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Abstract.  We survey some recent developments in the theory etliet spaces and of their duals.
Among other things, Section 4 contains new, direct proofs of properties of, and resultécimetspaces
with the density condition, and Section 5 gives an account of the modern theory of gedtrald¢helon
and co-echelon spaces. The final section is devoted to the developments in tensor produsthetdf Fr
spaces since the negative solution of Grothendieck’s “probldes topologies”.

Algunos aspectos de la teoria moderna de espacios de Fr ~ échet

Resumen. Discutimos progresos recientes en la teate espacios de &chet y sus duales. Entre

otras cosas, la Secxi 4 contiene nuevas pruebas de propiedades y resultados acerca de espacios con la
condicbn de densidad y la Seéri 5 proporciona informa6n acerca de la teta reciente de espacios
escalonados y co-escalonados dith€. La secdéin final esh dedicada a los progresos en productos
tensoriales de espacios de&eEnet obtenidos desde la solutinegativa del “problema de las topoiag’

de Grothendieck.
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1. Introduction

Fréechet spaces have played an important role in functional analysis from its very beginning: Many vec-
tor spaces of holomorphic, differentiable or continuous functions which arise in connection with various
problems in analysis and its applications are defined by (at most) countably many conditions, whence they
carry a natural Fechet topology (if they are, in addition, complete). In particular, each Banach space is a
Fréechet space and so has a countable basis of absolutely convex zero neighborhoods. In the Banach case
the basis can be obtained as multiples of the unit ball. Therefore the geometry of the unit ball is crucial
in Banach space theory. In adehet space, however, the relation between different neighborhoods of zero
is, in general, more important than the local Banach spaces. This is the reason why the properties of the
linking maps between the local Banach spaces are crucial in the theorgdfdtrspaces. Also, in Banach
spaces the unit ball is simultaneously a typical zero neighborhood and a typical bounded se&dned Fr
space, a zero neighborhood is bounded only when the space is normable. Accordingly, the behavior of the
bounded sets also plays a significant role. Another important difference to the Banach space case is that the
strong dual of a Fechet space is not metrizable in general. Strong dualséatiet spaces af® F')-spaces,
a class introduced by Grothendieck [62]. Since it will be necessary to use duality thedéty;spaces have
to be considered here as well. Countable (locally convex) inductive limits of Banach spaces, (LB)-spaces,
are also (DF)-spaces.

Kothe echelon and co-echelon spaces are among the most important exampleshet Bnd (DF)-
spaces, respectively. Many spaces of functions or distributions, like

HDY), H(CY), S, &', D(K), D'(G), C>°(G)

for a compact subsét” or an open subset of RY, are topologically isomorphic to (products of) echelon
or co-echelon spaces. (In the sequel, we will sometimes simply write ‘isomorphic’ instead of ‘topologically
isomorphic’.) Various classes of &het spaces were defined, and they were characterized in the context of
Kothe echelon spaces. In the late '80s, the authors investigagéetidirspaces with the density condition
and characterized the density condition of echelon spaces [16].

Topological invariants lik DN') and(§2) have been essential in the structure theory étRet spaces,
due to Meise, Vogt and others. Moreover, they also have many interesting applications to problems arising
in analysis, e.g. the existence of extension operator§ forfunctions on compact or closed subsets of
RY, the surjectivity or the existence of solution operators for convolution operators or for linear partial
differential operators with constant coefficients on spaces of analytic or (ultra-) differentiable functions or
(ultra-) distributions. We do not discuss these topics here. Short exact sequencéshaft Bpaces, the
properties(DN) and(2), subspaces and quotients of power series spaces, the splitting theorem of Vogt
and Wagner and their applications are studied in detail in the book [74] of Meise and Vogt.

We concentrate here on other recent developments in the theorgafdtrspaces in which the authors
contributed to substantial progress or which we find remarkable in connection with our own interests.

After recalling some general definitions and introducing some notation in Section 2, we report in Section
3 shortly on several lines of recent research on various classesdafdiispaces. Subsection (a) is devoted to
the distinguishedness, subsection (b) to quasinormaklehEt spaces and other classes éthet spaces.
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In Section 2.(c), approximation properties are discussed, and in (d) Moscatelli type constructions are men-
tioned. In the last subsection of Section 2, results of Banaszczyk [7, 8] and of Bonet, Defant [29] around
the Levy Steinitz rearrangement theorem and nuclearity are surveyed.

In the rest of the article, more details are given on three important topics. Section 4 discusses the density
condition for FEchet spaces and the dual density conditions for (DF)-spaces, see [16, 17]. In particular, in
subsection (a) new, short and direct proofs of some of the main result€ohdtrspaces with the density
condition are presented. Section 5 surveygh€ echelon and co-echelon spaces, in (a) and (b) beginning
from scratch as in Bierstedt, Meise, Summers [28]. The relevance of the regularly decreasing condition and
of condition (D) is pointed out in subsections (c) and (d). We finish Section 5 with some results on vector
valued echelon and co-echelon spaces from [16, 17].

The theory of topological tensor products of locally convex spaces was started by Grothendieck [63],
and it is still a broad, thriving area of present research. In particular, it took the experts in Banach space
theory quite some period of time to really understand Grothendieck’s metric theory of topological tensor
products [61]. Then Pietsch,dig and others developed the theory of operator ideals, with beautiful
applications to the distribution of eigenvalues. Finally, Defant and Floret [43] gave the first treatment in
book form of Grothendieck’s metric theory, combined with the approach via operator ideals. This excellent
book is highly recommended. However, our account of tensor product£oh&r spaces mainly stays in
the tradition of [63].

In Section 6 we present the developments in tensor product£oh&t spaces which started with Task-
inen’s solution [93] of Grothendieck’s famous “prébhe des topologies” and of some related problems. In
subsection (c) we survey the counterexamples and some positive results, due to Taskinen and other authors;
in particular, we mention results from the important paper [44] of Defant, Floret, Taskinen. The work was
continued by Peris who in [82] developed the notion of “locally convex properties by operators” and solved
a problem of Bierstedt, Meise [25] on (DFS)-spaces.

2. Fundamental definitions

A Fréchet spacé” is a complete metrizable locally convex (topological vector) space (over theRfield

C). Hence the topology (and the uniform structurefo¢an be given by an increasing seque@gg e of
seminormsAs in any topological vector space, the topology-o determined by a basis of neighborhoods

of 0. SinceF is locally convex, one can take all the basic 0-neighborhoods to be absolutely convex, and
sinceF' is metrizable, there is a countalilasis viz., a decreasing sequenéé, = Uy (F) = (Up)nen Of
(closed) absolutely convex 0-neighborhoods. It is sometimes convenient to assume that the gequgence
satisfie®2p,, < p,.1 and that, similarlyl/,,,1 + U, 1 C U, holds. In the sequel, we will always take

Un:{fEF; pn(f)gl}v n=12...

Since Féchet spaces are locally convex (l.c.), the Hahn-Banach Theorem and its many consequences
(among them the quite useful Bipolar Theorem) hold in our context. And as in the case of Banach spaces,
completeness is essential in order to obtain results following from Baire’s Category Theorem, like e.g.
the Open Mapping and Closed Graph Theorems. In this article, we deal witkamerphictheory of
Fréchet spaces, which allows us to switch from one basic sequgpgeof seminorms (or from one basis
Uy = (U,), of 0-neighborhoods) to another, equivalent one (i.e., giving the same topology), whenever
convenient. — In connection with non-linear phenomena and in investigations on the inverse function theo-
rem and Nash-Moser theory, a different category has been used. In that case, one spealeddféchet
spacesF' and fixes (natural) increasing sequen¢es),, of seminorms. Instead of arbitrary continuous
linear morphisms, thteame categorpnly allows continuous linear morphisriiswhich, for a fixedk € N,
satisfy estimates of the type, (T f) < Cnpn1i(f) foralln € Nandf € F, whereC,, > 0 denotes a
constant. We refer the reader e.g. to [88] and to the references therein.

Each Féchet spacd’ is the projective limitproj,, F,, of the projective sequence of itscal Banach
spacesF,,. We will now discuss the notation which arises in this context: For eaehN, the quotient
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spaceF/p,*(0) is endowed with the norm induced by,, and F,, is the completion of this spacer,
denotes the canonical mappifg— F),, n € N, and form > n the natural continuous linear applications
Tmn : Fm — F, are said to be théinking mapsassociated with?". Switching from a fundamental
sequencép,, ), of seminorms folf” to an equivalent one amounts to changing the sequrigkg, of local
Banach spaces at the same time, but sometimes properties of the linking maps (like compact, nuclear etc.)
are invariant under such a change. Thus, while it is clear that the (conveniently selected sequence of) local
Banach spacek, can yield important information on the&ahet spacé’, often new phenomena appear in
Fréechet space theory which are not induced by the local Banach spaces alone, but are rather a consequence
of properties of the linking maps,,,.

If Fis a FEechet space and,),, is the sequence of local Banach spaces associated with an increasing
fundamental sequence of seminorfps),, as above, then the sequence

O—>F1>HFni>HFn—>O,

with 7(z) = (mp(2))n, x € F, ando((zn)n) = (Tn — Tnt1.0(Tnt1))n, Tn € Fnp, n € N, is a
short (topologically) exact sequence o€Ehet spaces by [74, 26.16]; i.e., batrand o are topological
homomorphisms. In the present setting this follows from the exactness of the short sequence by the Banach
Schauder Open Mapping Theorem since all the spaces achéirspaces arifler o = Im «. The short
exact sequence above is called tdamonical resolution of the Echet spacéd’; it plays an important role
in the characterization of certain propertiesfgfsee [74].
As is known from the duality theory of I.c. spaces, the diiabf the FEéchet spacé’; i.e., the space of

all continuous linear functionals af, can be endowed with many different, important topologies, e.g. with
the weak*-topologys (F’, F'), the topologyx(F”, F') of uniform convergence on the absolutely convex
compact subsets df — I’ endowed with this topology will be denoted Y — and the Mackey topology

u(F', F) (the strongest admissible topology for the dual pai, F’ >). In some sense, however, the
most natural topology of” is thestrong topology3(F”, F'), the topology of uniform convergence on the
bounded subsets d; F’ equipped with3(F’, F) is called thestrong dualand denoted by;. We recall
that B C Fis bounded if and only if each of the seminormsis bounded onB or, equivalently, if for
eachn € N there is)\,, > 0 with B C \,U,. The system of all absolutely convex, closed and bounded
subsets of will be denoted by3 = B(F'). In the case of Banach spaces, the unit ball is both a typical 0-
neighborhood and a typical bounded set. But&chet space with a bounded 0-neighborhood must already
be a Banach space; fproper Fréchet spaces (i.e., &het spaces which are not already Banach spaces),
0-neighborhoods and bounded sets are in fact quite different objects.

