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Abstract. We survey some recent developments in the theory of Fréchet spaces and of their duals.
Among other things, Section 4 contains new, direct proofs of properties of, and results on, Fréchet spaces
with the density condition, and Section 5 gives an account of the modern theory of general Köthe echelon
and co-echelon spaces. The final section is devoted to the developments in tensor products of Fréchet
spaces since the negative solution of Grothendieck’s “problème des topologies”.

Algunos aspectos de la teorı́a moderna de espacios de Fr échet

Resumen. Discutimos progresos recientes en la teorı́a de espacios de Fréchet y sus duales. Entre
otras cosas, la Sección 4 contiene nuevas pruebas de propiedades y resultados acerca de espacios con la
condicíon de densidad y la Sección 5 proporciona información acerca de la teorı́a reciente de espacios
escalonados y co-escalonados de Köthe. La seccíon final est́a dedicada a los progresos en productos
tensoriales de espacios de Fréchet obtenidos desde la solución negativa del “problema de las topologı́as”
de Grothendieck.
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1. Introduction

Fréchet spaces have played an important role in functional analysis from its very beginning: Many vec-
tor spaces of holomorphic, differentiable or continuous functions which arise in connection with various
problems in analysis and its applications are defined by (at most) countably many conditions, whence they
carry a natural Fŕechet topology (if they are, in addition, complete). In particular, each Banach space is a
Fréchet space and so has a countable basis of absolutely convex zero neighborhoods. In the Banach case
the basis can be obtained as multiples of the unit ball. Therefore the geometry of the unit ball is crucial
in Banach space theory. In a Fréchet space, however, the relation between different neighborhoods of zero
is, in general, more important than the local Banach spaces. This is the reason why the properties of the
linking maps between the local Banach spaces are crucial in the theory of Fréchet spaces. Also, in Banach
spaces the unit ball is simultaneously a typical zero neighborhood and a typical bounded set. In a Fréchet
space, a zero neighborhood is bounded only when the space is normable. Accordingly, the behavior of the
bounded sets also plays a significant role. Another important difference to the Banach space case is that the
strong dual of a Fŕechet space is not metrizable in general. Strong duals of Fréchet spaces are(DF )-spaces,
a class introduced by Grothendieck [62]. Since it will be necessary to use duality theory,(DF )-spaces have
to be considered here as well. Countable (locally convex) inductive limits of Banach spaces, (LB)-spaces,
are also (DF)-spaces.

Köthe echelon and co-echelon spaces are among the most important examples of Fréchet and (DF)-
spaces, respectively. Many spaces of functions or distributions, like

H(DN ), H(CN ), S, S ′, D(K), D′(G), C∞(G)

for a compact subsetK or an open subsetG of RN , are topologically isomorphic to (products of) echelon
or co-echelon spaces. (In the sequel, we will sometimes simply write ‘isomorphic’ instead of ‘topologically
isomorphic’.) Various classes of Fréchet spaces were defined, and they were characterized in the context of
Köthe echelon spaces. In the late ’80s, the authors investigated Fréchet spaces with the density condition
and characterized the density condition of echelon spaces [16].

Topological invariants like(DN) and(Ω) have been essential in the structure theory of Fréchet spaces,
due to Meise, Vogt and others. Moreover, they also have many interesting applications to problems arising
in analysis, e.g. the existence of extension operators forC∞-functions on compact or closed subsets of
RN , the surjectivity or the existence of solution operators for convolution operators or for linear partial
differential operators with constant coefficients on spaces of analytic or (ultra-) differentiable functions or
(ultra-) distributions. We do not discuss these topics here. Short exact sequences of Fréchet spaces, the
properties(DN) and(Ω), subspaces and quotients of power series spaces, the splitting theorem of Vogt
and Wagner and their applications are studied in detail in the book [74] of Meise and Vogt.

We concentrate here on other recent developments in the theory of Fréchet spaces in which the authors
contributed to substantial progress or which we find remarkable in connection with our own interests.

After recalling some general definitions and introducing some notation in Section 2, we report in Section
3 shortly on several lines of recent research on various classes of Fréchet spaces. Subsection (a) is devoted to
the distinguishedness, subsection (b) to quasinormable Fréchet spaces and other classes of Fréchet spaces.
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In Section 2.(c), approximation properties are discussed, and in (d) Moscatelli type constructions are men-
tioned. In the last subsection of Section 2, results of Banaszczyk [7, 8] and of Bonet, Defant [29] around
the Levy Steinitz rearrangement theorem and nuclearity are surveyed.

In the rest of the article, more details are given on three important topics. Section 4 discusses the density
condition for Fŕechet spaces and the dual density conditions for (DF)-spaces, see [16, 17]. In particular, in
subsection (a) new, short and direct proofs of some of the main results on Fréchet spaces with the density
condition are presented. Section 5 surveys Köthe echelon and co-echelon spaces, in (a) and (b) beginning
from scratch as in Bierstedt, Meise, Summers [28]. The relevance of the regularly decreasing condition and
of condition (D) is pointed out in subsections (c) and (d). We finish Section 5 with some results on vector
valued echelon and co-echelon spaces from [16, 17].

The theory of topological tensor products of locally convex spaces was started by Grothendieck [63],
and it is still a broad, thriving area of present research. In particular, it took the experts in Banach space
theory quite some period of time to really understand Grothendieck’s metric theory of topological tensor
products [61]. Then Pietsch, König and others developed the theory of operator ideals, with beautiful
applications to the distribution of eigenvalues. Finally, Defant and Floret [43] gave the first treatment in
book form of Grothendieck’s metric theory, combined with the approach via operator ideals. This excellent
book is highly recommended. However, our account of tensor products of Fréchet spaces mainly stays in
the tradition of [63].

In Section 6 we present the developments in tensor products of Fréchet spaces which started with Task-
inen’s solution [93] of Grothendieck’s famous “problème des topologies” and of some related problems. In
subsection (c) we survey the counterexamples and some positive results, due to Taskinen and other authors;
in particular, we mention results from the important paper [44] of Defant, Floret, Taskinen. The work was
continued by Peris who in [82] developed the notion of “locally convex properties by operators” and solved
a problem of Bierstedt, Meise [25] on (DFS)-spaces.

2. Fundamental definitions

A Fréchet spaceF is a complete metrizable locally convex (topological vector) space (over the fieldR or
C). Hence the topology (and the uniform structure) ofF can be given by an increasing sequence(pn)n∈N of
seminorms. As in any topological vector space, the topology ofF is determined by a basis of neighborhoods
of 0. SinceF is locally convex, one can take all the basic 0-neighborhoods to be absolutely convex, and
sinceF is metrizable, there is a countablebasis; viz., a decreasing sequenceU0 = U0(F ) = (Un)n∈N of
(closed) absolutely convex 0-neighborhoods. It is sometimes convenient to assume that the sequence(pn)n

satisfies2pn ≤ pn+1 and that, similarly,Un+1 + Un+1 ⊂ Un holds. In the sequel, we will always take

Un = {f ∈ F ; pn(f) ≤ 1}, n = 1, 2, . . .

Since Fŕechet spaces are locally convex (l.c.), the Hahn-Banach Theorem and its many consequences
(among them the quite useful Bipolar Theorem) hold in our context. And as in the case of Banach spaces,
completeness is essential in order to obtain results following from Baire’s Category Theorem, like e.g.
the Open Mapping and Closed Graph Theorems. In this article, we deal with theisomorphictheory of
Fréchet spaces, which allows us to switch from one basic sequence(pn)n of seminorms (or from one basis
U0 = (Un)n of 0-neighborhoods) to another, equivalent one (i.e., giving the same topology), whenever
convenient. – In connection with non-linear phenomena and in investigations on the inverse function theo-
rem and Nash-Moser theory, a different category has been used. In that case, one speaks ofgraded Fŕechet
spacesF and fixes (natural) increasing sequences(pn)n of seminorms. Instead of arbitrary continuous
linear morphisms, thetame categoryonly allows continuous linear morphismsT which, for a fixedk ∈ N,
satisfy estimates of the typepn(Tf) ≤ Cnpn+k(f) for all n ∈ N andf ∈ F , whereCn > 0 denotes a
constant. We refer the reader e.g. to [88] and to the references therein.

Each Fŕechet spaceF is theprojective limitprojn Fn of the projective sequence of itslocal Banach
spacesFn. We will now discuss the notation which arises in this context: For eachn ∈ N, the quotient
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spaceF/p−1
n (0) is endowed with the norm induced bypn, andFn is the completion of this space.πn

denotes the canonical mappingF → Fn, n ∈ N, and form ≥ n the natural continuous linear applications
πmn : Fm → Fn are said to be thelinking mapsassociated withF . Switching from a fundamental
sequence(pn)n of seminorms forF to an equivalent one amounts to changing the sequence(Fn)n of local
Banach spaces at the same time, but sometimes properties of the linking maps (like compact, nuclear etc.)
are invariant under such a change. Thus, while it is clear that the (conveniently selected sequence of) local
Banach spacesFn can yield important information on the Fréchet spaceF , often new phenomena appear in
Fréchet space theory which are not induced by the local Banach spaces alone, but are rather a consequence
of properties of the linking mapsπmn.

If F is a Fŕechet space and(Fn)n is the sequence of local Banach spaces associated with an increasing
fundamental sequence of seminorms(pn)n as above, then the sequence

0 → F
π→

∏
n

Fn
σ→

∏
n

Fn → 0,

with π(x) := (πn(x))n, x ∈ F , andσ((xn)n) := (xn − πn+1,n(xn+1))n, xn ∈ Fn, n ∈ N, is a
short (topologically) exact sequence of Fréchet spaces by [74, 26.16]; i.e., bothπ andσ are topological
homomorphisms. In the present setting this follows from the exactness of the short sequence by the Banach
Schauder Open Mapping Theorem since all the spaces are Fréchet spaces andKer σ = Im π. The short
exact sequence above is called thecanonical resolution of the Fréchet spaceF ; it plays an important role
in the characterization of certain properties ofF , see [74].

As is known from the duality theory of l.c. spaces, the dualF ′ of the Fŕechet spaceF ; i.e., the space of
all continuous linear functionals onF , can be endowed with many different, important topologies, e.g. with
the weak*-topologyσ(F ′, F ), the topologyκ(F ′, F ) of uniform convergence on the absolutely convex
compact subsets ofF – F ′ endowed with this topology will be denoted byF ′

c – and the Mackey topology
µ(F ′, F ) (the strongest admissible topology for the dual pair< F, F ′ >). In some sense, however, the
most natural topology ofF ′ is thestrong topologyβ(F ′, F ), the topology of uniform convergence on the
bounded subsets ofF ; F ′ equipped withβ(F ′, F ) is called thestrong dualand denoted byF ′

b. We recall
thatB ⊂ F is bounded if and only if each of the seminormspn is bounded onB or, equivalently, if for
eachn ∈ N there isλn > 0 with B ⊂ λnUn. The system of all absolutely convex, closed and bounded
subsets ofF will be denoted byB = B(F ). In the case of Banach spaces, the unit ball is both a typical 0-
neighborhood and a typical bounded set. But a Fréchet space with a bounded 0-neighborhood must already
be a Banach space; forproperFréchet spaces (i.e., Fréchet spaces which are not already Banach spaces),
0-neighborhoods and bounded sets are in fact quite different objects.

