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Rodŕıguez, para optar al grado de Doctor en
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Introduction

A background on semi-flows and previous contributions from
other authors

In the first part of this introduction, we deal with other authors’ contributions made previously
on discrete semi-flows and their connections with other fields: dynamical systems, differential
equations, fractals, iterative processes and exterior spaces. This will help us establish the current
framework in which our thesis takes place.

Continuous and discrete semi-flows and differential equations

Some of the origins of dynamical systems and flow theory can be traced back to Poincaré’s
pioneer work [70, 71] on the topological properties of the solutions of autonomous differential
equations, in the late 19th century. It should also be noted A. M. Lyapunov’s work [56], in which
he developed his theory of stability of solutions of a system of first-order ordinary differential
equations. While most of the research done by Poincaré analyzed global properties of dynamical
systems, that of Lyapunov was more focused on the consideration of their local stability. The
theories associated with dynamical systems reached a high level of evolution due to the studies
of G. D. Birkhoff [9], who could be considered as one of the founders of this theory.

The development of dynamical systems has been quite ample, has been tackled from many
points of view and has had several applications in diverse fields. A study of their basic properties
can be seen in [9, 8].

One of the methods that Poincaré introduced for the study of properties of autonomous
differential equations was the first return map: if we consider a periodic solution (a compact
closed curve) of a differential equation in R2 and x0 is a point in it, we can take a perpendicular
line T in x0 and, given a point x ∈ T , consider the unique solution with initial point x and
look for the first return f(x) of the trajectory to the perpendicular. In this way, a discretization
process is obtained, which associates the continuous flow with the discrete flow determined
by the first return map at the perpendicular. The technique of Poincaré’s return and other
discretization methods induce the corresponding discrete flows, and some inverse methods such
as suspension can construct an associated continuous dynamical system from a discrete one.

ix
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Let us notice that there are many other discretization methods that are not as complicated
as Poincaré’s; without going any further, a discrete flow can be associated with each continuous
flow when a discrete time scale is chosen. This process is usually carried out as a first step
toward making these models suitable for numerical evaluation and implementation on digital
computers.

For an autonomous Lipschitzian differential equation system, one always has an induced
local or global flow. As this sort of differential equations, the autonomous ones induced by
continuous vector fields usually appear in numerous scientific contexts, too; nevertheless, given
an initial condition, there are existence theorems for these equations but, in general, the solution
uniqueness may not hold. For continuous vector fields, the solutions of an equation do not
have, in general, the structure of a continuous flow; an interesting particular case arises when,
for some initial condition, we can only assure the existence and uniqueness of solutions at a
future time, obtaining in this case a continuous semi-flow. For a continuous semi-flow, we can
consider discretization processes and the corresponding discrete semi-flows, which are precisely
the cornerstone of our doctoral thesis.

Fractals and flows induced by iterative processes

A fractal is a geometric shape whose basic structure, either fragmented or rough, is repeated
at different scales. This expression was first proposed by B. B. Mandelbrot [59] in 1975 and
it comes from Latin fractus, which means to be “broken”, “fractured”, or “irregular”. A lot
of natural structures are of fractal type. Although the term “fractal” is recent, the objects
nowadays named fractals had been well-known since the early 20th century.

A possible definition of fractal, given in [61], is the following: “A fractal is a set whose
Hausdorff-Besicovitch dimension is strictly greater than its topological dimension.” A more
recent definition was given by K. Falconer [31] in 1990: “A fractal structure is one that satisfies
some of the following properties: it cannot be described in traditional Euclidean geometric
language, both locally and globally; it has a fine or detailed structure at arbitrarily small scales;
it is self-similar; its fractal dimension is greater than its topological dimension; and it has a
simple and perhaps recursive definition.”

To find the first cases of fractals, we have to go back to the late 19th century when, in
1872, Weierstrass function, whose graph is considered as a fractal now, was first introduced
as an example of a continuous function which is not differentiable anywhere. Later, some
more examples with similar properties appeared, but they had a more geometric definition.
These examples of fractals could be made from an initial pattern to which a series of simple
geometric constructions were applied. The family of figures obtained approached a limit figure
that corresponded to what today we call fractal set. In this way, in 1904, H. V. Koch defined a
curve with similar properties to that of Weierstrass: the Koch snowflake. In 1915, W. Sierpinski
constructed the Sierpinski triangle and, one year later, the Sierpinski carpet.
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By 1918, two French mathematicians, P. J. L. Fatou [32] and G. M. Julia [52], though
working independently, arrived essentially simultaneously at results describing what are now
seen as fractal behavior associated with mapping complex numbers and iterative functions and
leading to further ideas about attractors and repellers (i.e., points that attract or repel other
points), which have become very important in the study of fractals. They were among the
first mathematicians who studied the complex dynamics generated by iterative processes. Their
works were popularized later on by B. B. Mandelbrot [60, 61] who, combining his geometric vision
and his programming abilities, gave an essential boost for the creation of a new mathematical
field, sometimes named fractal geometry or fractal dynamics. Some works regarding research
in the fields related to the complex dynamics, the chaos theory, the fractal notion and the
connection between Julia and Mandelbrot sets can be found in [69, 6, 16, 1]. In several of these
works, one can usually observe numerous illustrations that reflect the beauty of the fractals
created from the referred iterative processes.

The Julia sets appear as a result of the iteration of analytic functions z 7→ f(z) 7→ f(f(z)) 7→
f(f(f(z))) 7→ . . . In the particular case of polynomial functions f of degree greater than 1, it is
very possible that, when iterating them, the result tends to infinity. The set of values z ∈ C that
do not escape to infinity by means of this procedure is called filled-in Julia set, and its boundary
J(f) is just called Julia set. The family of Julia sets {J(fc)} associated with the iteration of
functions of the form fc(z) = z2 + c has a surprising variety of sets; the set of complex numbers
c ∈ C such that the Julia set associated with fc(z) = z2 + c is connected is called Mandelbrot
set.

Another kind of fractal related to some iterative process is the Newton fractal. Newton’s

method transforms a polynomial p(z) into a rational (meromorphic) function Np(z) = z − p(z)

p′(z)
.

The iteration of Np induces the basins of attraction of the roots of p(z) = 0, and the boundary
of those basins has a fractal structure.

One of the objectives of this doctoral thesis is to study the iteration of a continuous map f
in a topological space; in other words, a discrete semi-flow. An interesting particular case is the
iteration of an analytic function defined on a Riemann surface: when considering this case, the
semi-flow theory has many relations to fractal geometry.

Exterior space theory

Over the 20th century, a large number of techniques were developed by many mathematical
research groups with the aim of studying non-compact spaces; now, we shall mention some of
those related to the lines of research carried out in this area.

In 1923, B. Kerékjártó [53] found a classification of non-compact surfaces. In order to do
so, he defined an “ideal point” as a principal invariant. After that, in 1931, H. Freudenthal [33]
defined the notion of “end point” of a topological space, which in the case of surfaces coincides
with the concept of Kerékjártó’s “ideal point”. These were the first invariants of what would be
named proper homotopy theory afterwards, and one of its first applications in the classification
of open manifolds.
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In 1965, L. C. Siebenmann [78] gave necessary and sufficient conditions in order for a dif-
ferentiable n-manifold to be the interior of a compact manifold with boundary, when n ≥ 6.
In the referred work, he associated new invariants with the semi-stable ends of Freudenthal by
using the fundamental group and inverse limits of groups. Later on, in his work [79] in 1970,
Siebenmann suggested that, when considering non-compact spaces, the homotopy hypothesis
should be given in the category of proper maps (i.e., continuous functions with inverse images
of compact closed subsets being compact) rather than in the category of continuous functions.
This proposal was subsequently considered by numerous research groups and several works with
significant contributions in this field were developed until the late twentieth century –for a gen-
eral view about proper homotopy, see [25, 73]. However, one of the problems concerning the
proper category is that it lacks enough limits and colimits in order to make the most usual
homotopy theory constructions.

A solution to this problem has been the introduction of the category of exterior spaces
[34, 35, 27] and the study of its properties, carried out over the last years of the 20th century
and until nowadays in the 21st century. The notion of exterior space was made with the aim of
having a topological-type model at one’s disposal to study non-compact spaces and the shape
of compact T2 spaces. An exterior space consists of a topological space provided with a “system
of exterior open subsets” (that is to say, a non-empty quasi-filter of open subsets) which play
the role of a family of open neighborhoods at infinity when considering the proper homotopy.

More specifically, the concept of exterior space was introduced in the work [34], where a full
and faithful natural transformation from the category P of topological spaces and proper maps
to the category of exterior spaces E was given. In addition, it was proved that the exterior
category E admits a Quillen model structure [75]. This technique has permitted the use of
various homotopic constructions that cannot be made in proper homotopy since, as mentioned
above, the proper category does not have enough limits and colimits. The study of the homotopy
theory of exterior spaces has been extensively developed in several works, such as [36], [27], [15]
and [24].

As we will see in the next subsection of this introduction, the exterior space theory can be
applied to the study of dynamical systems. It has been observed that a dynamical system (either
flow or semi-flow, continuous or discrete) can be provided with diverse exterior space structures,
so that all the constructions and properties developed for exterior spaces have a natural appli-
cation to the classification and the study of properties of dynamical systems. The introduction
of the exterior dynamical systems [28, 38, 39] and their development and applications is being
one of the ongoing research lines on which our research team is working at the moment.

Exterior flows

The theory of Differential Equations and the Invariant theory of Algebraic Topology are two
important mathematical techniques whose applications to scientific-technical fields have been a
constant source of progress and innovation. The research work on exterior spaces and exterior
flows has unified some aspects regarding these methods and has designed computational tools
which permit a more effective transfer of these advances to science and technology.
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The potential of these new techniques has recently been analyzed, together with the use of
exterior spaces to study dynamical systems: an original procedure, consisting of providing flows
and semi-flows with an additional structure of exterior space, has been developed, originating a
hybrid theory of exterior dynamical systems. In this way, the study of dynamical systems can
be carried out through the consideration of exterior spaces. There have been some recent works
on the study of continuous flows through the use of the theory of exterior spaces, such as [28],
[38], [39] and [40]. For more advances achieved in these fields, see [29].

Author’s contributions and structure of the thesis

The second part of this introduction is devoted to describe the advances evolved in the works
in which the author considered some of the topics developed in this thesis during his time as a
doctoral student in association with his supervisors and some of their close research collaborators.
Examples of these topics include the analysis of exterior discrete flows and the applications of
flow theory to the field of Numerical Analysis. All these aspects are broadened and covered in
depth along the different chapters of this dissertation, whose structure will be shown at the end.

Exterior discrete flows

Bearing in mind the results on the connection between exterior spaces and continuous dynamical
systems pointed out at the end of the previous section, it has been contemplated to find out
the connections between exterior spaces and dynamics of discrete flows. It is known that some
discretization (such as the first return map) and anti-discretization (such as suspension) processes
determine an interdependence between the properties of discrete dynamical systems and those
of continuous ones. In consequence, many of the properties, results and applications that figure
in [38, 39] should be matched with notions and results concerning discrete dynamical systems.
Precisely, some of the connections between exterior spaces and discrete semi-flows are analyzed
in this thesis, and the notion of exterior discrete semi-flow emerges as a result of them. The
obtained results, and some additional ones, led to a joint work with J. M. Garćıa-Calcines [37].

Some differences between continuous flows and discrete semi-flows are essential for their
technical handling. For example, a semi-flow consists in a semigroup of continuous maps instead
of a group of homeomorphisms, so the construction and properties of left and right omega-limits
are very different. A continuous flow has the property that all the points in a trajectory belong
to the same connected component; nevertheless, this cannot be ensured for discrete semi-flows.
These differences must be taken into account when analyzing the interrelations between the
exterior space theory and the discrete semi-flow theory. As a matter of fact, we also have in [37]
some similarities with the results and tools given in [38], but new (non-analogous) techniques
had to be developed for a better analysis of discrete semi-flows.

With the aim of studying exterior discrete semi-flows, some concepts such as region of exterior
attraction of an externology, limit and bar-limit of an externology and different notions of end
points, which also appear in [37], will be analyzed in depth throughout this dissertation; at least,
one can consider three different kinds of end points given by the analogues of the 0-dimensional
homotopy invariants of the Borsuk-Čech π̌0, Steenrod πS

0 and Brown-Grossman πBG
0 type.
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What is more, in discrete dynamical systems, it is common to consider the notion of region
of attraction of a right-invariant subset, the omega-limit of a point, periodic points, basins of n-
cycles, et cetera; here, in determined parts of this work, we will go into detail about the analysis
and use of certain techniques that provide a connection between the notions associated with an
exterior space and dynamical notions associated with a discrete semi-flow, and we will see that
the regions of exterior attraction of an externology are related to the regions of attraction of an
adequate invariant subset, the concept of limit is related to that of subset of periodic points,
the notion of bar-limit is connected to the notion of omega-limit, the basin of an end point
of Borsuk-Čech type is related to the basin of a fixed point and the basin of an end point of
Brown-Grossman type is related to the basin of a periodic point and the basin of an n-cycle.

Some applications of flow theory to iterative methods

One of the utilities of the exterior discrete semi-flows lies in their application to the dynamics
of numerical iterative methods, such as those of Newton-Raphson or Tchebychev, when finding
roots of complex polynomials. Some examples of works that deal with this topic can be found
in [30, 82], and a general study on the iteration of rational functions of complex variable can be
seen in [7].

In order to study basins of end points related to the dynamics of certain iterative processes
and as part of the results achieved in this doctoral thesis, diverse algorithms were implemented in
Sage [48] and Mathematica [62] by the author and his supervisors to visualize basins of attraction
of end points of a discrete semi-flow associated with a rational function defined on the Riemann
sphere by using its geometry and complex structure. These algorithms give a global view of
the basins, in contrast to other usual implementations which provide partial visualizations in
rectangles. For each integer p ≥ 1, with these implementations one obtains a decomposition of
the sphere into the union of basins of p-cyclic points and their complementary, and, moreover,
the areas of these basins can be calculated. The visualization and area-computation algorithms
are based on procedures of consecutive subdivisions starting from a cubic structure on the 2-
sphere. The research presented in the mentioned publications is reflected along the last chapters
of this document, in which we show, in addition, a rigorous study that allows us to demonstrate
that the method we use for estimating the area of the basins by such iterated subdivisions is
appropriate.

Some applications of the referred algorithms for the graphical visualization and area measure
of basins are exhibited in chapter 7 of this thesis in the analysis of the influence of the multiplicity
of complex polynomial roots on the area of the corresponding basins obtained by means of
Newton’s method. This work includes a comparison between two subdivision methods considered
on the Riemann sphere to see which one is better to obtain more efficient computations, and has
resulted in a joint publication [44] together with the author’s supervisors and J. M. Gutiérrez.

Structure of the document

The aim of this doctoral thesis is to profoundly study the notion of exterior discrete semi-flow
and to apply it to the analysis of iterative processes induced by some numerical methods. It is
organized as follows.
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Chapter 0 is the preliminary chapter and it is devoted to a review of some fundamental
concepts on which this work is based, such as topological spaces, categories, exterior spaces,
discrete semi-flows, measures and regular CW-complexes. In turn, we set the notations that will
appear in it and introduce the terminology that will be used.

The three chapters following chapter 0 are chiefly inspired by the theorem that we are going
to recall in the next lines, since along them we intend as a main goal to establish connections
among three of the most usual end sets of an exterior space and their analogues in the category
of exterior discrete semi-flows: those of Brown-Grossman πBG

0 (X), Steenrod πS
0 (X) and Borsuk-

Čech π̌0(X). That theorem, which can be found in [49] (oriented to pro-spaces) and [41] (in the
context of exterior spaces), claims that, if X is an exterior space, then there is an exact sequence
that provides a nice connection between the Brown-Grossman and Steenrod homotopy groups
given by the first row of the following diagram:

πS
q (X) //

(( ((

πBG
q (X)

IdX−ShX // πBG
q (X) // πS

q−1(X) // . . .

ker(IdX − ShX) ∼= π̌q(X)
55

55

This long exact sequence is actually an analogue for exterior spaces of the exact sequence
given by Quigley [74] in shape theory or by Porter [72] in proper homotopy theory, and in the
context of pro-spaces it is also considered or used by Hernández-Paricio in [47] and by him and
Porter in [50, 51]. Furthermore, under the condition of first countable at infinity, the kernel of
the map IdX − ShX from the q-th Brown-Grossman group to itself is just the q-th Borsuk-Čech
group, with q ≥ 1.

The problem arises precisely when q = 0, since these sets have not got a group structure in
that case and, therefore, defining the map IdX − ShX is senseless as, given a ∈ πBG

0 (X), the
element ShX(a) ∈ πBG

0 (X) would not have an inverse −ShX(a) ∈ πBG
0 (X). Nevertheless, the

kernel of the map IdX − ShX is the same as the equalizer of IdX and ShX if q ≥ 1 and this
equalizer makes sense for the sets concerned when q = 0, “fixing” our problem.

Considering the foregoing, chapter 1 shows the connections among the end sets πBG
0 (X),

πS
0 (X) and π̌0(X) when X is a first-countable at infinity exterior space. Not only do we intend

to complete the study in depth of the diagram above in the lowest dimension q = 0, but we also
try to relate some of these end sets to limit spaces of the exterior space, and these limit spaces
and end sets amongst each other. The strategy that we follow to do so lies in the definition of
natural transformations between these functorial constructions.

The main result of chapter 1 that provides a detailed description of the above-mentioned
exact sequence in dimension zero is Theorem 1.5.1, which also states that, if the exterior space
X is first-countable at infinity, then the set of end points π̌0(X) is the equalizer of the identity
map and the shift operator of πBG

0 (X). The principal difficulty is to prove the existence of the
natural transformation from π̌0 to πBG

0 , assuming the exterior space to be first-countable at
infinity.
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The central concept of this work, which is that of exterior discrete semi-flow, is thoroughly
considered along chapter 2. An exterior discrete semi-flow can be seen as a discrete semi-flow
whose action is exterior. In addition, it is d-exterior if the orbit of each point in the exterior
space reaches an end point; that is to say, it is eventually contained in an exterior open subset,
for a large enough time. To construct end sets of an exterior discrete semi-flow X, it is desirable
to define a d-exterior subspace, which is called the region of exterior attraction of the exterior
discrete semi-flow and denoted by D(X). In Theorem 2.2.1, we show that the functor which
carries a discrete exterior semi-flow X to a discrete d-exterior semi-flow D(X) is a right adjoint.
The existence of an action of N on X will allow us to consider end points that can be represented
by the orbit of a point in D(X). This fact makes it possible for us to introduce the notion of
ω-end point and to define new sets of ω-end points ωπBG

0 (X), ωπS
0 (X) and ωπ̌0(X) in a natural

way as subfunctors of πBG
0 (X), πS

0 (X) and π̌0(X), respectively. We also prove in Theorem 2.3.1
an analogue of Theorem 1.5.1 for ω-end points. Another important fact is the partition of the
region of exterior attraction D(X) into a disjoint union of basins of end points of ωπBG

0 (X) –see
Corollary 2.3.1. A particular case of this kind of partitions will be considered in the last chapters
for discrete semi-flows induced on the 2-sphere by the iteration of a rational map, so long as it
is different from the identity.

In chapter 3, we take a step further and create a new kind of Brown-Grossman and Steenrod
end sets of exterior discrete semi-flows, called Ω-end sets, based on the previous ones but such
that the paths that define the homotopy between exterior sequences or exterior semi-rays, as
appropriate, are constructed successively as images of the very first path, at time zero, of that
homotopy under the action of the discrete semi-flow. In order to relate these end sets to that
corresponding to Borsuk-Čech type, it is necessary to define the notion of intrinsic path, which
is a path whose image, for a big enough time, is eventually contained in every exterior open
subset. Intrinsic paths are associated with the intrinsic topology, generated by the union of the
open subsets and the right-invariant subsets of the exterior open subsets taken as a subbasis:
by way of example, a path is intrinsic if and only if it is continuous in the intrinsic topology and
its image is completely contained in the region of exterior attraction. From this comes naturally
the notion of intrinsic path component: two points in the region of exterior attraction belong
to the same intrinsic path component if and only if there is an intrinsic path connecting them.
This notion permits the construction of Ω-end sets of Borsuk-Čech type from inverse limits of
intrinsic path components –instead from inverse limits of simple path components, as initially.
The new functorial Ω-end points can be related to each other using natural transformations,
following again the same sketch above.

Within chapter 3, we prove in Proposition 3.2.2 that, for a given exterior discrete semi-flow
X, one has that there is a bijection between ΩπBG

0 (X) and ΩπBG
0 (D) and, moreover, ΩπBG

0 (D)
is isomorphic to the set of intrinsic path components πint

0 (D) and to the set of ω-representable
end points ωπBG

0 (Dint), where D = D(X) is provided with the intrinsic topology. The functor
Ωπ̌0 has similar properties, since Ωπ̌0(X) ∼= Ωπ̌0(D) ∼= ωπ̌0(Dint). However, the new functor ΩπS

0

does not satisfy, in general, this kind of properties. Again, for the new functors ΩπBG
0 , ΩπS

0 and
Ωπ̌0, we also have the exact sequence given in Theorem 3.2.1 analogous to Theorem 1.5.1 and
Theorem 2.3.1.
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With a view to make a study about basins of attraction of fixed and, in general, m-periodic
points associated with a rational map defined on the surface of the sphere S2, we consider
in chapter 4 externologies given by families of the open subsets that contain determined right-
invariant subsets. In section 4.1, under certain nice conditions, we compare pairs of externologies
of the described type when they each are induced by right-invariant subsets such that one is
contained in the other; the main result of the section, which is none other than Theorem 4.1.1,
claims that, given a pair of such subsets and an ω-representable end point when considering the
externology induced by the smaller subset, the basin of this end point in the region of exterior
attraction induced by the larger subset is just the same as the basin in the region of exterior
attraction induced by the smaller one. In section 4.2, the concept of asymptotically stable cycle
comes into play (for a rough definition of this notion, see the opening paragraph of chapter 4),
and there we prove several interesting results when the appropriate conditions exist, namely:

• Every ω-representable end point can be given by an asymptotically stable periodic point
–see Corollary 4.2.2.

• The region of exterior attraction of an asymptotically stable l-cycle of a continuous map f
can be decomposed into a disjoint union of regions of exterior attraction of asymptotically
stable fixed points of f l –see Proposition 4.2.3.

• The regions of exterior attraction of the sets of asymptotically stable fixed points, n-cyclic
points and m-periodic points of a continuous map f can be decomposed into the disjoint
unions of the regions of exterior attraction of the corresponding asymptotically stable
fixed points, n-cyclic points and m-periodic points belonging to them. Furthermore, the
region of exterior attraction of the set of asymptotically stable m-periodic points of f can
be decomposed into the disjoint union of the regions of exterior attraction of the sets of
asymptotically stable n-cyclic points such that n divides m –see Theorem 4.2.2.

• Consequently, under the same conditions, if m and n are coprime integers different from
one another such that the sets of asymptotically stable m-periodic and n-periodic points
are finite, then the intersection of their regions of exterior attraction equals the region of
exterior attraction of the set of asymptotically stable fixed points –see Corollary 4.2.3.

In the last section, we apply the results seen to the particular case in which the subjacent
space is the sphere S2 and the action of the exterior discrete semi-flow is induced by a continuous
map such that the set of m-periodic points is finite, for all natural m. Special relevance has
Theorem 4.3.1(ii), which claims that the basin of an ω-representable end point associated with
the externology induced by the set of m-periodic points and the basin of the same end point
seen as related to the externology induced by the countable set of all periodic points are exactly
the same; this result is based on Lemma 4.3.2.

Ultimately, along chapter 4 we are actually connecting some of the novel working purely
topological techniques introduced and developed in the first chapters to several notions regarding
discrete semi-flows and dynamical systems.
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For researchers devoted to Numerical Analysis, it is important to know as many aspects
as possible concerning basins of attraction associated with fixed or periodic points of a ratio-
nal function different from the identity, since these functions appear naturally when the most
common numerical iterative methods (such as Newton-Raphson, Tchebychev, etcetera) are used
in order to find polynomial roots. The knowledge of the size and shape of these basins allows
them to more easily find initial iteration points that converge quickly to one of the polynomial
roots. For all of these reasons, given a semi-flow structure on the Riemann sphere induced by
the iteration of a rational map, we are interested in visualizing basins of attraction of end points
and periodic sets, as well as in calculating, up to a certain precision, the measure of such basins.