The strong duaky of any Féchet spacé’ is complete. However, i’ is a proper Fechet space, thefi/

will no longer be metrizable; thug,, has a much more complicated structure tfiarin fact, the increasing
sequencél,,),, of the (absolute) polars

Uo={f e F;5|f'(f))<1forall feU,}

of the setsU,, (= the unit ball with respect tp,,, see above) ifi”’ is a fundamental sequence of bounded
sets; i.e., each bounded subsefpis contained in som¥&;, and every countable bornivorous intersection

of absolutely conveR-neighborhoods of} is also a)-neighborhood. The locally convex spadgsvhich

share these two properties of the strong duals 6tFRet spaces are call@dF)-spacessee Grothendieck

[62]. There are several good references for (DF)-spaces: [69, 74, 79]. In particular, every countable (locally
convex) inductive limit of Banach spaces — the inductive limit is cafld8l)-space- is a (DF)-space; see

[13].

There is another, quite natural, “categorical” idea how the dudl should be topologizedF' is the
projective limit of the local Banach spacgs. It looks tempting to take the transposed maps and to consider
the inductive limit of the dual Banach spacES. Now, it is easy to see that the dual of the local Banach
spaceF’, is nothing butFUo, that is, the span of the poléF° of U,, in F’, endowed with the Minkowski
functional of U?, a norm which turnsFUo into a Banach space. Ea€lf is equicontinuous and(F’, F')-
compact by the Theorem of Alaoglu- Bourbaki. The sequdgiigp),, is increasing, and its union equals
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F'. (F', F) denotes thénductive topologyn F’; viz., the strongest locally convex topology &t which
makes all the natural injections of the Banach spal?g%sinto ' continuous.F” with this topology is called
theinductive dual and it is denoted by} = ind, F{Jg. The inductive dual is obtained by dualizing the
projective limit F' = proj,, F;,. Grothendieck proved thatF’, F') is the bornological topology associated
with 3(F’, F) and coincides witlB(F’, F"'), see [69].

Our notation concerning locally convex spaces is standard; e.g., see [67, 69, 74]. In pafficdlar,
(resp.,'(A)) denotes the absolutely convex hull (resp., the closed absolutely convex hull) of the 4ubset
of a linear space (resp., locally convex space). By ‘quotient’ we mean a separated quotient space. To avoid
trivialities, it will always be assumed that&ehet and (DF)-spaces are different fr¢a}. — Clearly, it is
impossible to quote all the important articles and books @clfet spaces in the present survey. Hence we
have sometimes given references only to one article or to one book in which references to other relevant
papers can then be found.

3. Classes of Fr échet spaces

(a) Distinguished Fréchet spaces

Dieudonré and Schwartz called aé&ehet spacé’ distinguishedf Fj is barrelled. Grothendieck proved
that, in the present setting, this is also equivalentfo= F or, equivalently, toF; being bornological.
Hence, exactly for the distinguished&ehet space$’, one obtains the strong du&j by dualizing the
projective sequence;, of local Banach spaces and by taking the inductive limit of the sequEfhcé\s
mentioned e.g. by Hoath in his book [66, page 288], it is important to know if the strong duals of the
function spaces which appear in the theory of distributions have good locally convex properties. Indeed, if
this is the case, one could apply to them the Closed Graph or the Open Mapping Theorem or the Uniform
Boundedness Principle.

The first example of a non-distinguisheceEhet space was given by Grothendieck aridhi¢, and it
was the Kothe echelon spack; (A) of order 1 for the Kthe matrixA = (a,), defined onN x N by
an(i,7) :== jif i < nanda,(i,j) = 1 otherwise. The Kthe echelon spaces which are distinguished
were characterized by the authors and Meise in the late 80’s, see Section 5. One could say that, for a long
time, all the examples of non-distinguished€&net spaces were abstract and artificial. However, Taskinen
[96] showed that the Echet spac€(R) N L' (R) endowed with the natural intersection topology is not
distinguished. His original proof was simplified considerably in [41]. Here is the argument, which is valid
even for infinitely differentiable functions.

Theorem 1 For every open subset of RV the intersection spac® := C*°(G) N L!(G) is not distin-
guished.

PROOF  Set, forf € E, po(f) := [,|fldu and select an increasing fundamental sequéiice,, of
compact subsets @f. The topology ofF is defined by the increasing sequence of semindpm$, given

by
pu(f) == po(f) + max max |f()(z)|, f € E.

la|<nx€Ln

It is enough to show that for each bounded suli$eif E there isu € B° such that for each there is
fn € Ewith p,,(f,) < 1andu(f,) = 2. Indeed, in this case the absolutely convex set

V= [J{v € B [o(f)] < pu(f) forall f € B}
neN

is a neighborhood i}, but not inE;. To complete the proof we fix a bounded €ein E. For eachn
we choose\,, > 0 such thatp,,(f) < A, for eachf € B. Now, for eachn select a compact cuhkg,
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with non-empty interior contained ih,, ; \ L,, and with Lebesgue measuyig < 1/(2"!\, ;). Define
u(f) =23, flk fdu, f € E. Clearly|u| < 2pg, henceu € E’. We have, forf € B,

lu(f)] < Q%ngg}f\f(x)l < ZijukAzm <1

so thatu € B°. For eachn we find f,, € D(I,,) which is non-negative and satisfifa fndu = 1. Clearly
fn € E and, sincef,, vanishes on a neighborhood bf, p,.(f.) = po(f») = 1 andu(f,) =2. N

Grothendieck [62] proved that the non-distinguishditheé echelon spadé mentioned above even has
the property that there is a discontinuous linear fornEjnvhich is bounded on the bounded subset&f
i.e., (E}) # (E!); in particular, the strong topolog§(E’, E) is different from the topology:(E’, E").
This behavior is shared by all non-distinguishedtiée echelon spaces and By = C*°(G) N L(G).
Komura, e.g. see [99, p. 292], gave an example of a non-distinguisketetrspacé’ such that, on the
other hand(E})" = (E})’. More examples of Emura type were later given by Bonet, Dierolf, Fendez
[37]. In 1993, Valdivia [101] proved thaf F is a separable Rechet space which does not contain a copy of
4, then(Ey)" = (E})’ or, equivalently,E” endowed with the Mackey topologyE’, E”) is bornological
In connection with this result, Valdivia asked the following two questions:

(2) Is every separable &chet space not containirig distinguished?
(2) Does every non-separablegEhet spacé not containing?; have the property thdtF’, u(E’, E")) is
bornological?

All the examples of non-distinguishedé&ahet spaces known at that time had many copids.dBoth
problems have a negative answer. (1) was solvediay i [47], and (2) by Daz and Miarro in [51]. The
first counterexample utilizes a variant of the James tree space, a separable Banach space which does not
contain/; and has a non-separable dual. The counterexample to question (2) requires the continuum hy-
pothesis; the Fchet space is constructed using weighted Banach spaces similar to the James quasireflexive
Banach space defined on an uncountable index set.

(b) Quasinormable Fréchet spaces and other classes of&ghet spaces

We recall the most important classes oéélnet spaces. All the spaces in these classes are distinguished.
A Fréchet spacé’ is calledreflexiveif (E;)" = E algebraically via the evaluation mapping; in this case,
E equals the strong dudl” := (E}); of E; topologically, andE; is barrelled. The Fchet spacé is
reflexive if and only if every bounded subsetis relativelys (E, E’)-compact. A Fechet spac is said
to beMontel abbreviated by (FM), if each bounded subsekas relatively compact. Every (FM)-space is
reflexive. Kothe and Grothendieck gave examples of (FM)-spaces with a quotient topologically isomorphic
to /1, hence not reflexive; see [69, 31.5]. According to Grothendieck [62feeltet spac# is calledtotally
reflexiveif every quotient ofF is reflexive, as it happens in cagkis a Banach space. Valdivia proved in
[100] the following interesting characterizatiof:Fréchet spacé is totally reflexive if and only iZ is the
projective limit of a sequence of reflexive Banach spases consequence, he obtained that the product of
two totally reflexive Fechet spaces is again totally reflexive, thus solving an open problem of Grothendieck
[62]. These investigations of Valdivia were continued in [102].

A Fréchet spac# is calledSchwartzabbreviated by (FS), if the linking maps are compact in the sense
that, for eacm € N there ism > n such thatr,,,, : E,, — E, is compact, or equivalently, if for each
n € N there ism > n such that for each > 0 there is a finite set’ with U,,, C F' + ¢U,. Finally, a
Fréchet spac& is nuclear, abbreviated by (FN), if the linking maps are nuclear (or, equivalently, absolutely
summable). Every (FN)-space is (FS), and every (FS)-space is (FM). The converse implications do not hold.
We refer the reader to [66, 67, 74] for Schwartz and nuclear spaces.

Grothendieck [62] also proved that if the bounded subsets of the strongjwdla Fiechet spac&
are metrizable, thef is distinguished. The class ofé&ghet spaces’ for which the strong dual; has
metrizable bounded sets coincides with the class e€lfet spaces which satisfy tHensity conditiorof
Heinrich, and it contains every (FM)-space. These spaces were studied thoroughly by the authors, and
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they are treated in Section 4 below. An important subclass is the class of quasinornéablet Bpaces.
This class was introduced by Grothendieck [62] because it contains the most usual function spaces, and
it contains every Banach space and every (FS)-space. é8hEt spacer is said to bequasinormable
if for eachn € N there ism > n such that, for eacih > 0, there exists a bounded subgetof £
with U,, C B + AU, or, equivalently, for eaclh € N there ism > n such thatEj,, and3(E’, E)
induce the same topology dii. A Fréchet space is Schwartz if and only if it is ‘quasinormable and
Montel. Quasinormable Echet spaces and their connection with the lifting of bounded sets are thoroughly
investigated in [74, Chapter 26]. For example, it follows from [74, 26.17 and 26.18] tha&cheéirspace
F is quasinormable if and only if the transpaskeof the mappingr in the canonical resolution of is a
topological homomorphism. The class of quasinormable locally convex spaces is rather large. In fact, every
(DF)-space, and even every (gDF)-space, is quasinormable; see [67, 79]. — We will return to another aspect
of the class of quasinormableéeahet spaces in subsection 6.(f).