The strong dualF ′
b of any Fŕechet spaceF is complete. However, ifF is a proper Fŕechet space, thenF ′

b

will no longer be metrizable; thus,F ′
b has a much more complicated structure thanF . In fact, the increasing

sequence(U◦
n)n of the (absolute) polars

U◦
n = {f ′ ∈ F ′; |f ′(f)| ≤ 1 for all f ∈ Un}

of the setsUn (= the unit ball with respect topn, see above) inF ′ is a fundamental sequence of bounded
sets; i.e., each bounded subset ofF ′

b is contained in someU◦
n, and every countable bornivorous intersection

of absolutely convex0-neighborhoods ofF ′
b is also a0-neighborhood. The locally convex spacesE which

share these two properties of the strong duals of Fréchet spaces are called(DF)-spaces, see Grothendieck
[62]. There are several good references for (DF)-spaces: [69, 74, 79]. In particular, every countable (locally
convex) inductive limit of Banach spaces – the inductive limit is called(LB)-space– is a (DF)-space; see
[13].

There is another, quite natural, “categorical” idea how the dual ofF should be topologized:F is the
projective limit of the local Banach spacesFn. It looks tempting to take the transposed maps and to consider
the inductive limit of the dual Banach spacesF ′

n. Now, it is easy to see that the dual of the local Banach
spaceFn is nothing butF ′

U◦
n
, that is, the span of the polarU◦

n of Un in F ′, endowed with the Minkowski
functional ofU◦

n, a norm which turnsF ′
U◦

n
into a Banach space. EachU◦

n is equicontinuous andσ(F ′, F )-
compact by the Theorem of Alaoglu-Bourbaki. The sequence(U◦

n)n is increasing, and its union equals
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Fréchet Spaces

F ′. ι(F ′, F ) denotes theinductive topologyonF ′; viz., the strongest locally convex topology onF ′ which
makes all the natural injections of the Banach spacesF ′

U◦
n

intoF ′ continuous.F ′ with this topology is called
the inductive dual, and it is denoted byF ′

i = indn F ′
U◦

n
. The inductive dual is obtained by dualizing the

projective limitF = projn Fn. Grothendieck proved thatι(F ′, F ) is the bornological topology associated
with β(F ′, F ) and coincides withβ(F ′, F ′′), see [69].

Our notation concerning locally convex spaces is standard; e.g., see [67, 69, 74]. In particular,Γ(A)
(resp.,Γ(A)) denotes the absolutely convex hull (resp., the closed absolutely convex hull) of the subsetA
of a linear space (resp., locally convex space). By ‘quotient’ we mean a separated quotient space. To avoid
trivialities, it will always be assumed that Fréchet and (DF)-spaces are different from{0}. – Clearly, it is
impossible to quote all the important articles and books on Fréchet spaces in the present survey. Hence we
have sometimes given references only to one article or to one book in which references to other relevant
papers can then be found.

3. Classes of Fr échet spaces

(a) Distinguished Fŕechet spaces

Dieudonńe and Schwartz called a Fréchet spaceF distinguishedif F ′
b is barrelled. Grothendieck proved

that, in the present setting, this is also equivalent toF ′
b = F ′

i or, equivalently, toF ′
b being bornological.

Hence, exactly for the distinguished Fréchet spacesF , one obtains the strong dualF ′
b by dualizing the

projective sequenceFn of local Banach spaces and by taking the inductive limit of the sequenceF ′
n. As

mentioned e.g. by Horv́ath in his book [66, page 288], it is important to know if the strong duals of the
function spaces which appear in the theory of distributions have good locally convex properties. Indeed, if
this is the case, one could apply to them the Closed Graph or the Open Mapping Theorem or the Uniform
Boundedness Principle.

The first example of a non-distinguished Fréchet space was given by Grothendieck and Köthe, and it
was the K̈othe echelon spaceλ1(A) of order 1 for the K̈othe matrixA = (an)n defined onN × N by
an(i, j) := j if i < n andan(i, j) = 1 otherwise. The K̈othe echelon spaces which are distinguished
were characterized by the authors and Meise in the late 80’s, see Section 5. One could say that, for a long
time, all the examples of non-distinguished Fréchet spaces were abstract and artificial. However, Taskinen
[96] showed that the Fréchet spaceC(R) ∩ L1(R) endowed with the natural intersection topology is not
distinguished. His original proof was simplified considerably in [41]. Here is the argument, which is valid
even for infinitely differentiable functions.

Theorem 1 For every open subsetG of RN the intersection spaceE := C∞(G) ∩ L1(G) is not distin-
guished.

PROOF. Set, forf ∈ E, p0(f) :=
∫

G
|f |dµ and select an increasing fundamental sequence(Ln)n of

compact subsets ofG. The topology ofE is defined by the increasing sequence of seminorms(pn)n given
by

pn(f) := p0(f) + max
|α|≤n

max
x∈Ln

|f (α)(x)|, f ∈ E.

It is enough to show that for each bounded subsetB of E there isu ∈ B◦ such that for eachn there is
fn ∈ E with pn(fn) ≤ 1 andu(fn) = 2. Indeed, in this case the absolutely convex set

V :=
⋃
n∈N

{v ∈ E′; |v(f)| ≤ pn(f) for all f ∈ E}

is a neighborhood inE′
i, but not inE′

b. To complete the proof we fix a bounded setB in E. For eachn
we chooseλn > 0 such thatpn(f) ≤ λn for eachf ∈ B. Now, for eachn select a compact cubeIn
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with non-empty interior contained inLn+1 \ Ln and with Lebesgue measureµn < 1/(2n+1λn+1). Define
u(f) := 2

∑
k

∫
Ik

fdµ, f ∈ E. Clearly|u| ≤ 2p0, henceu ∈ E′. We have, forf ∈ B,

|u(f)| ≤ 2
∑

k

µk max
x∈Ik

|f(x)| ≤ 2
∑

k

µkλk+1 ≤ 1

so thatu ∈ B◦. For eachn we findfn ∈ D(In) which is non-negative and satisfies
∫

In
fndµ = 1. Clearly

fn ∈ E and, sincefn vanishes on a neighborhood ofLn, pn(fn) = p0(fn) = 1 andu(fn) = 2. �

Grothendieck [62] proved that the non-distinguished Köthe echelon spaceE mentioned above even has
the property that there is a discontinuous linear form onE′

b which is bounded on the bounded subsets ofE′
b;

i.e., (E′
b)
′ 6= (E′

i)
′; in particular, the strong topologyβ(E′, E) is different from the topologyµ(E′, E′′).

This behavior is shared by all non-distinguished Köthe echelon spaces and byE = C∞(G) ∩ L1(G).
Kōmura, e.g. see [99, p. 292], gave an example of a non-distinguished Fréchet spaceE such that, on the
other hand,(E′

b)
′ = (E′

i)
′. More examples of K̄omura type were later given by Bonet, Dierolf, Fernández

[37]. In 1993, Valdivia [101] proved thatif E is a separable Fŕechet space which does not contain a copy of
`1, then(E′

b)
′ = (E′

i)
′ or, equivalently,E′ endowed with the Mackey topologyµ(E′, E′′) is bornological.

In connection with this result, Valdivia asked the following two questions:

(1) Is every separable Fréchet space not containing`1 distinguished?
(2) Does every non-separable Fréchet spaceE not containing̀ 1 have the property that(E′, µ(E′, E′′)) is
bornological?

All the examples of non-distinguished Fréchet spaces known at that time had many copies of`1. Both
problems have a negative answer. (1) was solved by Dı́az in [47], and (2) by D́ıaz and Mĩnarro in [51]. The
first counterexample utilizes a variant of the James tree space, a separable Banach space which does not
contain`1 and has a non-separable dual. The counterexample to question (2) requires the continuum hy-
pothesis; the Fŕechet space is constructed using weighted Banach spaces similar to the James quasireflexive
Banach space defined on an uncountable index set.

(b) Quasinormable Fréchet spaces and other classes of Fréchet spaces

We recall the most important classes of Fréchet spaces. All the spaces in these classes are distinguished.
A Fréchet spaceE is calledreflexiveif (E′

b)
′ = E algebraically via the evaluation mapping; in this case,

E equals the strong dualE′′ := (E′
b)
′
b of E′

b topologically, andE′
b is barrelled. The Fŕechet spaceE is

reflexive if and only if every bounded subset ofE is relativelyσ(E,E′)-compact. A Fŕechet spaceE is said
to beMontel, abbreviated by (FM), if each bounded subset ofE is relatively compact. Every (FM)-space is
reflexive. K̈othe and Grothendieck gave examples of (FM)-spaces with a quotient topologically isomorphic
to `1, hence not reflexive; see [69, 31.5]. According to Grothendieck [62], a Fréchet spaceE is calledtotally
reflexiveif every quotient ofE is reflexive, as it happens in caseE is a Banach space. Valdivia proved in
[100] the following interesting characterization:A Fréchet spaceE is totally reflexive if and only ifE is the
projective limit of a sequence of reflexive Banach spaces. As a consequence, he obtained that the product of
two totally reflexive Fŕechet spaces is again totally reflexive, thus solving an open problem of Grothendieck
[62]. These investigations of Valdivia were continued in [102].

A Fréchet spaceE is calledSchwartz, abbreviated by (FS), if the linking maps are compact in the sense
that, for eachn ∈ N there ism > n such thatπnm : Em → En is compact, or equivalently, if for each
n ∈ N there ism > n such that for eachε > 0 there is a finite setF with Um ⊂ F + εUn. Finally, a
Fréchet spaceE is nuclear, abbreviated by (FN), if the linking maps are nuclear (or, equivalently, absolutely
summable). Every (FN)-space is (FS), and every (FS)-space is (FM). The converse implications do not hold.
We refer the reader to [66, 67, 74] for Schwartz and nuclear spaces.

Grothendieck [62] also proved that if the bounded subsets of the strong dualE′
b of a Fŕechet spaceE

are metrizable, thenE is distinguished. The class of Fréchet spacesF for which the strong dualF ′
b has

metrizable bounded sets coincides with the class of Fréchet spaces which satisfy thedensity conditionof
Heinrich, and it contains every (FM)-space. These spaces were studied thoroughly by the authors, and
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they are treated in Section 4 below. An important subclass is the class of quasinormable Fréchet spaces.
This class was introduced by Grothendieck [62] because it contains the most usual function spaces, and
it contains every Banach space and every (FS)-space. A Fréchet spaceE is said to bequasinormable
if for each n ∈ N there ism ≥ n such that, for eachλ > 0, there exists a bounded subsetB of E
with Um ⊂ B + λUn or, equivalently, for eachn ∈ N there ism ≥ n such thatE′

U◦
m

andβ(E′, E)
induce the same topology onU◦

n. A Fréchet space is Schwartz if and only if it is quasinormable and
Montel. Quasinormable Fréchet spaces and their connection with the lifting of bounded sets are thoroughly
investigated in [74, Chapter 26]. For example, it follows from [74, 26.17 and 26.18] that a Fréchet space
F is quasinormable if and only if the transposeσt of the mappingσ in the canonical resolution ofF is a
topological homomorphism. The class of quasinormable locally convex spaces is rather large. In fact, every
(DF)-space, and even every (gDF)-space, is quasinormable; see [67, 79]. – We will return to another aspect
of the class of quasinormable Fréchet spaces in subsection 6.(f).

The Theorem of Josefson and Nissenzweig was proved independently by these two authors in 1975 and
can be stated as follows:A Banach spaceX is finite dimensional if and only if every sequence inX ′ which
is σ(X ′, X)-convergent to zero also converges to zero for the norm topology ofX ′. In 1980 Jarchow [67]
conjectured that natural extensions of this theorem should hold for Fréchet spaces. These conjectures were
proved by Bonet, Lindström, Schlumprecht, and Valdivia in the mid 90’s. We summarize their results in the
next theorem and refer the reader to [39] for more details, some similar results and consequences in related
areas.

Theorem 2 LetE be a Fŕechet space.

(1) E is quasinormable if and only if every null sequence inE′
b converges uniformly to zero on a0-

neighborhood inE.

