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ABSTRACT
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manifolds over the reals to real spectra of arbitrary commutative rings.
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Introduction

Nash functions appeared for the first time at the early fifties, in a seminal paper by
John Nash. Soon other mathematicians were interested on them, and some relevant
applications found, but also soon their bad cohomological behaviour was realized.
This put temporarily an end to a possible systematic development of the theory of
Nash functions. Since that moment many specialists have devoted time and efforts
to understand the nature of these functions, but only after fifty years we start to
understand what is behind their failures, and how the problems generated by those
failures should be settled. During this fifty years process the notion of Nash function
has evolved in progressively more general settings, with an appealing feedback from
concrete to abstract and viceversa. Moreover, a maze of surprising links have been
revealed among all the questions involved. These are depicted in the Nash Labyrinth
shown beside, where each box contains a solved problem, each arrow is an implication,
and the doubled boxes are the sources of the flow of arguments. We will try to explain
the problems and their solutions in the following sections:

1. Brief history of the topic 86

2. The notion of Nash function 87

3. Global properties and cohomological failures 89

4. Formulation of the problems 92

5. Solutions in the compact case 94

6. Solutions in the non-compact case 98

7. Nash functions over arbitrary real closed fields 105

8. Abstract Nash functions 108
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1. Brief history of the topic

In 1952 Nash published a paper [Na], whose final goal was to equip any given analytic
manifold with a real algebraic structure. He did it completely in the compact case,
by prescribing a smaller ring of analytic functions: one containing the coordinates of
some embedding, with transcendence degree over the reals equal to the dimension of
the manifold, and maximal for these properties. The proofs in the paper are a great
example of the differential topology methods we are familiar with today: tubular
neighborhoods and approximation. Nash added a careful analysis of the analytic
functions which are roots of polynomials, now known after him Nash functions. Today
we formulate Nash’s result as that every compact smooth manifold is diffeomorphic
to a connected component of a real algebraic set. In fact, we can get rid of the extra
components, and the manifold is diffeomorphic to a non singular real algebraic set.
This important improvement is due to Tognoli ([To]), but came 20 years later and only
after Milnor’s algebraic representation of Thom’s cobordism classes (more differential
topology).

Upon the publication of such a pioneering work, Nash functions were used with
some success in several applications. The most relevant might be the one by Artin
and Mazur, who in [ArMz] showed that every differentiable diffeomorphism may be
approximated by others whose (finite) number of isolated periodic points grow at
most exponentially with respect to the period; from this they deduced some other
facts concerning numerically stable functions and structurally stable diffeomorphisms.
Artin-Mazur’s idea was to complement Nash methods with others typical of algebraic
geometry, particularly the use of étale morphisms. Étaleness says algebraically when
a polynomial map between algebraic sets is a local diffeomorphism. This is, of course,
related to the existence of a local inversion theorem (or, equivalently, an implicit
function theorem) in algebraic geometry. The notion of “local” which is used here
refers to the étale topology, which is a Grothendieck topology and not a topology in
the usual sense. However, an algebraic local inversion theorem can be obtained for the
euclidean topology, using Nash functions. Actually, Nash functions form the smallest
class of analytic functions which include all solutions of non-degenerate polynomial
systems of equations.

At the same time Artin and Mazur presented their view of Nash functions, there
was some systematic work on their local properties (Artin again, always interested on
algebraicity matters, Lafon [Lf], Lazzeri and Tognoli [LaTo]). However, this start up
was soon stopped when Hubbard ([Hb]) published an example in the real line of a Nash
cocycle which is not a coboundary: what to do then with a class of functions whose
cohomology is not even trivial on the real line?, how to deal with global questions?,
what is the use of sheaf theory there? As partitions of unity are not Nash (the
identity principle excludes bump functions), they are not available to glue local data.
But then, cohomology is of no help either. Another example of a different nature, but
also discouraging: when one sees the circle as a quotient C = R/Z, Nash functions
on C are periodic Nash functions on the line, hence all are constant.
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All these considerations put Nash functions aside, as long as a global problem
was involved. Neither the redescovering of Real Algebraic Geometry at the end of the
70’s, nor the renewed appeal of Nash’s original ideas, made less suspicious the special-
ists, despite some important papers on global matters (see [Ef1],[Ef2], for instance).
They were convinced that before solving in some satisfactory way their cohomolog-
ical difficulties, Nash functions would be truly defective. Some tried to attack the
problem, but there were few substantial advances. In fact, only in the 80’s there was
a serious attempt by Efroymson ([Ef3],[Ef4]) to bring more attention to the difficul-
ties involved and find some, although partial, very interesting solutions. One must
stress here how influential Efroymson’s work was: specialists keep browsing through
his (intrincate) writings to complete them or get some new insight (see [Pe], [CoDp]).
After Efroymson, the main contributions on Nash functions were made by Shiota
([Sh1],[Sh2]). This attracted some other researchers (Beretta, Tancredi, Tognoli, see
[BeTo] and [TaTo1]). Then, we wait ten years to really put everything in order and
produce complete solutions. This final part of the story started with [RzSh], where
the methods of Commutative Algebra were fetched to the stage, and finally the series
[CoRzSh1], [CoRzSh2], [Qz2], [Qz3], [CoSh2], [CoRzSh3], which appeared from 1995
to 2001 and clarified everything.

2. The notion of Nash function

A Nash function on a connected open subset U of Rn is a smooth function f : U → R

for which there is a polynomial P (x, t) in n+1 indeterminates (x, t) = (x1, . . . , xn, t)
such that P (x, f(x)) = 0 for every x ∈ U . Nash functions have several important
finiteness properties, easy to describe for one variable: a Nash function in one variable
has finitely many zeros. Indeed, if f(x) = 0, then P (x, 0) = 0, and x is a root
of the polynomial P (x, 0). There are only finitely many such roots, except in case
P (x, 0) ≡ 0, but then P (x, t) = tQ(x, t), so that f(x)Q(x, f(x)) = 0 in U . Hence,
either f ≡ 0, or Q(x, f(x)) = 0 in U . Choosing P of minimal degree, we get a
contradiction. In particular, we see why there are not non-constant periodic functions.
This finiteness quality is an old pet of Real Geometry, and is perfectly expressed by
the modern notion of o-minimal structure (see [vdD]); the book [Sh3] goes along the
same ideas.

The essential contribution in [ArMz] to the understanding of Nash functions is
that a function f : U → R on a connected open subset U of Rn is Nash if and only if
there exist:

(i) A non singular algebraic set V ⊂ Rn+k of dimension n such that the projection
π : V → Rn is étale (i. e. a local diffeomorphism),

(ii) A continuous (hence, analytic) section σ : U → V of the projection π,

(iii) A polynomial function g : V → R,
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such that f = g ◦ σ. This Artin-Mazur description is a useful tool to retreat from
Nash functions to polynomial ones.

Nash functions are analytic, and form a sheaf NRn on Rn. The stalk NRn,a of
that sheaf at a point a ∈ Rn consists of all Nash function germs at that point, and
through Taylor expansion, those germs can be identified with the algebraic power se-
ries, that is, the real power series which are algebraic over the polynomials. Thus,
the ring NRn,a is the henselization of the local ring at a of regular functions and has
excellent algebraic properties: jacobian criteria, inverse and implicit functions theo-
rem, Weierstrass preparation and division theorems, Artin’s approximation theorem
(see [BoCoRo]). These are the essential tools for the local study of zero sets of Nash
functions, called Nash sets. A Nash set which is a smooth manifold is simply called
a Nash manifold. These Nash sets, even with singularities, can be stratified in a
controlled way, as finite disjoint unions of Nash manifolds, called strata, with good
behaviour at the boundaries. Nash manifolds can be always compactified, as interiors
of compact Nash manifolds with boundary. All of this seems quite natural, although
there are some surprising technicalities (like uniqueness of the compactification).

In the usual way, there is an abstract notion of Nash manifold, and Nash map,
and the corresponding abstract category. Thus we get a subcategory of the analytic
and the smooth categories. There is however a caution concerning affine embeddings,
which are not always possible, as the example R/Z in the preceding section makes
clear. We will always discuss affine Nash manifolds, that is, Nash manifolds that can
be embedded in some space Rn. For these, the above description of Nash functions
generalizes as follows:

Artin-Mazur description. Let M ⊂ Rp be an affine Nash manifold and f1, . . . , f�

Nash functions on M . Then there exist an algebraic subset V ⊂ Rk, a Nash embedding
σ : M → Reg(V ) and polynomial functions g1, . . . , g� : Rk → R such that fi = gi ◦ σ
for i = 1, . . . , �.