The Theorem of Josefson and Nissenzweig was proved independently by these two authors in 1975 and
can be stated as follow# Banach spac« is finite dimensional if and only if every sequence&ihwhich
is o(X’, X)-convergent to zero also converges to zero for the norm topolog¥ .ofn 1980 Jarchow [67]
conjectured that natural extensions of this theorem should hold &mhEt spaces. These conjectures were
proved by Bonet, Lindstrm, Schlumprecht, and Valdivia in the mid 90’s. We summarize their results in the
next theorem and refer the reader to [39] for more details, some similar results and consequences in related
areas.

Theorem 2 Let F be a Fiéchet space.

(1) E is quasinormable if and only if every null sequenceHf converges uniformly to zero on @&
neighborhood in¥.

(2) E is Montel (resp. Schwartz) if and only if everyE’, E)-null sequence i’ is also strongly conver-
gent to zero (resp., converges uniformly to zero @areeighborhood ink).

(3) E does not contain a copy df if and only if every null sequence {(i£’, u(E’, E)) is also strongly
convergent to zero. H

The statement (2) in Theorem 2 is the extension of the Theorem of Josefson and Nissenzwaiheb Fr
spaces. Part (1) of the theorem permits to conclude the first part of the next theorem. The second part in
the theorem below can be found in [53], and it combines work by Bonet, DierolfaRdaz [38] with [74,

26.12]. At the same time, this permitted to solve a problem of Grothendieck [62] by giving examples of
distinguished Fechet spaceB’ with a non-distinguished strong bidual’.

Theorem 3 Let E be a Fiechet space.
(1) E is quasinormabile if and only if its strong biduB!’ is quasinormable.

(2) The bidualE"” of E is distinguished if and only if (af and E”/E are distinguished, and (b) the
quotientmapy : E” — E”/F lifts bounded sets (i.e., every bounded sty E is contained in the image
by the quotient map of a bounded seti”). W

We refer the reader to [74, Chapter 26] for the results of Palamodov, Merzon, Bonet, Dierolf, Meise and
Vogt about the lifting of bounded sets, quasinormability and the duality of exact sequences. The following
recent result of Valdivia [102] is a nice complement of these results.

Theorem 4 A Fréchet spacé’ has the property that each quotient map £ — G defined onF lifts
bounded sets if and only if one of the following conditions holds: Hd$ a Banach space, (bl is a
Schwartz space, or (d) is the product of a Banach space and the countable progduat copies of the
scalar field. W
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(c) Bases and approximation properties

A sequencézx,, ), in al.c. spacd’ is called abasisif every z € E determines a unique sequer{eg ),, in

the scalar field such that the serjesa,, z,, converges ta: in the topology ofE. Any I.c. space with a basis

is separable. The bas(s,, ), is called aSchauder basisf E if its coefficient functionals.,, (z) := an,

n € N, are continuous. Every basis in aéEhet space is a Schauder basis. From this point on we will
always write ‘basis’ and mean ‘Schauder basis’.

The problem whether every separable Banach space has a basis appeared in 1931 for the first time in
the Polish edition of Banach'’s book [6, Chapter 7, section 3]. It was clear to Banach, Mazur and Schauder
that this question was related to an approximation problem mentioned by Mazur in the “Scottish Book”
in 1936. This approximation problem was equivalent to the question whether every l.c. space has the
approximation property, a question which was analyzed carefully by Grothendieck in &se"tf63]. A
locally convex spac& has theapproximation property (a.pif the identity of E is the limit of a net of
finite rank operators for the topology of uniform convergence on the absolutely convex compact subsets of
E. If the net is equicontinuous, it is said thathas thebounded a.pA Banach spacé is said to have the
metric a.pif it has the bounded approximation property with a net of finite rank operators of operator norm
<1.

Banach’s problem was solved in the negative by Enflo in [59]: Each sfjafe < p < oo, p # 2),
as well ascy, has a closed subspace without the a.p. The égse < p < 2, is due to Szankowski in
1978. He also proved in [92] that the Banach spé(&, ¢-) of all operators on the separable Hilbert space
{5 does not have the a.p. This is a natural space, but it is not separable. Szankowski's result is still based
essentially on the constructions of Enflo. Pisier [86], [87] constructed an infinite dimensional Banach space
P such thatP? and P’ are of cotype 2 and the injective and the projective topologies coincideo®, thus
solving a long standing problem of Grothendieck. The spacdoes not have the approximation property
[87], and it is a counterexample constructed in a completely different way.

All the usual Banach spaces (such@gK') or L,) have the bounded approximation property (even
the metric approximation property). Up to our knowledge, it is still unknown whether the (non-separable)
spaceH>° (D) of all bounded holomorphic functions on the unit diBcof the complex plane has the
approximation property. On the other hand, the disc algdiff) consisting of all the elements E > (D)
with continuous boundary values even has a basis.

All implications between the various approximation properties and the property of having a basis are
either false or trivially true: In 1973, Figiel and Johnson constructed an example of a Banach space with
separable dual and the approximation property, but without the bounded approximation property; Szarek
in 1984 showed the existence of a reflexive, separable Banach space with the bounded (even the metric)
approximation property, but without a basis. — For a more detailed account on approximation properties in
Banach spaces see Casazza [42].

Every nuclear space has the approximation property. In 1960, Dynin and Mitjagin proved that every
equicontinuous basis in a nuclear space is absolute. For a long time it was an open problem whether there
exists a nuclear [Echet space without a basis. The first example of such a space was given by Mitjagin and
Zobin; we refer the reader to [67]. It was an open problem of Grothendieck since 1955 if every nuclear
Fréechet space had the bounded approximation property. This was solved in the negative by Dubinsky in
1981; the example was simplified considerably by Vogt in [103].

It is a classical problem, but still open, whether every complemented subspace of an (FN)-space with
a basis must itself have a basis. For more information, see the article ‘Structure theory of power series
spaces of infinite type’ by Dietmar Vogt in this special issudref.. R. Acad. Cien. Serie A. Mdtlsing
methods due to Mitjagin, Zobin and Petéwski, Taskinen constructed an (FS)-space with a basis and with
a complemented subspace which is (FN) and does not have a basis, cf. [97].

Every nuclear space is Schwartz. In 1973, Hogbe-Nlend used Enflo's example to constrechet Fr
Schwartz space without the approximation property, see [67]. If an (FS)-#phas approximable linking
maps (in the sense that they are limits in the operator norm of sequences of finite rank operators), then
E has the approximation property. Nelimarkka proved in 1982 that every (FS)-space with the bounded
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approximation property must have approximable linking maps. The converse does not hold due to the
examples of Dubinsky and Vogt mentioned above. Peris [83] gave an example&ifreFBchwartz space
with the approximation property, but without approximable linking maps, thus answering a problem of
Ramanujan in the negative.

In their important paper [58], Donfiaki and Vogt show that i7 is an open subset @?, d € N, then
the separable, complete and nuclear sph@g) of all real analytic functions o, endowed with its natural
topology (which, however, has a rather complicated structure), does not have a Schauder basis. This is the
first example of a separable complete function space without a basis which is natural in the sense that it had
been in existence in analysis for many years and was not constructed on purpose.

(d) Moscatelli type constructions

A different way to construct examples of nucleaéé&tet spaces without basis was presented by Moscatelli
in 1980. His approach is based on the following result due to Floret and Moscatelli [79, 8.E\a8}
Fréchet space with an unconditional basis is topologically isomorphic to a countable productabfefr
spaces with a continuous norm and unconditional hagigscatelli's idea is to use a “shifting” device which
is implicit in the example of Grothendieck and#e of a non-distinguished echelon space. Moscatelli
also utilized his method to construct é&€het space which is the projective limit of a sequence of Banach
spaces with surjective linking maps and which is not isomorphic to a complemented subspace of a countable
product of Banach spaces. Adehet spacé’ is called aquojectionif it is the projective limit of a sequence
of Banach spaces with surjective linking maps or, equivalently, if every quotient with a continuous norm
is a Banach space for the quotient topology. EvescRet spac€'(X) of continuous functions, endowed
with the compact open topology, is a quojection. Several authors proved that every quojection is a quotient
of a countable product of Banach spaces; in particular, it is quasinormable. We refer the reader to the survey
article [75] on quojections. Constructions of Moscatelli type with a shifting device have recently been used
several times to construct various counterexamples. Bonet and Dierolf studied this type of constructions in
a series of articles; e.g. see [35].

It is well-known that every non-normable&ahet space admits a quotient isomophiwtand that it
has a subspace topologically isomorphietdf and only if it does not admit a continuous norm; e.g. see
[79]. In 1961, Bessaga, Peldzski and Rolewicz showed thatFréchet space contains a subspace which
is topologically isomorphic to an infinite dimensional nucleaééhet space with basis and a continuous
norm if and only if it is not isomorphic to the product of a Banach spacew@and\s a consequence of
the results mentioned abowaery non-normable Echet space always contains a subspace which can be
written in the formF @& G with F' and G infinite dimensional spacesMifiarro [77] even proved that
Fréchet space which is neither normable nor nuclear contains a closed subBpac€& with F' and G
infinite dimensional and such th#t is not nuclear These results should be compared with the existence
of hereditarily indecomposabBanach spaces established by Gowers and Maurey [60].

The situation for quotients is more complicated. Bellenot and Dubinsky in the separable case in 1982,
andOnal and Terziglu in general in 1990 proved the following result:Fréchet space” does not have
a quotient which is nuclear with a basis and a continuous norm if and only if the biliadf £ is a
quojection Fréchet spaces satisfying this condition were introduced with another definition. Vogt showed
that the original definition was equivalent to the one mentioned above. Dierolf, Moscatelli, Behrends and
Harmand constructed &chet space& such thatE” is a quojection, buf is not a quojection. FEchet
spaceds such thatE” is a quojection are callegrequojectionsthey are also quasinormable by Theorem
3. More information about prequojections can be seen in [75].

(e) Nuclearity and the Levy Steinitz rearrangement theorem

In this subsection we assume that all the vector spaces are real. For a convergeit sgriesa locally

convex space? the domain of sums(>" wuy) is the set of alke € F which can be obtained as the sum

of a convergent rearrangement of the series. In terms of this notion, Riemann’s famous rearrangement
theorem from 1867 states that on the real line the set of sums of a convergent series is either a single point
or the whole line. Later on, Levy and Steinitz extended Riemann’s result to finite dimensional spaces by
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describing the sets of sums of each convergent seri@'inN € N. To state their result we introduce
the following notation. The set of summing functionals of a convergent sgries in a locally convex
spacek is defined byG (Y- ur) := {f € E'; >, |f(ux)| < oo}. The result is as followstf >" uy is a
convergent series iRY, thenS(Y- uy) = >, ur, + G(3- ux)°, which is a closed affine subspaceloy .
The result fails for infinite dimensional Banach spaces. In fact, Kadets, Enflo and others proved that every
infinite dimensional Banach space contains a convergent series whose set of sums consists exactly of two
different points. We refer the interested reader to the nice book of Kadets and Kadets [68].