(2) E is Montel (resp. Schwartz) if and only if everyσ(E′, E)-null sequence inE′ is also strongly conver-
gent to zero (resp., converges uniformly to zero on a0-neighborhood inE).

(3) E does not contain a copy of`1 if and only if every null sequence in(E′, µ(E′, E)) is also strongly
convergent to zero. �

The statement (2) in Theorem 2 is the extension of the Theorem of Josefson and Nissenzweig to Fréchet
spaces. Part (1) of the theorem permits to conclude the first part of the next theorem. The second part in
the theorem below can be found in [53], and it combines work by Bonet, Dierolf, Fernández [38] with [74,
26.12]. At the same time, this permitted to solve a problem of Grothendieck [62] by giving examples of
distinguished Fŕechet spacesE with a non-distinguished strong bidualE′′.

Theorem 3 LetE be a Fŕechet space.

(1) E is quasinormable if and only if its strong bidualE′′ is quasinormable.

(2) The bidualE′′ of E is distinguished if and only if (a)E and E′′/E are distinguished, and (b) the
quotient mapq : E′′ → E′′/E lifts bounded sets (i.e., every bounded set inE′′/E is contained in the image
by the quotient mapq of a bounded set inE′′). �

We refer the reader to [74, Chapter 26] for the results of Palamodov, Merzon, Bonet, Dierolf, Meise and
Vogt about the lifting of bounded sets, quasinormability and the duality of exact sequences. The following
recent result of Valdivia [102] is a nice complement of these results.

Theorem 4 A Fréchet spaceE has the property that each quotient mapq : E → G defined onE lifts
bounded sets if and only if one of the following conditions holds: (a)E is a Banach space, (b)E is a
Schwartz space, or (c)E is the product of a Banach space and the countable productω of copies of the
scalar field. �
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(c) Bases and approximation properties

A sequence(xn)n in a l.c. spaceE is called abasisif everyx ∈ E determines a unique sequence(an)n in
the scalar field such that the series

∑
anxn converges tox in the topology ofE. Any l.c. space with a basis

is separable. The basis(xn)n is called aSchauder basisof E if its coefficient functionalsun(x) := an,
n ∈ N, are continuous. Every basis in a Fréchet space is a Schauder basis. From this point on we will
always write ‘basis’ and mean ‘Schauder basis’.

The problem whether every separable Banach space has a basis appeared in 1931 for the first time in
the Polish edition of Banach’s book [6, Chapter 7, section 3]. It was clear to Banach, Mazur and Schauder
that this question was related to an approximation problem mentioned by Mazur in the “Scottish Book”
in 1936. This approximation problem was equivalent to the question whether every l.c. space has the
approximation property, a question which was analyzed carefully by Grothendieck in his “thèse” [63]. A
locally convex spaceE has theapproximation property (a.p.)if the identity of E is the limit of a net of
finite rank operators for the topology of uniform convergence on the absolutely convex compact subsets of
E. If the net is equicontinuous, it is said thatE has thebounded a.p. A Banach spaceE is said to have the
metric a.p.if it has the bounded approximation property with a net of finite rank operators of operator norm
≤ 1.

Banach’s problem was solved in the negative by Enflo in [59]: Each space`p (1 ≤ p ≤ ∞, p 6= 2),
as well asc0, has a closed subspace without the a.p. The case`p, 1 ≤ p < 2, is due to Szankowski in
1978. He also proved in [92] that the Banach spaceL(`2, `2) of all operators on the separable Hilbert space
`2 does not have the a.p. This is a natural space, but it is not separable. Szankowski’s result is still based
essentially on the constructions of Enflo. Pisier [86], [87] constructed an infinite dimensional Banach space
P such thatP andP ′ are of cotype 2 and the injective and the projective topologies coincide onP ⊗P , thus
solving a long standing problem of Grothendieck. The spaceP ′ does not have the approximation property
[87], and it is a counterexample constructed in a completely different way.

All the usual Banach spaces (such asC(K) or Lp) have the bounded approximation property (even
the metric approximation property). Up to our knowledge, it is still unknown whether the (non-separable)
spaceH∞(D) of all bounded holomorphic functions on the unit discD of the complex plane has the
approximation property. On the other hand, the disc algebraA(D) consisting of all the elements inH∞(D)
with continuous boundary values even has a basis.

All implications between the various approximation properties and the property of having a basis are
either false or trivially true: In 1973, Figiel and Johnson constructed an example of a Banach space with
separable dual and the approximation property, but without the bounded approximation property; Szarek
in 1984 showed the existence of a reflexive, separable Banach space with the bounded (even the metric)
approximation property, but without a basis. – For a more detailed account on approximation properties in
Banach spaces see Casazza [42].

Every nuclear space has the approximation property. In 1960, Dynin and Mitjagin proved that every
equicontinuous basis in a nuclear space is absolute. For a long time it was an open problem whether there
exists a nuclear Fréchet space without a basis. The first example of such a space was given by Mitjagin and
Zobin; we refer the reader to [67]. It was an open problem of Grothendieck since 1955 if every nuclear
Fréchet space had the bounded approximation property. This was solved in the negative by Dubinsky in
1981; the example was simplified considerably by Vogt in [103].

It is a classical problem, but still open, whether every complemented subspace of an (FN)-space with
a basis must itself have a basis. For more information, see the article ‘Structure theory of power series
spaces of infinite type’ by Dietmar Vogt in this special issue ofRev. R. Acad. Cien. Serie A. Mat. Using
methods due to Mitjagin, Zobin and Pełczyński, Taskinen constructed an (FS)-space with a basis and with
a complemented subspace which is (FN) and does not have a basis, cf. [97].

Every nuclear space is Schwartz. In 1973, Hogbe-Nlend used Enflo’s example to construct a Fréchet
Schwartz space without the approximation property, see [67]. If an (FS)-spaceE has approximable linking
maps (in the sense that they are limits in the operator norm of sequences of finite rank operators), then
E has the approximation property. Nelimarkka proved in 1982 that every (FS)-space with the bounded

166
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approximation property must have approximable linking maps. The converse does not hold due to the
examples of Dubinsky and Vogt mentioned above. Peris [83] gave an example of a Fréchet Schwartz space
with the approximation property, but without approximable linking maps, thus answering a problem of
Ramanujan in the negative.

In their important paper [58], Domański and Vogt show that ifG is an open subset ofRd, d ∈ N, then
the separable, complete and nuclear spaceA(G) of all real analytic functions onG, endowed with its natural
topology (which, however, has a rather complicated structure), does not have a Schauder basis. This is the
first example of a separable complete function space without a basis which is natural in the sense that it had
been in existence in analysis for many years and was not constructed on purpose.

(d) Moscatelli type constructions

A different way to construct examples of nuclear Fréchet spaces without basis was presented by Moscatelli
in 1980. His approach is based on the following result due to Floret and Moscatelli [79, 8.4.38]:Every
Fréchet space with an unconditional basis is topologically isomorphic to a countable product of Fréchet
spaces with a continuous norm and unconditional basis. Moscatelli’s idea is to use a “shifting” device which
is implicit in the example of Grothendieck and Köthe of a non-distinguished echelon space. Moscatelli
also utilized his method to construct a Fréchet space which is the projective limit of a sequence of Banach
spaces with surjective linking maps and which is not isomorphic to a complemented subspace of a countable
product of Banach spaces. A Fréchet spaceE is called aquojectionif it is the projective limit of a sequence
of Banach spaces with surjective linking maps or, equivalently, if every quotient with a continuous norm
is a Banach space for the quotient topology. Every Fréchet spaceC(X) of continuous functions, endowed
with the compact open topology, is a quojection. Several authors proved that every quojection is a quotient
of a countable product of Banach spaces; in particular, it is quasinormable. We refer the reader to the survey
article [75] on quojections. Constructions of Moscatelli type with a shifting device have recently been used
several times to construct various counterexamples. Bonet and Dierolf studied this type of constructions in
a series of articles; e.g. see [35].

It is well-known that every non-normable Fréchet space admits a quotient isomophic toω, and that it
has a subspace topologically isomorphic toω if and only if it does not admit a continuous norm; e.g. see
[79]. In 1961, Bessaga, Pełczyński and Rolewicz showed thata Fréchet space contains a subspace which
is topologically isomorphic to an infinite dimensional nuclear Fréchet space with basis and a continuous
norm if and only if it is not isomorphic to the product of a Banach space andω. As a consequence of
the results mentioned above,every non-normable Fréchet space always contains a subspace which can be
written in the formF ⊕ G with F and G infinite dimensional spaces. Miñarro [77] even proved thata
Fréchet space which is neither normable nor nuclear contains a closed subspaceF ⊕ G with F and G
infinite dimensional and such thatF is not nuclear. These results should be compared with the existence
of hereditarily indecomposableBanach spaces established by Gowers and Maurey [60].

The situation for quotients is more complicated. Bellenot and Dubinsky in the separable case in 1982,
andÖnal and Terziŏglu in general in 1990 proved the following result:A Fréchet spaceE does not have
a quotient which is nuclear with a basis and a continuous norm if and only if the bidualE′′ of E is a
quojection. Fréchet spaces satisfying this condition were introduced with another definition. Vogt showed
that the original definition was equivalent to the one mentioned above. Dierolf, Moscatelli, Behrends and
Harmand constructed Fréchet spacesE such thatE′′ is a quojection, butE is not a quojection. Fréchet
spacesE such thatE′′ is a quojection are calledprequojections; they are also quasinormable by Theorem
3. More information about prequojections can be seen in [75].

(e) Nuclearity and the Levy Steinitz rearrangement theorem

In this subsection we assume that all the vector spaces are real. For a convergent series
∑

uk in a locally
convex spaceE the domain of sumsS(

∑
uk) is the set of allx ∈ E which can be obtained as the sum

of a convergent rearrangement of the series. In terms of this notion, Riemann’s famous rearrangement
theorem from 1867 states that on the real line the set of sums of a convergent series is either a single point
or the whole line. Later on, Levy and Steinitz extended Riemann’s result to finite dimensional spaces by
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describing the sets of sums of each convergent series inRN , N ∈ N. To state their result we introduce
the following notation. The set of summing functionals of a convergent series

∑
uk in a locally convex

spaceE is defined byG(
∑

uk) := {f ∈ E′;
∑

k |f(uk)| < ∞}. The result is as follows:If
∑

uk is a
convergent series inRN , thenS(

∑
uk) =

∑
k uk + G(

∑
uk)◦, which is a closed affine subspace ofRN .

The result fails for infinite dimensional Banach spaces. In fact, Kadets, Enflo and others proved that every
infinite dimensional Banach space contains a convergent series whose set of sums consists exactly of two
different points. We refer the interested reader to the nice book of Kadets and Kadets [68].

In his two papers [7, 8], Banaszczyk proved the following extension of the theorem of Levy and Steinitz.
The result gives a new characterization of nuclear Fréchet spaces.

Theorem 5 A Fréchet spaceE is nuclear if and only if the domain of sums of each convergent series∑
uk in E is given by the formulaS(

∑
uk) =

∑
k uk + G(

∑
uk)◦. In particular, in each (FN)-spaceE

the domain of sums is a closed affine subspace ofE. �

In the article [29], Bonet and Defant investigated the domains of sums of convergent series in (DF)-
spaces. Their description of the set of sums requires some notation. LetE be a complete (DF)-space with
a fundamental sequence(Bn)n of bounded sets. We denote byEn the Banach spaceEBn

spanned by all
positive multiples ofBn, with its Minkowski functional as norm. Assume that every convergent sequence
in E is contained and converges in someEn. Then, given a convergent series

∑
uk in E, there isn(0)

such that
∑

k uk converges inEn(0). We denote byG◦
loc(

∑
uk) the subspace ofE which is the union for

n ≥ n(0) of all the elementsx ∈ En such thatf(x) = 0 for eachf ∈ (En)′ with
∑

k |f(uk)| < ∞.

