y, z,w)| = O(I(z,y, 2) P |w| + |(z,y, 2)|*). (12)
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Setf(z,y,z,w) := F(z + £(w),y + n(w), z + {(w),w). Sinceg, n, and¢ have real Taylor coefficients
and vanish at the origin, it is easy to see thaf") satisfiesPLy..(0) if and only if V' := V (f) does.

To show thatl satisfiesPLy,.(0), note first thatl’ (P) = V(P) x C, whereP is the polynomialP
considered as an elementRfz, y, z]. Hence it follows from Proposition 1 th&f(P) satisfiesPLio.(0).
SincePLy,.(0) implies the conditioRPLy..(0), defined in [4], 3.6, it follows from [4], Lemma 5.13, that
V satisfiesPLi,.(0) if we show that for eaclj € V (P)N S? there exist an open zero neighborha@ggdand
re > 0 so that forye : ¢ — t&, the varietyV satisfiesPL(V,I'(v¢, 1, Ge,7¢)). To show that this condition
is fulfilled, note thagrad P vanishes exactly on the line:= {(0,0,0,A) : A € C}. Hence it follows from
[4], Lemma 7.2, that for eache V(P) N S3, € # &4 = (0,0,0,£1), V satisfiesPL(V, T), for a suitable
conel’ =T'(ve, 1, G¢, m¢). Hence it remains to show that this condition also holdgfoand¢_. To do so,
we consider two cases.

Casel:h =0

From (12) and the particular form gfit follows as in the proof of Lemma 5 that the projectionlefined by
(x,y,z,w) — (x,y,0,w) provides a two sheeted branched coveVafi U with branch locuq (0,0, 0)} x
B(0,0) in a suitable neighborhood and that(z, y, z,w) is real whenr(z, y, z, w) is real. This implies
that V' is (., 1)-hyperbolic at0. Hence it follows from [4], Lemma 5.7, that there exists a cbne-
I'(vey,1,Ge, e, ) sO thatl satisfiesPL(V, T'). By the preceding, this shows thietsatisfiesPLi,(0) in
this case.

Case2:h #0
The present hypothesis and (12) imply the existende®fN, k > 3, such that(w) = Z‘;’;k bjw’, where

bi # 0. From this and [3], Lemma 6.1, it follows that for.= g > % we have

T

Veq s

AV ={(r,y,z,w) eC 12 +y* - 2> =0}, 1<d<9

and
T’Y§i75V = {(l’,y,Z,U}) € C4 :pi(xayazv 1) = 0}’

where
pe(z,y,z,w) =2 + y* — 2% + by(+w)".

Sinceby, # 0 by hypothesis in this case, we have
gradp+(¢) # 0 foreach € T, sV NR™. (13)
Next chooséd < p; < r so small that
[h(w)| < 2[bg|[w]*  for w| < p1. (14)
According to (12) we may choogg also so small that there exigts > 0 such that
l9(z,y, z,w)| < Cl(z,y, 2) P (|29, 2)| + |w]),  (2,y,2,w) € B0, pr)". (15)

Now choosé) < e < p;/2 and0 < p < p; so small that

2
9 9 1 1 1
Z Ze+1 = and2lbg| =pF 2 < =
C<4> <4e+ >p<4 |k|€2p <7

and choosé > 1 so large that
2

D
(14 e)*2lby| < -

Then we claim

Whenever) < t < p and(z,y) € R? satisfiesDt’ < |(z,y)| < et thenz — (16)
f(z,y, z,t) has exactly two distinct zeros in the digk0, 2t). These zeros are real
and satisfyz| < 2|(z,y)|.
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To prove this claim, fiXz, y) as in (16) and assume thate C satisfied\| = 2¢t. Then

2 2
2 02 42 5 a2 (3
|z= 4+ y= — A > 46t (et)* = 4et .