In his two papers [7, 8], Banaszczyk proved the following extension of the theorem of Levy and Steinitz.
The result gives a new characterization of nucle@cRet spaces.

Theorem 5 A Fréchet spacd’ is nuclear if and only if the domain of sums of each convergent series
> uy in Eis given by the formul& (> ux) = >, ur + G(>_ ux)°. In particular, in each (FN)-spac&
the domain of sums is a closed affine subspade.of B

In the article [29], Bonet and Defant investigated the domains of sums of convergent series in (DF)-
spaces. Their description of the set of sums requires some notatiof: ket complete (DF)-space with
a fundamental sequen¢®,,),, of bounded sets. We denote By, the Banach spacEp, spanned by all
positive multiples ofB,,, with its Minkowski functional as norm. Assume that every convergent sequence
in E is contained and converges in sothg. Then, given a convergent seri®suy, in E, there isn(0)
such that) _, u, converges ink,, ). We denote by=; (3 ux) the subspace af which is the union for
n > n(0) of all the elements € E,, such thatf(z) = 0 for eachf € (E,)" with >, | f(ux)| < oco.
Theorem 6 Let E be the strong dual of a nuclear &chet space; i.e., a (DFN)-space.

(1) The domain of sums of every convergent seyies; in F is the affine subspace
SO ur) = we+ G k).
k

(2) If E is not isomorphic to the spageof all finite sequences, then there is a convergent seriéssach
that its domain of sums is not closed

Theorem 7 Let E be a complete (DF)-space in which every convergent sequence converges locally. If for
each convergent serigs vy, in E we have

SO k) = we+ G k),
k

thenE is nuclear. W

The approach of [29], using local convergence and bounded sets, permits to show that in a large class of
nonmetrizable spaces the domains of sums of all convergent series are affine subspaces. This class includes
the space of test functions, the space of distributions and the space of real analytic functions.

4. The density condition and the dual density conditions

(a) The density condition: definition and direct proofs of some theorems

A Fréchet spacé& with a basigU,,),, of closed absolutely convexneighborhoods (of which we assume
in the sequel that/,,,. 1 + U,+1 C U, holds) is said to have théensity conditionf for every sequence
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(A;); of strictly positive numbers and for eaehe N there is a seB € B(E) and there isn(n) > n such
that

m(n)

() \U; € B+U,.

7j=1
It is easy to see that the definition does not depend on the @ags)s of 0-neighborhoods. The density
condition was introduced by Heinrich [65] in connection with his investigations on ultrapowers of locally
convex spaces. The density condition foe&het spaces was thoroughly investigated by the authors in
[16]. The dual density conditions for (DF)-spaces were treated later in [17, 18]. The density condition
turned out to be connected to vector valued sequence spaces, the abstract theory of (DF)-spaces, projective
description of weighted inductive limits, tensor products d@dfret or (DF)-spaces, operator ideals, infinite
dimensional holomorphy, and unbounded operator algebras. Below we give direct proofs of some of the
main results and properties ofdehet spaces with the density condition.

Theorem 8 The Frechet spacé satisfies the density condition if and only if

Y(A); C (0,00) 3B € B(E)¥n3Im >n: (| A\U; C B+ U,.
j=1

PrROOF.  Only the necessity requires a proof. We fix;); C (0,00). SetV,, := (j_, \;U;, m € N.
SinceF satisfies the density condition, for eachhere areB3,, € B(E) andm(n) with V,,,,y C By, +U,.
Define

B = U (Un + Vin(n)) N B

neN

We show that3 is bounded in&: Fix k& € N. Forn > k, we havel,, + V,,, ) C (1 + Ax)Uy. On the other
hand, the setU,, + V;,,(n)) N By, is bounded foll < n < k, from where the boundedness Bffollows. It
remains to prove that,,, is contained inB + U,,. This is easy: ltr € V,,(,), thenz = y + » for some
y € B,andz € U,, hencey =z — 2z € (Up + Viy(n)) N B, C B. Thusz € B+ U,,. R

Corollary 1 Every quasinormable Echet spac# satisfies the density condition, and evergéhet space
E with the density condition is distinguished.

PROOF First we suppose thdl is quasinormable. To show that satisfies the density condition, we
fix (A\;); andn. SinceFE is quasinormable, there i such that for each > 0 there isB. € B(E) with
Un C B: +¢eU,. We putC := By ,,, € B(E) to conclude
(N AUs € AU € An(C + (1/An)Un) C AnC + U
j=1

Now assume thaF satisfies the density condition. LBt be a0-neighborhood ir&!. Find a sequence
(5); € (0,00) such that’ (UjeN ujU]‘?> C W. We apply Theorem 8 to the sequer(@gu;l)j to find

B € B(F) satisfying the equivalent condition.4f € B°, there isn with v € U;. For thisn, selectn as in
the condition in Theorem 8, and apply the bipolar theorem (as in [67, 8.2.4]; also note that th¢ sets
o(E', E)-compact) to conclude

(e}
m m

we2B+U,)°c2| (2w Uy | =0 JwUy| cw

Jj=1 Jj=1

HenceB° C W, andW is a0-neighborhood ir;. W
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Theorem 9 The Fiechet spacds has the density condition if and only if there is a double sequence
(Bn.k)nkx C B(E) such that for each and eachC' € B(E) there isk with C' C By, , + U,.

PROOFE  Suppose first that the condition is satisfied. El); andn. Suppose that for each the set
Vi = ﬂ;”zl A;Uj is not contained irB,, ,,, + U,,. For eachm, selectz,,, € V,,, \ (By,m + U,,). Clearly,
the setC' := {x,,; m € N} is bounded inE. By assumption it is contained i8,, ; + U,, for somel, which
is a contradiction to the choice of.

To prove the converse, fix, and set

W, = {ﬂ AU m e N, Aj € N such that ﬂ \U; € B+ U, forsome B € B(E)}.

j=1 Jj=1

The family W, is at most countable, and for eathe W, there isBy € B(FE) with V' C By + U,. We
denote by(B,, 1) the sequence of bounded sets obtained in this way. Lettaggin be arbitrary, we have
found a double sequené®,, ), C B(E). GivenC € B(E), we determine a sequentk;); C N with
CC ﬁjeN A;U;. By the definition of the density condition, for this sequenceamN, we findV € W,
withC Cc V C B, + U, forsomek. N

Corollary 2 Every Frechet Montel space has the density condition.

PROOF SinceF is an (FM)-spaceF is separable (cf. [67, 11.6.2]). Lét,; k € N} be a dense subset
of E. For eachn, k we putB,, j, := I'(z1,...,x). Fixn. If C is a bounded, hence relatively compact,
subset ofF, there is a finite subsét of E such thatC C F + U,,;1. By density of(x ), we findk such
thatF' C By, j + Up41. ThisyieldsC C B,, i + U,. The conclusion follows from Theorem 9.l

Corollary 3 A Fréchet space has the density condition if and only if the bounded subggtsuaf metriz-
able.

PROOF The bounded sets @&, are metrizable if and only if for eaehthe origin has a countable basis of
closed absolutely convex neighborhood#/fhfor the topology3(E’, E) (cf. [67, 9.2.4]). This is equivalent

to the existence of a double sequetié, ), . C B(E) such that for each and eactC € B(E) of E
there isk with By, , N U C C°. By the bipolar theorem and simple properties of polars (see [67, 8.2.1,
8.2.4)), this condition is equivalent to the condition in Theorem 9:

nxNUSCC® = CcC (B, NU;)° =T(BprUUp,) C Bui+Un+ U, CBug + Upn_,
Cc B,y +U, = B;)z,k n Us C Q(Bn,k + Un)o c2C°.

Corollary 4 A Fréchet space has the density condition if and only if thefe &s B( E) such that for each
n and for eachC € B(E) there isA > 0 withC C AB + U,,.

PrRoOOF Suppose first thak’ has the density condition, and select the double sequEBgg),  as in
Theorem 9. Sincé” is metrizable, there arg, , > 0, n, k € N, such thatB :=T' (Un’k pn,an’k) is

bounded (cf. [74, 26.6.(a)]). It is easy to see tRaatisfies the desired condition. The converse follows by
applying Theorem 9 to the double sequetitg, := kB, n,kc N. N

Corollary 5 Every Fréchet space with the density condition has a total bounded set, or equivalEtly,
admits a continuous norm.
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PrRoOOE If B isthe bounded set whose existence is ensured by Corollary 4, it is easy to see that the linear
span ofBisdenseinE. W

Amemiya constructed reflexive &chet spaces with no total bounded sets [69, 29.6]. They are examples
of distinguished Rechet spaces which do not satisfy the density condition.

For a locally convex spaci, we denote by, (E) the space of all absolutely summable sequencés in
If Eis complete, thetf; (E) is topologically isomorphic to the complete projective tensor prodiet, E;
see [69].

Theorem 10 A Fréchet spacé has the density condition if and only if the&ehet spacé, (E) is distin-
guished.

PROOF  The strong dual(, (E)); of ¢, (E) is topologically isomorphic to the spaég (E}) of all bounded
sequences iv;, endowed with the topology of uniform convergence. The duality is given by

<z,u>= Z < z(i),u(i) >, x=(2(i)); € L1(E), u= (u(i)); € loo(E}).

This follows from a direct argument using the special form of the bounded sét§Ah which is ensured
by [85, 1.5.8]; compare with the property (BB) of the pdiy, £) mentioned in Section 6. Accordingly, itis
enough to show that has the density condition if and onlyéf, (E;) is bornological. We denote kyB,,).,
the fundamental sequence of bounded sefs/igiven by the polars of the bagi, ),, of 0-neighborhoods
in E. The sets

Cp, = {u € lx(E}); u(i) € By, for eachi € N}, n €N,

form a fundamental sequence of bounded sets in the (DF)-$pade)).

Suppose first thak satisfies the density condition. We I&t’ denote an absolutely convex bornivorous
subset of, (£} ) and choose a sequens); of positive numbers such thait := J,,, >0, A;C; € W'
Since the topology of the (DF)-spatg (E;) is localized to its bounded subsets ([69, 29.3.(2)]), it is enough
to show that¥ N C,, is a0-neighborhood irC,,, n = 1,2, .... SinceE has the density condition, we can
apply the bipolar theorem to get > n and a0-neighborhood3® in E; such thatB,, N B° C Z?Ll A\;B;.