In this context, chapter 5 serves as a bridge between the topological and the computational
part of this thesis, since the results proved so far help establish a theoretical framework in which
the algorithms that have been designed and implemented for these purposes make sense.

The representation of basins of end points requires of the measurement of distances between
points to check whether an orbit has converged or not; owing to this, we focus along section
5.1 on the development of the study of discrete semi-flows on metric spaces. In this study, we
contribute a brand-new notion of end point, defined by the authors in [48, 44], which depends
on the metrics of the subjacent space. Furthermore, we analyze the connection between the end
points associated with the metrics and those which are related to the externology; in that sense,
Theorem 5.1.2 shows that the basins of both types of end points can be related and coincide.

Besides, in order to establish a theory-based method to quantify the areas of the different
basins of end points, we need a way to create a new procedure to introduce measures which
allow us to estimate in a computational manner and compare the sizes of those basins. To that
end, following the techniques devised in [3], we use in section 5.2 the properties of a regular CW-
complex and its subdivisions to construct a subdivision algebra and a subdivision pre-measure
and then, using the extension theorem developed by Carathéodory in [13], we extend this pre-
measure to a cellular-extension measure defined in a cellular-extension σ-algebra. In particular,
this method allows us to introduce measures on S1 (angles) and on S2 (solid angles) that make it
possible to construct algorithms for estimating the size of basins on the surface on the 2-sphere,
as we will see in chapter 7.

Relying on the theorems shown in the previous chapters and on the geometry and the complex
structure of the Riemann sphere, chapter 6 aims to present a new program written in Sage and
Mathematica which allows us to visualize the basins of attraction associated with the end points
of a discrete semi-flow induced by a rational function different from the identity defined on the
surface of the sphere S2. Not only can this program draw these basins, just assigning a color
to the points on the sphere depending on the fixed points to which the corresponding iteration
sequences converge, but it is also able to use other different strategies of graphic representation
based on the total number of iterations until convergence, up to a given tolerance.

Unlike earlier programs created by other authors for similar purposes, one interesting novelty
brought by the developed program is that it is able to plot fractals not only in a determined
rectangular area of the complex plane, but also on the whole surface of the Riemann sphere.
Another advantage of our program is that it permits to visualize not only basins of attraction
of fixed points, but also basins of end points associated with periodic points.
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The chapter is divided into three sections: section 6.1 explains the theoretical underpinnings
of why our algorithms are well designed, section 6.2 shows the source codes of the algorithms in
the referred programming languages and section 6.3 includes a user manual of the program.

In chapter 7, we develop and implement an algorithm for computing the measure of the
basins of attraction that can be plotted by means of the program described along chapter 6.
These algorithms are based on the subdivisions of cubic decompositions of a sphere and they
have been made by using the computational environments considered in this work, Sage and
Mathematica, as well as two different subdivision methods: the one described in section 5.2,
based on the iterated subdivision of the projection of the boundary of the 3-cube onto the
surface of the sphere, and another one consisting of the projection of the iterated subdivisions of
the cube –a comparison between this pair of processes is made. The theoretical aspects backing
up rigorously the measure constructions on the surface of the sphere from these subdivision
methods are considered along chapter 5, specifically in subsections 5.2.1 and 5.2.2, as well as in
section 7.1.

As an application, we study the basins of attraction of the fixed points of the rational func-
tions obtained when Newton’s method is applied to a polynomial with two roots of multiplicities
m and n. We focus our attention on the analysis of the influence of the multiplicities m and
n on the measure of the two induced basins of attraction. As a consequence of the numerical
results given in this chapter, we conclude that, if m > n, the probability that a point in the
Riemann sphere belongs to the basin of the root with multiplicity m is bigger than the other
case. In addition, if n is fixed and m tends to infinity, the probability of reaching the root with
multiplicity n tends to zero.

Finally, we end this thesis with a conclusion paragraph that includes the main ideas described
along this work, the techniques developed and possible further work, plus the bibliographical
references.
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Chapter 0

Preliminaries

This initial chapter is devoted to recalling some basic notions regarding the topics that we
are considering throughout this work, introducing and fixing in the meantime some relevant
notation. First of all, in sections 0.1 and 0.2, we shall remind some concepts about topology
and categories. After that, in the subsequent sections, we will remember certain already known
aspects about exterior spaces and externologies; in section 0.4, some interesting end sets and
some limit spaces of exterior spaces will be revisited, so that we can study the connections
among them (which will be done in chapter 1) and use them as a tool afterwards. Section 0.5
is reserved for discrete semi-flows. Finally, in the last sections of this chapter, we will bring to
mind some basic definitions about measure theory, infinite sums and regular CW-complexes, as
well as Carathéodory’s extension theorem, in order to establish a theoretically based method to
measure the area of the spherical quadrilaterals given by a determined iterated subdivision of
the surface of the sphere; these notions and results will be widely used along section 5.2.

0.1 Topological spaces

Let X be a set. A topology (or topological structure) in X is a family tX of subsets of X which
is closed by union and finite intersection. A couple (X, tX) consisting of a set X and a topology
tX in X is called a topological space.

When it is not necessary to specify tX directly, we simply say, “X is a space” (to distinguish
from “X is a set”). Elements of topological spaces are called points. The members of tX are
called the open sets of the topological space (X, tX) (or of the topology tX). Given a space
(X, tX), by a neighborhood of a point x ∈ X is meant a subset N containing x such that there
exists an open set U (that is, member of tX) satisfying x ∈ U ⊂ N .

There are a lot of well-known examples of topologies, some of which will be referred to later.
For instance, if R is the set of real numbers, a subset G ⊂ R is said to be “open” if, for each
x ∈ G, ∃r > 0 such that the interval B(x; r) = {y ∈ R | |y − x| < r} ⊂ G; the family tR of sets
declared “open” by this criterion is actually a topology in the set R, called the usual topology (or
Euclidean topology) of R. The topological space given by the pair (R, tR) is called the Euclidean
1-space.

1
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This example can be generalized to any dimension: let Rn be the set of all ordered n-tuples of
real numbers and call “ball of center x and radius r” the set B(x; r) = {y ∈ Rn | ‖y− x‖ < r},
where ‖x‖ represents the Euclidean norm of the vector x = (x1, x2, . . . , xn) ∈ Rn; the usual
topology (or Euclidean topology) in Rn is determined by calling G ⊂ Rn “open” if, for each
x ∈ G, there is some r > 0 such that B(x; r) ⊂ G. With this topology, Rn is called the
Euclidean n-space. Another example is the discrete topology, in which every set is an open set;
that is to say, tX is equal to the power set 2X (which is the set of all subsets of X, including
the empty set and X itself).

Given a topological space (X, tX) and a subset S of X, the subspace topology (or relative
topology) on S is defined by the family of sets {S ∩U}U∈tX . If S is equipped with the subspace
topology, then it is a topological space in its own right, and is called a subspace of (X, tX).

A particular topology could have perhaps too many open sets to cope. The task of specifying
a topology is simplified by giving only enough open sets to generate all the open sets. Given a
topological space (X, tX), a family B ⊂ tX is called a basis for tX if each open set (that is, a
member of tX) is the union of members of B. B is also called a “basis for the space X”, and its
members the “basic open sets of the topology tX”. At the same time, a subbasis of tX is usually
defined as a subcollection ς of tX satisfying that the collection of open sets consisting of all finite
intersections of elements of ς forms a basis for tX . Let Vp be the family of neighborhoods of a
point p ∈ X. A subset Bp ⊂ Vp is called a neighborhood basis of p if for every V ∈ Vp there is
B ∈ Bp with B ⊂ V . One says that a topological space is first-countable if it satisfies the first
axiom of countability, that is to say, if each point has a countable neighborhood basis.

A topological space X may satisfy some nice properties. Regarding separability, X is said to
be T2 (or Hausdorff) if any two distinct points of it can be separated by disjoint neighborhoods.
In relation to connectedness, X is a connected space if it cannot be represented as a union of
two or more disjoint non-empty open subsets, and it is said to be path-connected if any two
points of it can be joined by a path. In the case that each point of X has a neighborhood basis
of (path-)connected sets, then it is a locally (path-)connected space. Finally, X is said to be
compact if each of its open covers has a finite subcover, and X is locally compact if every point
of X has a neighborhood basis of compact neighborhoods.

Given a topological space X with a topology tX and a subset A ⊂ X, the closure of A in X
will be denoted by A and the interior of A in X will be denoted by Int(A).

Most of what has been said in this section on general topology can be enriched by topology
books such as [17], [84] or [23] if it becomes necessary.

0.2 Categories

0.2.1 Categories, functors and natural transformations

A category C consists of three things: a collection of objects (often denoted by capital letters
A,B,C, . . . ), denoted by |C |; for every pair A, B of objects, a set homC (A,B) (or hom(A,B),
or C (A,B)), whose elements f, g, . . . are called morphisms (or maps, or arrows) from A to B;
and a binary operation ◦ defined on compatible pairs of morphisms f, g called composition.
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The morphisms must obey the following laws:

(1) Composition of morphisms yields a morphism: given the morphisms f ∈ homC (A,B) and
g ∈ homC (B,C), then there is a morphism g ◦ f (also denoted by gf) from A to C.

(2) Composition of morphisms, where defined, is associative, so if f ∈ homC (A,B), g ∈
homC (B,C) and h ∈ homC (C,D), then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(3) For every object B ∈ |C |, there is an identity morphism 1B ∈ homC (B,B) (also denoted
by IdB) so that, given morphisms f ∈ homC (A,B) and g ∈ homC (B,C), 1B ◦ f = f and
g ◦ 1B = g.

A morphism f ∈ homC (A,B) will often be represented by the notation f : A → B; A is
called the domain of f and B is called the codomain of f .

For instance, Set denotes the category whose objects are sets and whose morphisms are
maps with the usual composition. Similarly, topological spaces and continuous maps between
them form a category denoted by Top, as do groups and homomorphisms, or vector spaces over
a field and linear maps.

In an arbitrary category C , a morphism f : A → B in C is called an isomorphism if there
exists a morphism g : B → A such that f ◦ g = 1B and g ◦ f = 1A. This determines g uniquely,
and g is called the inverse of f . If such a morphism f exists, one says that A is isomorphic to
B, and one writes A ∼= B.

Categories are related by using functors. A functor F : A → B carries any object A ∈ |A |
to an object F (A) ∈ |B| and a morphism f : A→ B is mapped into a morphism F (f) : F (A)→
F (B). This correspondence has to preserve composition and identities.

For a category A , there is an identity functor IdA : A → A , and for two functors F : A → B
and G : B → C , one can form a new functor G ◦ F : A → C by composition.

Now, we will see some examples of categories and functors. For instance, every set I can
be viewed as a category I whose objects are the elements of I and the only morphisms are
identities (homI (i, j) is a singleton when i = j and is empty otherwise). A category whose only
morphisms are the identities is called a discrete category.

Also, given a category C , there is a category C op called opposite (or dual) with the same
collection of objects and such that, ∀A,B ∈ |C |, homC op(A,B) = homC (B,A).

Moreover, from a given category C , one very often constructs new categories such as, fixed
an object I ∈ |C |, the category C /I of “arrows over I”, whose objects are the arrows of C with
codomain I and whose morphisms are given by the commutative triangles over I. Here, the
composition law is induced by the composition of C .

Similarly, again fixing an object I ∈ |C |, we can also define the category I/C of “arrows
under I” whose objects are this time the arrows of C with domain I and whose morphisms are
given by the commutative triangles under I. The composition law is induced by that of C .
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Yet another example of these kind of constructions is the category Ar(C ) of arrows of C that
has for objects all the arrows of C ; in this category, a morphism from the object f : A → B to
the object g : C → D is a pair of morphisms of C , h : A→ C and k : B → D, with the property
k ◦ f = g ◦ h (a commutative square):

A
f //

h
��

B

k
��

C g
// D

Again, the composition law is induced pointwise by the composition in C .

Example 0.2.1. Given a category C and a fixed object C ∈ |C |, we define a functor

C (C, ·) : C −→ Set

from C to the category of sets (also denoted by homC (C, ·)) by first putting

C (C, ·)(A) = C (C,A).

Now if f : A→ B is a morphism of C , the corresponding mapping

C (C, ·)(f) ≡ C (C, f) : C (C,A)→ C (C,B)

is defined by the formula
C (C, f)(g) = f ◦ g

for an arrow g ∈ C (C,A). Such a functor is called a representable functor (the functor is
represented by the object C).

The following lemma will be really useful to prove that the definitions of several of the
functors which will appear in section 2.3 make sense.

Lemma 0.2.1. Let F : C → Set be a functor. For each object X ∈ |C |, define a subobject
G(X) ⊂ F (X) and, given a morphism f : X → Y in C , suppose that F (f)(G(X)) ⊂ G(Y ).
Define G(f) : G(X)→ G(Y ) such that G(f) = F (f)|G(X). Then, G is a functor from C to Set.

Given two functors from a category to another one, there is the notion of “natural transfor-
mation” between those two functors, which allows you to connect one functor with the other:
let F and G be two functors from a category A to a category B; a natural transformation α
from F to G, written α : F → G, is a correspondence associating with each object A of |A | a
morphism αA : F (A) → G(A) of B, in such a way that, for every morphism f : A → A′ in A ,
the diagram

F (A)
αA //

F (f)
��

G(A)

G(f)
��

F (A′) αA′
// G(A′)

commutes, i.e., αA′ ◦ F (f) = G(f) ◦ αA.
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The morphism αA is called the component of α at A. If every component of α is an isomor-
phism, α is said to be a natural isomorphism. If α : F → G and β : G → H are two natural
transformations between functors A → B, one can define a composite natural transformation
β ◦ α by setting

(β ◦ α)A = βA ◦ αA.

For fixed categories A and B, this yields a new category BA : the objects of BA are functors
from A to B, while the morphisms of BA are natural transformations between such functors.
Categories so constructed are called functor categories.

The following results will be really useful in later chapters.

Proposition 0.2.1. If A is a category and g : A → B is a morphism in A , for an object
X in A we can consider RgX : homA (B,X)→ homA (A,X) given by RgX(f) = fg. Then, RgX ,
X ∈ |A |, gives a natural transformation

Rg : homξ(B, ·)→ homξ(A, ·).

Let F,G : C → Set be functors. If there is a natural transformation α : G → F such that
αX : G(X) → F (X) is an inclusion for every X in |C |, then it is said that G is a subfunctor of
F .

Lemma 0.2.2. Suppose that F1 and F2 are functors from C to Set and that G1 and G2

are subfunctors of F1 and F2, respectively. Let θ : F1 → F2 be a natural transformation. If
θX(G1(X)) ⊂ G2(X) and we define ΘX = θX |G1(X) for each object X ∈ |C |, then

Θ: G1 → G2

is a natural transformation.

Consider a functor F : A → B and, for every pair of objects A,A′ ∈ |A |, the mapping

homA (A,A′) −→ homB(F (A), F (A′)), f 7→ F (f).

If the above-mentioned mappings are injective (resp. surjective) for all A,A′, then one says that
F is faithful (resp. full). It is obvious that, if these mappings are bijective for A,A′, then F is
both full and faithful; in that case, if in addition any object of B is isomorphic to an object in
the image of F , then F is an equivalence of categories.

We now recall the notion of adjoint functors. Consider two categories A and X and two
functors between them in opposite directions, say

F : X → A , G : A →X .

One says that F is left adjoint to G (and that G is right adjoint to F ) when, for any two objects
X ∈ |X | and A ∈ |A |, there is a natural bijection between morphisms

X
f−→ G(A)

F (X)
h−→ A

, (0.1)
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in the sense that each morphism f , as displayed, uniquely determines a morphism h, and con-
versely. This bijection is to be natural in the following sense: given any morphisms α : A→ A′

in A and ξ : X ′ → X in X , and corresponding arrows f and h as in (0.1), the composites also
correspond under the bijection (0.1):

X ′
ξ−→ X

f−→ G(A)
G(α)−−−→ G(A′)

F (X ′)
F (ξ)−−−→ F (X)

h−→ A
α−→ A′

.

If we write this bijective correspondence as

θX,A : homX (X,G(A))
∼−→ homA (F (X), A),

then this naturality condition can be expressed by the equation

θX′,A′(G(α) ◦ f ◦ ξ) = α ◦ θX,A(f) ◦ F (ξ).

In other words, if we recognize homX (·, G(·)) and homA (F (·), ·) as functors from X op ×A to
Set, the naturality of θ means that, for all morphisms α : A→ A′ in A and ξ : X ′ → X in X ,
the following diagram commutes:

homX (X,G(A))
θX,A //

homX (ξ,G(α))
��

homA (F (X), A)

homA (F (ξ),α)
��

homX (X ′, G(A′))
θX′,A′

// homA (F (X ′), A′)

0.2.2 Limits

Given a functor F : D → C , a cone on F consists of an object C ∈ |C | and, for every object
D ∈ |D |, a morphism pD : C → F (D) in C , in such a way that, for every morphism d : D → D′

in D , pD′ = F (d) ◦ pD.

Definition 0.2.1. Given a functor F : D → C , a limit of F is a cone (L, {pD}D∈D) on F
such that, for every cone (M, {qD}D∈D) on F , there exists a unique morphism m : M → L such
that, for every object D ∈ |D |,

qD = pD ◦m.

We shall remember now the dual notions of cocone and colimit. Given a functor F : D → C ,
a cocone on F consists of an object C ∈ |C | and, for every object D ∈ |D |, a morphism
sD : F (D)→ C in C , in such a way that, for every morphism d : D′ → D in D , sD′ = sD ◦F (d).

Definition 0.2.2. Given a functor F : D → C , a colimit of F is a cocone (L, {sD}D∈D) on
F such that, for every cocone (M, {tD}D∈D) on F , there exists a unique morphism m : L→M
such that, for every object D ∈ |D |,

tD = m ◦ sD.
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Remind that products, equalizers and pullbacks are special cases of the notion of limit. For
instance, given a set I regarded as a discrete category I , giving a functor F : I → C to a
category C is just giving a family Fi ∈ C , i ∈ I of objects, and defining the limit of F is actually
just defining the product

∏
i∈I Fi.

Similarly, consider the category K defined by

|K | = {A,B},

K (A,A) = {1A}, K (B,B) = {1B}, K (A,B) = {α, β}, K (B,A) = ∅

and sketched in the following diagram:

K : A
α //

β
// B

Let C be a category. Giving a functor F : K → C is just giving two arrows F (α), F (β) : F (A)⇒
F (B) in C and defining the limit of F is actually just defining the equalizer of F (α), F (β).

Finally, consider the category P defined by

|P| = {A,B,C},

P(A,A) = {1A}, P(B,B) = {1B}, P(C,C) = {1C},

P(A,C) = {α}, P(B,C) = {β}, P(C,A) = P(C,B) = P(A,B) = P(B,A) = ∅

and sketched in the following diagram:

P:

B

β
��

A α
// C

Giving a functor F from P to a category C is just giving a pair

F (α) : F (A)→ F (C), F (β) : F (B)→ F (C)

of arrows in C and defining the limit of F is actually just defining the pullback of F (α), F (β),
respectively.

These previous examples can be dualized to present the notions of coproduct, coequalizer
and pushout as special cases of the general notion of colimit.

What we are intending by introducing all these notions is to recall that a category has limits
(resp. colimits) if and only if it has products and equalizers (resp. coproducts and coequalizers).
Remind that, if every functor F from a small category (i.e., a category such that its class |D | of
objects is a set) to a category C has a limit, then one says that the category C is complete.

Theorem 0.2.1. A category C is complete precisely when each family of objects has a
product and each pair of parallel arrows has an equalizer.



8 CHAPTER 0. PRELIMINARIES

0.2.3 Directed sets

In order to define the concept of directed set, we need the notion of a preordered set. We will
also require the definition of a partially ordered set later on.

A preordered set (Λ,≤) is a set Λ together with a binary relation ≤ over Λ satisfying:

(1) λ ≤ λ, ∀λ ∈ Λ (reflexive condition).

(2) If λ1 ≤ λ2 and λ2 ≤ λ3, then λ1 ≤ λ3, ∀λ1, λ2, λ3 ∈ Λ (transitive condition).

If a preordered set fulfills in addition the antisymmetric condition,

(3) If λ1 ≤ λ2 and λ2 ≤ λ1, then λ1 = λ2, ∀λ1, λ2 ∈ Λ,

then it is called a partially ordered set.

Let a, b ∈ Λ, where Λ is a partially ordered set. For a ≤ b, the closed interval [a, b] is the set
of elements x satisfying a ≤ x ≤ b (i.e., a ≤ x and x ≤ b). It contains, at least, the elements a
and b. Using the corresponding strict relation “<”, the open interval (a, b) is the set of elements
x satisfying a < x < b (i.e., a < x and x < b). An open interval may be empty, even if a < b.
For example, with the usual order in R, the open interval (1, 2) on the integers is empty, since
there are no integers i such that 1 < i < 2. The half-open intervals [a, b) and (a, b] are defined
similarly.

From now on, given a, b ∈ N and when no confusion with the closed interval [a, b] ⊂ R is
possible, we shall denote the subset of natural numbers {n ∈ N | a ≤ n ≤ b} = [a, b]∩N by [a, b].
Similarly, we shall denote {n ∈ N | a < n < b} = (a, b)∩N by (a, b). An analogous notation will
be used when considering the intersection of half-open intervals and the set of natural numbers.

Definition 0.2.3. Let Λ be a preordered set with upper bounds for finite subsets, that is,
for any elements i, j in Λ there is an element k such that i ≤ k and j ≤ k. Such a set is called
a directed set.

Example 0.2.2. Any partially ordered set (Λ,≤) gives rise to a category, with the elements
of Λ as objects and with precisely one morphism from λ1 to λ2 if and only if λ1 ≤ λ2. Thus, the
composition operation for Λ is uniquely determined by the transitivity of the order relation ≤.
We will also consider the category Λ←− whose objects are the elements of Λ and such that there is
a unique morphism from λ2 to λ1 if λ1 ≤ λ2.

0.2.4 Inverse systems

Definition 0.2.4. Given a directed set Λ and a category C , consider the functor F : Λ←−→ C ,

which can be seen just as a collection of objects Fi indexed by Λ and one morphism F ji : Fj → Fi
for each i ≤ j such that F ii = IdFi and F ki = F ji ◦ F kj . This functor is called an inverse system
over Λ in C .

The limit of this functor is called the inverse limit of the inverse system, and it is written
lim←−F or limi∈Λ Fi.
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This definition of inverse limit really means that it is an object A with morphisms πi : A → Fi
for each i ∈ Λ, such that F ji ◦πj = πi. The object A has to be universal in the sense that if A′ is

another object with morphisms π′i : A
′ → Fi and F ji ◦ π′j = π′i, then there is a unique morphism

f : A′ → A such that πi ◦ f = π′i, for all i ∈ Λ.

Remark 0.2.1. Using the notation above, in the categories that we are going to consider in
this work (topological spaces and continuous maps, exterior spaces and exterior maps, sets and
functions), we can also give an alternative definition of inverse limit as follows:

lim←−F = {λ ∈
∏
i∈Λ

Fi | ∀i, j ∈ Λ, [i ≤ j]⇒ [πi(λ) = (F ji ◦ πj)(λ)]}.

Definition 0.2.5. Let Λ1,Λ2 be directed sets. A map ϕ : Λ1 → Λ2 is said to be cofinal if
verifies:

(i) For all i1, i2 ∈ Λ1 such that i1 ≥ i2, ϕ(i1) ≥ ϕ(i2).

(ii) For all i2 ∈ Λ2, ∃i1 ∈ Λ1 such that ϕ(i1) ≥ i2.

One says that κ ⊂ Λ is a cofinal set if the inclusion function ι : κ→ Λ is cofinal. For instance,
for k ≥ 1, the ordered set kN = {kj | j ∈ N} is cofinal in N.

A cofinal map ϕ : Λ1 → Λ2 induces a functor ϕ
←−

: Λ1←− → Λ2←−. Then, given an inverse system

X : Λ2←−→ C , one has an induced inverse system X ◦ ϕ
←−

: Λ1←−→ C satisfying

(X ◦ ϕ
←−

)i1 = Xϕ(i1), ∀i1 ∈ Λ1.