On the other hand, it is important to remark that while Nash sets are strictly more
general than real algebraic sets defined by polynomial equations, the use of inequalities
gives nothing but semialgebraic sets defined by inequalities of polynomials; this goes
back to the work [L] by �Lojasiewicz. Thus the Nash category is in fact inside the
semialgebraic category of sets and maps.

Spaces of Nash (or semialgebraic Cr) maps between Nash manifolds are equipped
with their Whitney topologies, defined through approximation of a function with its
derivatives. Here one has to be careful when discussing approximation problems for
Nash maps, which are not at all easy, and often the key for further progress. But
in the end, the standard basic facts hold true: (i) semialgebraic Cr diffeomorphisms
form open sets, (ii) semialgebraic Cr maps can be approximated by Nash maps, and
even more, (iii) the approximation can be made relative to any Nash set. All these
matters were first studied by Efroymson in [Ef3] and settled completely by Shiota
in [Sh1].
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After this presentation, our topic is the sheaf NM of germs of Nash functions on
an affine Nash manifold M . The ring N (M) = H0(M,NM ) of global sections of this
sheaf is the ring of Nash functions on M .

3. Global properties and cohomological failures

Let M ⊂ Rn be a Nash manifold, and for the sake of simplicity, suppose M is closed
in Rn. All that follows mimics what we know of the sheaves C and O of smooth and
analytic functions.

The Nash functions on M can be defined in the Whitney style, as the smooth
functions f : M → R that extend locally to Nash functions on open sets of Rn. This
only means that a Nash function on M is a global section of the sheaf NM = NRn/IM ,
where I is the sheaf of ideals of Nash function germs vanishing on M . The question
is then whether every Nash function on M is the restriction of a Nash function on
Rn. This problem is elementary for smooth functions (partitions of unity), and also
true for analytic functions (Cartan’s Theorems A and B). In the Nash case, however,
the extremely subtle proof came out from successive progress by Efroymson [Ef3] and
Shiota [Sh1], as we will stress soon. It should be remarked how this extension for
Nash submanifolds remains crucial for the whole picture, as far as we know it.

Let us make clear the role of cohomology. Since N (M) = H0(Rn,NRn/IM ),
our question can be reformulated in this way: is the restriction homomorphism
H0(Rn,NRn) → H0(Rn,NRn/IM ) surjective? Moreover, notice that the kernel of
that homomorphism is the ideal I(M) ⊂ N (Rn) of all Nash functions vanishing on
M , which is the ideal of global sections of the sheaf IM , and the latter question asks
whether the following sequence is exact:

0 → H0(Rn, IM ) → H0(Rn,NRn) → H0(Rn,NRn/IM ) → 0

But this is the sequence of global sections of 0 → IM → NRn → NRn/IM → 0, which
is an exact sequence of sheaves with long exact sequence

0 → H0(Rn, IM ) → H0(Rn,NRn) → H0(Rn,NRn/IM ) → H1(Rn, IM ),

and we would have a positive answer to the question (like in the analytic case by
Cartan’s Theorem B), if H1(Rn, IM ) = 0. Exactly at this point is where Hub-
bard’s counterexample breaks the classical argument, even in the most simple case
H1(R,NR) �= 0: the cocycle h =

√
1 − x2 in (−∞, 1) ∩ (−1, +∞) represents a non-

trivial cohomology class. Indeed, suppose there are Nash functions f and g defined
on (−1, +∞) and (−∞, +1) respectively, such that h = f − g.
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Then, f can be extended to a neighborhood U of the interval (−1,∞) in the complex
plane, g to one V of (−∞, 1), and h to U ∩ V , as in the picture above. Now we start
with g at 0 following a loop to the right around 1, then back to 0, then to the left
around −1 and back to 0. Let us see the result. After the first loop around 1 in U ,
g = f − √

1 − x2 becomes f +
√

1 − x2. In U ∩ V we have f = g +
√

1 − x2, and
so f +

√
1 − x2 = g + 2

√
1 − x2. This latter goes around −1 in V to return to 0

as g − 2
√

1 − x2. Hence, g and g − 2
√

1 − x2 are two different branches of the same
algebraic function. Further turns on the loop give infinitely many more branches
g − 4

√
1 − x2, g − 6

√
1 − x2. . . , which is impossible for an algebraic function.

We can also ask whether N (M) = H0(Rn,NRn/IM ) is really the good choice for
the ring of Nash functions on M . To illustrate this, consider the set

X : h = z(x2 + y2) − x3 = 0.

This is a singular surface of R3 consisting of a pure 2-dimensional cloth and the z
axis. Efroymson showed that the function

f(x, y, z) =

⎧⎨
⎩

(z − 1)2

(z − 1)2 + x2 + y2
on the cloth

1 on the z axis

cannot be extended to a Nash function. Indeed, if f had such an extension to some
neighborhood of X in R3, it would have an holomorphic extension fC to some complex
neighborhood of the analytic complexification XC of X. Looking at the complex points
(x, x

√
x − 1, 1) ∈ XC near (0, 0, 1) we would conclude

1 = f(0, 0, 1) = lim fC(x, x
√

x − 1, 1) = 0,
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a contradiction. In other words, there is an obstruction at the point (0, 0, 1) along the
complex branches of X. What happens is that f is not a global section of the sheaf
NR3/hNR3 .

Note here that we do not work modulo the sheaf of ideals IX of germs vanishing
on X. This is something we already learnt from Cartan. In the real case there are
anomalous phenomena caused by lack of coherence: this example X, called in fact
Cartan’s umbrella, is not coherent at the origin. Cartan discovered that this difficulty
should be avoided by looking at the biggest coherent sheaf of ideals whose zero set is
X. This coherent sheaf JX is the right choice to replace IX . For Cartan’s umbrella,
JX = hNR3 ; for a Nash manifold this coherent sheaf coincides with the sheaf of ideals
vanishing on the manifold, property expressed by saying that (real) manifolds are
always coherent.

Clearly, all the above explanations involve the search of global equations. As
said before, the first author that brought this matter to consideration was Efroym-
son ([Ef3],[Ef4]), who obtained some results whose hypotheses included assumptions
similar to this: let M be a Nash manifold of the form h = 0 for some Nash function
h defined in an open neighborhood of M . . . Actually, the final step added by Shiota
([Sh1]) to complete the solution to the extension problem for M was to show that such
a global equation h always exists. This is easy in the smooth category (partitions of
unity again), and true in the analytic category (Cartan’s again), but not at all in the
Nash category. Using sheaves, if JM = (h1, . . . , hr)NRn for suitable global sections
hi ∈ I(M), we could take h = h2

1 + · · · + h2
r. This leads to Cartan’s Theorem A,

which says when a sheaf is generated by its global sections. In fact, we also need that
N (Rn) is a noetherian ring, to find finitely many global generators. This property
of N (Rn), far from evident, was proved around the time Hubbard found his coun-
terexample ([Ef1],[Ri]). Furthermore, one more ingredient is essential in the solutions
of the extension problem by Efroymson and Shiota, and that is approximation. In
fact, Efroymson argument uses approximation by Nash functions in the continuous
Whitney topology, while Shiota’s improvement mainly dwells on approximation with
derivatives.

Finally, there is a third problem of a clear topological nature: the possibility of
separating connected components. To give an example, consider the planar algebraic
curve X : h = y2 − x(x2 − 1) = 0.

X− X+

x= 1
2
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This curve has two connected components X+ and X−, contained in the halfplanes
x > 1

2 and x < 1
2 , respectively. A polynomial that vanishes on any of these com-

ponents vanishes on the other too (the curve is irreducible); but let us look at the
Nash functions f± = (2x − 1) ∓ √

(2x − 1)2 + h2. What happens is that f+|X =
(2x − 1) − |2x − 1| vanishes exactly on X+ and f−|X vanishes exactly on X−. This
example shows two characteristic features of irreducible algebraic sets in the real case:
(i) they need not be connected, and (ii) they need not be irreducible from the Nash
viewpoint. About the first fact, a quite general result was soon proved: if an ideal
p ⊂ N (Rn) is prime, its zero set is connected ([Ri], at the time noetherianness was
established). Another basic property is that the connected components can always be
separated by means of Nash functions (Mostowski [Mo]): notice how we used in the
last example the function 2x − 1, which is > 0 on X+ and < 0 on X−. Concerning
irreducibility, the immediate comparison is with the analytic category: if a Nash set
is irreducible, is it also analytically irreducible?

4. Formulation of the problems

Let M be a Nash manifold and NM its sheaf of germs of Nash functions. The first
problem is easy to formulate, and generalizes to germs at the real part of the com-
plexification the last question in the preceding section:

Separation Problem. If p ⊂ N (M) is a prime ideal, is the ideal pO(M) also
prime?