Theorem 6 LetE be the strong dual of a nuclear Fréchet space; i.e., a (DFN)-space.

(1) The domain of sums of every convergent series
∑

uk in E is the affine subspace

S(
∑

uk) =
∑

k

uk + G◦
loc(

∑
uk).

(2) If E is not isomorphic to the spaceϕ of all finite sequences, then there is a convergent series inE such
that its domain of sums is not closed.�

Theorem 7 LetE be a complete (DF)-space in which every convergent sequence converges locally. If for
each convergent series

∑
uk in E we have

S(
∑

uk) =
∑

k

uk + G◦
loc(

∑
uk),

thenE is nuclear. �

The approach of [29], using local convergence and bounded sets, permits to show that in a large class of
nonmetrizable spaces the domains of sums of all convergent series are affine subspaces. This class includes
the space of test functions, the space of distributions and the space of real analytic functions.

4. The density condition and the dual density conditions

(a) The density condition: definition and direct proofs of some theorems

A Fréchet spaceE with a basis(Un)n of closed absolutely convex0-neighborhoods (of which we assume
in the sequel thatUn+1 + Un+1 ⊂ Un holds) is said to have thedensity conditionif for every sequence
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(λj)j of strictly positive numbers and for eachn ∈ N there is a setB ∈ B(E) and there ism(n) ≥ n such
that

m(n)⋂
j=1

λjUj ⊂ B + Un.

It is easy to see that the definition does not depend on the basis(Un)n of 0-neighborhoods. The density
condition was introduced by Heinrich [65] in connection with his investigations on ultrapowers of locally
convex spaces. The density condition for Fréchet spaces was thoroughly investigated by the authors in
[16]. The dual density conditions for (DF)-spaces were treated later in [17, 18]. The density condition
turned out to be connected to vector valued sequence spaces, the abstract theory of (DF)-spaces, projective
description of weighted inductive limits, tensor products of Fréchet or (DF)-spaces, operator ideals, infinite
dimensional holomorphy, and unbounded operator algebras. Below we give direct proofs of some of the
main results and properties of Fréchet spaces with the density condition.

Theorem 8 The Fŕechet spaceE satisfies the density condition if and only if

∀(λj)j ⊂ (0,∞) ∃B ∈ B(E) ∀n ∃m ≥ n :
m⋂

j=1

λjUj ⊂ B + Un.

PROOF. Only the necessity requires a proof. We fix(λj)j ⊂ (0,∞). SetVm :=
⋂m

j=1 λjUj , m ∈ N.
SinceE satisfies the density condition, for eachn there areBn ∈ B(E) andm(n) with Vm(n) ⊂ Bn + Un.
Define

B :=
⋃
n∈N

(Un + Vm(n)) ∩Bn.

We show thatB is bounded inE: Fix k ∈ N. Forn ≥ k, we haveUn + Vm(n) ⊂ (1 + λk)Uk. On the other
hand, the set(Un + Vm(n)) ∩Bn is bounded for1 ≤ n < k, from where the boundedness ofB follows. It
remains to prove thatVm(n) is contained inB + Un. This is easy: Ifx ∈ Vm(n), thenx = y + z for some
y ∈ Bn andz ∈ Un, hencey = x− z ∈ (Un + Vm(n)) ∩Bn ⊂ B. Thusx ∈ B + Un. �

Corollary 1 Every quasinormable Fréchet spaceE satisfies the density condition, and every Fréchet space
E with the density condition is distinguished.

PROOF. First we suppose thatE is quasinormable. To show thatE satisfies the density condition, we
fix (λj)j andn. SinceE is quasinormable, there ism such that for eachε > 0 there isBε ∈ B(E) with
Um ⊂ Bε + εUn. We putC := B1/λm

∈ B(E) to conclude

m⋂
j=1

λjUj ⊂ λmUm ⊂ λm(C + (1/λm)Un) ⊂ λmC + Un.

Now assume thatE satisfies the density condition. LetW be a0-neighborhood inE′
i. Find a sequence

(µj)j ∈ (0,∞) such thatΓ
(⋃

j∈N µjU
◦
j

)
⊂ W . We apply Theorem 8 to the sequence(2µ−1

j )j to find

B ∈ B(E) satisfying the equivalent condition. Ifu ∈ B◦, there isn with u ∈ U◦
n. For thisn, selectm as in

the condition in Theorem 8, and apply the bipolar theorem (as in [67, 8.2.4]; also note that the setsU◦
j are

σ(E′, E)-compact) to conclude

u ∈ 2(B + Un)◦ ⊂ 2

 m⋂
j=1

2µ−1
j Uj

◦

= Γ

 m⋃
j=1

µjU
◦
j

 ⊂ W.

HenceB◦ ⊂ W , andW is a0-neighborhood inE′
b. �

169



K. D. Bierstedt, J. Bonet

Theorem 9 The Fŕechet spaceE has the density condition if and only if there is a double sequence
(Bn,k)n,k ⊂ B(E) such that for eachn and eachC ∈ B(E) there isk with C ⊂ Bn,k + Un.

PROOF. Suppose first that the condition is satisfied. Fix(λj)j andn. Suppose that for eachm the set
Vm :=

⋂m
j=1 λjUj is not contained inBn,m + Un. For eachm, selectxm ∈ Vm \ (Bn,m + Un). Clearly,

the setC := {xm; m ∈ N} is bounded inE. By assumption it is contained inBn,l + Un for somel, which
is a contradiction to the choice ofxl.

To prove the converse, fixn, and set

Wn := {
m⋂

j=1

λjUj ; m ∈ N, λj ∈ N such that
m⋂

j=1

λjUj ⊂ B + Un for some B ∈ B(E)}.

The familyWn is at most countable, and for eachV ∈ Wn there isBV ∈ B(E) with V ⊂ BV + Un. We
denote by(Bn,k)k the sequence of bounded sets obtained in this way. Lettingn again be arbitrary, we have
found a double sequence(Bn,k)n,k ⊂ B(E). GivenC ∈ B(E), we determine a sequence(λj)j ⊂ N with
C ⊂

⋂
j∈N λjUj . By the definition of the density condition, for this sequence andn ∈ N, we findV ∈ Wn

with C ⊂ V ⊂ Bn,k + Un for somek. �

Corollary 2 Every Fŕechet Montel space has the density condition.

PROOF. SinceE is an (FM)-space,E is separable (cf. [67, 11.6.2]). Let{xk; k ∈ N} be a dense subset
of E. For eachn, k we putBn,k := Γ(x1, ..., xk). Fix n. If C is a bounded, hence relatively compact,
subset ofE, there is a finite subsetF of E such thatC ⊂ F + Un+1. By density of(xk)k, we findk such
thatF ⊂ Bn,k + Un+1. This yieldsC ⊂ Bn,k + Un. The conclusion follows from Theorem 9.�

Corollary 3 A Fréchet space has the density condition if and only if the bounded subsets ofE′
b are metriz-

able.

PROOF. The bounded sets ofE′
b are metrizable if and only if for eachn the origin has a countable basis of

closed absolutely convex neighborhoods inU◦
n for the topologyβ(E′, E) (cf. [67, 9.2.4]). This is equivalent

to the existence of a double sequence(Bn,k)n,k ⊂ B(E) such that for eachn and eachC ∈ B(E) of E
there isk with B◦

n,k ∩ U◦
n ⊂ C◦. By the bipolar theorem and simple properties of polars (see [67, 8.2.1,

8.2.4]), this condition is equivalent to the condition in Theorem 9:

B◦
n,k ∩ U◦

n ⊂ C◦ ⇒ C ⊂ (B◦
n,k ∩ U◦

n)◦ = Γ(Bn,k ∪ Un) ⊂ Bn,k + Un + Un ⊂ Bn,k + Un−1,

C ⊂ Bn,k + Un ⇒ B◦
n,k ∩ U◦

n ⊂ 2(Bn,k + Un)◦ ⊂ 2C◦. �

Corollary 4 A Fréchet space has the density condition if and only if there isB ∈ B(E) such that for each
n and for eachC ∈ B(E) there isλ > 0 with C ⊂ λB + Un.

PROOF. Suppose first thatE has the density condition, and select the double sequence(Bn,k)n,k as in

Theorem 9. SinceE is metrizable, there areρn,k > 0, n, k ∈ N, such thatB := Γ
(⋃

n,k ρn,kBn,k

)
is

bounded (cf. [74, 26.6.(a)]). It is easy to see thatB satisfies the desired condition. The converse follows by
applying Theorem 9 to the double sequenceBn,k := kB, n, k ∈ N. �

Corollary 5 Every Fŕechet space with the density condition has a total bounded set, or equivalently,E′
b

admits a continuous norm.
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PROOF. If B is the bounded set whose existence is ensured by Corollary 4, it is easy to see that the linear
span ofB is dense inE. �

Amemiya constructed reflexive Fréchet spaces with no total bounded sets [69, 29.6]. They are examples
of distinguished Fŕechet spaces which do not satisfy the density condition.

For a locally convex spaceE, we denote bỳ1(E) the space of all absolutely summable sequences inE.
If E is complete, theǹ1(E) is topologically isomorphic to the complete projective tensor product`1⊗̂πE;
see [69].

Theorem 10 A Fréchet spaceE has the density condition if and only if the Fréchet spacè1(E) is distin-
guished.

PROOF. The strong dual(`1(E))′b of `1(E) is topologically isomorphic to the space`∞(E′
b) of all bounded

sequences inE′
b, endowed with the topology of uniform convergence. The duality is given by

< x, u >:=
∑

i

< x(i), u(i) >, x = (x(i))i ∈ `1(E), u = (u(i))i ∈ `∞(E′
b).

This follows from a direct argument using the special form of the bounded sets in`1(E) which is ensured
by [85, 1.5.8]; compare with the property (BB) of the pair(`1, E) mentioned in Section 6. Accordingly, it is
enough to show thatE has the density condition if and only if`∞(E′

b) is bornological. We denote by(Bn)n

the fundamental sequence of bounded sets inE′
b given by the polars of the basis(Un)n of 0-neighborhoods

in E. The sets
Cn := {u ∈ `∞(E′

b); u(i) ∈ Bn for each i ∈ N}, n ∈ N,

form a fundamental sequence of bounded sets in the (DF)-space`∞(E′
b).

Suppose first thatE satisfies the density condition. We letW ′ denote an absolutely convex bornivorous
subset of̀∞(E′

b) and choose a sequence(λj)j of positive numbers such thatW :=
⋃

m

∑m
j=1 λjCj ⊂ W ′.

Since the topology of the (DF)-space`∞(E′
b) is localized to its bounded subsets ([69, 29.3.(2)]), it is enough

to show thatW ∩ Cn is a0-neighborhood inCn, n = 1, 2, .... SinceE has the density condition, we can
apply the bipolar theorem to getm > n and a0-neighborhoodB◦ in E′

b such thatBn ∩B◦ ⊂
∑m

j=1 λjBj .
Let V denote the0-neighborhood iǹ∞(E′

b) defined byV := {u ∈ `∞(E′
b); u(i) ∈ B◦ for each i ∈ N}.

It is easy to see thatCn ∩ V ⊂
∑m

j=1 λjCj ⊂ W , from which the conclusion follows.
Suppose now thatE does not satisfy the density condition. By the bipolar theorem, we find a sequence

(λj)j andn ∈ N such that for eachm and each bounded setB in E the setBn ∩ B◦ is not contained
in Dm := Γ(

⋃m
j=1 λjBj). We defineAm := {u ∈ `∞(E′

b); u(i) ∈ Dm for each i ∈ N} for every
m = 1, 2, ... Clearly the setA :=

⋃
m Am is absolutely convex and bornivorous in`∞(E′

b). Since we
assume that this space is bornological, there is a bounded setB in E such that

U := {u ∈ `∞(E′
b); u(i) ∈ B◦ for each i ∈ N} ⊂ A.