Proposition 0.2.2. If ϕ : Λ1 → Λ2 is a cofinal map and X : Λ2←−→ C is an inverse system,

then the induced map
lim
i2∈Λ2

Xi2 −→ lim
i1∈Λ1

Xϕ(i1)

is an isomorphism.

Most of the notions seen in this section might be complemented with the definitions appearing
along the first chapters of [10]. For a broader look at inverse systems, see [64]. For those who
wish to delve further into category theory, see [57] or [58]. Throughout the next preliminary
sections, we shall remember the constructions of exterior spaces and discrete semi-flows done in
[62, 38]. At the same time, the notations that we are going to use will be given.

0.3 Exterior spaces

Definition 0.3.1. Let (X, tX) be a topological space. An externology on (X, tX) is a non-
empty collection ε ⊂ tX which is closed under finite intersections and such that, if E ∈ ε,
U ∈ tX and E ⊂ U , then U ∈ ε. If an open subset is a member of ε, it is said to be an exterior
open subset.

An exterior space (X, ε, tX) consists of a topological space (X, tX) together with an exter-
nology ε.

A map f : (X, ε, tX) → (X ′, ε′, tX′) is said to be an exterior map if it is continuous and
f−1(E′) ∈ ε, for all E′ ∈ ε′.
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An exterior space (X, ε, tX) will often be denoted as (X, ε) or X for short when no confusion
is possible.

For a given topological space (X, tX), we can consider the trivial externology, constituted
by a unique exterior open subset ε = {X}, and the total externology, ε = tX . Note that an
externology ε is a topology if and only if it contains the empty set, which happens if and only
if ε = tX . Given an exterior space (X, ε, tX), the relative externology in A ⊂ X is given by
{E ∩ A}E∈ε. Obviously, the inclusion A ↪→ X becomes exterior. For a topological space X, we
can also consider the co-compact externology εc(X) = {E ∈ tX | X \E is compact and closed}.
We denote R+ and N the exterior spaces determined by the usual topology and the co-compact
externology in the sets of non-negative real numbers R+ and natural numbers, respectively.

Example 0.3.1. Let A be a subset of a topological space X. Denote by

ε(X,A) = {U ∈ tX | A ⊂ U}.

It is easy to check that ε(X,A) is an externology.

Definition 0.3.2. Let (X, ε, tX) be an exterior space. An exterior basis for (X, ε, tX) is
a collection E of subsets of X satisfying that, for every exterior open subset E, there exists
B ∈ E such that B ⊂ E and, for every B′ ∈ E, there exists an exterior open subset E′ such that
E′ ⊂ B′.

If an exterior space X has a countable exterior basis E = {Xn}n∈N, then we say that X is
first-countable at infinity.

Observe that, for these exterior spaces, we can suppose without loss of generality that there
is a countable exterior basis satisfying that:

X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ · · ·

Since the composition of exterior maps is exterior and the identity map on an exterior space
is exterior, we have the category of exterior spaces and exterior maps. This category is denoted
by E.

We can consider the functor
(·)×̄(·) : E×Top→ E

given by the following construction: let (X, εX , tX) be an exterior space, (Y, tY ) a topological
space and, for y ∈ Y , denote by {tY }y the family of open neighborhoods of Y at y. We consider
on X × Y the product topology tX×Y and the externology εX×̄Y given by those E ∈ tX×Y
such that, for each y ∈ Y , there exist Uy ∈ {tY }y and T y ∈ εX such that T y × Uy ⊂ E. This
exterior space will be denoted by X×̄Y in order to avoid a possible confusion with the product
externology.

Let E ∈ tX×Y . Note that, if Y is a compact space, one has that E ∈ εX×̄Y if and only if
there exists T ∈ εX such that T × Y ⊂ E. The functor

(·)×̄(·) : E×Top→ E

allows us to give the next definition.
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Definition 0.3.3. Given f, g : X → Y in E, it is said that f is exterior homotopic to g if
there exists an exterior homotopy H : X×̄I → Y from f to g, and it will be denoted by f 'e g.

Denote by πE and πTop the exterior homotopy category and the usual homotopy category
corresponding to E and Top, respectively. Denote πE(X,Y ) = [X,Y ]. In the next section,
we shall deal with special limit constructions –for more on homotopy categories, see [75], for
example.

0.4 Limit spaces and end sets of exterior spaces

Note that, if X = (X, ε(X)) is an exterior space, its externology ε(X) can be seen as an in-
verse system of spaces by taking the set ε(X) directed by reverse inclusion and the functor
ε(X) : ε(X)

←−−−
→ Top given by ε(X)E = E, so that if E ≥ E′, then ε(X)EE′ is the inclusion

inEE′ : E → E′. We are using the same symbol ε(X) to denote the externology and its corre-
sponding inverse system.

In addition, if we define
ε̄(X) = {E | E ∈ ε(X)},

then ε̄(X) can also be seen as an inverse system of spaces by taking this set directed by reverse
inclusion and the functor ε̄(X) : ε̄(X)

←−−−
→ Top given by ε̄(X)E = E, so that if E ≥ E′, then

ε̄(X)E
E′

is the inclusion inE
E′

: E → E′. As before, we shall use the same symbol ε̄(X) to denote
the family of sets and its inverse system.

Definition 0.4.1. Given an exterior space X with externology ε(X), the topological space

L(X) = lim←− ε(X)

will be called the limit space of X and

L̄(X) = lim←− ε̄(X)

will be called the bar-limit space of X.

Proposition 0.4.1. For each exterior space X = (X, ε(X)), there are canonical homeo-
morphisms

L(X) ∼=
⋂

E∈ε(X)

E, L̄(X) ∼=
⋂

E∈ε(X)

E.

Note that if f : (X, ε(X)) → (Y, ε(Y )) is an exterior map, then f(L(X)) ⊂ L(Y ). Thus, we
can define L(f) = f |L(X) so that L(f)(x) = f(x). It is easy to check that L respects composition
and identity morphisms; therefore,

L : E→ Top

is a functor. Observe that given a continuous map g : A→ B and a subset S ⊂ A, one has that
g(S) ⊂ g(S). That implies f(L̄(X)) ⊂ L̄(Y ). Thus, we have that

L̄ : E→ Top

is also a functor.
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By using the forgetful functor U : Top→ Set, one can consider the composite

U ◦ L : E→ Set,

which assigns to each topological space the underlying set and to each continuous map the
underlying map, “forgetting” its continuity. Similarly, one has the functor

U ◦ L̄ : E→ Set.

When no confusion is possible, the functor U ◦ L will be denoted by L, and U ◦ L̄ by L̄.

Definition 0.4.2. Let X be an exterior space with externology ε(X). The πBG
0 -end set of

X is given by
πBG

0 (X) = [N, X] = homπE(N, X).

The πS
0 -end set of X is given by

πS
0 (X) = [R+, X] = homπE(R+, X).

The π̌0-end set of X is given by

π̌0(X) = lim
E∈ε(X)

π0(E),

where π0(E) denotes the set of path components of E.
The ˇ̄π0-end set of X is given by

ˇ̄π0(X) = lim
E∈ε(X)

π0(E).

An element of any given end set will be called end point of that end set.

As can be seen in [22, 62, 38], the constructions πBG
0 , πS

0 , π̌0 and ˇ̄π0 given in definition
above are functors. Using the canonical functor γ : E → πE, which is the identity on objects
and is yielded by the obvious quotient map on morphism sets, we have the induced functors
πBG

0 ◦ γ : E→ Set and πS
0 ◦ γ : E→ Set associated with the objects N and R+ in E. When no

confusion is possible, we usually will denote the composites πBG
0 ◦ γ and πS

0 ◦ γ by πBG
0 and πS

0 ,
respectively.

Next, we shall present how the functor π̌0 : E→ Set works, explicitly. Let f ∈ homE(X,Y )
and note that π̌0 is a function which maps each exterior space (X, ε(X)) to the inverse limit
π̌0(X) = limEX∈ε(X) π0(EX). To see how π̌0(f) is defined, take a = (CEX )EX∈ε(X) ∈ π̌0(X),

where CEX is a path component of the exterior open subset EX . Given EY ∈ ε(Y ), we have
that f−1(EY ) ∈ ε(X). Then, there exists a unique path component Cf−1(EY ) in f−1(EY )

representing a ∈ π̌0(X). Since f(Cf−1(EY )) ⊂ EY is path-connected, there is a unique path
component CEY such that f(Cf−1(EY )) ⊂ CEY ; take

b = (CEY )EY ∈ε(Y ) ∈ π̌0(Y ).

One has that π̌0(f)(a) = b.

One can describe analogously the functor ˇ̄π0 : E→ Set.
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Example 0.4.1. Given E0 ∈ εc(R+), there is n0 ∈ N such that R+ \ E0 ⊂ [0, n0]; hence,
(n0,+∞) ⊂ E0. This implies that {(n,+∞)}n∈N is a basis for εc(R+). Therefore, ((n,+∞))n∈N
is cofinal in εc(R+). By Proposition 0.2.2, it follows that

lim
E∈εc(R+)

π0(E) ∼= lim
n∈N

π0((n,+∞)).

The inverse limit of an inverse system of a one-point set is also a one-point set, and the
unique point of the limit will be denoted by +∞R+.

0.5 Discrete semi-flows

Next we recall some basic notions and properties about discrete semi-flows. These notions can
be given for a set or for a topological space.

Definition 0.5.1. A discrete semi-flow on a set (topological space) X is a map (continuous
map) ϕ : N×X → X such that:

(i) ϕ(0, x) = x, ∀x ∈ X;

(ii) ϕ(n, ϕ(m,x)) = ϕ(n+m,x), ∀x ∈ X, ∀n,m ∈ N.

A discrete semi-flow on X will be denoted by (X,ϕ) and, when no confusion is possible, we
will use X and n · x = ϕ(n, x) for short.

Given discrete semi-flows (X,ϕ) and (Y, ψ), a discrete semi-flow morphism h : (X,ϕ) →
(Y, ψ) is a (continuous) map h : X → Y such that h(n · x) = n · h(x), for every (n, x) ∈ N×X.

We shall denote by F(N) the category of discrete semi-flows.

Given a discrete semi-flow ϕ : N×X → X and n0 ∈ N, we have the induced map ϕn0 : X → X
given by ϕn0(x) = ϕ(n0, x). The trajectory (or orbit) of a point x0 ∈ X is defined via the map
ϕx0 : N→ X given by ϕx0(n) = ϕ(n, x0).

It is interesting to note that a discrete semi-flow (X,ϕ) induces a (continuous) map ϕ1 : X →
X and conversely a (continuous) map h : X → X induces a discrete semi-flow ϕ : N×X → X,
ϕ(n, x) = hn(x), where hn denotes the function composition h ◦ . . .︸︷︷︸

n times

◦h and h0 = IdX .

For a discrete semi-flow (X,ϕ), a subset A ⊂ X is said to be right-invariant if ϕ1(A) ⊂ A
and it is said to be left-invariant if (ϕ1)−1(A) ⊂ A. A subset which is left-invariant and right-
invariant is said to be completely invariant.

Given two points x, y ∈ X, we have the following equivalence relation: x ∼ y if there exist
k, l ∈ N such that ϕk(x) = ϕl(y). If [x] is the equivalence class of x, note that [x] is a completely
invariant subset. In fact, if S is a subset of X, there is the notion of minimal completely invariant
subset that contains S, which is [S]; in particular, given a point a ∈ X, the minimal completely
invariant subset that contains the one-point set {a} is [{a}], which we write [a] by abusing of
notation. Denote by X/ ∼ the quotient set, which has a trivial induced action.

We will use the following result.
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Lemma 0.5.1. Given a discrete semi-flow morphism h, the inverse image of a completely
invariant subset under h is also a completely invariant subset.

Definition 0.5.2. Let X be a discrete semi-flow and let x be a point of X.

(i) x is a fixed point if, for every n ∈ N, n · x = x.

(ii) x is a periodic or cyclic point if there exists n ∈ N, n 6= 0 such that n · x = x.

(iii) For m ∈ N, x is a m-periodic point if m · x = x.

(iv) For m ∈ N, x is a m-cyclic point if m · x = x and, if 0 < k < m, then k · x 6= x.

(v) For m ∈ N, x is a pre-m-periodic point if there exists l ≥ 0 such that m · (l · x) = (l · x).

The right-invariant subsets of fixed, periodic, m-periodic, m-cyclic and pre-m-periodic points
of X are denoted by Fix(X), P (X), Pm(X), Cm(X) and prePm(X), respectively. From the
definition, it is clear that Cm(X) ⊂ Pm(X) ⊂ prePm(X).

From now on, let us denote N∗ = N \ {0}. Given a positive integer m ∈ N∗, let Div(m) =
{n ∈ N : n divides m}. It is easy to check that

Pm(X) =
⊔

n∈Div(m)

Cn(X).

We denote a net of a topological space X by (tδ), where we suppose that δ describes a
directed preordered set. The following notions are given for topological spaces with a given
semi-flow structure.

Definition 0.5.3. For a discrete semi-flow (X,ϕ), the ωr-limit set of a point x ∈ X (or
right-limit set, or positive limit set) is given as follows:

ωr(x) = {y ∈ X | there is a net (tδ)→ +∞, tδ ∈ N, such that tδ · x→ y}.

Note that the subset ωr(x) admits the alternative definition

ωr(x) =
⋂
t≥0

[t,+∞) · x,

where [t,+∞) denotes the subset {n ∈ N | n ≥ t}.
The set

ωr(X) =
⋃
x∈X

ωr(x)

is called the ωr-limit set of X.

It is easy to check that ωr(x) and ωr(X) are right-invariant subsets of X.
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Definition 0.5.4. Let X be a discrete semi-flow and S ⊂ X. The region of pseudo-weak
attraction of S will be defined as:

PWA(S) = {x ∈ X | ωr(x) ⊂ S}.

On its part, the region of weak attraction of S is defined as:

WA(S) = {x ∈ X | ωr(x) ∩ S 6= ∅}.

Finally, the region of attraction is known as:

A(S) = {x ∈ X | ωr(x) 6= ∅, ωr(x) ⊂ S}.

From the definition above, note that

A(S) = PWA(S) ∩WA(S).

0.6 On measures and Carathéodory’s extension theorem

The Carathéodory extension method [13, 14] is a technique that consists in defining an algebra
of subsets with a pre-measure and the posterior extension of the algebra to a σ-algebra and
the pre-measure to a measure. For a topological space X, it is interesting to consider measures
defined on σ-algebras containing the Borel σ-algebra generated by the topology tX . In these
cases, we can assign a measure to an open subset or to a closed subset; moreover, a countable
intersection of open subsets or a countable union of closed subsets can also be measured. For
more results about Borel sets, measure theory, construction and extension of measures, we refer
to [45, 46].

Considering the foregoing, Carathéodory’s extension theorem is essential for the construction
of countably additive probability measures. As we are interested in creating a measure for a
given iterated subdivision on a CW-complex defined on the surface of the 2-sphere, this theorem
will be very useful for this purpose.

We will also recall some interesting properties of infinite sums along subsection 0.6.2, since
we will be coping with measures satisfying the countable additivity property.

0.6.1 Carathéodory’s measure-extension theorem

Let X be a set. In the power set 2X , we can consider the usual operations: finite union, countable
union and arbitrary union; we have similar operations for the intersection of subsets and one
can take the complement of a subset.

An algebra A of subsets of X is a collection A ⊂ 2X such that X is in A; if A is in A, then
so is X \A (which is the complement of A), and if A1, A2 are elements of A, then A1 ∪A2 is in
A. When A is also closed by countable unions (i.e., if (An)n∈N is a sequence of elements of A,
then the union

⋃
n∈NAn is in A), it is said that A is a σ-algebra.
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If S is any collection of subsets of X, we can always find a σ-algebra containing S, namely the
power set 2X of X. Taking the intersection of all σ-algebras containing S, we obtain the smallest
such σ-algebra σ(S), which is said to be the σ-algebra generated by S –similar arguments prove
that, for S, there is a (minimal) algebra a(S) ⊂ 2X generated by S. In particular, if X is a
topological space and tX is its topology, the σ-algebra σ(tX) is called the Borel σ-algebra of X.
Note that the open subsets and the closed subsets of tX are members of the σ-algebra σ(tX).

Given an algebra A of subsets of X, a pre-measure is a set map µ : A → [0,∞] satisfying the
following conditions:

(1) µ(∅) = 0.

(2) The finite additivity property of µ on the algebra A: if A1, . . . , An ∈ A are disjoint, then
its disjoint union

⊔n
i=1Ai verifies

µ

(
n⊔
i=1

Ai

)
=

n∑
i=1

µ(Ai).

(3) The countable additivity property of µ on the algebra A: if A1, A2, · · · ∈ A are disjoint and⊔∞
i=1Ai ∈ A, then

µ

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Notice that, if A is a σ-algebra of subsets of X, then a pre-measure µ is always countable additive
and, in this case, it is said that µ is a measure. If µ(X) <∞, µ is said to be a finite pre-measure
(finite measure, when A is a σ-algebra). If there exists a sequence (An)n∈N, with An ∈ A, such
that X =

⋃
n∈NAn and µ(An) < ∞, µ is said to be a σ-finite pre-measure (σ-finite measure

when A is a σ-algebra).

A measurable space is a pair (X, E) consisting of a non-empty set X together with a σ-algebra
E of subsets of X. If (X, E) and (Y,F) are measurable spaces, then a mapping f : X → Y is
said to be measurable if f−1(F) ⊂ E . For example, if (X, tX) and (Y, tY ) are topological spaces,
one has that a continuous map f : (X, tX)→ (Y, tY ) is a measurable map

f : (X,σ(tX))→ (Y, σ(tY )).

A measure space is a triple (X, E , µ), where (X, E) is a measurable space and µ is a measure on
E . If the measure is finite, we say that the measure space is finite.

If A is an algebra and E is a σ-algebra of subsets of X such that A ⊂ E , µ : A → [0,∞] is a
pre-measure and in: A → E is the canonical inclusion, the extension problem consists of finding
a measure µ̄ : E → [0,∞] such that the diagram

A
µ

��

in // E

µ̄||
[0,∞]

commutes. If such a map exists, it is said that µ̄ is an extension of µ.
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Carathéodory’s extension theorem [13, 80, 14] gives, under some conditions, a positive answer
to this question.

Theorem 0.6.1. Let A be an algebra of subsets of a set X and suppose that µ : A → [0,∞]
is a pre-measure. Consider the map µouter : 2X → [0,∞] given by

µouter(E) = inf

{ ∞∑
n=1

µ(An) | A1, . . . , An, · · · ∈ A cover E

}

and take the family

E = {B ⊂ X | for every E ⊂ X, µouter(B ∩ E) + µouter(B \ E) = µouter(B)}.

Then, E is a σ-algebra, A ⊂ E and µ̄ = µouter|E is a measure map. Moreover, if µ is σ-finite,
then µ̄ is the unique extension measure of µ to E.

If E is the σ-algebra given in Theorem 0.6.1, we say that E is the Carathéodory extension
σ-algebra of (A, µ) and µ̄ is the Carathéodory extension measure of µ.

0.6.2 Some basic properties of infinite sums

The space [0,∞] is provided with the canonical sum of [0,∞), which can be extended by using
the formulas ∞ + r = r +∞ = ∞, for r ∈ [0,∞), and ∞ +∞ = ∞. Given any set I, we
can consider the directed set fin(I) of the finite subsets of I, where, if F, F ′ ∈ fin(I), F ≥ F ′ if
F ′ ⊂ F . It is interesting to note that, for a map r : I → [0,∞], i 7→ ri, if the net

(∑
i∈F ri

)
F∈fin(I)

has a limit in [0,∞] (considering the Alexandroff compactification topology of the usual topology
of [0,∞)), this limit is unique and it will be denoted by

∑
i∈I ri.

Lemma 0.6.1. For every set I and for every map r : I → [0,∞], i 7→ ri, there exists the
sum

∑
i∈I ri in [0,∞].

Proof. It suffices to check that the map fin(I)→ [0,∞], F 7→
∑

i∈F ri, is monotone.

Proposition 0.6.1. Let I be a set and suppose that I =
⊔
j∈J Ij. Then, for every map

r : I → [0,∞], i 7→ ri, ∑
i∈I

ri =
∑
j∈J

∑
i∈Ij

ri

 .

This sum can be interpreted as an integral with respect to the counting measure.

0.7 Regular CW-complexes and subdivisions

The notion of CW-complex was introduced by J. H. C. Whitehead in [83]. These spaces admit
a cellular decomposition as a disjoint union of cells of several dimensions. When the dimension
of the cells is less than or equal to n and there is a cell of dimension n, one has an n-dimensional
CW-complex.
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Some interesting classes of CW-complexes are the regular CW-complexes, which have in-
jective characteristic maps and the “boundary” of each cell has a canonical structure of CW-
complex. In the same way that for a simplicial complex, one can consider the canonical barycen-
tric subdivision: for a regular CW-complex, one can also subdivide in many different ways all the
cells to obtain a new regular CW-structure, which is a subdivision of the initial CW-structure.
When one iterates this process, one obtains a consecutive sequence of subdivisions, having more
new “small” cells. In this work, a regular iterated subdivision of a regular CW-complex X
is given by a sequence of regular CW-structures Γ0

∗,Γ
1
∗, . . . such that Γ0

∗ is the initial cellular
decomposition of X and, for every r ∈ N, Γr+1

∗ is a subdivision of Γr∗.

Let Dn = {x ∈ Rn | |x| ≤ 1} be the unit n-disk, where | · | is the Euclidean norm of the
n-dimensional Euclidean space Rn and D̊n = {x ∈ Rn | |x| < 1}.

Given a topological space X and a continuous map γ : Dn → X, we denote γ̊ = γ(D̊n),
γ̄ = γ(Dn) and γ̇ = γ̄ \ γ̊ (note that, for n = 0, γ̊ = γ̄). If the map γ verifies that γ|D̊n is

injective, it is said that γ is an n-characteristic map. An n-cell is a space homeomorphic to D̊n

and a cell is an n-cell for some n.

A CW-structure on a Hausdorff space X consists of a graduate family Γ∗(X) =
⊔
n∈N Γn(X)

such that:

(1) If γ ∈ Γn(X), then γ : Dn → X is an n-characteristic map.

(2) X =
⊔
γ∈Γ∗(X) γ̊.

(3) X has the finite closure property: for each γ ∈ Γ∗(X), the family {β ∈ Γ∗(X) | γ̄ ∩ β̊ 6= ∅}
is finite.

(4) X has the weak topology: F ⊂ X is closed if, for every γ ∈ Γ∗(X), F ∩ γ̄ is closed in γ̄ (γ̄
is provided with the quotient topology).

A CW-complex is a pair (X,Γ∗(X)), where X is a Hausdorff space and Γ∗(X) is a CW-structure
on X.

Given a CW-complex X = (X,Γ∗(X)), for Γ′∗ ⊂ Γ∗(X) the subspace Y =
⊔
γ′∈Γ′∗ γ̊

′ is said

to be a subcomplex of X if it satisfies that, if γ′ ∈ Γ′∗, then γ̄′ ⊂ Y . A subcomplex Y is a closed
subset of X and the family of cells Γ′∗ is a CW-structure of Y when the relative topology is
taken in Y . For each n ∈ N, the subcomplex induced by

Γ∗(X)n = {γ ∈ Γ∗(X) | γ is a q-characteristic map with q ≤ n}

is called the n-skeleton of X and it is denoted by Xn (X−1 is usually taken as the empty set).
It is said that a CW-complex X is n-dimensional if X = Xn and X 6= Xn−1. Given a subset
A ⊂ X, the star st(A,Γ∗(X)) of A is the minimal subcomplex of Γ∗(X) that contains the set
{γ ∈ Γ∗(X) | A ∩ γ̄ 6= ∅}.