For principal ideals, this problem can be stated as follows:

Factorization Problem. If a Nash function f ∈ N (M) has a factorization f = g1g2

as a product of two analytic functions g1, g2 ∈ O(M), has it a similar factorization
f = f1f2 as a product of two Nash functions f1, f2 ∈ N (M) such that gi = uifi?

(It must be stressed that the local versions (for germs) of these problems are easy
consequences of M. Artin’s approximation theorem.)

While these two problems on reducibility are immediate to state, concerning
sheaves we must be very careful. We must bear in mind the extension and global
equation problems for Nash submanifolds as presented above, but care about the
delicate aspects behind the scenes.

To start with, the first Oka theorem holds for the structural sheaf N , and this
reduces coherence to local finite presentation for sheaves of modules, and local finite
generation for sheaves of ideals. In other words, a sheaf of ideals I is coherent, when
there is an open covering {Ui} of M such that every restriction I|Ui is generated by
finitely many sections h1, . . . , hri ∈ H0(Ui, I). However, in contrast to the analytic
case, this does not guarantee that I is generated by its global sections. For instance,
let I be the sheaf of germs of Nash functions vanishing on a discrete set of points
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2004, 17; Núm. 1, 83–115

92



M. Coste/J.M. Ruiz/M. Shiota Global Problems on Nash Functions

xk ∈ R. On a neighborhood of every xk the sheaf is generated by the function
h = x − xk, (and near the others by h ≡ 1). Hence, I is coherent, but it has no
non-trivial global section: if h ∈ H0(R, I), then h is a Nash function with infinitely
many zeros, hence h ≡ 0 (this observation is already in [LaTo]). This explains why
we must consider a special subclass of coherent sheaves:

Definition. A sheaf of ideals I ⊂ N is called finite when there is a finite covering
{Ui} of M by open semialgebraic sets, such that every restriction I|Ui is generated
by finitely many sections hi1, . . . , hiri ∈ H0(Ui, I).

Using this notion we can state properly Problems A and B for Nash functions.
Let I ⊂ NM be a finite sheaf of ideals.

Problem A: Existence of Global Equations. Is the sheaf I generated by its
global sections H0(M, I)?

Problem B: Extension. Is the canonical homomorphism

H0(M,NM ) → H0(M,NM/I)

surjective?

It is important to understand the difference stressed by the notion of finiteness,
because that is one of the most delicate aspects for the solutions of the problems.

Actually, this finiteness limitation was in fact proposed by Brumfiel more that
20 years ago ([Br]). The main idea is: since the usual topology is generated by
the open balls, which can be described by strict polynomial inequalities, we restrict
ourselves to open sets which can be described by such inequalities, open sets that
are called open semialgebraic. The point to care of is that not every union of open
semialgebraic sets is again open semialgebraic, and consequently only finite unions
are allowed. Thus we speak of the semialgebraic topology ; this is the topology used for
abstract semialgebraic spaces in [DfKn]. In other words, this semialgebraic topology is
the Grothendieck topology whose coverings are generated by finite coverings by open
semialgebraic sets. The finite sheaves are those which are locally finitely generated
with respect to this semialgebraic topology.

Thus, there are two different sheaves of Nash funtions: one is NM with respect to
the usual topology, and the other is N sa

M with respect to the semialgebraic topology;
in fact, to every sheaf P for the usual topology we can associate another Psa for
the semialgebraic topology. Clearly in dealing with the semialgebraic topology we
must consider finite sheaves, instead of merely coherent sheaves, but there is a more
subtle (and critical) distinction. If I ⊂ NM is a finite sheaf of ideals, we do not
know whether the global sections of (NM/I)sa coincide with those of N sa

M /Isa. In
other words, a section of NM/I for the usual topology is defined over an arbitrary
covering, and although we can always choose the members of that covering to be open
semialgebraic, it is far from clear that in addition the covering itself can be chosen

93 Revista Matemática Complutense
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finite. To measure the importance that this finiteness of global sections difficulty has
in the framework of all problems involved, we notice here that solving it for a sheaf I
of radical ideals is a first essential step for separation, and that the difficulty can be
solved for arbitrary I only when extension is settled.

On the other hand, the semialgebraic topology is not a true topology (arbitrary
unions of open sets are missing), and this can make the situation awkward. Of course,
all these discussions are irrelevant if the manifold M is compact. In any case, there
is an efficient way of moving to a compact space where the semialgebraic topology
becomes a true topology. Or, equivalently, there is a way to compactify M with
the semialgebraic topology: this compactification M̃ , called the real spectrum, is the
Stone space associated to the family of open semialgebraic sets of M .

5. Solutions in the compact case

Let us suppose now that the manifold M is compact. As was said before, the difficul-
ties around finiteness vanish, which makes the discussion simpler. Another advantage
of the compact case is that analytic functions are easier to treat globally. This comes
from the fact that the canonical inclusion N (M) → O(M) is a regular homomorphism
of excellent rings, technical terms from Commutative Algebra; in more down to earth
words, both rings are noetherian, their maximal ideals are associated to the points
of M , and for each of them there is a local system of coordinates (x1, . . . , xm) by
global Nash functions xi : M → R. By these properties, we can apply general Néron’s
desingularization, a deep theorem of Algebraic Geometry, conjectured by Artin. The
consequence is that in the compact case we can do more, and prove the following
global version of a local fundamental theorem due (again) to Artin ([Ar]):

Approximation Theorem. Let y = (y1, . . . , yp) be new indeterminates, and con-
sider F1, . . . , Fq ∈ N (M)[y]. Then every analytic solution yi = fi(x) ∈ O(M), 1 ≤
i ≤ p, of the system

F1(x, y) = · · · = Fq(x, y) = 0

can be approximated in the Whitney topology by a Nash solution yi = gi(x) ∈ N (M),
1 ≤ i ≤ p.

In the Nash labyrinth diagram, this theorem is more specifically named global
Nash approximation of analytic solutions of polynomial equations. In fact the result
also holds for Nash equations, that is, for F1, . . . , Fq ∈ N (M × M ′) and y = f(x) ∈
O(M, M ′). This follows of course by using extension and global equations for M ′

embedded in some Rp. Although for compact manifolds this is not needed, we point
out that this particular case of the problems will be necessary to complete the solution
in the non-compact case. As remarked before, this important case was brought into
attention by Efroymson and his arguments completed by Shiota. A variation of this
approximation theorem where singularities on the domain are allowed was deduced
in [TaTo2].

Revista Matemática Complutense
2004, 17; Núm. 1, 83–115
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With this theorem as starting step, we cover the following piece of the Nash
labyrinth:

General Néron’s
desingularization

Global Nash
approximation of

analytic solutions of
polynomial equations
in compact manifolds

Separation in
compact
manifolds

Global equations for
radical sheaves in
compact manifolds

Global Nash
approximation of

analytic solutions of
Nash equations in
compact manifolds

Extension for
radical sheaves in
compact manifolds Global equations and

extension for arbitrary
sheaves in compact

manifolds

Extension and global
equations for Nash

submanifolds

�
�

�

� �

�
�

�
�

Let us describe, at least briefly, these steps, presented and developed in [CoRzSh1].

Proof of the approximation theorem. We remark first that general Néron’s desingular-
ization has been a controversial matter for many years. In the middle 80’s, Popescu
published a proof followed by several revisions to convince the specialists ([Po]),
mostly skeptic we must say. Somehow later, Rotthaus published in [Rt] a very im-
portant local partial result. Finally, in the early 90’s André ([An]) revisited and
completed Popescu’s work, and, independently, Spivakovsky ([Sp]) found a differ-
ent proof. It is good to mention here [Qz1], which is the most readable presenta-
tion by far (for rings containing Q), and even has some relevant refinements con-
cerning complete intersections. In addition we refer to the survey by Teissier in
the Séminaire Bourbaki ([Te]), where also the connections with Nash functions are
described. In our case, Néron desingularization says that the regular homomor-
phism N (M) → O(M) is a direct limit of smooth finitely generated homomor-
phisms, an algebraic counterpart of submersions as étale was of local diffeomor-
phism. This means that the morphism N (M)[y]/(F1, . . . , Fq) → O(M) which sends
y to the analytic solution f = (f1, . . . , fp) factors through a regular algebra B =
N (M)[z]/(G1, . . . , Gs) → O(M), with new indeterminates z = (z1, . . . , zr) and func-
tions G�. This exactly says that there are analytic functions zk = hk(x) ∈ O(M)
such that G�(x, h1(x), . . . , x, hr(x)) ≡ 0, and fi ∈ N (M)[h1, . . . , hr] ⊂ O(M). Hence,
fi(x) = ϕi(x, h1(x), . . . , hr(x)) with ϕi ∈ N (M)[z], 1 ≤ i ≤ p.