Let V denote thé)-neighborhood it (E;) defined byV := {u € {(E}); u(i) € B® for each ¢ € N}.
Itis easy to see that, NV C }°7", \;C; C W, from which the conclusion follows.

Suppose now that' does not satisfy the density condition. By the bipolar theorem, we find a sequence
(Aj); andn € N such that for eachn and each bounded sét in E the setB, N B° is not contained
in Dy, == T(UjZ, A;Bj). We defineA,, := {u € l(E}); u(i) € Dy, foreach i € N} for every
m = 1,2,... Clearly the setd := J,, A, is absolutely convex and bornivorous fig,(£;). Since we
assume that this space is bornological, there is a boundédglisel’ such that

U :={u € l-(F}); u(i) € B® foreach i € N} C A.

However, givenB, for eachm we can finde(m) € (B, N B°) \ D,,. We clearly haver = (z(m)),, € U.
Thus, there must be with = € Ay, hencer(k) € Dy, which yields the desired contradiction.l

The density condition for Kthe echelon spaces will be considered in Section 5.(d). The density condi-
tion for Fréchet spaces is stable under the formation of complemented subspaces and of countable products.
It is not stable under the formation of closed subspaces or quotients. In fact, eéelmgFspace is topologi-
cally isomorphic to a closed subspace of a countable product of Banach spaces, and every separatle Fr
space is topologically isomorphic to a quotient of an (FM)-space (see [99, page 221]). Bonet, Dierolf,
Ferrandez showed that neither the density condition nor distinguishedness is a three-space property; see
[53]. Peris [80] showed that a &het spacé’ satisfies the density condition if and onlyAf’ does. This
should be compared with Theorem 3.

(b) Additional results

The following examples related to Theorem 1 were given in [41]:
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Theorem 11 For everyl < p < oo and for every open subset: of RY, F := C~(G) N L?(G) is
reflexive, but it does not satisfy the density conditiorll

Note that the isomorphic classification and sequence space representations of such intersection function
spaces were treated by Albanese, Metafune, Moscatelli [4, 5].
Onal and Terziglu [78], confirming a conjecture in [33], proved the following result.

Theorem 12 Every closed subspace of adehet spacd’ has the density condition if and only & is
Montel or E is topologically isomorphic to the product of a Banach space and a (finite or infinite) countable
product of copies ofK. W

The corresponding result for quotients confirmed a conjecture in [33] and was proved by Albanese
[1,2].

Theorem 13 A Fréchet spacer is quasinormable if and only if every quotient Bf has the density
condition. W

This deep result permits to obtain as a corollary a theorem of Bellenot [11] which was proved using
non-standard analysis. A different proof was included in [100].

Corollary 6 A Fréchet spacé’ is Schwartz if and only if every quotient is Montel.

PrROOFE Every quotient of an (FS)-space is also Schwartz. We assume conversely that every quétient of
is Montel. In particularF is Montel. To conclude it is enough to show tliats quasinormable. By assump-
tion every quotient ofZ has the density condition, hence the conclusion follows from Theorem BB.

The stability of the density condition under the formation of projective tensor products is analyzed in
Section 6.(f).

(c) The dual density conditions

A (DF)-spaceFE with a fundamental sequen¢®,,),, of absolutely convex bounded sets is said to satisfy
the strong dual density conditio(resp.dual density conditionif for each decreasing sequengeg;); of
strictly positive numbers and for eaelthere exist a neighborhodd in £ andm > n such that

BynUCT [|JNB;| (esp, B,nUCT (| JAB; )
Jj=1 Jj=1

We abbreviate these conditions as (SDDC) and (DDC), respectively. Every (DF)&paitke the (DDC)

(resp. (SDDC)) must be quasibarrelled (resp., bornological). If the fundamental sequikrgecan be
selected in such a way that eaBl) is compact for a coarser Hausdorff locally convex topologyethen

(DDC) and (SDDC) are equivalent fdf. In particular, it follows from the bipolar theorem that &Ehet

spacel” satisfies the density condition if and onlyAf, satisfies (DDC) or (SDDC). However, in general
these two conditions are not equivalent, even in the framework of (DF)-spaces, which is the “good” setting
for (DDC) and (SDDC). We refer the reader to [17, 18] for details and applications to spaces of vector
valued co-echelon spaces (also see Section 5.(f)) and to weighted inductive limits of spaces of continuous
functions. The main characterization of these two properties is the following theorem.

Theorem 14 Let E denote a (DF)-space.

(a) The following conditions are equivalent:
(1) E satisfies the dual density condition (DDC),
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(2) each bounded subset Bfis metrizable,

(3) £ (E) is quasibarrelled,

(4) £ (E) satisfies (DDC).

(b) The following conditions are equivalent:

(1) E satisfies the strong dual density condition (SDDC),
(2) £ (E) is bornological,

(3) £ (E) satisfies (SDDC). B

Corollary 7 Let £/ again denote a (DF)-space.

(a) The following assertions are equivalent:
(2) (i) £ is barrelled, and (ii) each bounded subsetfofs metrizable (or equivalentlyy satisfies (DDC)),
(2) ¢ (F) is barrelled.

(b) Similarly, the following assertions are equivalent:

(1) () £ is ultrabornological, and (ii)E satisfies the strong dual density condition (SDDC),
(2) Lo (E) is ultrabornological. B

5. Kothe echelon and co-echelon spaces

(a) Definition and first properties of \,(A), k,(V), and K, (V)

In this section,/ will always denote an arbitrary (infinite) index set add= (a,,),en an increasing
sequence of strictly positive functions, which will also be calldtiidéhe matrixon 7. (One usually thinks
of the casel = N.) Corresponding to eachdthe matrixA = (a,,), andl < p < oo, we associate the
spaces

M(I,A) = {z = (2(i))ier € C" (or RY); Vn € Nt gh(x) = (¢ (an(d)|2(i)])?) /P < oo},
Aoo(I,A) = {z = (2(i))ier € C! (or RT); Vn € N: ¢5°(x) = sup;c; an(i)|z(i)] < oo},
Mo(I, A) = {x = (2(i))ies € C! (or RY); ¥n € N: (a,(i)x(i)); converges to 0},

the last space endowed with the topology induced hy/, A). Very often the index seft is omitted from
the notation; we will follow this tradition from now on. The space$A) are called (Kthe)echelon spaces
of orderp, 1 < p < oo or p = 0; they are Fechet spaces with the sequence of nopms= ¢2, n = 1,2, ...
If A consists of a single function= (a(i)),, we sometimes writé,(a) instead of\,(A), 1 < p < oo, and
co(a) instead of\y(A). The elements of the echelon spaces are considered as generalized sequences, and
¢,(a) is a diagonal transform (vi@) of the spacé, (1) = ¢,(I,1),1 < p < cc.
For a Kdothe matrix4A = (a,)n, letV = (v, ), denote the associated decreasing sequence of functions
v, = 1/a,, and put

kp(V) =ky(I,V) =ind lp(vy,), 1 < p < oo, and ko(V) = ind co(vy,).

Thatis,k, (V) is the increasing union of the Banach spakgs,, ) resp.co (v, ), endowed with the strongest

locally convex topology under which the injection of each of these Banach spaces is continuous. The spaces
k, (V') are callecco-echelon spaceax orderp; as (LB)-spaces, they are ultrabornological (DF)-spaces. The
mappingko (V) — ko (V') is obviously continuous, but it turns out that it is even a topological isomorphism

into ko (V). For a systematic treatment of echelon and co-echelon spaces see Bierstedt, Meise, Summers
[28], from which the next definitions and results are also taken.
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It is helpful in the treatment of echelon and co-echelon spaces to introduce, for a given decreasing
sequencé” = (v,,),, of strictly positive functions od or for the corresponding &he matrix4A = (ay,)n,
the system
Aoo(A)1 = {T= (5(i))ies € RL; Vn € N: sup o) _ sup a,, (1)3(i) < oo},
icl Un(l) icl

which in the sequel will be denoted By = V(V). If I is countable, this system always contains strictly
positive functionsV can be used to characterize the bounded subseis(df), as follows.

Proposition 1 Let A be a Kothe matrix on/. Then a subseB of A,(A), 1 < p < oo, is bounded if and
only if there exist® € V so that

B cuB(t,) ={yeC (or RY); 32 € B(¢,) : y(i) =v(i)2(i) Vi € I},

whereB(¢,) denotes the closed unit ball of the Banach spgce- ¢,(1,1). R

Next, with V' we associate the following spaces

K,(V)=K,(I,V) = proj £,(v), 1 <p < oo, and = proj cy(?v), p=0.
veEV veEV
These spaces are equipped with the complete locally convex topology given by the semiharmasV/,
whereg?(z) = (Ziel(@(iﬂx(i)bp)l/fﬂ, 1 < p < oo, andgX(z) = sup,c;0(¢)|x(:)]. The notation
suggests thak(,, (V') is, in some sense, relatedig(V). In fact, it is easily seen tha, (V) is continuously

embedded ik, (V), p=00r1 < p < oo, and thatk,(V) = K, (V) algebraically forl < p < co. More
exactly, one proves:

Theorem 15 Let A be a Kothe matrix on/ and takeV andV = V (V) as above.
(@) For1 < p < o0, k,, (V) equalsK, (V) algebraically and topologically. In particular, the inductive limit
topology is given by the systeat;) ;1 of seminorms, and, (V) is always complete.

(b) Ko(V) is the completion ok (V). The inductive limit topology df, (V) is given by the seminorms
¢=°. Howeverf (V) can be a proper subspace &% (V).

() ks (V) equalsK (V) algebraically, and the two spaces have the same bounded/sgtd/) is the
bornological space associated with,. ('), but, in general, the inductive limit topology is strictly stronger
than the topology o (V). W

(b) Duality of echelon and co-echelon spaces

At this point, we are able to state the duality of the echelon and co-echelon spaces.

Theorem 16 For1 < p < oo or p = 0, if 1 % = 1 (where we takg = oo forp = 1 andq = 1 for
= 0), then(\,(A)); = K,(V) and (k (V)) =X,(4). 1

Corollary 8 (a) Forl <p <ocand; + ¢ =1orforp=o0andg =1, we havg\,(A)); = ke(V).

(b) In casel < p < oo, the spaces,,(A) andk, (V) are reflexive.

(c) Xo(A) is always distinguished, andXo(A)););, = (k1(V)), = Aac(A).

(d) Ko(V) is a barrelled (DF)-space withKo(V));, = (ko(V)); = A1(A), and hence there is the biduality
((ko(V))3) = (Ko (V))3), = Koo (V).