We shall use the following regularity notion: suppose that Γ∗(X) is a CW-structure on a
Hausdorff space X. Γ∗(X) is said to be regular if, for every γ ∈ Γ∗(X), γ is an injective map
(this implies that γ̄ is a subcomplex of X, see [55]).
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Suppose that Γ∗(X) and Γ′∗(X) are CW-structures on X. Γ′∗(X) is said to be a subdivision
of Γ∗(X) if, for every α ∈ Γ∗(X), there is Sd(α) ⊂ Γ′∗(X) such that ᾱ =

⊔
β∈Sd(α) β̊. An iterated

subdivision on a Hausdorff space X is a sequence

Γ0
∗(X),Γ1

∗(X),Γ2
∗(X), . . .

of CW-structures on X such that, for every r ∈ N, Γr+1
∗ (X) is a subdivision of Γr∗(X).

We can consider the bi-graduate family Γ∗∗(X) =
⊔
r∈N Γr∗(X) and its associated subdivision

operator Sd: 2Γr∗(X) → 2Γr+1
∗ (X). If each Γr∗(X) is regular, we say that Γ∗∗(X) is a regular iterated

subdivision on X. An iterated subdivision on a CW-complex X is an iterated subdivision Γ∗∗(X)
such that Γ0

∗(X) is the initial CW-structure on X. It is interesting to note that Γ∗∗(X) is
countable if and only if Γ0

∗(X) is countable. A regular iterated subdivision Γ∗∗(X) of a CW-
complex X whose topology tX is induced by a metric d : X × X → [0,∞) can satisfy the
following vanishing-star property: for every sequence of characteristic maps γr ∈ Γr∗(X) such
that, for each r ∈ N, γ̊r+1 ⊂ γ̊r, one has that

lim
r→∞

diam(st(̊γr,Γ
r
∗(X))) = 0,

where diam(Y ) denotes the diameter of the subcomplex Y (similarly, we shall denote the diam-
eter of a cell σ by diam(σ)). Note that, in this case, the family of interiors of stars

{Int(st(v,Γr∗(X)))}v∈Γ∗0(X)

is a base for the topology tX .
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Chapter 1

Connections between limit spaces
and end sets of exterior spaces

Once we have remembered some of the end sets and limit spaces of an exterior space in the section
0.4 of the preceding chapter, the objective of this chapter is to construct natural transformations
that connect them. Towards the end of the chapter, we shall study the connections among
three of these end sets, πBG

0 , πS
0 and π̌0, as well as certain interesting properties of the map

RX : πS
0 (X)→ πBG

0 (X) such as its canonical decomposition into the maps φX : πS
0 (X)→ π̌0(X)

and θX : π̌0(X)→ πBG
0 (X) when X is a first-countable at infinity exterior space.

1.1 Natural transformations between limit and end spaces

Just by applying the notion of inverse limit and its universal property, we can induce immediately
several natural transformations between some of the functors seen in section 0.4.

For instance, given an exterior space X = (X, ε(X)), we can consider, for all E ∈ ε(X), the
inclusion map ıE : E → E given by ı(x) = x, ∀x ∈ E. Taking inverse limits, we have an induced
map ΦX : L(X)→ L̄(X). Now, the family {ΦX}X∈|E| defines the natural transformation

Φ: L→ L̄.

Remind that, by Proposition 0.4.1, the functors L and L̄ from the category E to the category
of sets can also be given by L(X) =

⋂
E∈ε(X)E and L̄(X) =

⋂
E∈ε(X)E, respectively.

Given again an exterior space X = (X, ε(X)), we can consider, for all E ∈ ε(X), the map
E : E → π0(E) given by E(x) = CxE , where CxE is the unique path component of E containing
the point x, ∀x ∈ E. Applying inverse limits, one has the induced map ΨX : L(X) → π̌0(X),
and the family {ΨX}X∈|E| gives the natural transformation

Ψ: L→ π̌0.

Similarly, the maps ̄E : E → π0(E), E ∈ ε(X), induce the map Ψ̄X : L̄(X) → ˇ̄π0(X) and
the family {Ψ̄X}X∈|E| defines the natural transformation

Ψ̄ : L̄→ ˇ̄π0.

21
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Moreover, when one considers for all E ∈ ε(X) the map (induced by the inclusion E ↪→ E)
π0(ıE) : π0(E)→ π0(E) given by π0(ıE)(CE) = C ′

E
, where C ′

E
is the unique path component of

E containing CE , one has the induced map ∆X : π̌0(X)→ ˇ̄π0(X) by taking inverse limits. Now,
the family {∆X}X∈|E| gives the natural transformation

∆: π̌0 → ˇ̄π0.

What is more, since the diagram

E
ıE //

E
��

E

̄E
��

π0(E)
π0(ıE)

// π0(E)

is commutative, for all E ∈ ε(X), one obtains the following commutative diagram of natural
transformations:

L
Φ //

Ψ
��

L̄

Ψ̄
��

π̌0
∆
// ˇ̄π0

1.2 The natural transformation R : πS
0 → πBG

0

Remind that, by definition, one has that πS
0 (X) = homπE(R+, X) and πBG

0 (X) = homπE(N, X).
Let f : (X, ε(X)) → (Y, ε(Y )) be an exterior map. Taking A = πE and g = in: N → R+, by
Proposition 0.2.1 the diagram

πS
0 (X)

Rin
X //

πS
0 (f)
��

πBG
0 (X)

πBG
0 (f)
��

πS
0 (Y )

Rin
Y

// πBG
0 (Y )

is commutative. Therefore, taking R = {Rin
X}X∈|E|, we have the following.

Proposition 1.2.1. The inclusion map in : N→ R+ induces a natural transformation

R : πS
0 → πBG

0 .
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1.3 The natural transformation φ : πS
0 → π̌0

In order to give a natural transformation φ : πS
0 → π̌0, for each exterior space X = (X, ε(X))

define φX : πS
0 (X)→ π̌0(X) as follows: given an element [α] ∈ πS

0 (X) represented by the exterior
map α : R+ → X, φX([α]) = (CE)E∈ε(X), where for each E ∈ ε(X), CE is the unique path
component of E such that there is rE ∈ R+ satisfying α([rE ,+∞)) ⊂ CE ⊂ E.

Note that, given E′, E′′ ∈ ε(X) such that E′′ ⊂ E′, we can suppose that rE′ ≤ rE′′ and
hence α([rE′′ ,+∞)) ⊂ α([rE′ ,+∞)). In order to see that this map is actually well-defined, we
have to show that CE′′ ⊂ CE′ and that it does not depend on the chosen element of the exterior
homotopy class [α].

To prove the first statement, observe that α([rE′′ ,+∞)) ⊂ α([rE′ ,+∞)) ⊂ CE′ and that
α([rE′′ ,+∞)) ⊂ CE′′ , so it follows that CE′ ∩ CE′′ ⊃ α([rE′′ ,+∞)) 6= ∅ and thus CE′ ∪ CE′′
is path-connected; therefore, since CE′ is a maximal arcwise connected subset, we can deduce
that CE′′ ⊂ CE′ . For the second statement, let β : R+ → X be an exterior map such that
[α] = [β]. Then, there exists an exterior homotopy F : R+×̄I → X satisfying F (r, 0) = α(r)
and F (r, 1) = β(r), ∀r ∈ R+. Now, given E ∈ ε(X), ∃r0 ∈ R+ such that F ([r0,+∞)× I) ⊂ E.
Thus,

F ([r0,+∞)× {0}) = α([r0,+∞)) ⊂ CαE ⊂ E,

F ([r0,+∞)× {1}) = β([r0,+∞)) ⊂ CβE ⊂ E.

Since F ([r0,+∞)×I) is path-connected, it follows that CαE = CβE for every E ∈ ε(X). Therefore,
φX([α]) = φX([β]).

Observe that, given [α] ∈ πS
0 (X), we can give an alternative definition of φX([α]). Since π̌0

is a functor, the exterior map α : R+ → X induces a map π̌0(α) : π̌0(R+) → π̌0(X). Now, in
order to define φX([α]), set:

φX([α]) = π̌0(α)(+∞R+),

where +∞R+ was defined in Example 0.4.1. Let us show that this gives the same result as the
previous definition. Remind that φX([α]) = (CE)E∈ε(X) so that, for each E ∈ ε(X), ∃rE ∈ R+

such that α([rE ,+∞)) ⊂ CE . We have to prove that

π̌0(α)(+∞R+) = (CE)E∈ε(X).

Note that, given E ∈ ε(X), α−1(E) ∈ εc(R+). Hence, there exists n ∈ N such that (n,+∞) ⊂
α−1(E). Then, α((n,+∞)) ⊂ E. Let CαE be the unique path component of E such that
α((n,+∞)) ⊂ CαE . We have that

π̌0(α)(+∞R+) = π̌0(α)((n,+∞))n∈N = (CαE)E∈ε(X) ∈ π̌0(X).

It is obvious that, if α((n,+∞)) ⊂ CαE , then α([n+1,+∞)) ⊂ CαE . Thus, there exists rE = n+1
such that

α([rE ,+∞)) ⊂ CαE ⊂ E, ∀E ∈ ε(X).

Therefore, (CE)E∈ε(X) = (CαE)E∈ε(X), as we wanted to show.
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Proposition 1.3.1. The family of maps {φX}X∈|E| defines a natural transformation

φ : πS
0 → π̌0.

Proof. Let f : X → Y be a morphism in E and let [α] be an element of πS
0 (X) represented by

the exterior map α : R+ → X. Then,

(π̌0(f) ◦ φX)([α]) = π̌0(f)(π̌0(α)(+∞R+))

= (π̌0(f) ◦ π̌0(α))(+∞R+)

= π̌0(f ◦ α)(+∞R+).

Besides,
(φY ◦ πS

0 (f))([α]) = φY ([f ◦ α]) = π̌0(f ◦ α)(+∞R+).

Proposition 1.3.2. Let X = (X, ε(X)) be an exterior space which is first-countable at
infinity. Then,

φX : πS
0 (X)→ π̌0(X)

is surjective.

Proof. Since X is first-countable at infinity, there exists a sequence (Ei)i∈N with Ei ∈ ε(X)
and Ei ⊃ Ei+1, ∀i ∈ N, which satisfies that, ∀E ∈ ε(X), ∃iE ∈ N such that E ⊃ EiE . Then,
π̌0(X) = limE∈ε(X) π0(E) = limi∈N π0(Ei). Let b ∈ π̌0(X), which can be represented in the form

b = (Ci)i∈N ∈ lim
i∈N

π0(Ei).

For each i ∈ N, choose pi ∈ Ci. Because Ci ⊃ Ci+1, pi, pi+1 ∈ Ci, which is path-connected, so
there is a path fi : [0, 1]→ Ci such that fi(0) = pi and fi(1) = pi+1.

Now, define a map α : [0,+∞) → X given by α(t) = fi(t − i), whenever i ≤ t < i + 1.
Because for E′ ∈ ε(X) there exists nE′ ∈ N such that E′ ⊃ EnE′ , α([nE′ ,+∞)) ⊂ CnE′ ⊂
EnE′ ⊂ E′. This implies that α is exterior and we can take [α] ∈ πS

0 (X). Furthermore, observe
that α([i,+∞)) ⊂ Ci ⊂ Ei, for all i ∈ N, so φX([α]) = b and φX is surjective, as we wanted to
show.

1.4 The natural transformation θ : π̌0 → πBG
0

Consider the category Efc whose objects are exterior spaces which are first-countable at infinity
and whose morphisms are exterior maps –that is, we consider Efc as a full subcategory of E.
When there is no chance of confusion, the restriction functors πBG

0 |Efc
, πS

0 |Efc
and π̌0|Efc

will be
denoted by πBG

0 , πS
0 and π̌0, respectively.

In order to construct a natural transformation from π̌0 to πBG
0 , for each X ∈ Efc note that

there exists a countable basis {Ei}i∈N ⊂ ε(X), E0 ⊃ E1 ⊃ E2 . . . , and define a map

θX : π̌0(X)→ πBG
0 (X)
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given as follows: let a ∈ π̌0(X), which can be represented by a = (Ci)i∈N considering the basis
above, where Ci is a path component of Ei verifying that Ci+1 ⊂ Ci, and choose a point pi ∈ Ci
for each i ∈ N. Now, define α : N→ X by α(i) = pi. We shall take θX(a) = [α].

Let X,Y ∈ Efc. Suppose that f : (X, ε(X))→ (Y, ε(Y )) is an exterior map and let {EXi }i∈N,
{EYi }i∈N be bases for ε(X) and ε(Y ), respectively, such that EXi ⊃ EXi+1 and EYi ⊃ EYi+1, for
all i ∈ N. Since f is exterior, given i ∈ N there exists ni such that f(EXni) ⊂ EYi . The election
of the sequence (ni)i∈N can be chosen verifying ni+1 > ni so that EXni ⊃ E

X
ni+1

.

Note that, if {EXn }n∈N is a basis for ε(X), taking E′i = EXni for all i ∈ N one has that {E′i}i∈N
is a basis of ε(X) and f(E′i) ⊂ EYi , ∀i ∈ N. Thus, in the case that f : X → Y is exterior, there
exist countable bases {EXn }n∈N of ε(X) and {EYn }n∈N of ε(Y ) such that f(EXn ) ⊂ EYn . This
fact will allow us to simplify the calculations when studying if there is a natural transformation
between the considered functors.

The following results (Lemma 1.4.1 and Proposition 1.4.1) state that the correspondence θX
neither depends on the basis of the exterior space which has been chosen nor on the choice of
points in the path components.

Lemma 1.4.1. Let X = (X, ε(X)) be an exterior space. Suppose that X is first-countable
at infinity and let E0 ⊃ E1 ⊃ . . . be a countable basis of ε(X). Assume that an end point
a ∈ π̌0(X) is represented by the sequence C0 ⊃ C1 ⊃ . . . , where Ci is a path component of Ei. If
α : N→ X is an exterior map such that α(i) ∈ Ci and n : N→ N is an increasing sequence (i.e.,
ni < ni+1), the map β : N→ X given by β(i) = α(ni) is exterior and α is exterior homotopic to
β.

Proof. Let α : N → X be an exterior map. That means that, given E ∈ ε(X), there exists
i ∈ N such that α([i,+∞)) ⊂ E. Note that i ≤ ni, ∀i ∈ N. Therefore, [ni,+∞) ⊂ [i,+∞) and
α([ni,+∞)) ⊂ α([i,+∞)) ⊂ E. Since the map β : N → X is given by β(i) = α(ni), it follows
that β([i,+∞)) ⊂ E and β is exterior.

Suppose, moreover, that α(i) ∈ Ci, for all i ∈ N. Then, α(ni) ∈ Cni . Since i ≤ ni,
Ci ⊃ Cni and α(ni) ∈ Ci. Hence, there exists a path fi : I → Ci such that fi(0) = α(i)
and fi(1) = β(i) = α(ni). Define F : N×̄I → X given by F (i, t) = fi(t). We have that F
is a homotopy from α to β. In order to prove that F is exterior, for E′ ∈ ε(X) there is
EiE′ ∈ {Ei}i∈N such that E′ ⊃ EiE′ . Now, observe that α([iE′ ,+∞)) ⊂ CiE′ ⊂ EiE′ and then
β([iE′ ,+∞)) ⊂ CiE′ ⊂ EiE′ , because β([iE′ ,+∞)) ⊂ α([niE′ ,+∞)) ⊂ α([iE′ ,+∞)). Therefore,

F ([i,+∞)× I) ⊂ Ci ⊂ Ei ⊂ E′, ∀i ≥ iE′ ,

and the proof is completed.

Proposition 1.4.1. Let X = (X, ε(X)) be an exterior space. Suppose that X is first-
countable at infinity and let {Ei}i∈N and {E′i}i∈N, with E0 ⊃ E1 ⊃ . . . and E′0 ⊃ E′1 ⊃ . . . , be
countable bases of ε(X). Assume that an end point a ∈ π̌0(X) is represented by the sequence
C0 ⊃ C1 ⊃ . . . , where Ci is a path component of Ei, and by the sequence C ′0 ⊃ C ′1 ⊃ . . . , where
C ′i is a path component of E′i. For a given choice of points αi ∈ Ci and α′i ∈ C ′i, the maps
α, α′ : N→ X given by α(i) = αi and α′(i) = α′i are exterior, and α 'e α′.
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Proof. By definition of basis, one can find increasing sequences (ni) and (n′i) such that Ei∩E′i ⊃
E′n′i

⊃ Eni ⊃ E′n′i+1
. By Lemma 1.4.1, α 'e β, where β(i) = α(ni), and α′ 'e β′, where

β′(i) = α′(n′i). Since β(i), β′(i) ∈ C ′n′i we can choose a path fi : I → C ′n′i
such that fi(0) = β(i)

and fi(1) = β′(i). Now, if we define F : N×̄I → X by F (i, t) = fi(t), we have that F is an
exterior map from β to β′.

Indeed, given E ∈ ε(X), ∃iE ∈ N such that E ⊃ E′n′iE
. We know that, for all i ≥ iE ,

β(i), β′(i) ∈ C ′n′iE
⊂ E′n′iE

, and hence we have that

F (i, t) = fi(t) ⊂ C ′n′i ⊂ E
′
n′i
⊂ E′n′iE

, ∀i ≥ iE , ∀t ∈ I.

Therefore, F ([iE ,+∞) × I) ⊂ E′n′iE
⊂ E so that F (i, 0) = β(i) and F (i, 1) = β′(i), ∀i ∈ N.

Then, one has α 'e β 'e β′ 'e α′.

The previous results prove that θX : π̌0(X) → πBG
0 (X) is well-defined. Let us suppose that

X, Y are exterior spaces which are first-countable at infinity and let f : X → Y be an exterior
map. If we take a countable basis for Y , {EYn }n∈N, such that EYn ⊃ EYn+1, then we can suppose
that there exists a basis for X, {EXn }n∈N, such that f(EXn ) ⊂ EYn , ∀n ∈ N. We note that
a ∈ π̌0(X) can be represented by a = (CXn )n∈N and π̌0(f)(a) = (CYn )n∈N, where CYn ⊃ f(CXn ).

We shall show that the family of maps θX : π̌0(X)→ πBG
0 (X) defines a natural transforma-

tion. For, we have to prove that θY ◦ π̌0(f) = πBG
0 (f) ◦ θX . Let a = (CXn )n∈N ∈ π̌0(X). Then,

π̌0(f)(a) = (CYn )n∈N and θY (π̌0(f)(a)) = θY ((CYn )n∈N) = [β], which satisfies that β(n) ∈ CYn ,
∀n ∈ N. Besides, πBG

0 (f)(θX(a)) = πBG
0 (f)([α]) = [f ◦ α], which satisfies that α(n) ∈ CXn ,

∀n ∈ N. Let us see that [β] = [f ◦ α]. Since f(CXn ) ⊂ CYn and α(n) ∈ CXn , we have that
f(α(n)) ∈ f(CXn ) ⊂ CYn . Hence, there is a path gn : I → CYn ⊂ EYn such that gn(0) = (f ◦α)(n),
gn(1) = β(n). Therefore, there exists an exterior homotopy G : N×̄I → X from f ◦α to β given
by G(n, t) = gn(t), ∀n ∈ N and then [f ◦ α] = [β]. Thus, we have just proved the following.

Proposition 1.4.2. The family of maps θ = {θX}X∈|Efc| is a natural transformation from

π̌0|Efc
to πBG

0 |Efc
.

In addition, we also have the following interesting result.

Proposition 1.4.3. Let X = (X, ε(X)) be an exterior space which is first-countable at
infinity. Then,

θX : π̌0(X)→ πBG
0 (X)

is injective.

Proof. Suppose that E0 ⊃ E1 ⊃ . . . is a countable basis for ε(X). Take a, b ∈ π̌0(X), a =
(CEn)En∈ε(X), b = (C ′En)En∈ε(X) and set θX(a) = [α], α(n) ∈ CEn for all n ∈ N and θX(b) = [α′],
α′(n) ∈ C ′En for all n ∈ N. If [α] = [α′], then there is an exterior homotopy F : N×̄I → X such
that F (n, 0) = α(n) and F (n, 1) = α′(n), ∀n ∈ N. Given En ∈ ε(X), there is m ≥ n such that
F ({k}×I) ⊂ En for every k ≥ m. This implies that CEn contains F ({m}×I) and C ′En contains
F ({m} × I). Thus, CEn = C ′En , ∀n ∈ N. Therefore, a = b.
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1.5 Connections among πBG
0 , πS

0 and π̌0

Definition 1.5.1. Let sh: N→ N be the shift operator given by sh(i) = i+ 1, ∀i ∈ N. We
shall define the shift of a given map f : N→ X as the composition Sh(f) = f ◦ sh.

Note that, if α : N→ X is an exterior map, by definition we have that, given E ∈ ε(X), there
is n0 ∈ N such that α([n0,+∞)) ⊂ E. Thus, Sh(α) is also an exterior map, since Sh(α)(n0) =
α ◦ sh(n0) = α(n0 + 1) and then Sh(α)([n0,+∞)) = α([n0 + 1,+∞)) ⊂ α([n0,+∞)) ⊂ E.

Definition 1.5.2. Let X = (X, ε(X)) be an exterior space. We define ShX : πBG
0 (X) →

πBG
0 (X) by

ShX([α]) = [Sh(α)], [α] ∈ πBG
0 (X).

Observe that the map ShX : πBG
0 (X) → πBG

0 (X) is well-defined, since if α, β : N → X are
exterior maps such that α 'e β, there is an exterior homotopy F : N×̄I → X such that F (n, 0) =
α(n) and F (n, 1) = β(n), for all n ∈ N. Taking G(n, t) = F (n + 1, t), we have that the
map G : N×̄I → X is an exterior homotopy such that G(n, 0) = α(n + 1) = Sh(α)(n) and
G(n, 1) = β(n+ 1) = Sh(β)(n), for all n ∈ N, and therefore Sh(α) 'e Sh(β).

Theorem 1.5.1. Let R and φ be the natural transformations defined in sections 1.2 and
1.3, respectively. Let X = (X, ε(X)) be an exterior space and let IdX , ShX : πBG

0 (X)→ πBG
0 (X)

be maps given by IdX([α]) = [α] and ShX([α]) = [Sh(α)], [α] ∈ πBG
0 (X). Then:

(i) IdX ◦RX = ShX ◦RX . Furthermore, RX(πS
0 (X)) = Eq(IdX ,ShX).

(ii) Let θ be the natural transformation defined in section 1.4. If X is first-countable at infinity,
then in the diagram

πS
0 (X)

RX //

φX $$ $$

πBG
0 (X)

IdX //

ShX
// π

BG
0 (X)

π̌0(X)
99 θX

99

we have that RX = θX ◦ φX , φX is surjective and θX is injective. As a consequence,
θX : π̌0(X)→ πBG

0 (X) is the equalizer of IdX and ShX .

Proof. (i) Let α : R+ → X be an exterior map; therefore, given an exterior open subset E ∈
ε(X), ∃rE ≥ 0 | α([rE ,+∞)) ⊂ E. Observe that the natural transformation R : πS

0 → πBG
0

is defined as follows: RX([α]) = [α|N], where the restriction α|N : N → X is given by
α|N(n) = α(n), for all n ∈ N. We have to prove that [α|N] = [Sh(α|N)] = [α|N ◦ sh]. Note
that, for every n ∈ N, there exists a path fn : I → X given by fn(k) = α(n+ k), k ∈ [0, 1].
Taking F : N×̄I → X so that F (n, k) = fn(k) for each n ∈ N, one has that

F (n, 0) = fn(0) = α(n) = α|N(n),

F (n, 1) = fn(1) = α(n+ 1) = α|N(n+ 1),



28 CHAPTER 1. LIMIT SPACES AND END SETS OF EXTERIOR SPACES

and F is exterior. Indeed, fix an exterior open subset E′ ∈ ε(X). Since α is exterior, there
exists r′ ≥ 0 satisfying α([r′,+∞)) ⊂ E′. Note that we can find n′ ∈ N such that n′ ≥ r′;
hence, α([n′,+∞)) ⊂ α([r′,+∞)) ⊂ E′ and we have that

F ({n} × I) = α([n, n+ 1)) ⊂ E′, ∀n ≥ n′,

since F (n × I) = fn(I) ⊂ E′, ∀n ≥ n′. Thus, F is an exterior homotopy and [α|N] =
[Sh(α|N)], as we wanted to show.