Consequently, we have the following commutative diagram
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M × Rr⋃ M × Rp⋃�
Φ

{G1 = · · · = Gs = 0} = W −→ V = {F1 = · · · = Fq = 0}
(x, h(x)) −→ (x, f(x))

(x, z) −→ (x, ϕ(x, z))

x

τ σ�
��

�
��

M

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�	

prM prM

We have thus replaced the analytic solution y = f(x) of the initial Nash system
F = 0 by an analytic solution z = h(x) of the Nash system G = 0, both represented by
sections σ, τ of the canonical projections V → M , W → M defined on the respective
zero sets. The difference is that now, N (M)[z]/(G1, . . . , Gs) being a regular algebra,
W is a Nash manifold and W → M a submersion. Hence, we can approximate
τ : M → W (in the Whitney topology) by a Nash map θ = (θ0, θ

′) : M → W ⊂ M×Rr

(one takes a tubular neighborhood of W in Rm×Rr, and applies the Stone-Weierstrass
theorem). Since θ0 is close to the first component of τ , which is the identity, we may
assume that θ0 : M → M is a diffeomorphism, whose inverse we denote by λ. Using
the Nash maps ϕ(x, z), θ(x) and λ(x) we finally get a Nash solution of the system
F = 0, namely

y = ϕ(x, θ′(λ(x))).

Indeed, this is a solution because

(x, y) = (x, ϕ(x, θ′(λ(x)))) = Φ(x, θ′(λ(x))) = Φθ(λ(x)) ∈ V.

Moreover, as θ is close to τ and λ is close to the identity, we conclude that (x, y) is
close to Φτ(x) = σ(x) = (x, f(x)).

Proof of separation. Let p ⊂ N (M) be an ideal and suppose that the extended ideal
q = pO(M) is not prime. Then there are two analytic functions f, g /∈ q such that
fg ∈ q. To formulate this with equations, we choose generators H1, . . . , Hr ∈ N (M)
of p, and there will be analytic functions h1, . . . , hr ∈ O(M) such that

fg = h1H1 + · · · + hrHr.

Seeing this as a Nash equation in 2 + r indeterminates with the analytic solution
f, g, h1, . . . , hr, the approximation theorem gives a Nash solution f ′, g′, h′

1, . . . , h
′
r, so

that f ′g′ ∈ p. But f ′ is close to f /∈ q in the Whitney topology, for which the ideals
are closed, and we conclude f ′ /∈ q, hence f ′ /∈ p. Similarly, g′ /∈ p, and this means
that p is not prime.
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Proof of the existence of global equations for radical sheaves. Let I ⊂ N be a finite
sheaf of ideals whose stalks Ix are radical ideals. Then the ideal of global sections
I = H0(M, I) is also radical, and we must see that I = IN . To that end, we consider
the analytic sheaf J = IO, which we surely know is generated by its global sections
J = H0(M,J ), that is: Jx = IxOx = JOx for every x ∈ M (Cartan’s Theorem A).
Fix now a point a ∈ M and consider

I ⊂ I(a) = Ia ∩N (M), J ⊂ J(a) = Ja ∩ O(M).

The ideal J(a) may not generate J , but it indeed generates J in some neighborhood
of a. We claim that I(a)O(M) = J(a), which concludes the argument, since then:
I(a) generates I|Ua on some neighborhood Ua of a and by compactness M = Ua1 ∪
· · · ∪ Uas , from which it can be deduced I = I(a1) ∩ · · · ∩ I(as) and IO(M) = J .
Whence, let us see that I(a)O(M) = J(a) to stress the role of separation in this proof.
Firstly we have the primary decomposition Ia = p1 ∩ · · · ∩ pr in Na, which lies over
another I(a) = P1 ∩ · · · ∩ Pr in N (M) where Pi = pi ∩N (M). As the ideals Pi are
prime, by separation the ideals Qi = PiO(M) are prime too, and we have

J(a) ⊃ I(a)O(M) = Q1 ∩ · · · ∩ Qr.

On the other hand Ja = q1 ∩ · · · ∩ qr in Oa, where each qi = piOa is prime (this is
local separation), and setting Q′

i = qi ∩ O(M) we conclude

J(a) = Q′
1 ∩ · · · ∩ Q′

r ⊃ Q1 ∩ · · · ∩ Qr.

But Qi ⊂ Q′
i, and both ideals are prime and have the same height (that of pi), which

implies they coincide.

Proof of extension for radical sheaves. Let again I ⊂ N be a sheaf of radical ideals,
and let us see that the canonical homomorphism H0(M,N ) → H0(M,N/I) is surjec-
tive. Since I has global equations, I = IN with I = H0(M, I), and we know that for
the coherent analytic sheaf J = IO the homomorphism H0(M,O) → H0(M,O/J )
is certainly surjective (Cartan’s Theorem B). Consider then a global Nash section
σ ∈ H0(M,N/I), and, by the preceding remark, choose an analytic function g ∈
O(M) such that gx = σx mod IOx for every x ∈ M . Compactness gives a finite
open semialgebraic covering M = U1 ∪ · · · ∪ Ur and Nash functions fi ∈ N (Ui) such
that fi,x = σx mod INx for every x ∈ Ui. In order to simplify the presentation and
make clearer the main idea, let us assume here that I is prime. Since Nash functions
are algebraic over the polynomials, we have equations

anfn
i + · · · + a0 = 0 mod IN (Ui), (1)

where ak ∈ N (M), an /∈ I. If I were not prime we would have to consider several such
equations, one for each associated prime of I, and to keep track of the zero divisors
mod I.
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Now, since g = fi mod IO(Ui), what we really have is a Nash equation on each
Ui, which has g as an analytic solution. Multiplying the r equations of the r open sets
Ui, we can assume the Nash equation 1 is defined on the whole manifold M , and has
the analytic solution g. Consequently, we can approximate g by some Nash solution
f . We claim that 1 has finitely many solutions in O(M)/IO(M). Indeed, by the good
algebraic properties of the extension N (M) ⊂ O(M), the ideal IO(M) is radical (in
fact, we know from separation that it is prime, but we do not need that much here):
an intersection of finitely many prime ideals pj ⊂ O(M), each lying over I, that is,
pj ∩ N (M) = I. Hence an /∈ pj and our equation is a non-zero polynomial over the
domain O(M)/pj and so has finitely many roots there. Since this works for every j,
the claim follows readily. From the claim we see that for f close enough to g, we in
fact have f = g mod IO(M): if f ′ is a different root, g − f ′ /∈ IO(M) and ideals are
closed in the Whitney topology. Hence, we are done in case I is a prime ideal.

Proof of the existence of global equations and extension for arbitrary sheaves. Consi-
der all sheaves I ⊂ N for which some of the two properties fails, and their radi-
cals

√I. Consider then the collection of the ideals of global sections of those radicals.
This is a collection of ideals of the noetherian ring N (M), and consequently has a
maximal element, say corresponding to a sheaf I ⊂ N . Then, both properties hold
true for every sheaf J ⊃ √I: otherwise, the ideal of global sections of

√J should
be equal to that of

√I, by maximality of the latter. But global equations holds for
radical sheaves, hence

√J =
√I ⊂ J , so that

√J = J , and the properties would
hold for J . After this, one argues by induction to see that I would verify the prop-
erties too. This induction works over an invariant α defined as follows. Since

√I
is radical, it is generated by some global sections f1, . . . , fr. The sheaf I is among
those I ′ such that

√I ′ ⊃ √I. For such an I ′ and every i = 1, . . . , r, we must have
fαi+1

i ∈ H0(M, I ′) with a minimum αi ≥ 0, and we define α(I ′) =
∑

i αi. Clearly, if
α(I ′) = 0, then I ′ ⊃ √I, and the properties hold for I ′, which starts the induction.
The step for α(I ′) > 0, assuming the properties for sheaves with α < α(I ′), is a di-
agram chasing using the pull-back along an epimorphism from some free sheaf N r+s

onto
√I ′ (which exists because

√I ′ has global equations) and suitable projections
N k → N . At some point one needs extension for the radical sheaf

√I ′. We also
stress that this method is general, and does not rely on compactness.

6. Solutions in the non-compact case

We now come to the situation where M need not be compact, which, as was already
explained, requires a reformulation of the problems, using finite instead of coherent
sheaves.