(€) koo (V) = (A1(4))}, and this space is always complete.
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(f) The following assertions are equivalent:

(i) A1(A) is distinguished. W

(c) The regularly decreasing condition

It remains to discuss whely (V') is complete and when; (A) is distinguished. The first question was
solved in [27, 28]; part of this was also found by Valdivia, independently. The sequénee (v,,),
associated with the &he matrixA = (a,,),, is said to baegularly decreasingf

v (2)

Vn3Im >nVlp C I inf v 0 i

>0 Vk > m.
i€ly vy (1) i€y vy (1) =m

Theorem 17 (@) Forl <p < > and% + % = lorforp = 0andq = 1, the following assertions are
equivalent:

(1) V is regularly decreasing.
(2) A\p(4) is quasinormable.
(3) K, (V) satisfies the strict Mackey convergence condition.

(4) kq(V) = ind,, £4(v,,) is boundedly retractive; i.e., for each bounded Bein the inductive limit there
existsn € N such thatB is a bounded subset 6§(v,,) and such that the norm topology &f(v,,) induces
the inductive limit topology oif3.

(b) Ao (A) is quasinormable if and only il is regularly decreasing.

(c) The following assertions are equivalent:
() V is regularly decreasing.

(2) ko(V) = ind,, co(vy,) is a regular inductive limit; i.e., every bounded g&tC &, (V') must be contained
and bounded in somg (v.,).

(3) ko(V) is complete, or equivalentlyty (V) = Ko(V).
(4) ko(V') is closed inks (V).
(5) ko (V) is boundedly retractive. B

Every compact subset of a@ahet space is contained in the closed absolutely convex hull of a null
sequence. (This fact is an easy consequence of the Banach-Diéutfeunem, cf. [74, 26.21] or [69,
21.10].) If an (LB)-spacd” = ind,, E,, is boundedly retractive, then every compact suliset FE is
contained and compact in a stéfy; thus,C' is a subset of the closed absolutely convex hull of some null
seguence irF,,, hence inE. However, this assertion may fail in arbitrary (LB)-spaces. Using an idea of
Frerick and Wengenroth, Albanese [3] proved tthet sequenc®” is regularly decreasing if and only if
every compact subset of the complete (LB)-spacél) is contained in the closed absolutely convex hull
of a null sequence

(d) Condition (D)

To treat the distinguishedness bf(A), the following condition (D)was introduced in Bierstedt, Meise
[26]. The decreasing sequenke= (v,,), onI is said to satisfy (D) if there exists an increasing sequence
Z = (I;n)men Of subsets of such that

VYm In,, Vk > n,, ;. inf Uk(l)_
i€lm Up,, (1)

>0,

VnVIy C I with Iy N (I\ Ly) # 0 foreach m € N3In' =n'(n,Iy) >n: jnIf’ vn/((z)) =0.
i€ly vy (i
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Theorem 18 LetA = (a,), be a Kothe matrix on/ and letV andV be as before.
(1) Then the following assertions are equivalent:

(i) V satisfies the condition (D).

(i) A1(A) is distinguished.

(iii) Ap(A),1 < p < oo orp=0, satisfies the density condition.

(iv) Ao (A) is distinguished.

(2) The following assertions are equivalent:

(i) A satisfies the condition (ND): Theresisand there is a decreasing sequeridg),. of subsets of such

that . |
Vk>n: inf 0 0 and Vk > n (k) > k: inf an(7)
i€Jy ak(z) i€y aé(k)(l)

(i) A1(A) is not distinguished.
(iii) The duals of(\; (A)); and (A1 (A)); do not coincide.

(iv) There is a sectional subspaceXaf( A) isomorphic to an echelon spagg(N x N, B) for a Kéthe matrix
B = (b,), onNxN which satisfie$,, (i, 7) = b1(4, j) if n < i andlim;_,o; (bn(n,j)/bp+1(n,75)) = 0. A

=0.

Bierstedt, Meise [26] proved (1) (ii). The equivalences of (i), (ii) and (iii) in part (1) were completed
by the authors in [16]. The equivalence of (iv) with the other conditions in (1) was proved by Bastin [9].
The condition (ND) in Theorem 18 was introduced by Bierstedt, Meise [26] who proved=Z)iji) Vogt
[108] introduced the condition on the matrXin (2)(iv) and showed that, iB satisfies this assumption,
thenA; (N x N, B) is not distinguished. The other implications in part (2) are due to Bastin, Bonet [10].
Bastin and Vogt also discussed other, equivalent formulations of condition (D).

It should be noted that some of the results presented here for co-echelon spaces af beder gen-
eralizations in the context afeighted inductive limits of spaces of continuous functions and projective
description see [25, 27, 26, 18]. Moreover, weighted inductive limits of spacd®mmorphicfunctions
— for a recent survey on this topic see [15] — sometimes follow more closely the pattern set by the behavior
of co-echelon spaces than the weighted inductive limits of spacatihuoudunctions; e.g., concerning
certain biduality results, cf. [21]. For properties of weighted inductive limits and projective description, the
regularly decreasing condition and condition (D) remain very important.

(e) Subspaces and quotients of echelon spaces

The next two theorems were proved by BoneiaD[31, 33].

Theorem 19 Let A be a Kdthe matrix on/ = N.

(1) If 1 < p < 0o or p = 0, then every closed subspace and every quotieny @4) is distinguished.
(2) Every quotient oh; (A) is distinguished if and only iX; (A) is quasinormable.

(3) Every closed subspace ®f(A) is distinguished if and only iX; (A) is normable or Montel or isomor-
phicto/; x w.

(4) Every quotient of,(A),1 < p < oo or p = 0, has the density condition if and only if,(A) is
quasinormable. W

The following theorem should be compared with these two well-known facts: (1) Every Banach space
is isomorphic to a quotient of the spa€gT) for a suitable index sef; e.g. see [69]. (2) Every separable
Fréchet space is topologically isomorphic to a quotient of a Montel echelon 3péiieA); e.g. see [99,
page 221].
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Theorem 20 A Fréchet spacd” is the quotient of a suitable &he echelon spacg; (A) = A\ (I, A)
satisfying the density condition if and onlyfifhas a total bounded set. B

(f) Some results on vector valued echelon and co-echelon spaces

It should be clear how echelon spaceg A, E) and co-echelon spacés(V, E), K,(V, E) with values

in a locally convex spacé& are defined. See [16, 2, Lemma 1] for a generalization of the proposition in
subsection (@) in this context whdhis a Fiechet space. IF is a Féchet space, then one has the duality
(M(A,E)), = Ky (V,E}),wherel <p<ocorp=0,p~ ! +¢ ' =1withg=1forp=0andg =

for p = 1. Similarly to the case = 1 of this duality, one can show also that for any locally complete
locally convex spacé’, there is a topological isomorphism

Ko(V,E) = Ly(M(A), E).

In this subsection we concentrate on some results on vector valued echelon and co-echelon spaces which are
related to the (DF)-property, to distinguishedness and the density condition. The following two theorems
are taken from [16].

Theorem 21 For a Fréchet spacd’, the following assertions are equivalent:

(1) F satisfies the density condition.

(2) For each distinguished echelon spacé A), A1 (A4, F) is distinguished, or equivalently; (A4, F) sat-
isfies the density condition.

(3) The topological equality.. (V) = K. (V) always implies thai - (V, E}) is bornological, or equiv-
alently, that the bounded subsetsiof, (V, E}) are metrizable. B

Theorem 22 (a) If A\;(A) is an echelon space anfl is a Fréchet space, thek; (A, F) is distinguished
if and only if (i) A1 (A) is Montel andFE is distinguished, or (ii)\; (4) is distinguished and’ satisfies the
density condition.

(b) If A1 (A) is an echelon space anfd is a Fréchet space, thek, (4, E) satisfies the density condition if
and only if both\; (A) and E have the density condition. B

We finish this section with two theorems on vector valued co-echelon spaces, mainly from [17]. Note
that (c) in the next theorem generalizes part (a) of the previous theorem.

Theorem 23 (a) K. (V, E) is a (DF)-space if and only ifZ has the (DF)-property.
(b) For an arbitrary (DF)-spaceF, the following assertions are equivalent:
() FE satisfies (DDC).

(ii) The topological equalityt, (V) = K. (V) always implies that the bounded subset&of (V, E) are
metrizable.

(i) Ko (V) quasibarrelled always implie& .. (V, E) quasibarrelled.
(iv) For each distinguished echelon spacg A), K. (V, E) satisfies (DDC).

(c) LetE be a (DF)-spaced a Kothe matrix. Therk,, (V, E) is quasibarrelled if and only if (i\; (A) is
Montel andE is quasibarrelled, or (ii)A; (A) is distinguished and’ satisfies (DDC).

(d) LetE be alocally convex space with the countable neighborhood propertyant) be a distinguished
echelon space. Then one has, algebraically and topologidallyV, E) = K..(V,E). R

177



K. D. Bierstedt, J. Bonet

Theorem 24 (a) For any Kothe matrixA and any locally convex spadewith the countable neighborhood
property, one has,(V, E) = K,(V, E) algebraically and topologically] < p < cc.

(b) Let I denote a countable index set and fixvith 1 < p < oo. For an arbitrary (DF)-spaceF,
K,(V,E) = k,(V,E) is again a (DF)-space, and if the (DF)-spaéeis quasibarrelled, barrelled or
bornological, then this property is inherited by, (V, E). B

When co-echelon spaces with values in adfet space are investigated more thoroughly, conditions of
a completely different type come into the play, see [20, Section 3].

6. Tensor products of Fr échet spaces, the problem of topolo-
gies of Grothendieck

(a) e-product, injective and projective tensor products: a short reminder

If £ and F' are locally convex spaces, we denote &y(E, F') the space of all continuous linear maps
from E to F', endowed with the topology of uniform convergence on the bounded subsBtsfobasis of
absolutely conveg-neighborhoods of,(E, F') is given by the sets of the form

W(B,V):={f € LIE.F); {(B) C V),

as B runs throughB(F) andV varies in a basis of absolutely convéxneighborhoods irF'. It is well
known thatE; and F' are topologically isomorphic to complemented subspaces,0F, F'). The tensor
productE’ ® F' can be identified canonically with the subspac&oF, F') of all finite rank operators, via
u®y — (xr — u(z)y)forez € E,u € E'andy € F.

The e-product of Schwartz [91] of and F' is defined aficF := L.(E., F); also see [67, 69]. Here
the indexe stands for the family of théZ-equicontinuous sets i’ and ¢ for the topology of uniform
convergence on the absolutely convex compact subsdis bfsing transposed maps it is easy to see that
EeF is topologically isomorphic td'c E. If E andF are completeE<F is also complete; it and F' are
Fréchet spacedjc F is again a Fechet space. IE is a Féchet Montel space, thdc ' = £,(E;, F') and
Ly(E,F) = EjeF.