In fact, we have just shown that RX(πS
0 (X)) ⊂ Eq(IdX , ShX). To show the other inclusion,

let [α] ∈ πBG
0 (X) such that [α] = ShX([α]) = [α ◦ sh]. Then, there is an exterior homotopy

F : N×̄I → X such that F (n, 0) = α(n), F (n, 1) = Sh(α)(n) = (α◦sh)(n) = α(n+1), for all
n ∈ N. Hence, there exists a continuous map β : [0,+∞)→ X given by β(t) = F (n, t−n),
whenever n ≤ t < n+ 1, n ∈ N. Furthermore, β is exterior. In order to show that, observe
that given E0 ∈ ε(X), there exists n0 ∈ N ⊂ R+ such that F ({n}×I) ⊂ E0, ∀n ≥ n0. Then,
β([n0,+∞)) ⊂ E0. Thus, [β] ∈ πS

0 (X) and verifies that β(n) = F (n, 0) = α(n) = β|N(n),
∀n ∈ N. So [α] ∈ RX(πS

0 (X)) and we also have that Eq(IdX ,ShX) ⊂ RX(πS
0 (X)). It

follows that RX(πS
0 (X)) = Eq(IdX ,ShX).

(ii) Let {Ei}i∈N be a countable basis for ε(X) which satisfies that E0 = X and Ei ⊃ Ei+1

for every i ∈ N, and let α : R+ → X be an exterior map, [α] ∈ πS
0 (X). Suppose that

φX([α]) = (Ci)i∈N ∈ π̌0(X). For each i ∈ N, choose a point α′i ∈ Ci and define a
sequence α′ : N → X given by α′(i) = α′i. Then, one has that (θX ◦ φX)([α]) = [α′] and
R([α]) = [α|N]. We have to show that [α′] = [α|N].

Given i ∈ N, let ni ∈ N, ni ≥ i such that α([ni,+∞)) ⊂ Ei. We can suppose that ni+1 > ni
and n0 = 0. Note that

α([ni,+∞)) ⊂ Ci ⊂ Ei ⊃ Ei+1 ⊃ Ci+1 ⊃ α([ni+1,+∞)).

For each k ∈ N such that ni ≤ k < ni+1, let fk : I → Ci ⊂ Ei be a path such that fk(0) =
α(k) and fk(1) = α′i. Define F : N×̄I → X by F (j, t) = fnj (t), ∀j ∈ N. Hence, we have
that, for every j ∈ N, F (j, 0) = fnj (0) = α(nj) = α|N(nj) and F (j, 1) = fnj (1) = α′(j).
Furthermore, F is exterior, since F (j, t) = fnj (t) ⊂ Cj ⊂ Ej and Cj ⊃ Cj+1, ∀j ∈ N. Now,
by Lemma 1.4.1, if we denote n : N→ N, i 7→ ni, we have:

α|N 'e α|n(N) 'e α′.

Therefore, [α|N] = [α′] and RX = θX ◦φX . The fact that φX and θX are respectively surjec-
tive and injective follows from Proposition 1.3.2 and Proposition 1.4.3, and it immediately
allows us to state that θX is the equalizer of IdX and ShX .



Chapter 2

Limit spaces and end sets of an
exterior discrete semi-flow

In this chapter, we remember the notion of exterior discrete semi-flow, which is one of the original
contributions that were introduced by the author in [62], and we study it in more depth. This
concept arises from the combination of the notions of exterior space and discrete semi-flow.
That permits to apply the constructions and properties of exterior spaces to the study of the
dynamics of discrete semi-flows.

In particular, the notions of limit space and end set of an exterior space can be used with
a view to produce limit spaces of exterior discrete semi-flows. For the construction of different
kinds of end points of an exterior discrete semi-flow X, we analyze a d-exterior discrete semi-
flow D ⊂ X so that the orbit of each point in D reaches an end point of the exterior discrete
semi-flow X. We call “basin of an end point” the set of points in D which reach that end point.
This construction allows us to decompose D into a disjoint union of basins.

The new functors that we are going to obtain will be defined from those presented in the
previous chapters by restriction, that is to say, as subfunctors of them. As in those chapters,
we will also study the connections among these new functors. When presenting them along this
chapter, we shall first give their respective definitions and then explain why they are well-defined.

2.1 Exterior discrete semi-flows

Definition 2.1.1. Let X be an exterior space, Xt the subjacent topological space and Xd

the set X provided with the discrete topology. An exterior discrete semi-flow is a discrete
semi-flow ϕ : N×Xt → Xt such that:

(i) For any n ∈ N, ϕn : X → X is exterior (this is equivalent to the simpler condition ϕ1 : X →
X is exterior).

An exterior discrete semi-flow X is said to be a d-exterior discrete semi-flow if satisfies
the additional condition:

29
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(ii) The canonical map ϕ : N×̄Xd → X is exterior.

Given two exterior discrete semi-flows (X,ϕ, ε(X)) and (Y, ψ, ε(Y )), an exterior discrete
semi-flow morphism from (X,ϕ, ε(X)) to (Y, ψ, ε(Y )) consists of a discrete semi-flow mor-
phism f : (X,ϕ)→ (Y, ψ) such that f is exterior.

Denote by EF(N) the category of exterior discrete semi-flows and by EdF(N) the full sub-
category of d-exterior discrete semi-flows.

We shall adopt the following notational convention: an exterior discrete semi-flow will be
denoted by a triplet (X,ϕ, ε(X)). Nevertheless, when the action ϕ or the externology is clear in
a determined context, we will short the notation and we will use (X, ε(X)) or (X,ϕ); moreover,
in many cases the notation will be reduced to X.

Example 2.1.1. For a given discrete semi-flow X = (X,ϕ), we can consider the externology
εr(X) given by all the open subsets E such that, for every x ∈ X, there is nx ∈ N such that, for
n ≥ nx, ϕ(n, x) ∈ E. It is easy to check that (X,ϕ, εr(X)) is a d-exterior discrete semi-flow.

Example 2.1.2. Denote Z− = {z ∈ Z | z < 0} = {−1,−2,−3, . . . }. Given an discrete
semi-flow X = (X,ϕ), a sequence x : Z− → X is said to be a backward sequence if ϕ1(xk+1) =
xk, ∀k ∈ Z−. We can consider the externology εl(X) given by all the open subsets E such that,
for every backward sequence x : Z− → X, there is zx ∈ Z− such that, for z ≤ zx, xz ∈ E. We can
check that ϕ1 is an exterior map: if x : Z− → X is a backward sequence, then ϕ1 ◦x : Z− → X is
also a backward sequence; hence, there is zϕ1◦x such that, for all z ≤ zϕ1◦x, (ϕ1 ◦x)z = ϕ1(xz) ∈
E, and this implies that xz ∈ (ϕ1)−1(E), ∀z ≤ zϕ1◦x. Thus, (ϕ1)−1(E) ∈ εl(X). Therefore,
(X,ϕ, εl(X)) is an exterior discrete semi-flow.

We have defined above the limit space of an exterior space. In particular, since an exterior
discrete semi-flow X is an exterior space, we can consider its limit space L(X) and its bar-limit
space L̄(X).

Proposition 2.1.1. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. Then, the
spaces L(X), L̄(X) are right-invariant.

Proof. Denote f = ϕ1. One has that

f−1(L(X)) = f−1

 ⋂
E∈ε(X)

E

 =
⋂

E∈ε(X)

f−1(E) ⊃
⋂

E∈ε(X)

E = L(X).

This implies that f(L(X)) ⊂ L(X). For L̄(X), the proof is similar.

For an exterior discrete semi-flow X one has that the exterior map f = ϕ1 : X → X in-
duce the maps πBG

0 (f), π̌0(f), ˇ̄π0(f) that give canonical discrete semi-flow structures on the
corresponding sets πBG

0 (X), π̌0(X), ˇ̄π0(X). In this paper these exterior homotopy invariants are
always taken as a set with a discrete semi-flow structure.
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2.2 The region of exterior attraction of an exterior discrete
semi-flow

Suppose that X = (X,ϕ, ε(X)) is an exterior discrete semi-flow. Consider

D(X) = D(X,ϕ, ε(X)) = {x ∈ X | ϕx is exterior}.

Proposition 2.2.1. Given X = (X,ϕ, ε(X)) ∈ |EF(N)|, the subspace D(X) is completely
invariant and with the relative externology is a d-exterior discrete semi-flow.

Proof. Denote D = D(X). Observe that ϕϕ1(x) = ϕx ◦ sh (where the shift sh, given by sh(n) =
n+ 1, is an exterior map). This implies that, if x ∈ D, then ϕ1(x) ∈ D.

Now, in order to prove that D is left-invariant, suppose that ϕ1(x) = y and y ∈ D. Given
an exterior open subset E, there is n0 ∈ N such that ϕm(y) ∈ E, for every m ≥ n0. Then,
ϕk(x) ∈ E, for every k ≥ n0 + 1. This implies that x ∈ D.

Finally, since X is an exterior discrete semi-flow, it follows that ϕn : D → D is exterior, for
every n ∈ N. From the definition of D, one has that ϕ : N×̄Dd → D is exterior. Therefore, D
with the relative externology is a d-exterior discrete semi-flow.

Definition 2.2.1. Suppose that X = (X,ϕ, ε(X)) is an exterior discrete semi-flow. Then,
the d-exterior discrete semi-flow D(X) is said to be the region of exterior attraction of the
exterior discrete semi-flow X.

Example 2.2.1. Let X = R, ε(X) = εc(R) and ϕ : N × R → R such that ϕ1 : R → R is
given by ϕ1(x) = t · x, t > 0, t ∈ R. Then,

D(X) =

{
R \ {0}, if t > 1,

∅, if t ≤ 1.

Example 2.2.2. If we consider the externology ε(X) = {E ∈ εc(R) | 0 ∈ E} in the previous
example, in this case we have that:

D(X) =

{
R, if t 6= 1,

{0}, if t = 1.

The following proposition states that the subspace D(X) of an exterior discrete semi-flow
X = (X,ϕ, ε(X)) can be also seen as a functor.

Proposition 2.2.2. The construction D : EF(N) → EF(N) given by D(X) = {x ∈ X |
ϕx is exterior}, for X ∈ |EF(N)|, and D(f) = f |D(X) : D(X)→ D(Y ), for a morphism f : X →
Y in EF(N), is a functor.

Proof. Let X = (X,ϕ, ε(X)) and Y = (Y, ψ, ε(Y )) be exterior discrete semi-flows. Let f : X →
Y be an exterior discrete semi-flow morphism. We have to prove that D(f) = f |D(X) is an
exterior discrete semi-flow morphism from D(X) to D(Y ): indeed, if x ∈ D(X), then the
composite f ◦ ϕx : N→ Y is exterior and we have that

(f ◦ ϕx)(n) = f(ϕx(n)) = f(ϕ(n, x)) = ψ(n, f(x)) = ψf(x)(n),

for all n ∈ N. Hence, f ◦ ϕx = ψf(x) and it follows that f(x) ∈ D(Y ).
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Note that, for an exterior discrete semi-flow X = (X,ϕ, ε(X)), each trajectory of a point of
D(X) has an end point given as follows: if x ∈ D(X), we have the exterior map ϕx : N → X,
ϕx(n) = ϕ(n, x), which determines an end point [ϕx] ∈ πBG

0 (X). Then, the following canonical
map is obtained:

ω : D(X)→ πBG
0 (X),

where ω(x) = [ϕx].

Definition 2.2.2. An end point a ∈ πBG
0 (X) is said to be ω-representable if there exists

x ∈ D(X) such that ω(x) = a.

Also, observe that the inclusion D(X) ⊂ X of exterior spaces induces the transformation
L(D(X))→ L(X).

Proposition 2.2.3. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. Then,

L(D(X)) = L(X),

so that the following diagram is commutative up to natural isomorphism:

EF(N)
D //

L $$

EdF(N)

Lzz
F(N)

Proof. It suffices to keep in mind that if x ∈ L(X), then ϕn(x) ∈ E, for all n ∈ N and for all
E ∈ ε(X).

Remark 2.2.1. For a given exterior discrete semi-flow X = (X,ϕ, ε(X)) such that X ∈
|Efc|, the diagram

L(X)
Ψ //

��

π̌0(X)

θ
��

D(X) ω
// πBG

0 (X)

is not commutative in general. Nevertheless, the diagram commutes if we have the following
additional condition: “for every x ∈ L(X), the points x, ϕ1(x) are in the same path component
of L(X)”. For instance, if L(X) ⊂ Fix(X), this condition is satisfied.

Remark 2.2.2. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. Then:

(i) Similarly as before, one can define

D̄(X) = D̄(X,ϕ, ε(X)) = {x ∈ X | ∀E ∈ ε(X), ∃nE ∈ N such that ϕn(x) ∈ E, ∀n ≥ nE}.

Note that D(X) ⊂ D̄(X).

(ii) It is interesting to remark that D̄(X) is contained in the region of pseudo-weak attraction
of L̄(X).



2.2. REGION OF EXTERIOR ATTRACTION OF EXTERIOR DISCRETE SEMI-FLOWS33

In order to see (ii), let x ∈ D̄(X). Then, for each E ∈ ε(X), ∃nE ∈ N such that [nE ,+∞)·x ⊂
E, so [nE ,+∞) · x ⊂ E. Hence, one has that ωr(x) =

⋂
t∈N [t,+∞) · x ⊂ E, ∀E ∈ ε(X), and

this implies that ωr(x) ⊂
⋂
E∈ε(X)E = L̄(X). Therefore, x ∈ PWA(L̄(X)).

Theorem 2.2.1. The inclusion functor in : EdF(N)→ EF(N) is left adjoint to the functor
D : EF(N)→ EdF(N).

Proof. Let X = (X,ϕ, ε(X)) ∈ EF(N) and X ′ = (X ′, ψ, ε(X ′)) ∈ EdF(N). Let f : X ′ → D(X)
be a morphism in EdF(N) and let g : in(X ′)→ X be a morphism in EF(N). Define

θX′,X : homEdF(N)(X
′, D(X)) −→ homEF(N)(in(X ′), X),

given by θX′,X(f) = ιX ◦ f , where ιX : D(X)→ X is given by ιX(x) = x. Besides, define

θ̃X′,X : homEF(N)(in(X ′), X) −→ homEdF(N)(X
′, D(X)),

given by θ̃X′,X(g) = D(g) = g|D(in(X′)) = g|X′ .
We are seeing now that θ̃X′,X is actually the inverse of θX′,X . For, note that:

(θX′,X ◦ θ̃X′,X)(g) = θX′,X(g|X′) = ιX ◦ g|X′ = g,

(θ̃X′,X ◦ θX′,X)(f) = θ̃X′,X(ιX ◦ f) = (ιX ◦ f)|X′ = f.

It remains to prove that the “naturality condition” is satisfied. For, let Y ∈ EF(N) and
Y ′ ∈ EdF(N). Suppose that α : X → Y and ξ : Y ′ → X ′ are morphisms in EF(N) and EdF(N),
respectively. Given y ∈ Y ′ = in(Y ′), we have that:

(α ◦ θX′,X(f) ◦ in(ξ))(y) = (α ◦ ιX ◦ f ◦ in(ξ))(y) = (α ◦ ιX ◦ f)(ξ(y)) = α(f(ξ(y))),

(θX′,X(D(α) ◦ f ◦ ξ))(y) = (ιY ◦D(α) ◦ f ◦ ξ)(y) = ιY (α|D(X)(f(ξ(y)))) = α(f(ξ(y))).

Observe that we have a forgetful functor U : EF(N)→ E which associates to each morphism
of exterior discrete semi-flows f : (X,ϕ, ε(X))→ (X ′, ϕ′, ε(X ′)) the morphism of exterior spaces
U(f) = f , U(f) : (X, ε(X))→ (X ′, ε(X ′)). Hence, we can consider the following composites:

EF(N)
U−→ E

L,L̄,πS
0 ,π

BG
0 ,π̌0,ˇ̄π0−−−−−−−−−−−→ Set

As a consequence, we can obtain limit functors and end sets for the category of exterior discrete
semi-flows by taking the composites L ◦U , L̄ ◦U , πS

0 ◦U , πBG
0 ◦U , π̌0 ◦U and ˇ̄π0 ◦U , which will

be denoted respectively just by L, L̄, πS
0 , πBG

0 , π̌0 and ˇ̄π0 when no confusion is possible.
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2.3 ω-end sets of an exterior discrete semi-flow

Given an exterior discrete semi-flow, we can define some other different functors from EF(N) to
Set by using the ones we have just constructed. We will start defining the functor ωπBG

0 .

Definition 2.3.1. We define the functor ωπBG
0 from EF(N) to Set as one that maps a

given exterior discrete semi-flow X = (X,ϕ, ε(X)) to the set

ωπBG
0 (X) = {a ∈ πBG

0 (X) | ∃x ∈ D(X) such that [ϕx] = a}

and assigns each exterior discrete semi-flow morphism

f : (X,ϕ, ε(X))→ (Y, ψ, ε(Y ))

to the map
ωπBG

0 (f) = πBG
0 (f)|ωπBG

0 (X).

Remark 2.3.1. We note that ωπBG
0 (X) is the image of the canonical map ω : D(X) →

πBG
0 (X); that is, ωπBG

0 (X) is the set of ω-representable end points of πBG
0 (X).

Let us check that the functor ωπBG
0 is well-defined. Indeed, let a ∈ ωπBG

0 (X); hence, there
exists x ∈ D(X) such that a = [ϕx]. Moreover, we have that, for all n ∈ N,

(f ◦ ϕx)(n) = (f ◦ ϕ)(n, x) = ψ(n, f(x)) = ψf(x)(n)

since f is an exterior discrete semi-flow morphism between X and Y . Thus, [f ◦ ϕx] = [ψf(x)]
and it follows that

ωπBG
0 (f)(a) = πBG

0 (f)(a) = [f ◦ ϕx] = [ψf(x)] ∈ ωπBG
0 (Y ),

which is true because f(D(X)) ⊂ D(Y ). By Lemma 0.2.1, ωπBG
0 preserves identity morphisms

and composites of morphisms.

In addition, there is a natural transformation from ωπBG
0 to πBG

0 given by

inBG
X : ωπBG

0 (X)→ πBG
0 (X),

where X runs through EF(N).

Remember that, for a given exterior discrete semi-flow (X,ϕ, ε(X)), an exterior map f =
ϕ1 : X → X induces a map πBG

0 (f) which gives a discrete semi-flow structure on the set πBG
0 (X).

Proposition 2.3.1. Suppose that X = (X,ϕ, ε(X)) is an exterior discrete semi-flow. Then:

(i) The map ω : D(X,ϕ, ε(X))→ πBG
0 (X) is a discrete semi-flow morphism (between discrete

semi-flow sets);

(ii) ωπBG
0 (X) is right-invariant;
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(iii) Sh ◦ πBG
0 (ϕ1) = πBG

0 (ϕ1) ◦ Sh; furthermore,

ωπBG
0 (X) ⊂ {a ∈ πBG

0 (X) | Sh(a) = πBG
0 (ϕ1)(a)}.

Proof. (i) Given x ∈ D(X,ϕ, ε(X)), we have that

ϕϕ1(x)(n) = ϕ(n, ϕ1(x)) = ϕ(n, ϕ(1, x)) = ϕ(1 + n, x) = ϕ1(ϕ(n, x))

= (ϕ1 ◦ ϕx)(n).

Then,

(ω ◦ ϕ1)(x) = ω(ϕ1(x)) = [ϕϕ1(x)] = [ϕ1 ◦ ϕx] = πBG
0 (ϕ1)([ϕx]) = πBG

0 (ϕ1)(ω(x))

= (πBG
0 (ϕ1) ◦ ω)(x).

Therefore, ω ◦ ϕ1 = πBG
0 (ϕ1) ◦ ω.

(ii) The image of a semi-flow morphism is right-invariant.

(iii) (Sh ◦ πBG
0 (ϕ1))([α]) = [(ϕ1 ◦ α) ◦ sh] = [ϕ1 ◦ (α ◦ sh)] = (πBG

0 (ϕ1) ◦ Sh)([α]). Note that, if
x ∈ D,

Sh(ω(x)) = Sh([ϕx]) = [ϕ1 ◦ ϕx] = πBG
0 (ϕ1)([ϕx]) = πBG

0 (ϕ1)(ω(x)).

Definition 2.3.2. Given an exterior discrete semi-flow X = (X,ϕ, ε(X)), the subspace
denoted by

Da = ω−1(a), a ∈ ωπBG
0 (X),

will be called the basin of a.
If S is a subset of ωπBG

0 (X),
DS = ω−1(S)

will be called the basin of S.

The map ω permits us to divide an exterior discrete semi-flow.

Corollary 2.3.1. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. Then, there are
the following induced partitions of X:

X = (X \D) t

 ⊔
a∈ωπBG

0 (X)

Da

 ,

X = (X \D) t

 ⊔
[a]∈ωπBG

0 (X)/∼

D[a]

 ,

where D = D(X,ϕ, ε(X)) and each D[a] is a completely invariant sub-flow of X (remember
the notation employed in section 0.5: [a] denotes the minimal completely invariant subset that
contains the point a ∈ ωπBG

0 (X)).
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Remark 2.3.2. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. If X is path-
connected, the union of the basins of each cyclic point a1, . . . , an of a n-cycle in ωπBG

0 (X) is just
the basin of the n-cycle [a1] = [a2] = · · · = [an].

The following example will allow us to distinguish between the functors πBG
0 and ωπBG

0 .

Example 2.3.1. Let S be a set and define in
∏
N
S the following equivalence relation: given

x, y ∈
∏
N
S, x ∼ y if there is i0 ∈ N such that xi = yi for every i ≥ i0. Consider the quotient set

I(S) =
∏
N
S/ ∼,

which is called the reduced product of S.
With this notion in mind, let X = R and ε(X) = {E ∈ εc(R) | 0 ∈ E}. One has that

πBG
0 (X) = I({−∞, 0,+∞}).

Let {ϕ(t)}t∈R+ be a one-parameter family of discrete semi-flows ϕ(t) : N × R → R such that
(ϕ(t))1 : R → R is given by (ϕ(t))1(x) = t · x. Associated with {ϕ(t)}t∈R+, there is a fam-
ily of exterior discrete semi-flows {(X,ϕ(t), ε(X))}t∈R+ and the corresponding family of sets
{ωπBG

0 (X)(t)}t∈R+, one for each discrete semi-flow. We will see that the cardinality of the sets
ωπBG

0 (X)(t) is much lower. Note that, when t > 1, [(ϕ(t))x] = [(ϕ(t))x′ ] ∈ ωπBG
0 (X)(t) if and

only if sgn(x) = sgn(x′). We have that:

ωπBG
0 (X)(t) =

{
{[(ϕ(t))0], a−∞, a+∞}, if t > 1,

{[(ϕ(t))0]}, if t ≤ 1,

where a+∞ = [(ϕ(t))x] ∈ ωπBG
0 (X)(t) if x > 0 and a−∞ = [(ϕ(t))x] ∈ ωπBG

0 (X)(t) if x < 0.

Remark 2.3.3. Example 2.3.1 shows that the invariant ωπBG
0 can differentiate between

distinct types of discrete semi-flows belonging to the family {ϕ(t)}t∈R+ and it is able to find
singular values of the parameter t: for instance, when t = 1 the number of ω-representable end
points is no longer 1 and becomes to be 3. Therefore, the parameter space [0,+∞) is divided
into three intervals: [0,+∞) = [0, 1)∪ {1} ∪ (1,+∞). The one-parameter system is stable when
t ∈ [0, 1) and when t ∈ (1,+∞), and a trifurcation value appears at t = 1.

We now continue defining the functor ωπS
0 .

Definition 2.3.3. We define the functor ωπS
0 from EF(N) to Set as one that maps a given

exterior discrete semi-flow X = (X,ϕ, ε(X)) to the set

ωπS
0 (X) = {[α] ∈ πS

0 (X) | ∃y ∈ D(X) such that [α|N] = [ϕy]}

and assigns every exterior discrete semi-flow morphism

f : (X,ϕ, ε(X))→ (Y, ψ, ε(Y ))

to the map ωπS
0 (f), which is given by the formula

ωπS
0 (f)([α]) = πS

0 (f)([α]) = [f ◦ α].
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In order to see that ωπS
0 is well-defined, consider [α] ∈ ωπS

0 (X); hence, there exists x ∈ D(X)
such that [α|N] = [ϕx]. Moreover, we have that f ◦ϕx = ψf(x), since f is an exterior discrete semi-

flow morphism between X and Y . We also have that πS
0 (f)([α]) = [f ◦α]; since f(D(X)) ⊂ D(Y )

and
[(f ◦ α)|N] = [f(α|N)] = [f ◦ ϕx] = [ψf(x)],

it follows that f(x) ∈ D(Y ) and [f ◦ α] ∈ ωπS
0 (Y ). By Lemma 0.2.1, ωπS

0 preserves identity
morphisms and composites of morphisms.