First we notice that the powerful Approximation Theorem that led to the solutions
in the compact case is no longer available in the non-compact situation. On the
one hand, we cannot apply general Néron’s desingularization since the ring of global

Revista Matemática Complutense
2004, 17; Núm. 1, 83–115
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analytic functions on a non-compact manifold is not noetherian. On the other hand,
even Nash approximation of analytic diffeomorphisms fails: there are Nash manifolds
which are analytically diffeomorphic, but not Nash diffeomorphic [Sh1]. Hence, the
attack line had to be different, and the solutions came in two steps: (i) to show that
all the problems are equivalent, and (ii) to solve one of them in the non-compact
case. The initial ideas towards (i) appeared in [Sh2] and later in [RzSh], before
the complete presentation in ([CoRzSh2]); since at that moment all problems were
open, the argument had to be more elaborated than in our presentation here. With
respect to (ii), we must wait till [CoSh2], where the existence of global equations is
proved: first existence over compact sets, which enables one to, second, compactify
the problem and, third, deduce existence in the non-compact case from existence
in the compact one. It is well remarkable that the existence over compact sets is
based on the semialgebraic (version of) Thom’s first isotopy lemma, the main result
of [CoSh1]. Also, we recall that separation depends on the finiteness of global sections,
as we explained when comparing the usual and the Grothendieck topologies.

As before, we depict the corresponding part of the Nash labyrinth:

Extension and global
equations for Nash

submanifolds

Finiteness of global
sections for radical

sheaves

Compactification of
Nash functions

Global equations
over compact sets

for arbitrary sheaves

Semialgebraic
Thom’s first

isotopy lemma

Nullstellensatz
for Nash
functions

Separation

Extension for
radical sheaves

Global equations for
arbitrary sheaves

Extension for
arbitrary sheaves

�
��

�

�

�
� �

�

�

Let us now write precise statements and sketch the proofs of these implications.

Existence of global equations over compact sets. Let I be a finite sheaf of
Nash ideals of M , and Z its zero set. For each compact set K ⊂ M there is an open
semialgebraic set U ⊃ K ∪ (M \ Z) such that I|U is generated by its global sections
H0(U, I).
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Proof. Let ϕ : M → R be a positive proper Nash function. First we prove the weaker
assertion where we ask only U ⊃ K. Pick a regular value r > 0 big enough to have
ϕ|K < r and define a compact Nash manifold M1 ⊂ M × R by t2 = r − ϕ(x). The
projection M1 → M : (x, t) �→ x induces a Nash diffeomorphism from the open set
U1 = {t > 0} : t = +

√
r − ϕ(x) onto the open set U ⊃ K given by r > ϕ(x), which

transforms p∗(I)|U1 in I|U . But p∗(I) is a finite sheaf on the compact Nash manifold
M1, hence it is generated by some global sections, whose restrictions to U1 composed
with the diffeomorphism U → U1 generate I|U .

However, we want U bigger, and for this we must improve the construction. Firstly
we stratify Z ⊂ M in a finite union of Nash strata satisfying Whitney’s regularity
conditions. Then we pick r > 0 large enough so that ϕ(K) < r and ϕ : {ϕ > r} → R

is a submersion in restriction to each stratum. Then, by the semialgebraic Thom’s
first isotopy lemma, we get a semialgebraic homeomorphism (trivialization)

τ : {ϕ > r} → {ϕ = r + 1} × (r, +∞) : x �→ (τ1(x), ϕ(x)),

which induces on every stratum S a Nash diffeomorphism

S ∩ {ϕ > r} → (S ∩ {ϕ = r + 1}) × (r, +∞),

and τ1 is the identity on {ϕ = r + 1}. Set V = {ϕ < r + 1}. Since V is relatively
compact (because ϕ is proper), we can use the weak form of the assertion proved
above to deduce that I|V is generated by its global sections. To finish, one defines a
Nash diffeomorphism from V onto U = V ∪(M \Z) that transforms I|V in I|U . This
diffeomorphism depends on the trivialization, of course, but also on a new application
of the existence of global equations: the sheaf I|{ϕ = r + 1} has them because
{ϕ = r+1} is compact. Indeed, one first constructs a semialgebraic C1 diffeomorphism
which is the identity in a neighborhood of Z ∩V . Then one approximates it using the
Nash approximation theorem relative to a global Nash equation for Z ∩ V in V .

Here is the place to stress the importance of trivialization results. Notice that
in the proof above it is essential that the trivialization is Nash on each stratum, in
order to get a Nash diffeomorphism from V onto U . The usual proofs of Thom’s
first isotopy lemma use integration of vector fields and cannot produce trivializations
of class Nash. So the use of the semialgebraic version of Thom’s isotopy lemma of
[CoSh1] is indispensable here. Considerations of this nature are present from the very
beginning in the study of semialgebraic sets and maps, back in the pioneering papers
by Hardt ([Ha]), and remain a matter of high interest. In particular, the so-called
Thom’s isotopy lemmas are the goal of many recent investigations.

Compactification of Nash functions. Let f : U → Rp be a Nash map defined
on an open semialgebraic set U ⊂ M , and suppose that f is bounded on a closed
semialgebraic set F ⊂ U . Then M is (Nash diffeomorphic to) an open semialgebraic
set of an affine Nash manifold N , such that the closure of F in N is compact, and f
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extends to a semialgebraic neighborhood V of that closure. In fact, V ∩ M = U and
N \ M = V \ M .

Proof. We may assume that M is bounded in Rn. If F = M we identify M with
the graph Γ of f , which is relatively compact in Rn × Rp, and f is then the linear
projection from that graph into Rp. In this situation, the candidate for N is the
Zariski closure X of Γ , but that closure may be singular, so that we take for N the
desingularization of X. This is just a variation of Artin-Mazur’s description of the
sheaf NM : every Nash map M → Rk is, up to a Nash diffeomorphism, the restriction
of a polynomial map V → Rk defined on a non-singular real algebraic set V which
contains M as an open semialgebraic set.

In general, for arbitrary F one argues as follows. Shrinking U we may suppose
that f is in fact bounded on U , and there is a bounded Nash function σ which is > 1
on F , and < −1 on M \ U (Mostowski’s separation). We can also assume that M is
open and relatively compact in a Nash manifold M1. Now, we apply the preceding
particular case to the map U → M1 × Rp+1 : x �→ (x, f(x), σ(x)), to get an open
inclusion ϕ : U → L, with ϕ(U) relatively compact in L, and an extension (η, g, σ̄) of
that map. Let L′ be the open semialgebraic set of L defined by the inequality σ̄ > 0.
We obtain the solution by glueing M and L′ along ϕ, but the difficulty is that such
a glueing must be made affine.

σ levels: −1 0 1

L

ϕ(F ) relatively compact in L′

F closed and U open in MM

ϕ(U)

U

L′

F

ϕ(F )






���

�

glueing of M and L′ along ϕ

Whence, this glueing must be explicitly constructed in several steps, after a quite
technical preparation that uses global equations and extension for Nash submanifolds
to control the topological boundary of ϕ(U) in L. First, one produces a semialgebraic
representation of the glueing of class C2 in some affine space; second, one approx-
imates that C2-representation by a Nash one, say N ; and third, one approximates
the inclusion M → N , which after the process is no longer Nash. All these approxi-
mations are highly technical, and need to keep track of everything as a whole. The
third approximation uses Tougeron’s improvement of the implicit function theorem.
It is of particular importance here to control the jacobian ideal J of the mapping
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N → M1 induced by η : L → M1. This J is a finite sheaf of Nash ideals on N , and
the existence of global equations over compact sets allows one to assume that J is
generated by its global sections.

Proof of the existence of global equations for arbitrary sheaves. Let I be a finite Nash
sheaf of M . By the existence of global equations over compact sets, it suffices to show
that M can be identified with a relatively compact open semialgebraic set of another
Nash manifold N to which the given sheaf I extends. It is also clear that it is enough
to deal with an I described by a covering of M consisting of two open semialgebraic
sets U, V : f1, . . . , fk ∈ H0(U, I) generate I|U and g1, . . . , gk ∈ H0(V, I) generate
I|V . Since each family of functions generates I|U ∩ V we have relations

fi =
∑

j

αi,jgj , gi =
∑

j

βi,jfj ,

for suitable Nash functions αi,j , βi,j defined on U ∩ V . Hence, what we must do is
to extend all these data to N . But we have the compactification result to do that,
whenever we can bound the involved functions. To bound fi, gi is easy, just replace
them by fi/(1+f2

i ) and gi/(1+g2
i ). But the αi,j , βi,j ’s require more care. Furthermore,

we must compactify without forgetting much of U , V . In fact, we consider a separating
Nash function σ which is < −1 on M \ V and > 1 on M \ U , and add this function
to be extended with the others. Now, let δ : M → R be a positive Nash function that
goes to zero at infinity, and such that for some power � the products δ�αi,j , δ

�βi,j are
bounded on − 1

2 ≤ σ ≤ 1
2 (this is �Lojasiewicz’s inequality). Notice that the function δ

is a unit in N (M), hence we can multiply and divide by it at will. Once our data are
bounded, we use compactification to extend them to a new Nash manifold N where
M is relatively compact. This extension is done in three steps:

σ levels: −1 − 1
2

0 1
2

1

U VU ∩ V

This is the initial M = U ∪ V , with the fi’s
defined on U , the gi’s on V , the αij ’s βij ’s on
U ∩V , and δ, σ on U ∪V . We extend the data
to a new Nash manifold where M is relatively
compact, or in other words, we extend the data
to the limit points of M . This is done by three
successive applications of the compactification
result, proceeding along the levels of the func-
tion σ.
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σ levels: −1 − 1
2

0 1
2

1

Here we extend to a neighborhood of a part of
the limit points of U ∩ V , including those for
− 1

2
≤ σ ≤ 1

2
.