However, givenB, for eachm we can findx(m) ∈ (Bn ∩B◦) \Dm. We clearly havex = (x(m))m ∈ U .
Thus, there must bek with x ∈ Ak, hencex(k) ∈ Dk, which yields the desired contradiction.�

The density condition for K̈othe echelon spaces will be considered in Section 5.(d). The density condi-
tion for Fŕechet spaces is stable under the formation of complemented subspaces and of countable products.
It is not stable under the formation of closed subspaces or quotients. In fact, every Fréchet space is topologi-
cally isomorphic to a closed subspace of a countable product of Banach spaces, and every separable Fréchet
space is topologically isomorphic to a quotient of an (FM)-space (see [99, page 221]). Bonet, Dierolf,
Ferńandez showed that neither the density condition nor distinguishedness is a three-space property; see
[53]. Peris [80] showed that a Fréchet spaceE satisfies the density condition if and only ifE′′ does. This
should be compared with Theorem 3.

(b) Additional results

The following examples related to Theorem 1 were given in [41]:
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Theorem 11 For every1 < p < ∞ and for every open subsetG of RN , E := C∞(G) ∩ Lp(G) is
reflexive, but it does not satisfy the density condition.�

Note that the isomorphic classification and sequence space representations of such intersection function
spaces were treated by Albanese, Metafune, Moscatelli [4, 5].

Önal and Terziŏglu [78], confirming a conjecture in [33], proved the following result.

Theorem 12 Every closed subspace of a Fréchet spaceE has the density condition if and only ifE is
Montel orE is topologically isomorphic to the product of a Banach space and a (finite or infinite) countable
product of copies ofK. �

The corresponding result for quotients confirmed a conjecture in [33] and was proved by Albanese
[1, 2].

Theorem 13 A Fréchet spaceE is quasinormable if and only if every quotient ofE has the density
condition. �

This deep result permits to obtain as a corollary a theorem of Bellenot [11] which was proved using
non-standard analysis. A different proof was included in [100].

Corollary 6 A Fréchet spaceE is Schwartz if and only if every quotient is Montel.

PROOF. Every quotient of an (FS)-space is also Schwartz. We assume conversely that every quotient ofE
is Montel. In particular,E is Montel. To conclude it is enough to show thatE is quasinormable. By assump-
tion every quotient ofE has the density condition, hence the conclusion follows from Theorem 13.�

The stability of the density condition under the formation of projective tensor products is analyzed in
Section 6.(f).

(c) The dual density conditions

A (DF)-spaceE with a fundamental sequence(Bn)n of absolutely convex bounded sets is said to satisfy
the strong dual density condition(resp.dual density condition) if for each decreasing sequence(λj)j of
strictly positive numbers and for eachn there exist a neighborhoodU in E andm ≥ n such that

Bn ∩ U ⊂ Γ

 m⋃
j=1

λjBj

 (resp., Bn ∩ U ⊂ Γ

 m⋃
j=1

λjBj

).

We abbreviate these conditions as (SDDC) and (DDC), respectively. Every (DF)-spaceE with the (DDC)
(resp. (SDDC)) must be quasibarrelled (resp., bornological). If the fundamental sequence(Bn)n can be
selected in such a way that eachBn is compact for a coarser Hausdorff locally convex topology onE, then
(DDC) and (SDDC) are equivalent forE. In particular, it follows from the bipolar theorem that a Fréchet
spaceF satisfies the density condition if and only ifF ′

b satisfies (DDC) or (SDDC). However, in general
these two conditions are not equivalent, even in the framework of (DF)-spaces, which is the “good” setting
for (DDC) and (SDDC). We refer the reader to [17, 18] for details and applications to spaces of vector
valued co-echelon spaces (also see Section 5.(f)) and to weighted inductive limits of spaces of continuous
functions. The main characterization of these two properties is the following theorem.

Theorem 14 LetE denote a (DF)-space.

(a) The following conditions are equivalent:

(1) E satisfies the dual density condition (DDC),
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(2) each bounded subset ofE is metrizable,

(3) `∞(E) is quasibarrelled,

(4) `∞(E) satisfies (DDC).

(b) The following conditions are equivalent:

(1) E satisfies the strong dual density condition (SDDC),

(2) `∞(E) is bornological,

(3) `∞(E) satisfies (SDDC). �

Corollary 7 LetE again denote a (DF)-space.

(a) The following assertions are equivalent:

(1) (i) E is barrelled, and (ii) each bounded subset ofE is metrizable (or equivalently,E satisfies (DDC)),

(2) `∞(E) is barrelled.

(b) Similarly, the following assertions are equivalent:

(1) (i) E is ultrabornological, and (ii)E satisfies the strong dual density condition (SDDC),

(2) `∞(E) is ultrabornological. �

5. Köthe echelon and co-echelon spaces

(a) Definition and first properties of λp(A), kp(V ), and Kp(V )

In this section,I will always denote an arbitrary (infinite) index set andA = (an)n∈N an increasing
sequence of strictly positive functions, which will also be called aKöthe matrixon I. (One usually thinks
of the caseI = N.) Corresponding to each K̈othe matrixA = (an)n and1 ≤ p < ∞, we associate the
spaces

λp(I,A) = {x = (x(i))i∈I ∈ CI (or RI); ∀n ∈ N : qp
n(x) = (

∑
i∈I(an(i)|x(i)|)p)1/p < ∞},

λ∞(I,A) = {x = (x(i))i∈I ∈ CI (or RI); ∀n ∈ N : q∞n (x) = supi∈I an(i)|x(i)| < ∞},
λ0(I,A) = {x = (x(i))i∈I ∈ CI (or RI); ∀n ∈ N : (an(i)x(i))i converges to 0},

the last space endowed with the topology induced byλ∞(I,A). Very often the index setI is omitted from
the notation; we will follow this tradition from now on. The spacesλp(A) are called (K̈othe)echelon spaces
of orderp, 1 ≤ p ≤ ∞ or p = 0; they are Fŕechet spaces with the sequence of normspn = qp

n, n = 1, 2, ...
If A consists of a single functiona = (a(i))i, we sometimes writèp(a) instead ofλp(A), 1 ≤ p ≤ ∞, and
c0(a) instead ofλ0(A). The elements of the echelon spaces are considered as generalized sequences, and
`p(a) is a diagonal transform (viaa) of the spacèp(I) = `p(I, 1), 1 ≤ p ≤ ∞.

For a Köthe matrixA = (an)n, let V = (vn)n denote the associated decreasing sequence of functions
vn = 1/an, and put

kp(V ) = kp(I, V ) = ind
n

`p(vn), 1 ≤ p ≤ ∞, and k0(V ) = ind
n

c0(vn).

That is,kp(V ) is the increasing union of the Banach spaces`p(vn) resp.c0(vn), endowed with the strongest
locally convex topology under which the injection of each of these Banach spaces is continuous. The spaces
kp(V ) are calledco-echelon spacesof orderp; as (LB)-spaces, they are ultrabornological (DF)-spaces. The
mappingk0(V ) → k∞(V ) is obviously continuous, but it turns out that it is even a topological isomorphism
into k∞(V ). For a systematic treatment of echelon and co-echelon spaces see Bierstedt, Meise, Summers
[28], from which the next definitions and results are also taken.
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It is helpful in the treatment of echelon and co-echelon spaces to introduce, for a given decreasing
sequenceV = (vn)n of strictly positive functions onI or for the corresponding K̈othe matrixA = (an)n,
the system

λ∞(A)+ = {v = (v(i))i∈I ∈ RI
+; ∀n ∈ N : sup

i∈I

v(i)
vn(i)

= sup
i∈I

an(i)v(i) < ∞},

which in the sequel will be denoted byV = V (V ). If I is countable, this system always contains strictly
positive functions.V can be used to characterize the bounded subsets ofλp(A), as follows.

Proposition 1 Let A be a K̈othe matrix onI. Then a subsetB of λp(A), 1 ≤ p ≤ ∞, is bounded if and
only if there existsv ∈ V so that

B ⊂ vB(`p) = {y ∈ CI (or RI); ∃z ∈ B(`p) : y(i) = v(i)z(i) ∀i ∈ I},

whereB(`p) denotes the closed unit ball of the Banach space`p = `p(I, 1). �

Next, withV we associate the following spaces

Kp(V ) = Kp(I, V ) = proj
v∈V

`p(v), 1 ≤ p ≤ ∞, and = proj
v∈V

c0(v), p = 0.

These spaces are equipped with the complete locally convex topology given by the seminormsqp
v , v ∈ V ,

whereqp
v(x) = (

∑
i∈I(v(i)|x(i)|)p)1/p, 1 ≤ p < ∞, andq∞v (x) = supi∈I v(i)|x(i)|. The notation

suggests thatKp(V ) is, in some sense, related tokp(V ). In fact, it is easily seen thatkp(V ) is continuously
embedded inKp(V ), p = 0 or 1 ≤ p ≤ ∞, and thatkp(V ) = Kp(V ) algebraically for1 ≤ p ≤ ∞. More
exactly, one proves:

Theorem 15 LetA be a K̈othe matrix onI and takeV andV = V (V ) as above.

(a) For 1 ≤ p < ∞, kp(V ) equalsKp(V ) algebraically and topologically. In particular, the inductive limit
topology is given by the system(qp

v)v∈V of seminorms, andkp(V ) is always complete.

(b) K0(V ) is the completion ofk0(V ). The inductive limit topology ofk0(V ) is given by the seminorms
q∞v . However,k0(V ) can be a proper subspace ofK0(V ).
(c) k∞(V ) equalsK∞(V ) algebraically, and the two spaces have the same bounded sets.k∞(V ) is the
bornological space associated withK∞(V ), but, in general, the inductive limit topology is strictly stronger
than the topology ofK∞(V ). �

(b) Duality of echelon and co-echelon spaces

At this point, we are able to state the duality of the echelon and co-echelon spaces.

Theorem 16 For 1 ≤ p < ∞ or p = 0, if 1
p + 1

q = 1 (where we takeq = ∞ for p = 1 andq = 1 for

p = 0), then(λp(A))′b = Kq(V ) and(kp(V ))′b = λq(A). �

Corollary 8 (a) For 1 < p < ∞ and 1
p + 1

q = 1 or for p = 0 andq = 1, we have(λp(A))′b = kq(V ).

(b) In case1 < p < ∞, the spacesλp(A) andkp(V ) are reflexive.

(c) λ0(A) is always distinguished, and((λ0(A))′b)
′
b = (k1(V ))′b = λ∞(A).

(d) K0(V ) is a barrelled (DF)-space with(K0(V ))′b = (k0(V ))′b = λ1(A), and hence there is the biduality
((k0(V ))′b)

′
b = ((K0(V ))′b)

′
b = K∞(V ).

(e)k∞(V ) = (λ1(A))′i, and this space is always complete.
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(f) The following assertions are equivalent:

(i) (λ1(A))′b = k∞(V ), (i’) K∞(V ) = k∞(V ),
(ii) λ1(A) is distinguished. �

(c) The regularly decreasing condition

It remains to discuss whenk0(V ) is complete and whenλ1(A) is distinguished. The first question was
solved in [27, 28]; part of this was also found by Valdivia, independently. The sequenceV = (vn)n

associated with the K̈othe matrixA = (an)n is said to beregularly decreasingif

∀n ∃m ≥ n ∀I0 ⊂ I inf
i∈I0

vm(i)
vn(i)

> 0 =⇒ inf
i∈I0

vk(i)
vn(i)

> 0 ∀k ≥ m.