In addition, there is a natural transformation from ωπS
0 to πS

0 given by the inclusions

inS
X : ωπS

0 (X)→ πS
0 (X),

where X runs through |EF(N)|.

In the lines below, we will define the functor ωπ̌0.

Definition 2.3.4. We define the functor ωπ̌0 from EF(N) to Set as one that maps a given
exterior discrete semi-flow X = (X,ϕ, ε(X)) to the set

ωπ̌0(X) = {a = (CE)E∈ε(X) ∈ π̌0(X) | ∃x ∈ D(X) such that

∀E ∈ ε(X), ∃nE ∈ N with ϕx(n) ∈ CE ⊂ E, ∀n ≥ nE}

and assigns every exterior discrete semi-flow morphism

f : (X,ϕ, ε(X))→ (Y, ψ, ε(Y ))

to the map ωπ̌0(f), which is given by the formula

ωπ̌0(f) = π̌0(f)|ωπ̌0(X).

Let us check that the functor ωπ̌0 is well-defined. Let a ∈ ωπ̌0(X) and suppose that
π̌0(f)(a) = (CEY )EY ∈ε(Y ). Given EY ∈ ε(Y ), since f is exterior we have that f−1(EY ) ∈ ε(X).
Then, there is x ∈ X and nf−1(EY ) such that

ϕx(n) ∈ Cf−1(EY ), ∀n ≥ nf−1(EY ),

where Cf−1(EY ) is the path component of a in f−1(EY ). Take f(x) ∈ Y and nEY = nf−1(EY ).
We have that

ψf(x)(n) = ψ(n, f(x)) = f(ϕ(n, x)) = f(ϕx(n)) ∈ f(Cf−1(EY )) ⊂ CEY ,

for every n ≥ nEY . This implies that π̌0(f)(a) ∈ ωπ̌0(Y ). Since π̌0(f)(ωπ̌0(X)) ⊂ ωπ̌0(Y ),
by applying Lemma 0.2.1 it follows that ωπ̌0 preserves identity morphisms and composites of
morphisms.

In addition, there is a natural transformation ǐn from ωπ̌0 to π̌0 given by the inclusions

ǐnX : ωπ̌0(X)→ π̌0(X),
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where X runs through |EF(N)|.

As we stated in Remark 2.3.3, the functor ωπBG
0 was able to distinguish between different

members of a one-parameter family of discrete semi-flows and it could find critical values for the
parameter. So can functors ωπS

0 and ωπ̌0, as we will check in the next example.

Example 2.3.2. Let X = R, ε(X) = {E ∈ εc(R) | 0 ∈ E} and let {ϕ(t)}t∈R+ be a one-
parameter family of discrete semi-flows ϕ(t) : N× R → R such that (ϕ(t))1 : R → R is given by
(ϕ(t))1(x) = t · x. Associated with {ϕ(t)}t∈R+, there are two family of sets, {ωπS

0 (X)(t)}t∈R+

and {ωπ̌0(X)(t)}t∈R+, with one set for each discrete semi-flow.

Let us suppose that [α], [α′] ∈ ωπS
0 (X)(t) so that they satisfy [α|N] = [(ϕ(t))x] and [α′|N] =

[(ϕ(t))x′ ]. Note that, in the case t > 1, [α] = [α′] if and only if sgn(x) = sgn(x′). Then, we have
that:

ωπS
0 (X)(t) =

{
{a0, a−∞, a+∞}, if t > 1,

{a0}, if t ≤ 1,

where a+∞ = [α] ∈ ωπS
0 (X)(t) satisfying [α|N] = [(ϕ(t))x] if x > 0, a−∞ = [β] ∈ ωπS

0 (X)(t)
satisfying [β|N] = [(ϕ(t))x] if x < 0 and a0 = [γ] ∈ ωπS

0 (X)(t) satisfying [γ|N] = [(ϕ(t))0].

Something similar happens with functor ωπ̌0 when considering the same family of discrete
semi-flows:

ωπ̌0(X)(t) =

{
{b0, b−∞, b+∞}, if t > 1,

{b0}, if t ≤ 1,

where, if we take {(−∞,−n)∪
(
− 1
n ,

1
n

)
∪(n,+∞)}n∈N∗ as a basis for the externology, the elements

b+∞, b−∞ and b0 can be represented by b+∞ = ((n,+∞))n∈N∗, b−∞ = ((−∞,−n))n∈N∗ and
b0 =

((
− 1
n ,

1
n

))
n∈N∗.

In the previous examples, when considering the family of discrete semi-flows ϕ(t) : N×R→ R
given by (ϕ(t))1(x) = t·x, one has probably noticed that the cardinalities of the sets ωπBG

0 (X)(t),
ωπS

0 (X)(t) and ωπ̌0(X)(t) are always the same, regardless of parameter t. Nevertheless, this fact
happens completely by chance, as there are many cases (such as the next example) in which it
does not occur.

Example 2.3.3. Let X = R, ε(X) = {E ∈ εc(R) | 0 ∈ E} and let {ϕ(t)}t∈R+ be a one-
parameter family of discrete semi-flows ϕ(t) : N× R → R such that (ϕ(t))1 : R → R is given by
(ϕ(t))1(x) = −t · x. In this case,

ωπBG
0 (X)(t) =

{
{[ϕ0], a+

∞, a
−
∞}, if t > 1,

{[ϕ0]}, if t ≤ 1,

where a+
∞ = [ϕx] ∈ ωπBG

0 (X)(t) if x > 0, a−∞ = [ϕx] ∈ ωπBG
0 (X)(t) if x < 0 and [ϕ0] ∈

ωπBG
0 (X)(t) is the class of equivalence of ϕ0 : N→ X, which is given by ϕ0(n) = ϕ(t)(n, 0) = 0.

However, same is not true when considering functors ωπS
0 and ωπ̌0, for every t ∈ R+, because

ωπS
0 (X)(t) = {a0} and ωπ̌0(X)(t) = {b0}, where a0 and b0 are the end points which were defined

in Example 2.3.2.
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Remark 2.3.4. Observe that, given an exterior discrete semi-flow X = (X,ϕ, ε(X)), if
D(X) = ∅, then ωπS

0 (X) = ωπ̌0(X) = ∅; however, the converse is not true. For instance,
consider X = R \ {0}, ε(X) = {E ∩ (R \ {0}) | E ∈ εc(R)} (which is the relative externology
in R \ {0} ⊂ R) and ϕ : N × R \ {0} → R \ {0} such that ϕ1 : R \ {0} → R \ {0} is given by
ϕ1(x) = −2x. In this case, ωπS

0 (X) = ωπ̌0(X) = ∅, but D(X) = X 6= ∅.

As in chapter 1, we will show that there is a natural transformation between each pair of
functors which have just been defined. For example, a natural transformation ωR : ωπS

0 → ωπBG
0

can be given by the family of maps

ωRX : ωπS
0 (X)→ ωπBG

0 (X),

where, for X = (X,ϕ, ε(X)) an exterior discrete semi-flow and [α] ∈ ωπS
0 (X), ωRX([α]) = [α|N].

Note that ωRX is well-defined, since, if [α|N] = [ϕx] with x ∈ D(X), one has that ωRX([α]) =
[α|N] = [ϕx], which is in ωπBG

0 (X) and, by Lemma 0.2.2, ωR is actually a natural transformation.

In order to give a natural transformation ωφ : ωπS
0 → ωπ̌0, for each exterior discrete semi-flow

X = (X,ϕ, ε(X)) define
ωφX : ωπS

0 (X)→ ωπ̌0(X)

by ωφX = φX |ωπS
0 (X).

To see that ωφX is well-defined, we have to check that φX(ωπS
0 (X)) ⊂ ωπ̌0(X). Take a ∈

ωπS
0 (X) such that a = [α], where α : R+ → X is exterior. Let

φX(a) = (CE)E∈ε(X)

so that, for a given E ∈ ε(X), there exists nE ∈ N such that α([nE ,+∞)) ⊂ CE ⊂ E. Because
a ∈ ωπS

0 (X), then there is x ∈ D(X) such that [α|N] = [ϕx]. Hence, there exists an exterior
homotopy F : N×̄I → X such that F (n, 0) = α(n) and F (n, 1) = ϕx(n), ∀n ∈ N. Since F is
exterior, there is n′E ∈ N such that

F ({n} × I) ⊂ E,∀n ≥ n′E .

Take n′′E = max{nE , n′E}. If n ≥ n′′E , we have that α([n,+∞)) ⊂ CE and F ({n} × I) ⊂ E,
satisfying α([n,+∞)) ∩ F ({n} × I) 6= ∅. Thus, F ({n} × I) ⊂ CE and it follows that

ϕx(n) ∈ CE , ∀n ≥ n′′E .

Therefore, ωφX([α]) ∈ ωπ̌0(X). By Lemma 0.2.2, the family of maps ωφX : ωπS
0 (X) → ωπ̌0(X)

defines a natural transformation.

Proposition 2.3.2. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow whose subjacent
exterior space X is first-countable at infinity. Then,

ωφX : ωπS
0 (X)→ ωπ̌0(X)

is surjective.
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Proof. Since X is first-countable at infinity, there exists a sequence (Ei)i∈N with Ei ∈ ε(X)
and Ei ⊃ Ei+1, ∀i ∈ N, which satisfies that, ∀E ∈ ε(X), ∃iE ∈ N such that E ⊃ EiE . Let
b ∈ ωπ̌0(X), which can be represented in the form b = (Ci)i∈N ∈ limi∈N π0(Ei). Since b is ω-
representable, there exists x ∈ D(X) such that, for all i ∈ N, ∃ni ∈ N satisfying ϕx(n) ∈ Ci ⊂ Ei,
∀n ≥ ni. Note that we can suppose that n0 < n1 < . . . Particularly, taking i = 0, one has that
∃n0 ∈ N such that ϕx(n) ∈ C0 ⊂ E0, ∀n ≥ n0. Let x′ = n0 · x ∈ D(X). Then, for all i ∈ N,
∃n′i = (ni − n0) ∈ N such that ϕx′(n) ∈ Ci ⊂ Ei, ∀n ≥ n′i, and also ϕx′(n) ∈ C0 ⊂ E0, ∀n ∈ N.
Similarly as before, we have 0 = n′0 < n′1 < . . . , too.

Let ji = max{j ∈ N | ϕx′(i) ∈ Cj}, so that Cji ⊃ Cji+1 with ϕx′(i) ∈ Cji , ∀i ∈ N. Note
that limi ji = +∞ and that, given i ∈ N, we have ϕx′(i), ϕx′(i + 1) ∈ Cji . Hence, there is a
path fi : [0, 1]→ Cji such that fi(0) = ϕx′(i) and fi(1) = ϕx′(i+ 1), ∀i ∈ N. Now, define a map
α : [0,+∞) → X given by α(t) = fi(t − i) whenever i ≤ t < i + 1. Note that, by construction,
α([i,+∞)) ⊂ Cji . This implies that α is exterior and α(i) = i · x′ = ϕx′(i). Then, [α] ∈ ωπS

0 (X)
and ωφX([α]) = (Ci)i∈N = b, since α([ni,+∞)) ⊂ Ci. Therefore, ωφX is surjective, as we wanted
to show.

Next, in order to construct a natural transformation from ωπ̌0 to ωπBG
0 , consider the category

EFfc(N) whose objects are exterior discrete semi-flows (X,ϕ, ε(X)) whose subjacent exterior
spaces X are first-countable at infinity and whose morphisms are exterior discrete semi-flow
morphisms. Let ωπ̌0 and ωπBG

0 be functors from EFfc(N) to the category of sets, which are
defined in the same way as we did in that section.

For each X = (X,ϕ, ε(X)) ∈ EFfc(N), note that there exists a countable basis {Ei}i∈N ⊂
ε(X) such that E0 ⊃ E1 ⊃ E2 . . . Recall that θX : π̌0(X) → πBG

0 (X) is given as follows: let
a ∈ π̌0(X), which can be represented by a = (Ci)i∈N, where Ci is a path component of Ei
verifying that Ci+1 ⊂ Ci, ∀i ∈ N. Take xi ∈ Ci and define the exterior map α : N → X,
α(i) = xi; then, θX(a) = [α]. We also proved that this definition neither depends on the choice
of the basis {Ei}i∈N nor on the choice of the elements xi.

If a ∈ ωπ̌0(X), there is x ∈ D(X) and there is an increasing sequence n0 < n1 < . . . such
that ϕx(n) ∈ Ci ⊂ Ei, ∀n ≥ ni. Consider a new countable basis {E′j}j∈N of the externology
given by E′j = E0 if j < n0 and E′j = Ei if ni ≤ j < ni+1, j ∈ N. In this new basis, we have that
a is represented by a = (C ′j)j∈N, where C ′j = C0 if j < n0 and C ′j = Ci if ni ≤ j < ni+1, j ∈ N.
Take x′ = n0 ·x ∈ D(X). Observe that, if j < n0, then ϕx′(j) = j ·x′ = (j+n0) ·x = ϕx(j+n0) ∈
C0 = C ′j , and if ni ≤ j < ni+1, then ϕx′(j) = j · x′ = (j + n0) · x = ϕx(j + n0) ∈ Ci = C ′j . This
implies that, with the new choice of basis {E′j}j∈N and the new choice of elements ϕx′(j) ∈ C ′j ,
one has that θX(a) = [ϕx′ ], x

′ ∈ D(X). Therefore, θX(a) ∈ ωπBG
0 (X).

Since we have just shown that θX(ωπ̌0(X)) ⊂ ωπBG
0 (X), we can consider the restriction

ωθX = θX |ωπ̌0(X).

By Lemma 0.2.2, the family of maps ωθX : ωπ̌0(X) → ωπBG
0 (X), X ∈ |EFfc(N)|, defines a

natural transformation from ωπ̌0 to ωπBG
0 .

Now, we can apply that the restriction of an injective map is also injective to obtain the
following result.
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Proposition 2.3.3. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow whose subjacent
exterior space X is first-countable at infinity. Then,

ωθX : ωπ̌0(X)→ ωπBG
0 (X)

is injective.

Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. Then, observe that the map
ωShX : ωπBG

0 (X)→ ωπBG
0 (X) given by ωShX = ShX |ωπBG

0 (X) is well-defined. For, let x ∈ D(X)

such that a = [ϕx] ∈ ωπBG
0 (X); then, there exists x′ = 1 · x ∈ D(X) such that

[ϕx′ ] = [ϕ1·x] = [ϕx ◦ sh] = ShX([ϕx]) = ShX(a)

and then ωShX(a) ∈ ωπBG
0 (X).

Theorem 2.3.1. Let ωR and ωφ be the natural transformations that we have just defined
in this section and let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. Then:

(i) ωIdX ◦ ωRX = ωShX ◦ ωRX . Furthermore, ωRX(ωπS
0 (X)) = Eq(ωIdX ,

ωShX).

(ii) Let ωθ be the natural transformation defined on EFfc(N). If the subjacent exterior space
X is first-countable at infinity, then in the diagram

ωπS
0 (X)

ωRX //

ωφX %% %%

ωπBG
0 (X)

ωIdX //

ωShX
//
ωπBG

0 (X)

ωπ̌0(X)
99

ωθX

99

we have that ωRX = ωθX ◦ ωφX , ωφX is surjective and ωθX is injective. As a consequence,
ωθX : ωπ̌0(X)→ ωπBG

0 (X) is the equalizer of ωIdX and ωShX .

Proof. (i) By Theorem 1.5.1(i),

ωShX ◦ωRX = (ShX ◦RX)|ωπS
0 (X) = (IdX ◦RX)|ωπS

0 (X) = (IdX)|ωπS
0 (X)◦

ωRX = ωIdX ◦ωRX .

We have just shown that ωRX(ωπS
0 (X)) ⊂ Eq(ωIdX ,

ωShX). To show the other inclusion,
let [α] ∈ ωπBG

0 (X) such that [α] = ωShX([α]) = ShX |ωπBG
0 (X)([α]) = [α◦ sh] and [α] = [ϕx],

for some suitable x ∈ D(X). Observe that there is an exterior homotopy F : N×̄I → X
such that F (n, 0) = α(n), F (n, 1) = ShX(α)(n) = (α ◦ sh)(n) = α(n+ 1), ∀n ∈ N. Hence,
there exists a continuous map β : [0,+∞) → X given by β(t) = F (n, t − n), whenever
n ≤ t < n+ 1, n ∈ N.

Furthermore, β is exterior. In order to show that, observe that, given E0 ∈ ε(X), there
exists n0 ∈ N ⊂ R+ such that

F ({n} × I) ⊂ E0, ∀n ≥ n0.
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Then, β([n0,+∞)) ⊂ E0. What is more, β(n) = F (n, 0) = α(n) = β|N(n), ∀n ∈ N, which
also implies that [β|N] = [α] = [ϕx]. Thus, [β] ∈ ωπS

0 (X) and [α] ∈ ωRX(ωπS
0 (X)). It

follows that Eq(ωIdX ,
ωShX) ⊂ ωRX(ωπS

0 (X)). Hence, we have that

ωRX(ωπS
0 (X)) = Eq(ωIdX ,

ωShX).

(ii) Let X ∈ |EFfc(N)|. By Theorem 1.5.1, ωRX = RX |ωπS
0 (X) = (θX ◦φX)|ωπS

0 (X) = ωθX ◦ωφX
and φX is surjective. Moreover, by Proposition 2.3.3, ωθX is injective.

In order to show that ωφX is surjective, take b ∈ ωπ̌0(X). Notice that ωShX(ωθX(b)) =
ShX(θX(b)) = IdX(θX(b)) = ωIdX(ωθX(b)). This implies ωθX(b) ∈ Eq(ωIdX ,

ωShX). Since
we proved that ωRX(ωπS

0 (X)) = Eq(ωIdX ,
ωShX), it follows that there exists a ∈ ωπS

0 (X)
such that ωRX(a) = ωθX(b). As ωRX(a) = RX(a) = θX(φX(a)) = ωθX(ωφX(a)), we have
that ωθX(b) = ωθX(ωφX(a)). Taking into account that ωθX is injective, it follows that
ωφX(a) = b. Therefore, ωφX is surjective.



Chapter 3

Intrinsic topology and Ω-end sets of
an exterior discrete semi-flow

A path component of a topological space X is an equivalence class of X under the equivalence
relation which makes a pair of points x, y ∈ X equivalent if there is a path from x to y. If an
exterior discrete semi-flow (X,ϕ, ε(X)) is given and there exists a path h : I → X from x to y
such that, for a big enough n, ϕn(h(I)) is eventually contained in every exterior open subset,
then we say that x and y belong to the same intrinsic path component.

We use this new notion in the current chapter to create more functors from the category of
exterior discrete semi-flows to the category of sets. We also study the connections among several
of them.

3.1 Intrinsic paths and intrinsic topology

Definition 3.1.1. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. We say that a
path h : [a, b]→ X is intrinsic if, for all E ∈ ε(X), there exists nE ∈ N such that ϕn(h([a, b])) ⊂
E, ∀n ≥ nE.

Lemma 3.1.1. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. Then:

(i) If α : I → X is an intrinsic path, then the inverse path ᾱ : I → X given by ᾱ(t) = α(1− t),
t ∈ I, is intrinsic.

(ii) If αi : I → X are intrinsic paths such that αi(1) = αi+1(0), for each i = 0, . . . , k − 1, the
path α : I → X given by

α(t) =

{
αi(kt− i), if i

k ≤ t <
i+1
k ,

αk−1(1), if t = 1

is intrinsic.

Proof. The proof for (i) is highly trivial; let us show (ii). Since the path αi is intrinsic for each
i = 0, . . . , k−1, given E ∈ ε(X) there exist nEi ∈ N such that ϕn(αi(t)) ⊂ E, ∀n ≥ nEi , t ∈ [0, 1].

43
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Take nE = maxi∈{0,...,k−1}{nEi }; then, ϕn(αi(t)) ⊂ E, ∀n ≥ nE and ∀i ∈ {0, . . . , k − 1}. Thus,
ϕn(α(t)) ⊂ E, ∀n ≥ nE , t ∈ [0, 1]. Therefore, α is an intrinsic path.

Definition 3.1.2. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow and let S be a
subset of D(X). We define

πint
0 (S) = S/ ∼int,

where, given s0, s1 ∈ S, s0 ∼int s1 if there is an intrinsic path h : I → X such that h(I) ⊂ S,
h(0) = s0 and h(1) = s1. These equivalence classes are called the intrinsic path components
of S.

Given a discrete semi-flow (X,ϕ) and S ⊂ X, denote

invr(S) = {x ∈ S | ϕn(x) ∈ S, ∀n ∈ N}.

Note that, if invr(S) = S, then S is a right-invariant subset. At the same time, let (X,ϕ, ε(X))
be an exterior discrete semi-flow. Consider the following family of subsets of X:

ς = tX ∪ {invr(E) | E ∈ ε(X)}.

Remind that any finite intersection of open subsets is an open subset. Moreover, it is easy to
check that invr(S)∩ invr(T ) = invr(S∩T ). Bearing this in mind, the following basis is obtained
by taking finite intersections of the sets which form the subbasis ς:

B = {U ∩ invr(E) | U ∈ tX , E ∈ ε(X)}.

We will denote the topology generated by the basis B (or by the subbasis ς) by tint
X , and it

will be called the intrinsic topology of the exterior discrete semi-flow (X,ϕ, ε(X)). Note that
ε(X) ⊂ tint

X .

If we denote X = (X,ϕ, ε(X)), we will denote by X int the exterior discrete semi-flow
((X, tint

X ), ϕ, ε(X)).

Proposition 3.1.1. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow and let tint
X be

its intrinsic topology.

(i) Let

εr(X) = {U ∈ tX | ∀x ∈ X, ∃nx ∈ N such that ϕn(x) ∈ U, ∀n ≥ nx}.

If α : I → X int is a continuous map and ε(X) ⊂ εr(X), then α : I → X is an intrinsic
path.

(ii) α : I → X is an intrinsic path if and only if α : I → X int is a continuous map and
α(I) ⊂ D(X).

Proof.
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(i) Let E ∈ ε(X). Suppose that t0 ∈ I. Since E ∈ εr(X), there exists nt0 ∈ N such that,
for all n ≥ nt0 , ϕn(α(t0)) ∈ E. Note that ϕn(α(t0)) ∈ E ⇔ α(t0) ∈ (ϕn)−1(E). Then,
α(t0) ∈ (ϕm+nt0 )−1(E), ∀m ∈ N, which implies that

ϕm(α(t0)) ∈ (ϕnt0 )−1(E), ∀m ∈ N.

Thus,
α(t0) ∈ invr((ϕnt0 )−1(E)).

Since invr((ϕnt0 )−1(E)) is a (subbasic) open subset of X int and α : I → X int is a continuous
map, there is an open neighborhood of t0, Vt0 , such that

α(Vt0) ⊂ invr((ϕnt0 )−1(E)).

What is more, we can find suitable open neighborhoods Vt1 , . . . , Vtk of the respective points

t1, . . . , tk ∈ I satisfying I =
⋃k
i=1 Vti , because I is compact. Then,

α(I) = α

(
k⋃
i=1

Vti

)
=

k⋃
i=1

α(Vti) ⊂
k⋃
i=1

invr((ϕnti )−1(E)),

where {nti}i∈{1,...,k} are natural numbers that satisfy α(ti) ∈ invr((ϕnti )−1(E)), i = 1, . . . , k.
Taking n0 = max{nt1 , . . . , ntk}, we have that

α(I) ⊂ invr((ϕn0)−1(E)).

Therefore,

ϕn(α(I)) ⊂ (ϕn0)−1(E), ∀n ∈ N =⇒ ϕn+n0(α(I)) ⊂ E, ∀n ∈ N =⇒ ϕn(α(I)) ⊂ E, ∀n ≥ n0.