Next we extend to a neighborhood of all limit
points of V beside V \ U , including those for
1
2
≤ σ.

Finally we extend to a neighborhood of all re-
maining limit points of U , which are beside
U \ V , including those for σ ≤ − 1

2
.

With all this care, one ends up with a finite sheaf on N that extends I, described in
two open semialgebraic sets U ′, V ′ (whose intersections with M are U, V ) by

⋃
ν

(
(f̄1, . . . , f̄k) : δ̄ν

)
,

⋃
ν

(
(ḡ1, . . . , ḡk) : δ̄ν

)

(recall that we multiplied the relations in U ∩ V by powers of δ to bound them, but
δ is a unit on M). This completes the proof.

Proof of separation. One main tool is a Nullstellensatz for radical finite sheaves. This
should be done by complexification, because it is over C where there is a natural bi-
jection between radical ideals and zero sets. More precisely, one takes a semialgebraic
complexification MC of the manifold M , invariant by conjugation, and looks at the
germs X along M of complex analytic subsets of MC, specially those invariant by con-
jugation. Then it can be shown that if I is a radical finite sheaf, any extension of it to a
neighborhood of M in MC defines such a germ X = X(I), which, being semialgebraic,

103 Revista Matemática Complutense
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has finitely many (invariant) irreducible analytic components X = X1 ∪ · · · ∪Xr. As
a matter of fact, we have encountered this earlier, in the proof of extension for radical
sheaves in the compact case. There, we could easily remark that a Nash equation had
finitely many analytic roots, due to the very nice behaviour of rings of functions in
the compact case. Now, we must choose a more geometric view, but then real points
would be of little consequence, hence we resource to complex points. Coming back to
our analytic components, they are of the form Xi = X(Ii) for certain coherent Nash
sheaves Ii, but it is not evident at all why those Ii’s are to be finite. Suppose that
known, and let us see how to deduce separation. A prime ideal p ⊂ N (M) generates
a finite sheaf like I, and the corresponding Ii’s will be generated by their global sec-
tions pi ⊂ N (M) (we already saw that global equations exist). But now, every Xi is
analytically irreducible, hence pi is a prime ideal, and since p = p1 ∩ · · · ∩ pr, there is
in fact only one pi, which must be p itself. Thus, X(p) is analytically irreducible, and
pO(M) is a prime ideal.

Thus, what remains to see is that the Ii’s are indeed finite. It is for this that the
real spectrum M̃ of M is an essential tool. As we already said, M̃ is a compactification
of M whose points α are some ultrafilters of semialgebraic sets of M ; a point x ∈ M
is represented by the ultrafilter of all semialgebraic sets that contain it. To every
semialgebraic set S ⊂ M there is associated the set S̃ ⊂ M̃ of all α such that S ∈ α.
The topology of M̃ is generated by the sets Ũ , where U ⊂ M is open semialgebraic.
With this topology M̃ is compact, and M ⊂ M̃ inherits the usual topology. The sheaf
NM extends to M̃ : the stalk N

M̃,α
at a point α is the direct limit of the rings N (U)

for all open semialgebraic sets U ∈ α. This ring is a ring of algebraic power series with
coefficients in a real closed field κ(α) which is determined by (and determines) α. A
way to describe that real closed field is the following. The Nash functions f ∈ N (M)
such that {f = 0} ∈ α form a prime ideal pα, and in the quotient field of the domain
N (M)/pα there is a total ordering whose positive elements are the classes f +pα such
that {f > 0} ∈ α: after this preparation, κ(α) is the real closure of that ordering. Of
course, for α = x ∈ M , we have κ(α) = R, and N

M̃,x
= NM,x is what we already had.

To prove that Ii is finite, by the compactness of M̃ it suffices to see that for every
α ∈ M̃ there is an open semialgebraic set U ⊂ M with α ∈ Ũ , such that Ii|U is
generated by its global sections. For this, the following is essential: if q ⊂ N

M̃,α
is a prime ideal, there is an open semialgebraic set U ⊂ M and a Nash manifold
S ⊂ U with α ∈ S̃, such that for every x ∈ S the ideal qNM,x is prime. (Notice
the small abuse of notation in qNM,x.) Such a property was first found in [Hr];
the proof in [CoRzSh2] follows [EkTg] and uses the inverse Rückert-Weierstrass’s
local parameterization theorem over the field κ(α). There is another proof of a more
abstract algebraic nature in [Qz3].

We have thus completed the proof of separation, which has needed the following
Nullstellensatz: the radical finite sheaves I correspond bijectively to the invariant ana-
lytic germs X = X(I) that are locally semialgebraic and have finitely many irreducible
components.
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2004, 17; Núm. 1, 83–115

104



M. Coste/J.M. Ruiz/M. Shiota Global Problems on Nash Functions

Proof of extension for radical finite sheaves. Let I be a radical finite sheaf, X = X(I)
and ϕ ∈ H0(M,N/I). We consider the Nash manifold M ′ = M×R, and write simply
N = NM , N ′ = NM ′ . We denote by (x, t) the points of M ′ and define a coherent
Nash sheaf I(ϕ) of M ′ by

I(ϕ)(x0,t0) = (t − Φx0) + Ix0 ⊂ N ′
(x0,t0)

,

where Φx0 ∈ Nx0 induces ϕx0 ∈ Nx0/Ix0 . Then I(ϕ) is radical and finite. Indeed, we
can define the germ X ′ = X(I(ϕ)), which is locally semialgebraic, since the sheaf I(ϕ)
is coherent. On the other hand, as analytic extension is always possible, X ′ is the
graph over X = X(I) of an analytic function, and exactly as X, also X ′ has finitely
many irreducible components. By the Nullstellensatz, X = X(I ′) for a suitable radical
finite sheaf I ′. But I(ϕ) is radical as I is, and again by the Nullstellensatz, we deduce
I(ϕ) = I ′, and conclude that I(ϕ) is finite.

Now, since we already know that global equations exist for finite radical sheaves,
we can pick generators f1, . . . , fk of I(ϕ). Let (x0, t0) ∈ X ′ ∩ M ′. A standard trick
gives units gi ∈ N ′

(x0,t0)
such that

gifi,(x0,t0) = t − Φx0 mod Ix0N ′
(x0,t0)

.

We obtain open semialgebraic sets

Ui = {(x, t) ∈ M ′ : t − Φx ∈ (fi,(x,t)) + IxN ′
(x,t)} (1 ≤ i ≤ k),

that cover X ′ ∩ M ′. Explicitly:

Ui = p−1(M \ X) ∪ {(x, t) ∈ X ′ :
∂fi

∂t
(x, y) �= 0}∪
{(x, t) ∈ p−1(M ∩ X) \ X ′ : fi(x, t) �= 0}.

Using this, one can see that f−1
i (0) ∩ Ui is the graph of a Nash function Fi on

Vi = p(f−1
i (0) ∩ Ui). On Ui the function fi is the product of t − Fi by a function

without zeros, hence for every x ∈ Vi we have ϕx = Fi,x mod Ix. The Vi’s cover X,
and the fi’s can be glued by means of a differentiable partition of unity. This glueing
is not Nash, but one can combine it with a suitable Nash approximation to get a Nash
function F : M → R that represents the section ϕ.

To complete the proof one uses the general argument described in the compact
case to deduce extension for arbitrary sheaves, once global equations and extension
are available for radical sheaves.

7. Nash functions over arbitrary real closed fields

All we have explained till now is based on transcendental methods, although we always
get results concerning Nash functions, which are defined algebraically using polyno-
mials. Thus the typical question arises: what if instead of the real numbers R we
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work over an arbitrary real closed field R? Of course, analytic functions do not make
sense in the context, but Nash functions do. Indeed, the latter can be defined ei-
ther as smooth functions satisfying a non trivial polynomial equation, or using the
Artin-Mazur description. Hence, the Existence of Global Equations and Extension
problems can be formulated over R as well as over R. We describe here their solutions
after [CoRzSh3].