Theorem 17 (a) For 1 ≤ p < ∞ and 1
p + 1

q = 1 or for p = 0 andq = 1, the following assertions are
equivalent:

(1) V is regularly decreasing.

(2) λp(A) is quasinormable.

(3) Kq(V ) satisfies the strict Mackey convergence condition.

(4) kq(V ) = indn `q(vn) is boundedly retractive; i.e., for each bounded setB in the inductive limit there
existsn ∈ N such thatB is a bounded subset of`q(vn) and such that the norm topology of`q(vn) induces
the inductive limit topology onB.

(b) λ∞(A) is quasinormable if and only ifV is regularly decreasing.

(c) The following assertions are equivalent:

(1) V is regularly decreasing.

(2) k0(V ) = indn c0(vn) is a regular inductive limit; i.e., every bounded setB ⊂ k0(V ) must be contained
and bounded in somec0(vn).
(3) k0(V ) is complete, or equivalently,k0(V ) = K0(V ).
(4) k0(V ) is closed ink∞(V ).
(5) k0(V ) is boundedly retractive. �

Every compact subset of a Fréchet space is contained in the closed absolutely convex hull of a null
sequence. (This fact is an easy consequence of the Banach-Dieudonné theorem, cf. [74, 26.21] or [69,
21.10].) If an (LB)-spaceE = indn En is boundedly retractive, then every compact subsetC ⊂ E is
contained and compact in a stepEn; thus,C is a subset of the closed absolutely convex hull of some null
sequence inEn, hence inE. However, this assertion may fail in arbitrary (LB)-spaces. Using an idea of
Frerick and Wengenroth, Albanese [3] proved thatthe sequenceV is regularly decreasing if and only if
every compact subset of the complete (LB)-spacek∞(V ) is contained in the closed absolutely convex hull
of a null sequence.

(d) Condition (D)

To treat the distinguishedness ofλ1(A), the following condition (D)was introduced in Bierstedt, Meise
[26]. The decreasing sequenceV = (vn)n on I is said to satisfy (D) if there exists an increasing sequence
I = (Im)m∈N of subsets ofI such that

∀m ∃nm ∀k > nm : inf
i∈Im

vk(i)
vnm

(i)
> 0,

∀n ∀I0 ⊂ I with I0 ∩ (I \ Im) 6= ∅ for each m ∈ N ∃n′ = n′(n, I0) > n : inf
i∈I0

vn′(i)
vn(i)

= 0.
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Theorem 18 LetA = (an)n be a K̈othe matrix onI and letV andV be as before.

(1) Then the following assertions are equivalent:

(i) V satisfies the condition (D).

(ii) λ1(A) is distinguished.

(iii) λp(A), 1 ≤ p ≤ ∞ or p = 0, satisfies the density condition.

(iv) λ∞(A) is distinguished.

(2) The following assertions are equivalent:

(i) A satisfies the condition (ND): There isn and there is a decreasing sequence(Jk)k of subsets ofI such
that

∀k ≥ n : inf
i∈Jk

an(i)
ak(i)

> 0 and ∀k ≥ n ∃`(k) > k : inf
i∈Jk

an(i)
a`(k)(i)

= 0.

(ii) λ1(A) is not distinguished.

(iii) The duals of(λ1(A))′b and(λ1(A))′i do not coincide.

(iv) There is a sectional subspace ofλ1(A) isomorphic to an echelon spaceλ1(N×N, B) for a Köthe matrix
B = (bn)n onN×N which satisfiesbn(i, j) = b1(i, j) if n ≤ i andlimj→∞ (bn(n, j)/bn+1(n, j)) = 0. �

Bierstedt, Meise [26] proved (1)(i)⇒(ii). The equivalences of (i), (ii) and (iii) in part (1) were completed
by the authors in [16]. The equivalence of (iv) with the other conditions in (1) was proved by Bastin [9].
The condition (ND) in Theorem 18 was introduced by Bierstedt, Meise [26] who proved (2)(i)⇒(ii). Vogt
[108] introduced the condition on the matrixB in (2)(iv) and showed that, ifB satisfies this assumption,
thenλ1(N × N, B) is not distinguished. The other implications in part (2) are due to Bastin, Bonet [10].
Bastin and Vogt also discussed other, equivalent formulations of condition (D).

It should be noted that some of the results presented here for co-echelon spaces of order∞ have gen-
eralizations in the context ofweighted inductive limits of spaces of continuous functions and projective
description, see [25, 27, 26, 18]. Moreover, weighted inductive limits of spaces ofholomorphicfunctions
– for a recent survey on this topic see [15] – sometimes follow more closely the pattern set by the behavior
of co-echelon spaces than the weighted inductive limits of spaces ofcontinuousfunctions; e.g., concerning
certain biduality results, cf. [21]. For properties of weighted inductive limits and projective description, the
regularly decreasing condition and condition (D) remain very important.

(e) Subspaces and quotients of echelon spaces

The next two theorems were proved by Bonet, Dı́az [31, 33].

Theorem 19 LetA be a K̈othe matrix onI = N.

(1) If 1 < p < ∞ or p = 0, then every closed subspace and every quotient ofλp(A) is distinguished.

(2) Every quotient ofλ1(A) is distinguished if and only ifλ1(A) is quasinormable.

(3) Every closed subspace ofλ1(A) is distinguished if and only ifλ1(A) is normable or Montel or isomor-
phic to`1 × ω.

(4) Every quotient ofλp(A), 1 < p < ∞ or p = 0, has the density condition if and only ifλp(A) is
quasinormable. �

The following theorem should be compared with these two well-known facts: (1) Every Banach space
is isomorphic to a quotient of the space`1(I) for a suitable index setI; e.g. see [69]. (2) Every separable
Fréchet space is topologically isomorphic to a quotient of a Montel echelon spaceλ1(N, A); e.g. see [99,
page 221].
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Theorem 20 A Fréchet spaceF is the quotient of a suitable K̈othe echelon spaceλ1(A) = λ1(I, A)
satisfying the density condition if and only ifF has a total bounded set. �

(f) Some results on vector valued echelon and co-echelon spaces

It should be clear how echelon spacesλp(A,E) and co-echelon spaceskp(V,E), Kp(V ,E) with values
in a locally convex spaceE are defined. See [16, 2, Lemma 1] for a generalization of the proposition in
subsection (a) in this context whenE is a Fŕechet space. IfE is a Fŕechet space, then one has the duality
(λp(A,E))′b = Kq(V , E′

b), where1 ≤ p < ∞ or p = 0, p−1 + q−1 = 1 with q = 1 for p = 0 andq = ∞
for p = 1. Similarly to the casep = 1 of this duality, one can show also that for any locally complete
locally convex spaceE, there is a topological isomorphism

K∞(V ,E) = Lb(λ1(A), E).

In this subsection we concentrate on some results on vector valued echelon and co-echelon spaces which are
related to the (DF)-property, to distinguishedness and the density condition. The following two theorems
are taken from [16].

Theorem 21 For a Fréchet spaceE, the following assertions are equivalent:

(1) E satisfies the density condition.

(2) For each distinguished echelon spaceλ1(A), λ1(A,E) is distinguished, or equivalently,λ1(A,E) sat-
isfies the density condition.

(3) The topological equalityk∞(V ) = K∞(V ) always implies thatK∞(V ,E′
b) is bornological, or equiv-

alently, that the bounded subsets ofK∞(V ,E′
b) are metrizable. �

Theorem 22 (a) If λ1(A) is an echelon space andE is a Fréchet space, thenλ1(A,E) is distinguished
if and only if (i) λ1(A) is Montel andE is distinguished, or (ii)λ1(A) is distinguished andE satisfies the
density condition.

(b) If λ1(A) is an echelon space andE is a Fréchet space, thenλ1(A,E) satisfies the density condition if
and only if bothλ1(A) andE have the density condition. �

We finish this section with two theorems on vector valued co-echelon spaces, mainly from [17]. Note
that (c) in the next theorem generalizes part (a) of the previous theorem.

Theorem 23 (a) K∞(V ,E) is a (DF)-space if and only ifE has the (DF)-property.

(b) For an arbitrary (DF)-spaceE, the following assertions are equivalent:

(i) E satisfies (DDC).

(ii) The topological equalityk∞(V ) = K∞(V ) always implies that the bounded subsets ofK∞(V ,E) are
metrizable.

(iii) K∞(V ) quasibarrelled always impliesK∞(V ,E) quasibarrelled.

(iv) For each distinguished echelon spaceλ1(A), K∞(V ,E) satisfies (DDC).

(c) LetE be a (DF)-space,A a Köthe matrix. ThenK∞(V , E) is quasibarrelled if and only if (i)λ1(A) is
Montel andE is quasibarrelled, or (ii)λ1(A) is distinguished andE satisfies (DDC).

(d) LetE be a locally convex space with the countable neighborhood property andλ1(A) be a distinguished
echelon space. Then one has, algebraically and topologically,k∞(V,E) = K∞(V ,E). �
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Theorem 24 (a) For any K̈othe matrixA and any locally convex spaceE with the countable neighborhood
property, one haskp(V,E) = Kp(V ,E) algebraically and topologically,1 ≤ p < ∞.

(b) Let I denote a countable index set and fixp with 1 ≤ p < ∞. For an arbitrary (DF)-spaceE,
Kp(V ,E) = kp(V,E) is again a (DF)-space, and if the (DF)-spaceE is quasibarrelled, barrelled or
bornological, then this property is inherited byKp(V ,E). �

When co-echelon spaces with values in a Fréchet space are investigated more thoroughly, conditions of
a completely different type come into the play, see [20, Section 3].

6. Tensor products of Fr échet spaces, the problem of topolo-
gies of Grothendieck

(a) ε-product, injective and projective tensor products: a short reminder

If E andF are locally convex spaces, we denote byLb(E,F ) the space of all continuous linear maps
from E to F , endowed with the topology of uniform convergence on the bounded subsets ofE. A basis of
absolutely convex0-neighborhoods ofLb(E,F ) is given by the sets of the form

W (B, V ) := {f ∈ L(E,F ); f(B) ⊂ V },

asB runs throughB(E) andV varies in a basis of absolutely convex0-neighborhoods inF . It is well
known thatE′

b andF are topologically isomorphic to complemented subspaces ofLb(E,F ). The tensor
productE′ ⊗ F can be identified canonically with the subspace ofL(E,F ) of all finite rank operators, via
u⊗ y → (x → u(x)y) for x ∈ E, u ∈ E′ andy ∈ F .

Theε-product of Schwartz [91] ofE andF is defined asEεF := Le(E′
c, F ); also see [67, 69]. Here

the indexe stands for the family of theE-equicontinuous sets inE′ and c for the topology of uniform
convergence on the absolutely convex compact subsets ofE. Using transposed maps it is easy to see that
EεF is topologically isomorphic toFεE. If E andF are complete,EεF is also complete; ifE andF are
Fréchet spaces,EεF is again a Fŕechet space. IfE is a Fŕechet Montel space, thenEεF = Lb(E′

b, F ) and
Lb(E,F ) = E′

bεF .
The injective(or ε-) tensor productE ⊗ε F is defined by inducing on the tensor product the topology

given by the canonical inclusionE ⊗ F → EεF . If E andF are complete and one of these spaces has the
approximation property, thenEεF = E⊗̌εF ; i.e., it equals the completion ofE⊗εF . Conversely, a locally
convex spaceE for whichE⊗F is dense inEεF for each locally convex spaceF (or only for each Banach
spaceF ) must have the approximation property. IfE is a Fŕechet space, the inclusionE′

b⊗εF → Lb(E,F )
is a topological isomorphism into.