This implies that α : I → X is an intrinsic path.

(ii) We will show that the preimage of any subbasic open subset S ∈ ς under α is open, as long
as α is an intrinsic path. If U ∈ tX , then α−1(U) is open, because α : I → X is continuous.
Besides, given an exterior open subset E, we will prove that

α−1(invr(E)) = {t ∈ I | α(t) ∈ invr(E)}

is an open subset of I: for, let t0 ∈ α−1(invr(E)). Then, α(t0) ∈ invr(E) ⊂ E. Since α is
an intrinsic path, there exists n0 such that ϕn(α(I)) ⊂ E, ∀n ≥ n0. In addition, α(t0) ∈
invr(E), which implies that ϕk(α(t0)) ∈ E, k = 0, 1, . . . , n0 − 1. Now, α and ϕk, where k ∈
{0, 1, . . . , n0 − 1}, are continuous maps, so there are open neighborhoods of t0, V k

t0 ⊂ I, such

that ϕk(α(V k
t0)) ⊂ E. Hence, Vt0 =

⋂n0−1
k=0 V k

t0 is another open neighborhood of t0 that satisfies
ϕk(α(Vt0)) ⊂ E, k ∈ {0, 1, . . . , n0 − 1}. Thus, ϕk(α(Vt0)) ⊂ E, ∀k ∈ N. As a matter of fact,

Vt0 ⊂ α−1(invr(E)),

and it follows that α−1(invr(E)) is open. Therefore, α : I → X int is a continuous map.
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To prove that α(I) ⊂ D(X), choose any t0 ∈ I; since α is intrinsic, given E ∈ ε(X) there
exists nE ∈ N such that

ϕα(t0)(n) = ϕn(α(t0)) ∈ E, ∀n ≥ nE .

It follows that ϕα(t0) is exterior, and hence α(t0) ∈ D(X).
To show the converse, denote D = D(X) and let us consider the relative externology ε(D) =

{E ∩D}E∈ε(X). Since D is completely invariant, one has that the intrinsic topology induced by
the relative externology is also the relative intrinsic topology, as the respective bases which have
been chosen for both topologies are the same:

(D∩U)∩ invr(E ∩D) = D∩U ∩ invr(E)∩ invr(D) = D∩U ∩ invr(E)∩D = D∩ (U ∩ invr(E)).

If α : I → X int is continuous and α(I) ⊂ D, then α : I → Dint is continuous. Notice that
ε(D) ⊂ εr(D); indeed, if x ∈ D(X), then owing to the fact that D is completely invariant, one
has that ϕn(x) ∈ D(X), for all n ∈ N and, given E ∈ ε(X), there is nx ∈ N such that ϕn(x) ∈ E,
∀n ≥ nx, so ϕn(x) ∈ E ∩D, ∀n ≥ nx. Therefore, one has by (i) that α : I → D is an intrinsic
path. Since ε(D) is the relative externology, we have that α : I → X is also intrinsic.

3.2 Ω-end sets of an exterior discrete semi-flow

Given an exterior discrete semi-flow X, we modify the definitions of ωπBG
0 (X) and ωπS

0 (X) to
obtain new sets ΩπBG

0 (X) and ΩπS
0 (X), respectively. Along this section, to avoid any confusion,

we will denote by [ · ]ω the equivalence classes taken as elements of ωπBG
0 (X) or ωπS

0 (X), as
appropriate.

Definition 3.2.1. We define the functor ΩπBG
0 from EF(N) to Set as one that maps a

given exterior discrete semi-flow X = (X,ϕ, ε(X)) to the set

ΩπBG
0 (X) = {ϕx | x ∈ D(X)}/ ∼Ω,

where ϕx ∼Ω ϕx′ if there exists an exterior homotopy F : N×̄I → X such that, for all n ∈ N,
F (n, 0) = ϕx(n), F (n, 1) = ϕx′(n) and F (n, t) = ϕn(F (0, t)), t ∈ I; and assigns each exterior
discrete semi-flow morphism f : (X,ϕ, ε(X)) → (Y, ψ, ε(Y )) to the map ΩπBG

0 (f) : ΩπBG
0 (X) →

ΩπBG
0 (Y ) given by

ΩπBG
0 (f)([ϕx]) = [f ◦ ϕx] = [ψf(x)].

We denote by [ϕx]Ω the elements (equivalence classes) of ΩπBG
0 (X) (or sometimes just by

[ϕx] if no confusion is possible).

Observe that, if F : N×̄I → X is an exterior homotopy such that F (n, 0) = ϕx(n), F (n, 1) =
ϕx′(n) and F (n, t) = ϕn(F (0, t)), then the map ΩπBG

0 (f) is well-defined, as the exterior homotopy
G = f ◦ F : N×̄I → Y satisfies that, for all n ∈ N, G(n, 0) = (f ◦ F )(n, 0) = f(F (n, 0)) =
f(ϕx(n)) = ψf(x)(n), G(n, 1) = (f ◦ F )(n, 1) = f(F (n, 1)) = f(ϕx′(n)) = ψf(x′)(n) and

G(n, t) = (f ◦ F )(n, t) = f(F (n, t)) = f(ϕn(F (0, t))) = f(ϕ(n, F (0, t))) = f(ϕF (0,t)(n)) =

= ψf(F (0,t))(n) = ψ(f◦F )(0,t)(n) = ψG(0,t)(n) = ψ(n,G(0, t)) = ψn(G(0, t)),

where t ∈ I.
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Remark 3.2.1. Given an exterior discrete semi-flow X = (X,ϕ, ε(X)), note that one can
also regard the set ωπBG

0 (X) as a quotient:

ωπBG
0 (X) = {ϕx | x ∈ D(X)}/ ∼ω,

where ϕx ∼ω ϕx′ if there exists an exterior homotopy F : N×̄I → X such that, for all n ∈ N,
F (n, 0) = ϕx(n) and F (n, 1) = ϕx′(n).

Proposition 3.2.1. There is a natural transformation ρBG : ΩπBG
0 → ωπBG

0 such that, for
each exterior discrete semi-flow X = (X,ϕ, ε(X)), the map ρBG

X : ΩπBG
0 (X)→ ωπBG

0 (X) is given
by ρBG

X ([ϕx]Ω) = [ϕx]ω and it is surjective.

Proof. Observe that ρBG is well-defined, since, given x, x′ ∈ D(X),

ϕx ∼Ω ϕx′ =⇒ ϕx ∼ω ϕx′ .

To prove that ρBG is a natural transformation, given an exterior discrete semi-flow morphism
f : (X,ϕ, ε(X))→ (Y, ψ, ε(Y )) we must see that the following diagram is commutative:

ΩπBG
0 (X)

ρBG
X //

ΩπBG
0 (f)

��

ωπBG
0 (X)

ωπBG
0 (f)

��
ΩπBG

0 (Y )
ρBG
Y

// ωπBG
0 (Y )

For, let [ϕx]Ω ∈ ΩπBG
0 (X). We have that

(ωπBG
0 (f) ◦ ρBG

X )([ϕx]Ω) = ωπBG
0 (f)(ρBG

X ([ϕx]Ω)) = ωπBG
0 (f)([ϕx]ω) = [f ◦ ϕx]ω = [ψf(x)]ω;

besides,

(ρBG
Y ◦ ΩπBG

0 (f))([ϕx]Ω) = ρBG
Y (ΩπBG

0 (f)([ϕx]Ω)) = ρBG
Y ([f ◦ ϕx]Ω) = ρBG

Y ([ψf(x)]Ω) = [ψf(x)]ω.

Finally, observe that, if we take the quotient maps qω and qΩ, the following diagram is
commutative:

{ϕx | x ∈ D(X)}
qω

((
qΩ
��

ΩπBG
0 (X)

ρBG
X

// ωπBG
0 (X)

Then, the surjectivity of ρBG
X follows from the surjectivity of the quotient map qω.

Proposition 3.2.2. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow and consider
D = D(X,ϕ, ε(X)) provided with the restriction ϕ|N×D and the relative externology. Then:

(i) The map ΩπBG
0 (D)→ ΩπBG

0 (X) induced by the canonical inclusion D ↪→ X is bijective.
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(ii) πint
0 (D) ∼= ΩπBG

0 (D) ∼= ωπBG
0 (Dint) ∼= ΩπBG

0 (X).

Proof. (i) Take [ϕx] ∈ ΩπBG
0 (X), x ∈ D(X). Then, [ϕx] ∈ ΩπBG

0 (D), because ϕx(n) =
ϕn(x) ∈ D(X), for all n ∈ N, as D(X) is a completely invariant subset. Thus, the map is
surjective.

Moreover, if x, x′ ∈ D(X) and [ϕx] = [ϕx′ ] ∈ ΩπBG
0 (X), then there exists an exterior

homotopy F : N×̄I → X such that F (n, 0) = ϕx(n), F (n, 1) = ϕx′(n) and F (n, t) =
ϕn(F (0, t)), ∀n ∈ N, t ∈ I. Since F is exterior, so is ϕF (0,t); hence, F (0, t) ∈ D(X), ∀t ∈ I.
Now, since D is completely invariant, F (n, t) = ϕn(F (0, t)) ∈ D(X), ∀n ∈ N, t ∈ I.
Therefore, F (N×̄I) ⊂ D(X) and [ϕx] = [ϕx′ ] ∈ ΩπBG

0 (D), so the map is also injective.

(ii) ΩπBG
0 (D) ∼= ΩπBG

0 (X) has already been proved. We shall show firstly that ΩπBG
0 (D) ∼=

ωπBG
0 (Dint), and secondly that πint

0 (D) ∼= ΩπBG
0 (D).

To prove the first statement, let [ϕx] = [ϕx′ ] ∈ ΩπBG
0 (D), with x, x′ ∈ D(X). Then, there

exists an exterior homotopy F : N×̄I → D such that F (n, 0) = ϕx(n), F (n, 1) = ϕx′(n)
and F (n, t) = ϕn(F (0, t)), ∀n ∈ N, t ∈ I. Notice that, for all n ∈ N, the path F |{n}×I is
intrinsic: indeed, F is exterior and, hence, for each E ∈ ε(X) there exists nE ∈ N, nE ≥ n,
such that, ∀m ≥ nE , F ({m} × I) ⊂ E, so ∃n′E = nE − n ∈ N such that, ∀m′ ≥ n′E ,

F ({n+m′} × I) = ϕm
′
(F ({n} × I)) ⊂ E.

Thus, by Proposition 3.1.1(ii), F |{n}×I is continuous in Dint, for all n ∈ N, and then

[ϕx] = [ϕx′ ] ∈ ωπBG
0 (Dint). Conversely, if [ϕx] = [ϕx′ ] ∈ ωπBG

0 (Dint), then there is an
exterior homotopy G : N×̄I → Dint such that G(n, 0) = ϕx(n) and G(n, 1) = ϕx′(n).

Since, for each n ∈ N, G|{n}×I is continuous in Dint and G(n, t) ⊂ D(X), ∀t ∈ I, we have
by Proposition 3.1.1(ii) that G|{n}×I is intrinsic in D. In particular, α : I → D given by
α(t) = G(0, t) is intrinsic. Now, let us construct a new homotopy F ′ : N×̄I → D given by

F ′(n, t) = ϕn(α(t)).

Note that, for all n ∈ N and t ∈ I, the homotopy F ′ satisfies

F ′(n, 0) = ϕn(α(0)) = ϕn(G(0, 0)) = ϕn(ϕx(0)) = ϕn(ϕ0(x)) = ϕn(x) = ϕx(n),

F ′(n, 1) = ϕn(α(1)) = ϕn(G(0, 1)) = ϕn(ϕx′(0)) = ϕn(ϕ0(x′)) = ϕn(x′) = ϕx′(n),

F ′(n, t) = ϕn(α(t)) = ϕn(ϕ0(α(t))) = ϕn(F ′(0, t))

and, since α is intrinsic, for each E ∈ ε(X) there exists nE ∈ N such that, for all n ≥ nE ,

ϕn(α(I)) = F ′({n} × I) ⊂ E,

so F ′ is exterior. That means that [ϕx] = [ϕx′ ] ∈ ΩπBG
0 (D).

Finally, let us show the second statement. Note that D is bijective to {ϕx | x ∈ D}. Now,
given x, y ∈ D, if x ∼int y, then there is an intrinsic path h : I → D such that h(0) = x
and h(1) = y. From this path, we can create a homotopy F : N×̄I → D given by

F (n, t) = ϕn(h(t)).
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For all n ∈ N and t ∈ I, the homotopy F satisfies

F (n, 0) = ϕn(h(0)) = ϕn(x) = ϕx(n),

F (n, 1) = ϕn(h(1)) = ϕn(y) = ϕy(n),

F (n, t) = ϕn(h(t)) = ϕn(ϕ0(h(t))) = ϕn(F (0, t))

and is exterior, as h is intrinsic. Therefore, ϕx ∼Ω ϕy. Besides, if [ϕx] = [ϕy] ∈ ΩπBG
0 (D),

then there is an exterior homotopy G : N×̄I → D such that G(n, 0) = ϕx(n), G(n, 1) =
ϕy(n) and G(n, t) = ϕn(G(0, t)), ∀n ∈ N, t ∈ I. Define α : I → D so that α(t) = G(0, t);
hence,

α(0) = G(0, 0) = ϕx(0) = ϕ0(x) = x,

α(1) = G(0, 1) = ϕy(0) = ϕ0(y) = y

and α is intrinsic, since, for each E ∈ ε(X), there exists nE ∈ N such that, for all n ≥ nE ,

G({n} × I) = ϕn(G({0} × I)) = ϕn(α(I)) ⊂ E,

as G is exterior. Thus, x ∼int y.

Definition 3.2.2. We define the functor ΩπS
0 from EF(N) to Set as one that maps a given

exterior discrete semi-flow X = (X,ϕ, ε(X)) to the set

ΩπS
0 (X) = {α : R+ → X exterior | ∀n ∈ N, ϕn(α(0)) = α(n)

and each path α|[n,n+1] is intrinsic}/ ∼Ω,

where α ∼Ω β if there exists an exterior homotopy F : R+×̄I → X such that, for all r ∈ R+,
F (r, 0) = α(r), F (r, 1) = β(r), and F (n, t) = ϕn(F (0, t)), ∀n ∈ N, t ∈ I; and assigns each exte-
rior discrete semi-flow morphism f : (X,ϕ, ε(X))→ (Y, ψ, ε(Y )) to the map ΩπS

0 (f) : ΩπS
0 (X)→

ΩπS
0 (Y ) given by

ΩπS
0 (f)([α]) = [f ◦ α].

We denote by [α]Ω the elements (equivalence classes) of ΩπS
0 (X) (or sometimes just by [α] if

no confusion is possible).

Note that, if [α]Ω ∈ ΩπS
0 (X), then [f ◦ α]Ω ∈ ΩπS

0 (Y ) indeed, because f ◦ α is exterior
(composite of exterior maps),

(f ◦ α)(n) = f(α(n)) = f(ϕn(α(0))) = f(ϕ(n, α(0))) = f(ϕα(0)(n)) = ψf(α(0))(n) = ψ(f◦α)(0)(n)

= ψ(n, (f ◦ α)(0)) = ψn((f ◦ α)(0))

and, given any m ∈ N, the path f(α(m + t)), t ∈ [0, 1], is intrinsic. To see this, observe that,
given EY ∈ ε(Y ), there exist EX = f−1(EY ) ∈ ε(X) and nEY ∈ N such that, for all n ≥ nEY ,
ϕn(α(m+ t)) ⊂ EX , t ∈ [0, 1]; therefore,

f(ϕn(α(m+ t))) = ψn(f(α(m+ t))) ⊂ f(EX) ⊂ EY , ∀n ≥ nEY , t ∈ [0, 1].
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Furthermore, if F : R+×̄I → X is an exterior homotopy such that F (r, 0) = α(r), F (r, 1) =
β(r) and F (n, t) = ϕn(F (0, t)), ∀n ∈ N and t ∈ I, then the map ΩπS

0 (f) is well-defined, since
the exterior homotopy G = f ◦ F : R+×̄I → Y satisfies that, for all r ∈ R+, there exist exterior
maps γ = f ◦ α and δ = f ◦ β such that

G(r, 0) = (f ◦ F )(r, 0) = f(F (r, 0)) = f(α(r)) = (f ◦ α)(r) = γ(r),

G(r, 1) = (f ◦ F )(r, 1) = f(F (r, 1)) = f(β(r)) = (f ◦ β)(r) = δ(r)

and, for all n ∈ N and t ∈ I,

G(n, t) = (f ◦ F )(n, t) = f(F (n, t)) = f(ϕn(F (0, t))) = f(ϕ(n, F (0, t))) = f(ϕF (0,t)(n)) =

= ψf(F (0,t))(n) = ψ(f◦F )(0,t)(n) = ψG(0,t)(n) = ψ(n,G(0, t)) = ψn(G(0, t)).

Lemma 3.2.1. We can give an alternative definition of the set ωπS
0 (X) as follows:

ωπS
0 (X) = {α : R+ → X exterior | ϕn(α(0)) = α(n), ∀n ∈ N}/ ∼ω,

where α ∼ω β if there exists an exterior homotopy F : R+×̄I → X such that, for all r ∈ R+,
F (r, 0) = α(r) and F (r, 1) = β(r).

Proof. Denote

S1(X) = {[α] ∈ πS
0 (X) | ∃x ∈ D(X) such that [α|N] = [ϕx]},

S2(X) = {α : R+ → X exterior | ϕn(α(0)) = α(n),∀n ∈ N}/ ∼ω .

Let a ∈ S1(X). Then, there exists an exterior map α : R+ → X such that a = [α] and ∃x ∈ D(X)
such that [α|N] = [ϕx]. Therefore, there is an exterior homotopy F : N×̄I → X such that
F (n, 0) = α(n) and F (n, 1) = ϕx(n), ∀n ∈ N. Note that, for all n ∈ N, there exists a path
fn : I → X given by

fn(t) =


F (n, 1− 3t), if 0 ≤ t < 1

3 ;

α(n+ 3t− 1), if 1
3 ≤ t <

2
3 ;

F (n+ 1, 3t− 2), if 2
3 ≤ t ≤ 1.

Given a non-negative real number x, note that there is a unique natural number nx such that
nx ≤ x < nx+1. Now, define β : R+ → X so that β(r) = fnr(r−nr), whenever nr ≤ r < nr+1,
nr ∈ N. β is continuous and, by construction, it is also exterior, since α and F are exterior. We
have that β ∼ω α, because there exists an exterior homotopy G : R+×̄I → X given, for every
r ∈ R+, by

G(r, t) = β

(
r +

1− 2(r − nr)
3

t

)
.

Note that G(r, 0) = β(r) and

G(r, 1) = β

(
r +

1− 2(r − nr)
3

)
= β

(
nr +

r − nr + 1

3

)
= fnr

(
r − nr + 1

3

)
= α(nr + r − nr + 1− 1) = α(r).
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Moreover,
β(n) = fn(0) = F (n, 1) = ϕx(n) = ϕ(n, x) = ϕn(x), n ∈ N,

and since β(0) = ϕx(0) = x, it follows that β(n) = ϕn(β(0)). Thus, a = [α]ω = [β]ω ∈ S2(X).

To show the other inclusion, let [α]ω ∈ S2(X). Then, α : R+ → X is an exterior map and
ϕn(α(0)) = α(n), ∀n ∈ N. Particularly, α|N : N → X is exterior. Hence, α(0) ∈ D(X) and it
follows trivially that [ϕα(0)] = [α|N], since

α(n) = ϕn(α(0)) = ϕ(n, α(0)) = ϕα(0)(n).

Moreover, note that [α]ω ∈ πS
0 (X). Thus, [α]ω ∈ S1(X). Then, S1(X) = S2(X).

Proposition 3.2.3. There is a natural transformation ρS : ΩπS
0 → ωπS

0 such that, for each
exterior discrete semi-flow X = (X,ϕ, ε(X)), ρS

X : ΩπS
0 (X) → ωπS

0 (X) is given by ρS
X([α]Ω) =

[α]ω.

Proof. Note that ρS is well-defined, since, given exterior maps α, β : R+ → X which satisfy
ϕn(α(0)) = α(n) and ϕn(β(0)) = β(n), ∀n ∈ N, one has that:

α ∼Ω β =⇒ α ∼ω β.

In order to prove that ρS is a natural transformation, given an exterior discrete semi-flow
morphism f : (X,ϕ, ε(X)) → (Y, ψ, ε(Y )) we must see that the following diagram is commuta-
tive:

ΩπS
0 (X)

ρS
X //

ΩπS
0 (f)
��

ωπS
0 (X)

ωπS
0 (f)

��
ΩπS

0 (Y )
ρS
Y

// ωπS
0 (Y )

For, let [α]Ω ∈ ΩπS
0 (X). We have that

(ωπS
0 (f) ◦ ρS

X)([α]Ω) = ωπS
0 (f)(ρS

X([α]Ω)) = ωπS
0 (f)([α]ω) = [f ◦ α]ω;

besides,
(ρS
Y ◦ ΩπS

0 (f))([α]Ω) = ρS
Y (ΩπS

0 (f)([α]Ω)) = ρS
Y ([f ◦ α]Ω) = [f ◦ α]ω.

We can also regard the set π̌0(X) in the way shown below to define a new functor π̌int
0 (X).

Let X = (X, ε(X)) be an exterior space and let S be a subset of X. Observe that the set π0(S)
can be seen in the following way:

π0(S) = S/ ∼,

where, given s0, s1 ∈ S, s0 ∼ s1 if there is a path h : I → S such that h(0) = s0 and h(1) = s1.
Now, as before,

π̌0(X) = lim
E∈ε(X)

π0(E).
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Mimicking what we have just done, we can give the concept of the functor π̌int
0 (X). Nonethe-

less, in order to do so, given an exterior discrete semi-flow (X,ϕ, ε(X)) we need firstly to extend
the definition of the quotient set πint

0 (S) for any subset S ⊂ X (not necessarily contained in
D = D(X)) by taking intrinsic paths in S ∩ D and creating one additional equivalence class
[{x}]int for each point x ∈ S \D to define an actual equivalence relation.

Definition 3.2.3. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow, let D = D(X)
and let S be a subset of X. We define

πint
0 (S) = (S ∩D)/ ∼int ∪{{x} | x ∈ S \D},

where, given s0, s1 ∈ S, s0 ∼int s1 if there is an intrinsic path h : I → X such that h(I) ⊂ S,
h(0) = s0 and h(1) = s1.

Observe that, if S ⊂ D, then the Definition 3.2.3 above constructs the same invariant as the
given previously in Definition 3.1.2.

Lemma 3.2.2. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow and D = D(X).
Then,

lim
E∈ε(X)

πint
0 (E) ∼= π̌0(Dint).

Proof. Firstly, notice that L(X) ⊂ D(X) since, by Proposition 2.2.3, L(X) = L(D(X)). Now,

lim
E∈ε(X)

πint
0 (E) = lim

E∈ε(X)
((E ∩D)/ ∼int ∪{{x} | x ∈ E \D})

∼= lim
E∈ε(X)

(
((E ∩D)/ ∼int) ∪

((∩E∈ε(X)E
)
\D
))

= π̌0(Dint) ∪ (L(X) \D)

= π̌0(Dint),

as we wanted to show.

Definition 3.2.4. We define the functor π̌int
0 from EF(N) to Set as one that maps a given

exterior discrete semi-flow X = (X,ϕ, ε(X)) to the set

π̌int
0 (X) = lim

E∈ε(X)
πint

0 (E) ∼= π̌0(Dint)

and assigns each exterior discrete semi-flow morphism f : X = (X,ϕ, ε(X))→ Y = (Y, ψ, ε(Y ))
to the map π̌int

0 (f) : π̌int
0 (X)→ π̌int

0 (Y ) constructed as follows. Let a = (C int
EX

)EX∈ε(X) ∈ π̌int
0 (X).