The general strategy for these matters is to apply Tarski-Seidenberg’s transfer
([BoCoRo]), which is conveniently stated in the following form

Uniform bound of complexities. A semialgebraic result can be transferred from
a real closed field to another if we can find a uniform bound for the complexities of
the semialgebraic objects whose existence is shown, in terms of the complexities of the
initial semialgebraic data.

The notion of complexity involved here can be any that verifies some simple gen-
eral axioms, which in fact give a sensible uniqueness. It is easy to define explicitly
a complexity that satisfies our needs. Every semialgebraic set in an affine space is
given by a finite system of equalities and/or inequalities (strict and/or not) involving
finitely many polynomials. We can take as a measure of complexity for that descrip-
tion the maximum m of the number of equalities, inequalities, polynomials, variables
and degrees. The set will then have complexity ≤ m. For semialgebraic maps, we
can consider the complexity of their graphs. Since Nash manifolds are semialgebraic
sets, they have a complexity in this sense, and Nash maps too, because they are
also semialgebraic. Thus, for a fixed complexity m we have a generic description of
all semialgebraic sets of complexity ≤ m, just writing down all possible systems of
m equalities and inequalities involving m polynomials of degree m in m variables,
looking at the coefficients as parameters. This can be summarized by saying that all
semialgebraic sets of complexity ≤ m can be put in a semialgebraic family parameter-
ized over a semialgebraic set S. In our case we are really interested in semialgebraic
sets that are Nash manifolds, but these turn out to be the same family restricted
to a smaller semialgebraic parameter set T ⊂ S, which moreover can be stratified
in such a way that each stratum and the family over it are both Nash manifolds.
Another fundamental property is that all the families under consideration are in fact
defined over the smallest real closed field, the field Ralg of real algebraic numbers. As
explained before, the concrete realization of the complexity measure is not essential,
once some axioms are guaranteed; see [Ra] for a different realization depending on
the degree of algebraic dependence.

After these preliminaries, the method to obtain uniform bounds is a putting in
families strategy. Roughly, given a construction that associates to given initial data
Di some final others Ej , one works as follows:

(i) Every initial datum Di of complexity ≤ m is put in a family Di,

(ii) The construction is performed with Di as initial data, to get final data Ej ,
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(iii) One checks that every Ej is a family of data Ej , and that the construction is
compatible with the families involved,

(iv) Finally, the complexity of the datum Ej is bounded by the complexity of the
family Ej , which only depends on m.

All of this explained, some remarks are in order concerning the meaning of the
problems on Nash functions when the ground field is not R any more. Firstly, the
separation problem has no apparent formulation over an arbitrary real closed field R,
since analytic functions are no longer available: This lack is not essential, and it is in
fact possible, although in a very abstract way, to discuss separation over R. However,
this generalization is better delayed till the next section. Here, we instead consider
the change of ground field, when there are two real closed fields R ⊂ R′. We have
in this case an extension functor called base change that associates to every Nash
manifold M over R another M ′ over R′ (this depends on the obvious fact that every
polynomial with coefficients in R is of course a polynomial with coefficients in R′,
and by Tarski-Seidenberg, the functor behaves without surprises). Thus, we have a
homomorphism N (M) → N (M ′), which is as good as N (M) → O(M) when M is a
compact Nash manifold over R. For instance, every prime ideal p ⊂ N (M) generates
a prime ideal pN (M ′). The deep reason behind this is the following:

Solutions of linear equations with uniform bounds. If g belongs to the ideal
generated by f1, . . . , fk, then there are h1, . . . , hk, with complexities bounded solely in
terms of the complexities of g and f1, . . . , fk, such that g = h1f1 + · · · + hkfk

It is clear how this result gives uniform bounds for all properties that can be
formulated using linear equations, and makes Tarski-Seidenberg available to go back
and forth via N (M) → N (M ′). For instance, one deduces that this homomorphism
is faithfully flat or that it preserves primary decompositions. Concerning the proof,
we notice that the study of complexities of solutions of linear equations has deserved
a lot of attention for polynomials since Seidenberg’s paper [Se]. Thus, the natural
idea for Nash functions is to use the Artin-Mazur description to transform them into
polynomials. However, this transformation must keep track of complexities, which
leads to another uniform bounds result:

Uniform Artin-Mazur description. Given positive integers p, c, �, there exist pos-
itive integers k, d satisfying the following property. Let M ⊂ Rp be an affine Nash
manifold of complexity ≤ c and f1, . . . , f� Nash functions on M of complexities ≤ c.
Then there exist an algebraic subset V ⊂ Rk whose ideal is generated by ≤ d poly-
nomials of degrees ≤ d, a Nash embedding σ : M → Reg(V ) of complexity ≤ d and
polynomial functions g1, . . . , g� : Rk → R of degrees ≤ d such that fi = gi ◦ σ for
i = 1, . . . , �.

The proof of this is once again an application of the putting in families strategy
described above.
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2004, 17; Núm. 1, 83–115



M. Coste/J.M. Ruiz/M. Shiota Global Problems on Nash Functions

Concerning the other problems, the main point is to understand the sheaf of
germs of Nash functions over arbitrary real closed fields. These fields have a unique
ordering, and consequently a topology, but it is a little friendly one. Look for instance
at the field R = Ralg. The function ≡ 1 on (−∞, π) and ≡ 0 on (π,∞) is locally
(in the order topology) Nash, but it is not Nash globally on Ralg (because non-zero
Nash functions in one variable must have finitely many zeros). This shows that Nash
functions do not define a sheaf for the order topology. However, they form one with
respect to the semialgebraic topology (defined as for R = R). Thus, in Ralg the
semialgebraic topology is not a second option, but the unique choice. As for R = R,
the semialgebraic topology is not a true topology, but this is mended by the theory
of the real spectrum.

Once all terms involved are well defined, we can apply the put in a family strategy
to prove uniform bounds for global equations and extension over R, and then deduce
them over arbitrary real closed fields. Thus we have completed this piece of the Nash
labyrinth:

Global equations for
arbitrary sheaves

Extension for
arbitrary sheaves

Global equations
with uniform
bound over R

Global equations
over an arbitrary
real closed field

Extension with
uniform bounds

over R

Extension over
an arbitrary

real closed field

Artin-Mazur
description with
uniform bound

Solutions of linear equations
with uniform bounds

Base change for Nash functions

�

�

�

�

�

�

�

�

�

�

8. Abstract Nash functions

Manifolds over arbitrary real closed fields are not the most general setting to define
and study Nash functions. Actually, the real spectrum is defined for arbitrary commu-
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tative rings A, and for A = N (M) we get the space M̃ . This is quite natural, recalling
how we defined the real closed field κ(α). Indeed, for A arbitrary, Specr(A) consists
of all points α determined by a prime ideal p ⊂ A and a total ordering in the quotient
field of A/p; in other words, we identify α with the homomorphism A → A/p → κ(α),
where κ(α) is the real closure of that ordered field; we write f(α) instead of α(f) for
f ∈ A, in order to see the elements of A as functions on Specr(A). The set Specr(A)
is endowed with the topology generated by the basic open sets

{f1 > 0, . . . , fk > 0} = {α ∈ Specr(A) : f1(α) > 0, . . . , fk(α) > 0},

with f1, . . . , fk ∈ A (and the sign > evaluated in κ(α), of course). This gives a compact
space. Actually, compactness holds even for the constructible topology, generated by
the constructible sets, which are the boolean combinations of the above basic open
sets. This construction defines a functor from rings and homomorphisms f : A → B
to topological spaces and continuous mappings f∗ : Specr(B) → Specr(A), similar to
the Zariski spectrum of modern Algebraic Geometry.

The real spectrum is equipped with the sheaf NA of germs of Nash functions,
copying the definition given for manifolds over R in [ArMz]. Although it seems too
technical, let us state it here. For every open set U of Specr(A) consider the direct
system of all pairs (A → B, σ) where B is an étale A-algebra and σ : U → Specr(B) is
a section of the local homeomorphism Specr(B) → Specr(A), and denote by (B, σ) →
(C, τ) a homomorphism f : B → C of A-algebras such that f∗ ◦ σ = τ . Then A(U)
is the direct limit of that system; this gives a presheaf A. In case A = R[x1, . . . , xn]
and U = W̃ for an open semialgebraic set W ⊂ Rn, it is A(U) = N (W ): this is
Artin-Mazur’s description of N (W ), and means that A is a sheaf in this case. The
question whether A is a sheaf for arbitrary A has remained open for many years: this
is the Artin-Mazur description for A. Since it was not known to be true, NA was by
definition the sheaf associated to the presheaf A (of course, everybody thought that
NA = A). This Artin-Mazur description means that:

(i) For every open constructible subset U of Specr(A), the ring of Nash functions
NA(U) is an ind-étale A-algebra, and

(ii) For every point α ∈ Specr(A), the ring of Nash function germs NA,α is a local
ind-étale A-algebra.