Theinjective(or -) tensor product ®. F' is defined by inducing on the tensor product the topology
given by the canonical inclusioll ® F' — Ee¢F'. If E andF are complete and one of these spaces has the
approximation property, thels ' = E®. F’; i.e., it equals the completion &f . F'. Conversely, a locally
convex spacé’ for which E® F'is dense inbe I for each locally convex spadeé (or only for each Banach
spacel’) must have the approximation propertyHfis a Fechet space, the inclusid) ®. F' — Ly(E, F)
is a topological isomorphism into.

Theprojective(or 7-) tensor product @, F' is endowed with the locally convex topology with a basis
of absolutely conveX-neighborhoods of the fori(U ® V) asU andV run through bases of closed
absolutely convex neighborhoods of zeroAnand F', respectively. IfE and F' are FEchet spaces, then
E®,F, the completion o @, F, is again a Rechet space.

These two topologies on tensor products of locally convex spaces were defined by Grothendieck [63].
For more details and for permanence properties of the complete tensor products, we also refer the reader e.g.
to [67, 69]. Tensor products have been utilized widely to represent spaces of vector valued functions or of
vector valued sequences and spaces of functions of several variables on product sets; see [90, 63, 91, 67, 69].
Tensor product representations of weighted spaces of vector valued sequences were obtained in [18], and
representations of weighted spaces of vector valued continuous or holomorphic functions as topological
tensor products or as spaces of operators were given in [12, 22, 24].

We will not mention many of the “classical” results on topological tensor productsazihét or (DF)-
spaces which one can find in the books quoted above. Instead, it is our main aim in the next subsections to
report on the new developments which started when Taskinen solved Grothendieck’s problem of topologies.
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(b) Grothendieck’s “probl éme des topologies”
Proposition 2 Let E and F' be Fréchet spaces. Then the map
U L(E, Fy) — (E®: F), ¥(u)(z@y) = (u(x))(y), z € E, y € F, u € L(E, Fy),

is a linear isomorphism. Moreover, it yields the topological isomorphisiE, Fy) = (E®. F);,, where
the indexb ® b stands for the topology of uniform convergence on the bounded sets of thE(i6rm D),
C bounded in® and D bounded inF'.

PrROOF  To see thatl is well defined and continuous, we fixe £(E, F}). SinceE is a Féchet space
andF} is a (DF)-space, there istaneighborhoodJ in E such that:(U) is bounded inF; (see [64, Cor.

2, page 168]), hence equicontinuous. Thus, we can finhe@ighborhood” in F with «(U) C V°. Now

it is easy to see tha@ (u)(z)| < 1 for eachz € I'(U ® V). On the other hand, far € (F ®, F)’ define

®(u) € L(E, F}) by (2(u)(x))(y) :==u(z®y) forxz € E,y € F. Itis easily seen thab is well defined

and linear; foru € (T(U®V))° we getd(u)(U) C V°. Since¥ o ® and® o ¥ are the respective identities,

it follows thatW is a linear isomorphism. For the second assertion of the proposition, it is enough to observe
that forC bounded inE’ and D bounded inF', we have

O((T(C®D))°) =o((I'(C®D))°) =W(C,D°) = {f € L(E, Fy); f(C)c D°}. M

Theproblem of topologiesf Grothendieck [63] asked whether, for every [dil, ') of Fréchet spaces
every bounded subsé of E®,. F is contained in a bounded set of the foltC' @ D), for some bounded
setC'in E and some bounded sEtin F'. Grothendieck showed that the answer is positivé i§ nuclear,
orif E = \;(A) is a Kbthe echelon space of order 1. He also claimed a positive answer ifhartil £ are
hilbertisable; i.e., projective limits of sequences of Hilbert spaces. A proof of this fact was later published
by Kursten [70]. The problem of topologies remained open for more than 30 years and was finally solved in
the negative by Taskinen [93]. In this article, Taskinen introduced the following terminology which we will
use in the rest of the section: A pair ofdeéhet spacegF, F) satisfies theroperty (BB)(for bi-bounded)
if the problem of topologies of Grothendieck has a positive answer for thé paif). A Fréchet space is
said to be arfFBa)-spacdf (F, X) satisfies the property (BB) for every Banach spaAte

Closely related to the problem of topologies are Grothendieck’s problems on (DF)-spaces:

(1) Suppose thak is a Féchet space and is a (DF)-space. Must thefy,(E, G) be a (DF)-space?
(2) Suppose thafs and H are (DF)-spaces. Must then the injective tensor product. H also be a
(DF)-space?

In a certain sense these two problems are dual to the problem of topologies. Indeed, if (e, pgir
of Fréchet spaces satisfies the property (BB), thef¥, F) = (E®,F)j is the strong dual of the Echet
spaceE &, F, hence a (DF)-space. On the other hand, if f@dhet spaceg andF, £,(E, F}) is a (DF)-
space, then the pafiZ, F') satisfies the property (BB) if one of the following conditions holds (see [34]):
(a) bothE and F' have the density condition, (b) bothand F" are separable, or (&) or F' is separable and
satisfies the bounded approximation property. However, it is not known whether this implication holds in
general. On the other hand, for the relation between the problems (1) and (2) above, see Defant and Peris
[45]: The space£,(E, G) andE; ®. G “have the same local structure”.

(c) Counterexamples and positive results

Our next theorem summarizes the main counterexamples of Taskinen [93, 94, 96].

Theorem 25 (1) There is a separable reflexive&ahet spacé& such that the paifE, ¢») does not satisfy
the property (BB).

(2) There is an (FM)-spac#’ such that botH £, E') and (E, ¢5) do not satisfy (BB). Moreover, none of the
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spacesL,(E, E}), Ly(E, l2), E| ®. E}, E| ®. {5 is a (DF)-space.

(3) For each Kithe echelon spack,; (A4) there is an (FM)-spacé’ such that\;(A) is topologically iso-
morphic to a complemented subspacé&cf,£E. N

The work of Taskinen showed that the questions of Grothendieck were related to the geometry of finite
dimensional Banach spaces. This led to a large amount of research on Grothendieck’s problems, on the sta-
bility of various properties of Fchet spaces under the formation of projective or injective tensor products,
and to applications in infinite holomorphy, by Defantia®, Domaski, Floret, Galbis, Metafune, Peris,
Taskinen, the authors, and many others. Below we collect a number of results which we find interesting or
illustrative.

In [93], Taskinen exhibited pairfs, F') of Fréchet spaces which satisfy property (BB) when one of the
spaces admits a certain type of decomposition and the other one is a Banach space, or when both spaces
admit such a decomposition. For example, he proveddhety Kothe echelon spack,(A) is an (FBa)-
space,1 < p < oo. This line of research led Bonet,i&¥, Taskinen [32, 34] to the introduction of a
general class of echet resp. (DF)-spaces, called (FG)- resp. (DFG)-spaces, such that the three problems of
Grothendieck have a positive answer for spaces within these classes. The approach was continued by Peris,
Rivera [84] and had applications in infinite dimensional holomorphy; see e.g. [56, 57].

Here are some results concerning the (DF)-problems and the tensor product of quasibarrelled (DF)-
spaces [17, 18, 34].

Theorem 26 (1) If \{(A) is a Kbthe echelon space ar@ is a (DF)-space, theri;(4)); ®. G and
Ly(M(A),G) are (DF)-spaces.

(2) L,(A1(A), G) is quasibarrelled for every quasibarrelled (DF)-spaGeif and only if \;(A) is distin-
guished.

(3)If1 < p < oo and X is a normed space, thef\,(A)); ®. X is a bornological (DF)-space, and
Ly(Mp(A4),G) is a (DF)-space.

(4) Assume that < p, ¢ < oc.
(i) If A, (A) is Montel, thenC,(X,(A), ¢,) is reflexive, hence quasibarrelled.
(i) If A,(A) is not Montel, therC,,(\,(A), ¢,) is reflexive if and only ip > q.

(iii) If A\,(A) is not Montel andy < g, thenLy(A,(A), {,) is quasibarrelled if and only ih,(A) has the
density condition. H

The following important results due to Taskinen [95] and to Defant, Floret, Taskinen [44] emphasize
the “local character” of the problems of Grothendieck; proofs can be found in [43, Section 35].
Theorem 27 (a) The following conditions are equivalent for a Banach space

(1) X is aL£;-space in the sense of Lindenstrauss and Pékldye.g. see [43].
(2) The pair(X, F') satisfies the property (BB) for everyéahet spacé’.
(3) The space&, (X, G) is (DF) for every reflexive (DF)-spadg.

(b) The following conditions are equivalent for a Banach space

(1) X is aL,.-space in the sense of Lindenstrauss and Péaklay
(2) X ®. G is (DF) for every (DF)-spacé..
(c) ([30]) Let1 < p < cc.

(1) (4, F) has the property (BB) if and only (", F') has (BB) for event,-spaceY".
(2) ¢, ®c G is a (DF)-space if and only ¥ ®. G is (DF) for everyL,-spaceY’. W
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These results have the following interesting consequence for weighted Banach ghgces and
Hu(G) of holomorphic functions, see [22]. For an open suldgef CV and a strictly positive continuous
functionv on G, put Hu(G) := {f holomorphic on G; ||f||, = supg v|f| < oo}, and letHvy(G) be the
closed subspace dfv(G) consisting of all those functions for which v| f| vanishes at infinity or. It
is then clear how the vector valued analig(G, F) of Hu(G) is defined wherF is a (locally complete)
locally convex space.

Theorem 28 Letwv be aradial (i.e.v(\z) = v(z) forall z € G and X € C with |A\| = 1), stricly positive,
continuous function on a balanced open suliset CV such thatH v (G) contains all polynomials. Then
the following conditions are equivalent:

(1) Hvo(G) is a L-Space.
(2) Hv(G) is a L,-space.
(3) The pair((Hvo(G));, F) has the property (BB) for every &chet spacé’.

(4) The spaceC,((Hvo(G)),, Fy), topologically isomorphic taHv(G, F}), is a (DF)-space for every
Fréchet spacé’. W

Lusky [71] showed that, if7 = D is the unit disc and if the radial weightis of moderate growth,
then the conditions (1)—(4) in Theorem 28 are equivalentfig(D) = ¢, (in the sense of a topological
isomorphism) and can be characterized in terms of the weight.