Theprojective(or π-) tensor productE ⊗π F is endowed with the locally convex topology with a basis
of absolutely convex0-neighborhoods of the formΓ(U ⊗ V ) asU andV run through bases of closed
absolutely convex neighborhoods of zero inE andF , respectively. IfE andF are Fŕechet spaces, then
E⊗̂πF , the completion ofE ⊗π F , is again a Fŕechet space.

These two topologies on tensor products of locally convex spaces were defined by Grothendieck [63].
For more details and for permanence properties of the complete tensor products, we also refer the reader e.g.
to [67, 69]. Tensor products have been utilized widely to represent spaces of vector valued functions or of
vector valued sequences and spaces of functions of several variables on product sets; see [90, 63, 91, 67, 69].
Tensor product representations of weighted spaces of vector valued sequences were obtained in [18], and
representations of weighted spaces of vector valued continuous or holomorphic functions as topological
tensor products or as spaces of operators were given in [12, 22, 24].

We will not mention many of the “classical” results on topological tensor products of Fréchet or (DF)-
spaces which one can find in the books quoted above. Instead, it is our main aim in the next subsections to
report on the new developments which started when Taskinen solved Grothendieck’s problem of topologies.
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(b) Grothendieck’s “probl ème des topologies”

Proposition 2 LetE andF be Fŕechet spaces. Then the map

Ψ : L(E,F ′
b) → (E ⊗π F )′, Ψ(u)(x⊗ y) := (u(x))(y), x ∈ E, y ∈ F, u ∈ L(E,F ′

b),

is a linear isomorphism. Moreover, it yields the topological isomorphismLb(E,F ′
b) = (E⊗̂πF )′b⊗b, where

the indexb⊗ b stands for the topology of uniform convergence on the bounded sets of the formΓ(C ⊗D),
C bounded inE andD bounded inF .

PROOF. To see thatΨ is well defined and continuous, we fixu ∈ L(E,F ′
b). SinceE is a Fŕechet space

andF ′
b is a (DF)-space, there is a0-neighborhoodU in E such thatu(U) is bounded inF ′

b (see [64, Cor.
2, page 168]), hence equicontinuous. Thus, we can find a0-neighborhoodV in F with u(U) ⊂ V ◦. Now
it is easy to see that|Ψ(u)(z)| ≤ 1 for eachz ∈ Γ(U ⊗ V ). On the other hand, foru ∈ (E ⊗π F )′ define
Φ(u) ∈ L(E,F ′

b) by (Φ(u)(x))(y) := u(x ⊗ y) for x ∈ E, y ∈ F . It is easily seen thatΦ is well defined
and linear; foru ∈ (Γ(U⊗V ))◦ we getΦ(u)(U) ⊂ V ◦. SinceΨ◦Φ andΦ◦Ψ are the respective identities,
it follows thatΨ is a linear isomorphism. For the second assertion of the proposition, it is enough to observe
that forC bounded inE andD bounded inF , we have

Φ((Γ(C ⊗D))◦) = Φ((Γ(C ⊗D))◦) = W (C,D◦) = {f ∈ L(E,F ′
b) ; f(C) ⊂ D◦}. �

Theproblem of topologiesof Grothendieck [63] asked whether, for every pair(E,F ) of Fréchet spaces
every bounded subsetB of E⊗̂πF is contained in a bounded set of the formΓ(C ⊗D), for some bounded
setC in E and some bounded setD in F . Grothendieck showed that the answer is positive ifE is nuclear,
or if E = λ1(A) is a Köthe echelon space of order 1. He also claimed a positive answer if bothE andF are
hilbertisable; i.e., projective limits of sequences of Hilbert spaces. A proof of this fact was later published
by Kürsten [70]. The problem of topologies remained open for more than 30 years and was finally solved in
the negative by Taskinen [93]. In this article, Taskinen introduced the following terminology which we will
use in the rest of the section: A pair of Fréchet spaces(E,F ) satisfies theproperty (BB)(for bi-bounded)
if the problem of topologies of Grothendieck has a positive answer for the pair(E,F ). A Fréchet space is
said to be an(FBa)-spaceif (E,X) satisfies the property (BB) for every Banach spaceX.

Closely related to the problem of topologies are Grothendieck’s problems on (DF)-spaces:

(1) Suppose thatE is a Fŕechet space andG is a (DF)-space. Must thenLb(E,G) be a (DF)-space?

(2) Suppose thatG andH are (DF)-spaces. Must then the injective tensor productG ⊗ε H also be a
(DF)-space?

In a certain sense these two problems are dual to the problem of topologies. Indeed, if the pair(E,F )
of Fréchet spaces satisfies the property (BB), thenLb(E,F ′

b) = (E⊗̂πF )′b is the strong dual of the Fréchet
spaceE⊗̂πF , hence a (DF)-space. On the other hand, if for Fréchet spacesE andF , Lb(E,F ′

b) is a (DF)-
space, then the pair(E,F ) satisfies the property (BB) if one of the following conditions holds (see [34]):
(a) bothE andF have the density condition, (b) bothE andF are separable, or (c)E or F is separable and
satisfies the bounded approximation property. However, it is not known whether this implication holds in
general. On the other hand, for the relation between the problems (1) and (2) above, see Defant and Peris
[45]: The spacesLb(E,G) andE′

b ⊗ε G “have the same local structure”.

(c) Counterexamples and positive results

Our next theorem summarizes the main counterexamples of Taskinen [93, 94, 96].

Theorem 25 (1) There is a separable reflexive Fréchet spaceE such that the pair(E, `2) does not satisfy
the property (BB).

(2) There is an (FM)-spaceE such that both(E,E) and(E, `2) do not satisfy (BB). Moreover, none of the

179



K. D. Bierstedt, J. Bonet

spacesLb(E,E′
b), Lb(E, `2), E′

b ⊗ε E′
b, E′

b ⊗ε `2 is a (DF)-space.

(3) For each K̈othe echelon spaceλ1(A) there is an (FM)-spaceE such thatλ1(A) is topologically iso-
morphic to a complemented subspace ofE⊗̂πE. �

The work of Taskinen showed that the questions of Grothendieck were related to the geometry of finite
dimensional Banach spaces. This led to a large amount of research on Grothendieck’s problems, on the sta-
bility of various properties of Fréchet spaces under the formation of projective or injective tensor products,
and to applications in infinite holomorphy, by Defant, Dı́az, Dománski, Floret, Galbis, Metafune, Peris,
Taskinen, the authors, and many others. Below we collect a number of results which we find interesting or
illustrative.

In [93], Taskinen exhibited pairs(E,F ) of Fréchet spaces which satisfy property (BB) when one of the
spaces admits a certain type of decomposition and the other one is a Banach space, or when both spaces
admit such a decomposition. For example, he proved thatevery K̈othe echelon spaceλp(A) is an (FBa)-
space,1 ≤ p < ∞. This line of research led Bonet, Dı́az, Taskinen [32, 34] to the introduction of a
general class of Fréchet resp. (DF)-spaces, called (FG)- resp. (DFG)-spaces, such that the three problems of
Grothendieck have a positive answer for spaces within these classes. The approach was continued by Peris,
Rivera [84] and had applications in infinite dimensional holomorphy; see e.g. [56, 57].

Here are some results concerning the (DF)-problems and the tensor product of quasibarrelled (DF)-
spaces [17, 18, 34].

Theorem 26 (1) If λ1(A) is a Köthe echelon space andG is a (DF)-space, then(λ1(A))′b ⊗ε G and
Lb(λ1(A), G) are (DF)-spaces.

(2) Lb(λ1(A), G) is quasibarrelled for every quasibarrelled (DF)-spaceG if and only ifλ1(A) is distin-
guished.

(3) If 1 < p < ∞ and X is a normed space, then(λp(A))′b ⊗ε X is a bornological (DF)-space, and
Lb(λp(A), G) is a (DF)-space.

(4) Assume that1 < p, q < ∞.

(i) If λp(A) is Montel, thenLb(λp(A), `q) is reflexive, hence quasibarrelled.

(ii) If λp(A) is not Montel, thenLb(λp(A), `q) is reflexive if and only ifp > q.

(iii) If λp(A) is not Montel andp ≤ q, thenLb(λp(A), `q) is quasibarrelled if and only ifλp(A) has the
density condition. �

The following important results due to Taskinen [95] and to Defant, Floret, Taskinen [44] emphasize
the “local character” of the problems of Grothendieck; proofs can be found in [43, Section 35].

Theorem 27 (a) The following conditions are equivalent for a Banach spaceX:

(1) X is aL1-space in the sense of Lindenstrauss and Pełczyński, e.g. see [43].

(2) The pair(X, F ) satisfies the property (BB) for every Fréchet spaceF .

(3) The spaceLb(X, G) is (DF) for every reflexive (DF)-spaceG.

(b) The following conditions are equivalent for a Banach spaceX:

(1) X is aL∞-space in the sense of Lindenstrauss and Pełczyński.

(2) X ⊗ε G is (DF) for every (DF)-spaceG.

(c) ([30]) Let 1 ≤ p ≤ ∞.

(1) (`p, F ) has the property (BB) if and only if(Y, F ) has (BB) for everyLp-spaceY .

(2) `p ⊗ε G is a (DF)-space if and only ifY ⊗ε G is (DF) for everyLp-spaceY . �
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These results have the following interesting consequence for weighted Banach spacesHv(G) and
Hv0(G) of holomorphic functions, see [22]. For an open subsetG of CN and a strictly positive continuous
functionv onG, putHv(G) := {f holomorphic on G; ||f ||v = supG v|f | < ∞}, and letHv0(G) be the
closed subspace ofHv(G) consisting of all those functionsf for which v|f | vanishes at infinity onG. It
is then clear how the vector valued analogHv(G, E) of Hv(G) is defined whenE is a (locally complete)
locally convex space.

Theorem 28 Letv be a radial (i.e.,v(λz) = v(z) for all z ∈ G andλ ∈ C with |λ| = 1), stricly positive,
continuous function on a balanced open subsetG ⊂ CN such thatHv0(G) contains all polynomials. Then
the following conditions are equivalent:

(1) Hv0(G) is aL∞-space.

(2) Hv(G) is aL∞-space.

(3) The pair((Hv0(G))′b, F ) has the property (BB) for every Fréchet spaceF .

(4) The spaceLb((Hv0(G))′b, F
′
b), topologically isomorphic toHv(G, F ′

b), is a (DF)-space for every
Fréchet spaceF . �

Lusky [71] showed that, ifG = D is the unit disc and if the radial weightv is of moderate growth,
then the conditions (1)–(4) in Theorem 28 are equivalent toHv0(D) = c0 (in the sense of a topological
isomorphism) and can be characterized in terms of the weight.

Peris [82] gave the first example of a Fréchet space which is not an (FBa)-space and which is “natural”;
i.e., not constructed on purpose:The Fŕechet spacèp+ = ∩`q>p is quasinormable [76], and it is not an
(FBa)-space. In fact, the pair(`p+, C2) fails to have the property (BB), whereC2 is the so-called Johnson
space (i.e., thè2-sum of a sequence of finite dimensional Banach spaces which is dense in the Banach
Mazur compactum of all finite dimensional spaces). There was some hope that the pair(`p+, `2) would
not have the property (BB). However, this is false: Defant and Peris [46] proved thatif 2 ≤ p < ∞, then
(`p+, X) has the property (BB) for every normed spaceX whose dualX ′ has cotype 2.

(d) (FS)-, (DFS)-spaces, and interchanging inductive limits with theε-product

It was an open problem of Taskinen [95] whether every (FS)-space is an (FBa)-space. This question turned
out to be related with the problem whether the countable inductive limit in an (LB)-spaceE = indnEn with
compact linking maps (that is,E is a (DFS)-space, the strong dual of an (FS)-space) interchanges with the
ε-(tensor) product with arbitrary Banach spaces [25]. The important work of Peris [81, 82, 83] solved this
problem and clarified the situation completely. The survey article [14] of Bierstedt contains a detailed report
of Peris’ work and of its applications to weighted inductive limits of spaces of vector valued holomorphic
functions [22] and to vector valued holomorphic germs on (FS)-spaces [23]. We refer the reader to this
survey and to the original articles of Peris and mention only a few results here.