The estimates (14) and (15) together with the choiceasfdp imply

5
1

IN

2\by|th + C (Jet)? (2et + 1)
[2[bkle2p 2 + C(2)? (Se + 1) p] €?
< (%et)Q < |z +y? + N2

|h(t) + g(z,y, A\ 1)

IN

Hence the first statement in (16) follows from Roaththeorem. To prove the second one, note that for
x,y real, the present choices imply
flz,y,0,t) = 2% +y?+h(t) + g(z,y,0,t)
? +y? = 20bi|t* — Cl(z,y) P((2, y)| +1)
x2 +y2 _ ithk _ i(xQ +y2) > %(12 +y2) > 0’

v v

while

EN[S

flay, £2) (@) t) = =)@ +y?) + 22 + > + h(t) + g(z, y, £2|(z,9)],1)
— 15 (@ + ) + 2|b|tF + C (2|, )P (F (2, m) + 1)
(@ +9?) + D% 4+ 3(@* +9%) < —35 (2 +97) <0.

IA
&le

IN
|

1

[=2]

Obviously, these estimates imply the second assertion.
Next we claim that the following assertion holds:

There existS > 7D andp > 0 so that if0 < t < p, (x,y,2,w) € t[B(0,€)? x 7
B(0,32¢) x B(0,¢€)], (z,y,2,t +w) € V,and||(z,y)||« < 3Dt° then|z| < St°.

To prove this, let > 0 andD > 1 be as before. Shrinking > 0 if necessary, we may assume that
5 1
18C(1+3¢e)p <1 and C[(1+ 7e)p + Zep] <7

Then we choosé > 7D so large that

6C(1+Te)p < % (18)

Assume now that there exists, y, z, ¢t + w) € V which satisfies the conditions in (17) whifg#’ < |z| <
S¢t. Then our choices and (14) together with (15) and the obvious estjaatg z)| < |(z,y)|+|z| imply

|27 = |2 +y? +h(t+w) +g(z,y,2,t + )
18D%% 4+ 2(1 + €)*[by|t* + C(I(z,y, 2)> + |(z, y, 2) P |t + w])
(18 + 1) D> + C[(|(z,y)| + (1 + e)t)| (2, y)[?
+ Gl y)| + 2t + w2, y)ll2] + Bz, y)| + [t + w| + |2])[2]?]
19D2t20 + C(1 + 3€)18pD?t?° + C(1 + 7€)6pDt°|z| + C [(1 + Te)p + 2ep] | 2]
< 20D 4 1510)2] + 12 < 3|22

IN A

IN

From this contradiction, it follows that no such point can exist, hence (17) holds.
To interpret (16) and (17), lef := ¢, , v : t — (0,0,¢), I'(e,0) := T'(v,1, B(0,€)* x B(0,0) x
B(0,€),p), andI” := I"(o, 1, B(0,€)?, p). Then (16) proves the existence®k ¢ < 1,0 < o < 4e,
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p > 0,andD > 1 such that(z,y, z,w) € V NI (e, 0) and(z,y,w) € R3N (I \ I'(v, 4, B(0,D)3,1))
implies (z,y, z,w) € R*. Moreover, (17) proves thdt| < St° whenever(z,y,z,w) € V NT'(e,0)
satisfieqx, y, w) € I (0, d, B(0,2D)3,1).

Now we are going to use the assertions derived so far to showlttestisfies a weaker variant of
PL(V,T'). To do so fixu € PSH(V NT') and assume that satisfies the conditionsf and (3) of Defini-
tion 11. Then defing : IV — [—oo, oo by

#(z,y, w) == max{u(z,y, z,w) : (z,y,z,w) €NV}

If we choose) < € < i and0 < o < 4e small enough, then the projectian (z,y, z,w) — (z,y,0,w)
will be proper onV N I'(¢, Z), in particular it will be proper orV/ N I'(¢,0). Hence it follows from

Hoérmander, [7], Lemma 4’2, thatis plurisubharmonic ofi” = I'(e, o)’. Next we note that conditiorn
of Definition 11, applied ta:, implies the existence of a constavt, not depending om, such that
o(z,y,w) < M|(z,y,w)l, (z,y,w) €T (19)
Furthermore, the considerations above and conditimf{ Definition 11, applied ta:, imply
(z,y,w) <0 if (z,y,w) € ' NR® and||(z,)||o > Dt°. (20)

Shrinkingp if necessary , we may assume tB&p°~! < e. Next fix0 < t < p and define

€€ty ent, t + ewt).