Peris [82] gave the first example of a&ehet space which is not an (FBa)-space and which is “natural”;
i.e., not constructed on purposghe Ftechet spacé,,. = N/, is quasinormable [76], and it is not an
(FBa)-space In fact, the pair(¢,, C>) fails to have the property (BB), wher, is the so-called Johnson
space (i.e., thé;-sum of a sequence of finite dimensional Banach spaces which is dense in the Banach
Mazur compactum of all finite dimensional spaces). There was some hope that tfi&, pafs) would
not have the property (BB). However, this is false: Defant and Peris [46] provei tBat p < oo, then
(¢»+,X) has the property (BB) for every normed spa€evhose dualX’ has cotype 2.

(d) (FS)-, (DFS)-spaces, and interchanging inductive limits with the-product

It was an open problem of Taskinen [95] whether every (FS)-space is an (FBa)-space. This question turned
out to be related with the problem whether the countable inductive limitin an (LB)-dpaeénd,, £, with

compact linking maps (that i€/ is a (DFS)-space, the strong dual of an (FS)-space) interchanges with the
e-(tensor) product with arbitrary Banach spaces [25]. The important work of Peris [81, 82, 83] solved this
problem and clarified the situation completely. The survey article [14] of Bierstedt contains a detailed report
of Peris’ work and of its applications to weighted inductive limits of spaces of vector valued holomorphic
functions [22] and to vector valued holomorphic germs on (FS)-spaces [23]. We refer the reader to this
survey and to the original articles of Peris and mention only a few results here.

Theorem 29 (a) There is an (FS)-space with the approximation property which is not an (FBa)-space
and such that, for the (DFS)-spaé& and some Banach spaég, E; ®. X is not bornological.

(b) For a (DFS)-spacé” = ind,, E,, the following conditions are equivalent:
(1) E} is an (FBa)-space.

(2) For each Banach spac¥, £,(E;, X') is a bornological (DF)-space.

(3) For each Banach spack, EcX = ind, (E,cX) holds topologically.

(4) For each Banach spack, F ®. X = ind, (E, ®. X) holds topologically.

(5) The (FS)-spacé’” = E; is quasinormable by operators; i.e., for eaghthere ism > n such that,
for eache > 0, there is a continuous linear operatd? from F' into F' with P(U,,,) bounded inF' and
(I — P)(Uy) C eU,, where(U,,),, denotes a basis of absolutely congemeighborhoods irf".

(c) Every (FS)-space with approximable linking maps is quasinormable by operators. And, conversely,
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if an (FS)-space has the approximation property and is quasinormable by operators, then it must have
approximable linking maps. B

If one leaves the scope of (DFS)-spaces and, in particular, considers nonreflexive (LB)-spaces, theniitis
still open under which conditions the interchangeability of the inductive limit witletpeoduct with every
Banach space, as in (b)(3) of the preceding theorem, holds. However, Mangino [72] discussed this question
in the framework of (totally reflexive) (LF)-spaces. The relevance of the condition of quasinormability
by operators and of its dual formulation (strict Mackey condition by operators), in connection with the
stability of the class of quasinormable spaces under the formation of tensor products and with the problems
of Grothendieck, is discussed in Peris’ article [82].

(e) Two related open problems

The interchangeability of inductive limits and tensor products is related to another direction of research
which recently had some progress. In 1977, Bierstedt and Schmets asked wfiéiegr) must be
bornological if K is a compact Hausdorff space ad= ind,, G,, is an (LB)-space. The results known in
1983 in connection with this problem were collected in the excellent monograph of Schmets [89]. Since
then, the work of Dierolf and Donmeki [54, 55] made new contributions and showed that this problem

is connected with other open questions on (LB)-spaces. For example, they provit: thpace(G) is
bornological if G is the strong dual of an (FM)-space or is the inductive dual ofahé echelon space.
However, the problem remains open.

After Taskinen solved Grothendieck’s problem of topologies, only one of Grothendieck’s questions has
remained unanswered, the question of the completeness of regular (LF)-spaces. Even the particular case
whether every regular (LB)-space must be complete is unsolved; e.g. see [13, p. 78] or [79, Problem 13.8.6].
We recall that an (LB)-spacE = ind,, E,, is said to baegularif every bounded seB C FE is contained
and bounded in one of the steps. Grothendieck’s factorization theorem implies that an (LB)-space is
regular if and only if it is locally complete. A positive solution of Grothendieck’s problem would imply
that the completion of every (LB)-space is also an (LB)-space [79, Problem 13.8.1], and this would in turn
imply a positive solution to the above problem of Bierstedt and Schmef3(éh E) spaces. — It is worth
mentioning at this point that Bonet and Dierolf showed that every regular (LB)-space of Moscatelli type
is complete, hence that no counterexample to Grothendieck’s problem can be constructed with the shifting
method of Moscatelli.

Since usually it is easy to show the regularity of an (LB)-space (if it is indeed regular), but sometimes
quite hard to show its completeness, many authors have felt that the solution of Grothendieck’s question
should be in the negative. But, so far, also all attempts to give counterexamples have failed (although it was
claimed erroneously in several published articles that the author had found a counterexample or had found
a proof). Thus, at this time, the last problem of Grothendieck is still wide open.

In this survey we have mainly concentrated on recent results in the theorgdidirspaces and their
duals, rather than pointing out all the open problems that have remained despite intensive research. E.g. in
the area of weighted inductive limits of spaces of holomorphic functions and projective description there
are quite a number of important unsolved questions for which we refer to [15].

() Some stability results for the projective tensor product

Some of the problems discussed so far are related to the stability of propertiexzbéFspaces under the
formation of tensor products. I is a nuclear Fechet space anfl is a Fechet space which is nuclear,
Schwartz, Montel, reflexive, quasinormable, distinguished, or has the density condition, then the complete
projective tensor produdi® ., F' satisfies the same property; see [63]. The following result is also due to
Grothendieck [63]:If both Fréchet space& and F' are Schwartz (resp. quasinormable), thB® . F is
again Schwartz (resp. quasinormable).

The class of quasinormable @ahet spaces is stable under the formation of quotients and complete
projective tensor products. Meise and Vogt [73] proved ithiatthe smallest class of Echet spaces, stable
under quotients and complete projective tensor products, which contains both the nudtbard€helon
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spaces and the Banach spac&he equivalence of the first two conditions in the next theorem can be seen
in[74, 26.14].

Theorem 30 For a Fréchet spacd’, the following conditions are equivalent:

(1) E is quasinormable.
@2)VnIm>nVk>mVe>035>0: U, C SU, + eU,.

(3) There is an index sdtand there is a nuclear the space\; (A) with a continuous norm such thatis
topologically isomorphic to a quotient 6f (1)&, A1 (A). H

Itis worth pointing out that the equivalence between (1) and (2) in Theorem 30 need not hold for metriz-
able locally convex spacds. Indeed, it is not difficult to see that every dense subspace of a quasinormable
Fréechet space satisfies the condition (2). On the other hand, Bonet and Dierolf [36] constructed a non-
separable quasinormablegehet spacé with a dense subspadewhich is not quasinormable. Thus, the
metrizable spacé’ satisfies condition (2), but not condition (1). The construction is based on a classical
example of Amemiya.

The characterization of the smallest class @&dfet spaces, stable under closed subspaces and complete
projective tensor products, which contains the nucledhk echelon spaces with a continuous norm and
the Banach spaces, is due to Te@tioand Vogt [98]. The two conditions below are equivalent to saying
that ¥ satisfies the topological invariaGb N,,) of Vogt for someyp; see [98].

Theorem 31 For a Fréchet spacé& with basis(p,, ), of seminorms, the following conditions are equiva-
lent:

(1) E is asymptotically normable; i.edn(0) Vn 3k > n Ve > 03IM > 0: p, < Mpy o) + €pk-

(2) There is an index sdtand there is a nuclear the space\; (A) with a continuous norm such thatis
isomorphic to a subspace df, (I)©, A (A4). B

The characterizations in Theorems 30 and 31 are closely related to Vogt's treatment of the properties
(DN) and(2) in [105]. Note that since the echelon space in (2) above is nuclear, one could have written
Ao (A) instead of)\;(A) (compare with (2) in the next theorem) agd instead of®,. — In case one
restricts the attention to (FS)-spaces, it is possible to give other characterizations, which are due to Vogt
and Waldorf [110]. Their theorem below should be compared with Theorem 20 and the comments before
it. The corresponding results for nuclear spaces were obtained earlier by Apiola and Wagner; see [110] for
precise references.

Theorem 32 (1) Every (FS)-space is topologically isomorphic to a quotient ofcahk echelon space
A1(A) which is Schwartz.

(2) An (FS)-space is asymptotically normable if and only if it is topologically isomorphic to a subspace of
a Kothe echelon spack,, (4) which is Schwartz and has a continuous norrill

By Theorem 25.(2), there are paif&, F') of Fréchet spaces with the density condition which do not
satisfy (BB). Bonet and Taskinen constructed quojectiBrsich that F, ¢5) does not satisfy the property
(BB), althoughE &/ is clearly quasinormable as complete projective tensor product of two quasinormable
spaces. iaz and Metafune [49] characterized the quojectibraf Moscatelli type which are (FBa)-spaces
and obtained many interesting examples. Our next result, proved in [19], shows that the failure of the
property (BB) is the only obstruction for the stability of the density condition in complete projective tensor
products of Fechet spaces.

Theorem 33 If E and F' are Fréchet spaces with the density condition such {l#atF’) satisfies (BB),
thenE®, F has the density condition, too. B
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Recalling our characterization of distinguished echelon spaces of brdér values in a Fechet space
in Theorem 22, we note that this result can of course be interpreted as a stability theorem for distinguished-
ness under complete projective tensor products. The research about distinguished projective tensor products
of Fréchet spaces was continued byaPand Miiarro in [50]. We mention the following example: Theorem
22 completely describes when the spagéd)©,\,(B), 1 < p, ¢ < coorp = 0 orq = 0, is distinguished
in casep = 1. It follows from results of Daz and Miarro that(i) Ao(A4)®,\,(B) is distinguished for each
q as above, and that (i), (A)®.\,(B), 1 < p, ¢ < oo, is distinguished if and only if one of the spaces is
Montel or both spaces satisfy the density conditiop of ¢/(q — 1).

Distinguished complete injective tensor products ddhet spaces have recently been investigated by
Diaz and Domaski [48]. They constructed a quasinormablé@&dhet spaceé such thatE®.¢; is not
distinguished. On the other hand,Afis a reflexive Fechet space anl’ is a compact Hausdorff space,
thenE®.C(K) = C(K, E) is distinguished. In [40], examples are given of quojectiéhsf Moscatelli
type (hence quasinormabledéhet spaces) and Banach spaZesuch thatE®.Z does not satisfy the
density condition. More results about the stability of quasinormability are due to Peris [82].
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