Theorem 29 (a) There is an (FS)-spaceE with the approximation property which is not an (FBa)-space
and such that, for the (DFS)-spaceE′

b and some Banach spaceX, E′
b ⊗ε X is not bornological.

(b) For a (DFS)-spaceE = indn En the following conditions are equivalent:

(1) E′
b is an (FBa)-space.

(2) For each Banach spaceX, Lb(E′
b, X

′) is a bornological (DF)-space.

(3) For each Banach spaceX, EεX = indn(EnεX) holds topologically.

(4) For each Banach spaceX, E ⊗ε X = indn(En ⊗ε X) holds topologically.

(5) The (FS)-spaceF = E′
b is quasinormable by operators; i.e., for eachn there ism > n such that,

for eachε > 0, there is a continuous linear operatorP from F into F with P (Um) bounded inF and
(I − P )(Um) ⊂ εUn, where(Un)n denotes a basis of absolutely convex0-neighborhoods inF .

(c) Every (FS)-space with approximable linking maps is quasinormable by operators. And, conversely,
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if an (FS)-space has the approximation property and is quasinormable by operators, then it must have
approximable linking maps.�

If one leaves the scope of (DFS)-spaces and, in particular, considers nonreflexive (LB)-spaces, then it is
still open under which conditions the interchangeability of the inductive limit with theε-product with every
Banach space, as in (b)(3) of the preceding theorem, holds. However, Mangino [72] discussed this question
in the framework of (totally reflexive) (LF)-spaces. The relevance of the condition of quasinormability
by operators and of its dual formulation (strict Mackey condition by operators), in connection with the
stability of the class of quasinormable spaces under the formation of tensor products and with the problems
of Grothendieck, is discussed in Peris’ article [82].

(e) Two related open problems

The interchangeability of inductive limits and tensor products is related to another direction of research
which recently had some progress. In 1977, Bierstedt and Schmets asked whetherC(K, G) must be
bornological ifK is a compact Hausdorff space andG = indn Gn is an (LB)-space. The results known in
1983 in connection with this problem were collected in the excellent monograph of Schmets [89]. Since
then, the work of Dierolf and Domański [54, 55] made new contributions and showed that this problem
is connected with other open questions on (LB)-spaces. For example, they proved thatthe spacec0(G) is
bornological ifG is the strong dual of an (FM)-space or is the inductive dual of a Köthe echelon space.
However, the problem remains open.

After Taskinen solved Grothendieck’s problem of topologies, only one of Grothendieck’s questions has
remained unanswered, the question of the completeness of regular (LF)-spaces. Even the particular case
whether every regular (LB)-space must be complete is unsolved; e.g. see [13, p. 78] or [79, Problem 13.8.6].
We recall that an (LB)-spaceE = indn En is said to beregular if every bounded setB ⊂ E is contained
and bounded in one of the stepsEn. Grothendieck’s factorization theorem implies that an (LB)-space is
regular if and only if it is locally complete. A positive solution of Grothendieck’s problem would imply
that the completion of every (LB)-space is also an (LB)-space [79, Problem 13.8.1], and this would in turn
imply a positive solution to the above problem of Bierstedt and Schmets onC(K, E) spaces. – It is worth
mentioning at this point that Bonet and Dierolf showed that every regular (LB)-space of Moscatelli type
is complete, hence that no counterexample to Grothendieck’s problem can be constructed with the shifting
method of Moscatelli.

Since usually it is easy to show the regularity of an (LB)-space (if it is indeed regular), but sometimes
quite hard to show its completeness, many authors have felt that the solution of Grothendieck’s question
should be in the negative. But, so far, also all attempts to give counterexamples have failed (although it was
claimed erroneously in several published articles that the author had found a counterexample or had found
a proof). Thus, at this time, the last problem of Grothendieck is still wide open.

In this survey we have mainly concentrated on recent results in the theory of Fréchet spaces and their
duals, rather than pointing out all the open problems that have remained despite intensive research. E.g. in
the area of weighted inductive limits of spaces of holomorphic functions and projective description there
are quite a number of important unsolved questions for which we refer to [15].

(f) Some stability results for the projective tensor product

Some of the problems discussed so far are related to the stability of properties of Fréchet spaces under the
formation of tensor products. IfE is a nuclear Fŕechet space andF is a Fŕechet space which is nuclear,
Schwartz, Montel, reflexive, quasinormable, distinguished, or has the density condition, then the complete
projective tensor productE⊗̂πF satisfies the same property; see [63]. The following result is also due to
Grothendieck [63]:If both Fréchet spacesE and F are Schwartz (resp. quasinormable), thenE⊗̂πF is
again Schwartz (resp. quasinormable).

The class of quasinormable Fréchet spaces is stable under the formation of quotients and complete
projective tensor products. Meise and Vogt [73] proved thatit is the smallest class of Fréchet spaces, stable
under quotients and complete projective tensor products, which contains both the nuclear Köthe echelon
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spaces and the Banach spaces. The equivalence of the first two conditions in the next theorem can be seen
in [74, 26.14].

Theorem 30 For a Fréchet spaceE, the following conditions are equivalent:

(1) E is quasinormable.

(2) ∀n ∃m > n ∀k > m ∀ε > 0 ∃S > 0 : Um ⊂ SUk + εUn.

(3) There is an index setI and there is a nuclear K̈othe spaceλ1(A) with a continuous norm such thatE is
topologically isomorphic to a quotient of`1(I)⊗̂πλ1(A). �

It is worth pointing out that the equivalence between (1) and (2) in Theorem 30 need not hold for metriz-
able locally convex spacesE. Indeed, it is not difficult to see that every dense subspace of a quasinormable
Fréchet space satisfies the condition (2). On the other hand, Bonet and Dierolf [36] constructed a non-
separable quasinormable Fréchet spaceE with a dense subspaceF which is not quasinormable. Thus, the
metrizable spaceF satisfies condition (2), but not condition (1). The construction is based on a classical
example of Amemiya.

The characterization of the smallest class of Fréchet spaces, stable under closed subspaces and complete
projective tensor products, which contains the nuclear Köthe echelon spaces with a continuous norm and
the Banach spaces, is due to Terzioğlu and Vogt [98]. The two conditions below are equivalent to saying
thatE satisfies the topological invariant(DNϕ) of Vogt for someϕ; see [98].

Theorem 31 For a Fréchet spaceE with basis(pn)n of seminorms, the following conditions are equiva-
lent:

(1) E is asymptotically normable; i.e.,∃n(0) ∀n ∃k > n ∀ε > 0 ∃M > 0 : pn ≤ Mpn(0) + εpk.

(2) There is an index setI and there is a nuclear K̈othe spaceλ1(A) with a continuous norm such thatE is
isomorphic to a subspace of̀∞(I)⊗̂πλ1(A). �

The characterizations in Theorems 30 and 31 are closely related to Vogt’s treatment of the properties
(DN) and(Ω) in [105]. Note that since the echelon space in (2) above is nuclear, one could have written
λ∞(A) instead ofλ1(A) (compare with (2) in the next theorem) anď⊗ε instead of⊗̂π. – In case one
restricts the attention to (FS)-spaces, it is possible to give other characterizations, which are due to Vogt
and Waldorf [110]. Their theorem below should be compared with Theorem 20 and the comments before
it. The corresponding results for nuclear spaces were obtained earlier by Apiola and Wagner; see [110] for
precise references.

Theorem 32 (1) Every (FS)-space is topologically isomorphic to a quotient of a Köthe echelon space
λ1(A) which is Schwartz.

(2) An (FS)-space is asymptotically normable if and only if it is topologically isomorphic to a subspace of
a Köthe echelon spaceλ∞(A) which is Schwartz and has a continuous norm.�

By Theorem 25.(2), there are pairs(E,F ) of Fréchet spaces with the density condition which do not
satisfy (BB). Bonet and Taskinen constructed quojectionsE such that(E, `2) does not satisfy the property
(BB), althoughE⊗̂π`2 is clearly quasinormable as complete projective tensor product of two quasinormable
spaces. D́ıaz and Metafune [49] characterized the quojectionsE of Moscatelli type which are (FBa)-spaces
and obtained many interesting examples. Our next result, proved in [19], shows that the failure of the
property (BB) is the only obstruction for the stability of the density condition in complete projective tensor
products of Fŕechet spaces.

Theorem 33 If E and F are Fréchet spaces with the density condition such that(E,F ) satisfies (BB),
thenE⊗̂πF has the density condition, too. �
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Recalling our characterization of distinguished echelon spaces of order1 with values in a Fŕechet space
in Theorem 22, we note that this result can of course be interpreted as a stability theorem for distinguished-
ness under complete projective tensor products. The research about distinguished projective tensor products
of Fréchet spaces was continued by Dı́az and Mĩnarro in [50]. We mention the following example: Theorem
22 completely describes when the spaceλp(A)⊗̂πλq(B), 1 ≤ p, q < ∞ orp = 0 or q = 0, is distinguished
in casep = 1. It follows from results of D́ıaz and Mĩnarro that(i) λ0(A)⊗̂πλq(B) is distinguished for each
q as above, and that (ii)λp(A)⊗̂πλq(B), 1 < p, q < ∞, is distinguished if and only if one of the spaces is
Montel or both spaces satisfy the density condition orp > q/(q − 1).

Distinguished complete injective tensor products of Fréchet spaces have recently been investigated by
Dı́az and Dománski [48]. They constructed a quasinormable Fréchet spaceE such thatE⊗̌ε`1 is not
distinguished. On the other hand, ifE is a reflexive Fŕechet space andK is a compact Hausdorff space,
thenE⊗̌εC(K) = C(K, E) is distinguished. In [40], examples are given of quojectionsE of Moscatelli
type (hence quasinormable Fréchet spaces) and Banach spacesZ such thatE⊗̌εZ does not satisfy the
density condition. More results about the stability of quasinormability are due to Peris [82].
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131–141.

[2] Albanese, A.A. (1999). The density condition in quotients of quasinormable Fréchet spaces II,Rev. Mat. Complut.
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Köthe echelon spaces,Proc. Amer. Math. Soc.108, 769–774.

[11] Bellenot, S.F. (1980). Basic sequences in non-Schwartz Fréchet spaces,Trans. Amer. Math. Soc.258, 199–226.
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Analysis (Pẽńıscola, 1990), North-Holland Math. Stud.170, Amsterdam.

[22] Bierstedt, K.D., Bonet, J., Galbis, A. (1993). Weighted spaces of holomorphic functions on bounded domains,
Michigan Math. J.40, 271–297.

[23] Bierstedt, K.D., Bonet, J., Peris, A. (1994). Vector-valued holomorphic germs on Fréchet Schwartz spaces,Proc.
Roy. Ir. Acad. Sect. A94, 31–46.

[24] Bierstedt, K.D., Holtmanns, S. (1999). An operator representation for weighted spaces of vector valued holomor-
phic functions,Results Math.36, 9–20.

[25] Bierstedt, K.D., Meise, R. (1976). Induktive Limites gewichteter Räume stetiger und holomorpher Funktionen,J.
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Math.39, 177–183.

[32] Bonet, J., D́ıaz, J.C. (1991). The problem of topologies of Grothendieck and the class of FréchetT -spaces,Math.
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117, 199–212.

[34] Bonet, J., D́ıaz, J.C., Taskinen, J. (1991). Tensor stable Fréchet spaces and (DF)-spaces,Collect. Math.42, 199–
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