Another important property is idempotency, which was studied at the very moment
the real spectrum was invented. Consider the ring B = NA(Specr(A)) of global
sections of NA. Then there is a canonical homomorphism A → B which induces a
map Specr(B) → Specr(A), and idempotency holds when this map is an isomorphism
of ringed spaces, that is, the map is a homeomorphism and transforms NB in NA.
This expresses the stabilization of the construction A �→ NA(Specr(A)) after the first
step. This is just natural if we see this construction as a closure or a completion with
respect to the implicit function theorem.
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For the proof one defines an inverse s : Specr(A) → Specr(B) as follows: for every
α ∈ Specr(A) we have the canonical homomorphism B → NA,α, which induces a
prime cone β ∈ Specr(B). Now, by the general properties of ind-étale limits, NB,β

is isomorphic to NA,α, and it remains to see that s is surjective. For many years
this was thought to be proved ([Ry],[AlRy]), but the specialists overlooked a gap.
It is instructive for our topic the way that gap was discovered. After [CoRzSh1],
Quarez found ([Qz2]) an argument that deduced extension from idempotency, by
making the ideas in the compact case available in the non-compact one. This lead to
a protocolary revision of the quoted articles on idempotency, and to the unexpected
finding that the proofs were incomplete. Quarez’s work included also the key that the
Artin-Mazur description implied idempotency. In fact, Artin-Mazur description was
the missing tool to complete the argument above and conclude that our s above is
indeed surjective.

Once we have Nash functions on real spectra, we have Nash sheaves too. But,
real spectra being compact, finiteness difficulties are excluded: finite sheaf means
simply locally finitely generated. Consequently, extension and global equations are
formulated readily.

Next we come to the more delicate matter of separation. Again in the paper
[Qz3] by Quarez, we find a proposal. It is a Nullstellensatz: I �→ X(I) for finite
sheaves of ideals in the abstract case. The idea is simple, despite complications
coming from the (very interesting but independent) affair of when Nash functions
form a noetherian ring. In fact, we can go straight as follows. Let U ⊂ Specr(A) be an
open constructible set. For every point α ∈ U we have the canonical homomorphism
NA(U) �→ NA,α : f �→ fα and, looking at the germ at α of the complexification of U ,
the prime ideals p ⊂ NA,α may be seen as ideals of complex invariant germs. We have
then a space G consisting of all pairs (α, p). (The idea of abstract complexification is
not new: see [Cu],[Pu],[Sc].) In this space we define

I �→ X(I), X �→ J (X),

for ideals I ⊂ NA(U) of Nash functions and subsets X of G as follows:

X(I) = {(α, p) ∈ G : p ⊃ INA,α},
J (X) = {f ∈ NA(Specr(A)) : fα ∈ p for all (α, p) ∈ X}.

The usual properties of zero sets and ideals of zeros can be easily checked, and we have
a topology in G whose closed sets are those zero sets. Then the abstract Nullstellensatz
says that zero sets correspond bijectively to the radical ideals I:

JX(I) =
√

I.

Proof. This is a consequence of idempotency. Indeed, the thing to check is that
JX(I) ⊂ √

I. But if f ∈ JX(I), then fα ∈ p for every α and every prime ideal p
of NA,α such that INA,α ⊂ p, so that fα ∈ √

INA,α for every α. Now, let m be a
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maximal ideal of NA(U), and α any prime cone supported on m (which in fact exists
by idempotency). Since the morphism NA(U)m → Aα is local ind-étale, we deduce
that f ∈ √

INA(U)m. This shows that f ∈ √
I.

Now, in G we have the standard notion of irreducibility for the closed sets X(I)
(although we do not know whether irreducible decompositions exist, since nothing
is yet said about noetherianness). Anyway, separation is formulated immediately:
if p ⊂ NA(U) is prime, is the set X(p) irreducible?. The answer is yes. For let
X(p) ⊂ X(I) ∪ X(J). Then from the Nullstellensatz we get p ⊃ √

I ∩ J , and p being
prime, either p ⊃ I or p ⊃ J . Hence either X(p) ⊂ X(I) or X(p) ⊂ X(J).

In particular, we give a meaning to separation over any real closed field, as was
advanced before.

We have thus explained a good part of the remaining implications of the Nash
labyrinth:

Global equations
over an arbitrary
real closed field

Extension over
an arbitrary

real closed field

Global equations
for arbitrary rings

Extension for
arbitrary rings

Artin-Mazur for
arbitrary rings

Idempotency for
arbitrary rings

Nullstellensatz
for arbitrary rings

Separation for
arbitrary rings

�

�

�

�
�

���
��	

����

Let us sketch the proofs that are left.

Proof of the Artin-Mazur description for arbitrary rings. Let ϕ be a global section of
NA, represented by a finite open covering Specr(A) = U1 ∪ · · · ∪ Ur (and finite
by the compactness of the real spectrum), with étale algebras A → Bi, continuous
sections σi : Ui → Specr(Bi) and elements fi ∈ Bi that verify certain compatibility
equations. What we seek is a similar description with a single open set. To that end,
we built a commutative ring of the type A0 = Z[x1, . . . , xn]/(F1, . . . , Fs) ⊂ A that
contains all involved data. Since Z ⊂ Ralg we can consider the sheaf N of germs of
Nash functions of the affine space Rn

alg, and the finite sheaf of ideals I generated by
F1, . . . , Fs ∈ Z[x1, . . . , xn] ⊂ N (Rn

alg). Then our data define a global section of N/I,
and by extension over the real algebraic numbers, that section is represented by a
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global Nash function on Rn
alg. But now, by Artin-Mazur’s theorem over Ralg, that

global Nash function is in turn represented by an element f of an étale algebra over
Ralg[x1, . . . , xn]. That étale algebra is also étale over Z[x1, . . . , xn], and by the change
of base A0 ⊗Z − we obtain an étale A-algebra. In the end, the element f , seen in the
latter étale A-algebra, represents the section ϕ we started with.

Once the Artin-Mazur description is available for arbitrary rings, Nash functions
are described easily, and we can use the same kind of descent argument from A to
a finitely generated Z-algebra to prove extension and global equations for sheaves of
Nash sections over arbitrary rings.

After this long process of reformulation and generalization, needed to understand
the nature of the various problems under view, and the nature of their possible solu-
tions, we have been able to solve them all.

Now, a few words are in order to understand when the rings of Nash functions are
noetherian. Firstly, although we have called separation for NA(U) the irreducibility
of the sets X(p), the geometric meaning of this is only clear when the ring NA(U) is
noetherian. In that case, the space G is noetherian too, and we have a convincing
notion of analytic component as an irreducible closed subset of G, because we have
a decomposition into (finitely many) irreducible components. Furthermore, there
is a sensible local definition for “analytic sets”: let X ⊂ G be defined by a finite
open constructible covering U =

⋃
i Ui and radical ideals Ii ⊂ NA(Ui) in the form

X|Ui
= X(Ii) (with the obvious notation). Then the abstract Nullstellensatz implies

IiNA(Ui ∩ Uj) = J (X|Ui∩Uj
) = IjNA(Ui ∩ Uj).

Thus we have a sheaf of radical ideals I ⊂ NA|U defined over each Ui by I|Ui
=

IiNA|Ui
. However, we cannot conclude from this that X = X(I) for the ideal I =

H0(U, I): global equations exist for finite sheaves, and I need not be finite. Now,
suppose that the rings NA(Ui) are noetherian. Then each Ii is finitely generated, so
that I is in fact finite, and X is a closed set of G.

After these remarks, let us suppose that the rings NA(U) are noetherian. First, we
can replace A by A[S−1], where the multiplicative set S consists of all f ∈ A without
zeros in the real spectrum. This makes the ind-étale homomorphism A → NA(U)
faithfully flat, and A is noetherian by descent. However, the converse is not always
true (counterexamples are easy: take for A the field of a real algebraic curve, which
has infinitely many total orderings). Thus, we look for another condition, and find
one that had already been discussed in other contexts (see [AnBrRz]), namely, that
every constructible set of Specr(A) has finitely many connected components. The
proof that this is necessary (see [CoRzSh3]) uses the standard tricks for semialgebraic
separation, available in the abstract setting after the work of Mahé ([Mh]). Finally, we
can close the circle by showing that if G is noetherian, the ring NA(U) is noetherian
too.
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Finally, let us state the best positive result known so far (essentially proved in
[Qz3]; also proved, assuming idempotency, for finitely generated algebras over real
closed fields in [Cu]):

Proposition. Suppose that A is excellent, and every constructible subset of Specr(A)
has finitely many connected components. Then the rings NA(U) of Nash functions on
open constructible sets U ⊂ Specr(A) are excellent.
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