1
v ]D)S - [—OO, 00[7 U(ganaw) = m¢(

Then the estimate (19) arid< e < ; imply

[N

v(€ n,w) < LYY (E+e+(1+e?)2 <1, (&nw)eD?,

2Mt
while (20) implies
o(E,m,w) < O (6,7,w) is real and|(€, n)]| = 217,
€

By Lemma 6 these estimates imply the existenc€'of 1 so that for|| (£, 7, w)]| e < % we have
v(&n,w) <C (|Im77| + [Tmw| + ’ImW)
)

. g . . 26
By the definition ofv, these estimates imply that for< ¢ < p and(z,y, w) € C, ||[(z,y,w)|| < 5t We

v mw) < C (uma T imw] + ]hn 2 — (2g1)

et
g oyt +w) < L (my| + [Tmw] + Im /22 = (DB)?)) N
O, y,t+w) < S ([ + e + m /57 = (DE)?) “
Now we apply [1], Lemma 5.7, to get the existence&f > 0, not depending om, so that
Oz, y, t+w) < CleM (Imw| + [Im | + [Im y| + Dt6) (22)
and
St +w) < fim(e,y,w)| i (2 9)llo 2 208 23
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We claim that these estimates imply the existenc€-:0f> 0 (not depending o) so that
$(0) < Caflm6|, 6 € TI\I, (24)

where fory, (¢) := (0,0, t), we let
€
=170, 1, B(0,5)% p), T :=T"(%,8, B(0,2D)* p).

To show this, fixd = (z,y,t +i3) € T} and assumg € R. If ||(z, )|/ > 2Dt then (24) follows from

(23). If [|(z,9) |l < 2Dt® and|g| < 2Dt° then¢ € T, and there is nothing to prove. |Ifz, y)||o < 2Dt°

and|g| > 2Dt then (22) implies

1M
€

4C1 M 4C1 M

B(6) = B,y + i) < T (18] +5D8) < T |8) < L o)

This shows that (24) holds for an appropriate constant
Now letTy := I'(v, 1, B(0, §)*x B(0,0) x B(0, §), p) and note that the definition gfand the estimate
(24) imply that for( € V. N T, ¢ = ((1, (2, (3, Ca) We have

U(C) S ¢(Clv§2a<3> S CQ‘Im(C17<27C3)| S CQ‘ImCL (25)

whenever(¢;, (2, (3) € T1\I',. To show that (25) even holds for al€ V N T, and a possibly larger
constantCs, it therefore suffices to show that (25) holds whenever V N Ty and(¢1, 2, (3) € T% =
I (90,9, B(0, gD)?’, p). To prove this note that by (17) each pofmt y, z,t + w) € V N Ty which satisfies
Il(z,9)]ls < 3Dt already satisfieg:| < St°. Hence we get (25) for ai € V N Ty if we show

u(¢) < Csfmcl, ¢ € Tv,6, B0, 3 D)’ x B0, 58) x B0, 2 D). p) (26)
and a suitable constaft;.

To prove (26) letG, := B(0,3D)? x B(0,2S) x B(0,3D) and note that from (22) and the definition

of ¢ we get the existence of some consta&nt- 0 so that

u(¢) < BI¢]°, ¢ €T(7,d,Go,p). (27)

Then we note that (13) and [4], Lemma 7.2, imply that at each poiat 7, ;V N R* the varietyV is
(v, d)-hyperbolic. Hence [4], Lemma 5.7, implies that for each sudhere is a zero neighborhod#,
such thaPL(V,T'(v, d, k + G, r«)) holds. Now an application of [4], Lemma 5.6, shows thiasatisfies
PL(V,T(v,8,Go, p)) sinceB(0,3D)? x B(0,3S5) x B(0,3D) is a relatively compact subset 6%, we
get (26). Altogether we proved that there exidts 1 such that for each € PSH(V NIY) and¢ € VNTy
we have

u(¢) < Allm|.

This is enough to apply [4], Lemma 5.10. The case +_ is treated in the same way. B
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