Remind that, given EY ∈ ε(Y ), we have that f−1(EY ) ∈ ε(X). Take C int
EY

as the intrinsic path
component that contains f(C int

f−1(EY )
). Then,

π̌int
0 (f)(a) = (C int

EY )EY ∈ε(Y ).
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Given s, s0 ∈ S ⊂ X such that [s]int = [s0]int, one has that s and s0 belong to the same path
component of S, that is, s ∼ s0. Therefore, there exists a surjective map ρS : πint

0 (S) → π0(S)
given by ρS([s]int) = [s]. Then, for each exterior discrete semi-flow X = (X,ϕ, ε(X)), the
surjective maps πint

0 (E) → π0(E), E ∈ ε(X), induce the map ρint
X : π̌int

0 (X) → π̌0(X) given
by ρint

X ((C int
E )E∈ε(X)) = (CE)E∈ε(X), so that CE is the unique path component of E such that

C int
E ⊂ CE , ∀E ∈ ε(X).

Proposition 3.2.4. There is a natural transformation

ρint : π̌int
0 → π̌0

given by the family of maps ρint = {ρint
X : π̌int

0 (X)→ π̌0(X)}X∈|EF(N)|.

Proof. Let f : X = (X,ϕ, ε(X))→ Y = (Y, ψ, ε(Y )) be a morphism in EF(N). We have to show
that the following diagram is commutative:

π̌int
0 (X)

ρint
X //

π̌int
0 (f)

��

π̌0(X)

π̌0(f)

��
π̌int

0 (Y )
ρint
Y

// π̌0(Y )

Let a be an element of π̌int
0 (X). Taking into account Lemma 3.2.2, a can be represented as

a = (C int
EX

)EX∈ε(X), where C int
EX

is an intrinsic path component of D∩EX . Given EY ∈ ε(Y ), we

have that f−1(EY ) ∈ ε(X) and we can take C int
f−1(EY )

as the unique intrinsic path component of

a in D∩f−1(EY ), Cf−1(EY ) as the unique path component of ρint
X (a) in f−1(EY ) and C int

EY
as the

unique path component of π̌int
0 (f)(a) in EY . Notice that C int

EY
⊃ f(C int

f−1(EY )
) ⊂ f(Cf−1(EY )).

Take CEY as the unique path component of EY containing f(C int
f−1(EY )

). Since f(Cf−1(EY ))

and C int
EY

are path-connected, one has that C int
EY
⊂ CEY ⊃ f(Cf−1(EY )). This implies that

ρint
Y (π̌int

0 (f)(a)) = π̌0(f)(ρint
X (a)), for every a ∈ π̌int

0 (X). Therefore, ρint = {ρint
X }X∈|EF(N)| is a

natural transformation.

Finally, we will give the definition of a new functor Ωπ̌0(X), based on the definition of the
functor π̌int

0 (X).

Definition 3.2.5. We define the functor Ωπ̌0 from EF(N) to Set as one that maps a given
exterior discrete semi-flow X = (X,ϕ, ε(X)) to the set

Ωπ̌0(X) = {a = (C int
E )E∈ε(X) ∈ π̌int

0 (X) | ∃x ∈ D(X) such that

∀E ∈ ε(X), ∃nE ∈ N with ϕx(n) ∈ C int
E ⊂ E, ∀n ≥ nE}

and assigns every exterior discrete semi-flow morphism f : X = (X,ϕ, ε(X))→ Y = (Y, ψ, ε(Y ))
to the map Ωπ̌0(f) : Ωπ̌0(X)→ Ωπ̌0(Y ), which is given by the formula

Ωπ̌0(f) = π̌int
0 (f)|Ωπ̌0(X).
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To check that Ωπ̌0(f) is well-defined, let us see that π̌int
0 (f)(a) ∈ Ωπ̌0(Y ) if a ∈ Ωπ̌0(X). Let

EY ∈ ε(Y ); hence, f−1(EY ) ∈ ε(X). Since a ∈ Ωπ̌0(X), a = (C int
EX

)EX∈ε(Y ), and then there

exist x ∈ D(X) and nf−1(EY ) ∈ N such that ϕx(n) ∈ C int
f−1(EY )

⊂ f−1(EY ), for all n ≥ nf−1(EY ).

Thus,
(f ◦ ϕx)(n) = ψf(x)(n) ∈ f(C int

f−1(EY )) ⊂ C
int
EY ⊂ E

Y , ∀n ≥ nf−1(EY ),

for the intrinsic path component C int
EY

of the exterior open subset EY that contains f(C int
f−1(EY )

).

Remind that f(x) ∈ f(D(X)) ⊂ D(Y ). Therefore, π̌int
0 (f)(a) ∈ Ωπ̌0(Y ).

As a consequence, the following diagram is commutative:

Ωπ̌0(X) �
� //

Ωπ̌0(f)
��

π̌int
0 (X)

π̌int
0 (f)
��

Ωπ̌0(Y ) �
� // π̌int

0 (Y )

By Lemma 0.2.1, this implies that Ωπ̌0 is a functor. In fact, Ωπ̌0 is a subfunctor of π̌int
0 ; that is,

there is a monomorphic natural transformation Ωπ̌0 −→ π̌int
0 .

Moreover, if a = (C int
E )E∈ε(X) ∈ Ωπ̌0(X) ⊂ π̌int

0 (X), then ρint
X (a) belongs to ωπ̌0(X). For, let

E ∈ ε(X); hence, there exist x ∈ D(X) and nE ∈ N such that ϕx(n) ∈ C int
E ⊂ E, for all n ≥ nE

and for each intrinsic path component C int
E . Suppose that ρint

X (a) = (CE)E∈ε(X). Then, since
C int
E ⊂ CE for each E ∈ ε(X), we have that ϕn(x) ∈ CE ⊂ E, ∀n ≥ nE , as we wanted to show.

Given X ∈ |EF(N)|, define the map ΩρX : Ωπ̌0(X) → ωπ̌0(X) given by ΩρX = ρint
X |Ωπ̌0(X).

As a result of this definition, the following diagram is commutative:

Ωπ̌0(X) �
� //

ΩρX
��

π̌int
0 (X)

ρint
X

��
ωπ̌0(X) �

�

ǐnX

// π̌0(X)

Since ρint is a natural transformation, Ωπ̌0 is a subfunctor of π̌int
0 and ωπ̌0 is a subfunctor of π̌0,

by Lemma 0.2.2 we have the following result.

Proposition 3.2.5. There is a natural transformation

Ωρ : Ωπ̌0 → ωπ̌0

given by the family of maps {ΩρX : Ωπ̌0(X)→ ωπ̌0(X)}X∈|EF(N)|.

Remark 3.2.2. By definition and from the fact that π̌int
0 (X) = π̌0(Dint) = π̌int

0 (D), it easily
follows that

Ωπ̌0(X) = Ωπ̌0(D) = ωπ̌0(Dint).

The following example is quite suitable in order to highlight some differences among most of
the end functors that we have studied so far: ωπBG

0 , ΩπBG
0 , ωπS

0 , ΩπS
0 , ωπ̌0, π̌int

0 and Ωπ̌0.



3.2. Ω-END SETS OF AN EXTERIOR DISCRETE SEMI-FLOW 55
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-0.5
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1.0

Figure 3.1: Representation of the action of the exterior discrete semi-flow (X,ϕ, ε(X)) on the points(
0,± k

10

)
, k = 1, 2, . . . , 10, and on the points

(
l + 1

4 , 0
)
, l = 0, 1, 2, 3.

Example 3.2.1. Let X = R+×[−1, 1], ε(X) = {E ∈ εc(X) | N×{0} ⊂ E} and ϕ : N×X →
X such that ϕ1 : X → X is given by

ϕ1((x, y)) =

(
x+

1− cos(2πx)

5
+ y2, y

)
.

The action of the exterior discrete semi-flow (X,ϕ, ε(X)) on some points of the x-axis and y-axis
is represented in Figure 3.1.

Note that Fix(X) = {(n, 0) | n ∈ N}. This is because

ϕ1((x, 0)) = (x, 0)⇐⇒ x+
1− cos(2πx)

5
= x

⇐⇒ cos(2πx) = 1

⇐⇒ 2πx = 2kπ, k ∈ N
⇐⇒ x = k, k ∈ N

and, if y 6= 0, the equation

ϕ1((x, y)) = (x, y)⇐⇒ x+
1− cos(2πx)

5
+ y2 = x⇐⇒ cos(2πx) = 1 + 5y2

has no solutions, since 1 + 5y2 > 1, ∀y ∈ [−1, 1] \ {0}.
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Also, if (x, 0) ∈ (n, n+1]×{0}, then the trajectory (ϕ(x,0)(k))k∈N converges to the fixed point
(n + 1, 0), for every n ∈ N. In order to see that, it suffices to prove that, given x ∈ (0, 1], the
sequence an : N→ R+ such that a0 = x and

an+1 = an +
1− cos(2πan)

5

is monotonic and bounded (that sequence will converge to 1, because it is the unique fixed point
in (0, 1]). In that case, what we want to show would follow from the fact that, for each n ∈ N,

ϕ1((x+ n, 0)) =

(
x+ n+

1− cos(2π(x+ n))

5
, 0

)
=

(
x+ n+

1− cos(2πx+ 2πn)

5
, 0

)
=

(
x+

1− cos(2πx)

5
+ n, 0

)
= ϕ1((x, 0)) + (n, 0).

Notice that (an) is monotonically increasing, because 1− cos(2πan) ≥ 0, ∀n ∈ N, and then

an+1 = an +
1− cos(2πan)

5
≥ an, ∀n ∈ N.

Besides, we will show that an ∈ (0, 1], ∀n ∈ N. For, define a map f : (0, 1]→ R+ given by

f(x) = x+
1− cos(2πx)

5
.

One has that

f ′(x) = 1 +
2π

5
sin(2πx), f ′′(x) =

4π2

5
cos(2πx);

f ′(x) = 0⇐⇒

x = x1 = 1− arcsin( 5
2π )

2π

x = x2 = 1
2 +

arcsin( 5
2π )

2π

Since f ′′(x1) =
2π

5

√
4π2 − 25 > 0 and f ′′(x2) = −2π

5

√
4π2 − 25 < 0, we have exactly one local

maximum at x2 in (0, 1]. The value of the map at x2 is

f(x2) =
7

10
+

arcsin
(

5
2π

)
2π

+

√
4π2 − 25

10π
≈ 0.967587 < 1.

Moreover, f(1) = 1 and lim
x→0+

f(x) = 0. Therefore, 0 < f(x) ≤ 1, ∀x ∈ (0, 1], and (an) is

bounded. A plot of the map f is shown in Figure 3.2.
Suppose that we consider a continuous path h : I → X with components h(t) = (x(t), y(t)).

We have the following characterization of intrinsic paths in X:

• If h(I) ⊂ R+×{0}, we have that h is not intrinsic if and only if there exist r0, r1 ∈ I such
that x(r0) ∈ N and x(r1) > x(r0).

• If h(I) 6⊂ R+×{0}, h is not intrinsic if and only if there exists t0 ∈ I such that y(t0) = 0.
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Figure 3.2: Graphic representation of the function f : (0, 1]→ (0, 1] given by f(x) = x+
1− cos(2πx)

5
.

In this example, D(X) = X. Now, we will calculate the ω-end sets and Ω-end sets of the
exterior discrete semi-flow X:

ωπBG
0 (X) = {a∞} ∪ {[ϕ(n,0)]ω | n ∈ N},

where a∞ = [ϕ(x,y)]ω ∈ ωπBG
0 (X) if y 6= 0;

ΩπBG
0 (X) = {a+

∞, a
−
∞} ∪ {[ϕ(n,0)]Ω | n ∈ N},

where a+
∞ = [ϕ(x,y)]Ω ∈ ΩπBG

0 (X) if y > 0 and a−∞ = [ϕ(x,y)]Ω ∈ ΩπBG
0 (X) if y < 0;

ωπS
0 (X) = {b∞} ∪ {bn | n ∈ N},

where b∞ = [α]ω ∈ ωπS
0 (X) satisfying [α|N]ω = [ϕ(x,y)]ω if y 6= 0 and bn = [β]ω ∈ ωπS

0 (X)
satisfying [β|N]ω = [ϕ(n,0)]ω;

ΩπS
0 (X) = {b+∞, b−∞} ∪ {bn | n ∈ N},

where b+∞ = [α]Ω ∈ ΩπS
0 (X) satisfying [α|N]Ω = [ϕ(x,y)]Ω if y > 0 (in such a way that, if

α(t) = (x(t), y(t)), then y(t) > 0, ∀t ∈ R+), b−∞ = [β]Ω ∈ ΩπS
0 (X) satisfying [β|N]Ω = [ϕ(x,y)]Ω if

y < 0 (in such a way that, if β(t) = (x(t), y(t)), then y(t) < 0, ∀t ∈ R+) and bn = [γ]Ω ∈ ΩπS
0 (X)

satisfying [γ|N]Ω = [ϕ(n,0)]Ω (in such a way that γ(t) = (x(t), 0), ∀t ∈ R+);

ωπ̌0(X) = {c∞, c0} ∪ {cn | n ∈ N∗},
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where c∞ = ((n,+∞)× [−1, 1])n∈N, c0 = (CE)E∈ε(X) ∈ ωπ̌0(X) such that (0, 0) ∈ CE ⊂ E,
∀E ∈ ε(X) and

cn =

((
n− 1

k + 1
, n+

1

k + 1

)
×
(
− 1

k + 1
,

1

k + 1

))
k∈N

;

finally,
π̌int

0 (X) = {c+
∞, c

−
∞, c0, c

+
0 , c
−
0 , c

r
0} ∪ {c+

n , c
−
n , c

l
n, c

r
n | n ∈ N∗},

Ωπ̌0(X) = {c+
∞, c

−
∞, c0} ∪ {cl

n | n ∈ N∗},

with c+
∞ = ((n,+∞)× (0, 1])n∈N, c−∞ = ((n,+∞)× [−1, 0))n∈N, c0 = ({(0, 0)}),

c+
0 =

([
0, 1

k+1

)
×
(

0, 1
k+1

))
k∈N

, c−0 =
([

0, 1
k+1

)
×
(
− 1
k+1 , 0

))
k∈N

,

cr
0 =

((
0, 1

k+1

)
× {0}

)
k∈N

, c+
n =

((
n− 1

k+1 , n+ 1
k+1

)
×
(

0, 1
k+1

))
k∈N

,

c−n =
((
n− 1

k+1 , n+ 1
k+1

)
×
(
− 1
k+1 , 0

))
k∈N

, cl
n =

((
n− 1

k+1 , n
]
× {0}

)
k∈N

and

cr
n =

((
n, n+ 1

k+1

)
× {0}

)
k∈N

.

Taking advantage of the study of the exterior discrete semi-flow given in Example 3.2.1, the
next example will be used to put into practice what was claimed in Proposition 3.1.1.

Example 3.2.2. Let X = R+,

ε(R+) = {E ∈ εc(R+) | N ⊂ E}

and ϕ : N× R+ → R+ such that ϕ1 : R+ → R+ is given by

ϕ1(x) = x+
1− cos(2πx)

5
.

A local basis for the intrinsic topology tint
X of the exterior discrete semi-flow X int at any point

x ∈ R+ is given by:

B(x) =

{
{(x− ε, x+ ε) ∩ [0,+∞)}ε∈R+ , if x /∈ N,
{(x− ε, x] ∩ [0,+∞)}ε∈R+ , if x ∈ N.

At the same time, a path α : I → R+ is intrinsic if either α(I) ⊆ (n, n + 1], for some n ∈ N,
or α(t) = 0, for all t ∈ I. In this example, since D(X) = X, we have that α : I → X is an
intrinsic path if and only if α : I → X int is a continuous map.

Remark 3.2.3. Given an exterior discrete semi-flow X, the map ρint
X : π̌int

0 (X) → π̌0(X)
does not have to be either injective or surjective.

• ρint
X is not necessarily injective: in Example 3.2.1, we have that

ρint
X (c+

∞) = ρint
X (c−∞) = c∞ ∈ ωπ̌0(X) ⊂ π̌0(X).

As a result, ρint
X is not injective.
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• ρint
X is not necessarily surjective: in Example 3.2.2, we have that

π̌0(R+) = {c∞} ∪ {cn | n ∈ N},

where c∞ = ((n,+∞))n∈N and cn = (CE)E∈ε(R+) ∈ π̌0(R+) such that n ∈ CE ⊂ E,
∀E ∈ ε(X);

π̌int
0 (R+) = {c0, c

r
0} ∪ {cl

n, c
r
n | n ∈ N∗},

where c0 = ({0}), cr
0 =

((
0, 1

k+1

))
k∈N

, cl
n =

((
n− 1

k+1 , n
])

k∈N
and

cr
n =

((
n, n+ 1

k+1

))
k∈N

. Observe that

(ρint
X )−1(c∞) = ∅.

Subsequently, ρint
X is not surjective.

Now, we shall prove that there exists a natural transformation between each pair of Ω-end
functors.

Proposition 3.2.6. There is a natural transformation

ΩR : ΩπS
0 → ΩπBG

0

given by the family of maps {ΩRX : ΩπS
0 (X)→ ΩπBG

0 (X)}X∈|EF(N)| such that, for every exterior
discrete semi-flow X = (X,ϕ, ε(X)), the following formula is satisfied:

ΩRX([α]) = [α|N] = [ϕα(0)], [α] ∈ ΩπS
0 (X).

Proof. Note that ΩR is actually well-defined, because α(0) ∈ D(X) (since α|N is exterior) and
α ∼Ω β ⇒ ϕα(0) ∼Ω ϕβ(0) being α, β : R+ → X exterior maps. Indeed, ΩR is also a natural trans-
formation. For, given an exterior discrete semi-flow morphism f : (X,ϕ, ε(X)) → (Y, ψ, ε(Y )),
one has that, for all [α] ∈ ΩπS

0 (X),

(ΩRY ◦ ΩπS
0 (f))([α]) = ΩRY (ΩπS

0 (f)([α])) = ΩRY ([f ◦ α]) = [(f ◦ α)|N] = [f ◦ (α|N)]

= [f ◦ ϕα(0)] = [ψf(α(0))],

(ΩπBG
0 (f) ◦ ΩRX)([α]) = ΩπBG

0 (f)(ΩRX([α])) = ΩπBG
0 (f)([α|N]) = ΩπBG

0 (f)([ϕα(0)])

= [f ◦ ϕα(0)] = [ψf(α(0))];

hence, ΩRY ◦ ΩπS
0 (f) = ΩπBG

0 (f) ◦ ΩRX .

In order to give a natural transformation Ωφ : ΩπS
0 → Ωπ̌0, for each exterior discrete semi-flow

X = (X,ϕ, ε(X)) define ΩφX : ΩπS
0 (X) → Ωπ̌0(X) as follows: given an element [α] ∈ ΩπS

0 (X),
set ΩφX([α]) = a = (αC int

E )E∈ε(X), where for each E ∈ ε(X), αC int
E is the unique intrinsic path

component of E such that there is rE ∈ R+ satisfying α([rE ,+∞)) ⊂ αC int
E ⊂ E.
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Let us see that the maps ΩφX are well-defined. If [α] ∈ ΩπS
0 (X), then ϕn(α(0)) = α(n), for

all n ∈ N, and α is exterior, so α(0) ∈ D(X). If we suppose that α([rE ,+∞)) ⊂ αC int
E ⊂ E,

then there exists nE ∈ N satisfying nE ≥ rE and ϕα(0)(n) = ϕn(α(0)) = α|N(n) ∈ αC int
E ⊂ E,

∀n ≥ nE . Therefore, a = ΩφX([α]) ∈ Ωπ̌0(X).

Moreover, if [β] ∈ ΩπS
0 (X) is such that [β] = [α], then ΩφX([α]) = ΩφX([β]). To prove this,

suppose that F : R+×̄I → X is an exterior homotopy such that, for all u ∈ R+, F (u, 0) = α(u),
F (u, 1) = β(u) and F (n, t) = ϕn(F (0, t)), ∀n ∈ N, t ∈ I; also, let ΩφX([α]) = (αC int

E )E∈ε(X) and
ΩφX([β]) = (βC int

E )E∈ε(X), so that there exist rE , sE ∈ R+ such that α([rE ,+∞)) ⊂ αC int
E and

β([sE ,+∞)) ⊂ βC int
E , ∀E ∈ ε(X). Take any E0 ∈ ε(X) and take a natural number m such that

rE0 ≤ m, sE0 ≤ m and ϕm(F (0, t)) ⊂ E0, ∀t ∈ I. It suffices to observe that, given r, s ∈ R+

with rE0 ≤ r and sE0 ≤ s, there is an intrinsic path h : I → X with h(I) ⊂ E0 given by

h(t) =


α(3(m− r)t+ r), if 0 ≤ t < 1

3 ,

F (m, 3t− 1), if 1
3 ≤ t <

2
3 ,

β(3(s−m)t+ 3m− 2s), if 2
3 ≤ t ≤ 1

satisfying h(0) = α(r), h(1) = β(s). Since α|[n,n+1] and β|[n,n+1] are intrinsic paths, ∀n ∈ N,
note that α|[a,b] and β|[a,b] are intrinsic paths, for any [a, b] ⊂ R+. Then, by Lemma 3.1.1, the

path h is intrinsic. This implies that αC int
E0

= βC int
E0

. Therefore, αC int
E = βC int

E , for all E ∈ ε(X),

and then ΩφX is well-defined.

Let X = (X,ϕ, ε(X)) and Y = (Y, ψ, ε(Y )) be exterior discrete semi-flows, and let f : X → Y
be an exterior discrete semi-flow morphism. It remains to prove that the following diagram is
commutative:

ΩπS
0 (X)

ΩφX //

ΩπS
0 (f)
��

Ωπ̌0(X)

Ωπ̌0(f)
��

ΩπS
0 (Y )

ΩφY

// Ωπ̌0(Y )

Take [α] ∈ ΩπS
0 (X). Suppose that ΩφX([α]) = (C int

EX
)EX∈ε(X) and that Ωπ̌0(f)((C int

EX
)EX∈ε(X)) =

(C int
EY

)EY ∈ε(Y ), where f(C int
f−1(EY )

) ⊂ C int
EY

. Given EY ∈ ε(Y ), then f−1(EY ) ∈ ε(X). Hence,

there is nf−1(EY ) ∈ N such that α([nf−1(EY ),+∞)) ⊂ C int
f−1(EY )

⊂ f−1(EY ). This implies that

f(α([nf−1(EY ),+∞))) ⊂ f(C int
f−1(EY )

) ⊂ C int
EY
⊂ EY . Then,

(Ωπ̌0(f) ◦ ΩφX)([α]) = (C int
EY )EY ∈ε(Y ) = ΩφY ([f ◦ α]) = (ΩφY ◦ ΩπS

0 (f))([α]).

Thus, we have that the diagram is commutative, as well as the following result.

Proposition 3.2.7. There is a natural transformation

Ωφ : ΩπS
0 → Ωπ̌0

given by the family of maps {ΩφX : ΩπS
0 (X)→ Ωπ̌0(X)}X∈|EF(N)|.
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In the case that the subjacent spaces of the exterior discrete semi-flows considered are first-
countable at infinity, we also have the following proposition.

Proposition 3.2.8. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow whose subjacent
exterior space X is first-countable at infinity. Then,

ΩφX : ΩπS
0 (X)→ Ωπ̌0(X)

is surjective.

Proof. Since X is first-countable at infinity, there exists a sequence (Ei)i∈N with Ei ∈ ε(X)
and Ei ⊃ Ei+1, ∀i ∈ N, which satisfies that, ∀E ∈ ε(X), ∃iE ∈ N such that E ⊃ EiE . Let
b ∈ Ωπ̌0(X), which can be represented in the form b = (C int

i )i∈N ∈ limi∈N π
int
0 (Ei), where C int

i is
an intrinsic path component of Ei and C int

i ⊃ C int
i+1. Since b ∈ Ωπ̌0(X), there exists x ∈ D(X)

and there exists an increasing sequence n0 < n1 < n2 < . . . such that, if ni ≤ j < ni+1, then
ϕx(j) ∈ C int

i . Taking x′ = ϕx(n0) and n′i = ni−n0, we have that n′0 = 0 and, for n′i ≤ k < n′i+1,
ϕx′(k) ∈ C int

i . For each k ∈ N, if n′i ≤ k < n′i+1, then ϕx′(k), ϕx′(k + 1) ∈ C int
i ; hence, there

is an intrinsic path fk : [0, 1] → C int
i such that fk(0) = ϕx′(k) and fk(1) = ϕx′(k + 1), ∀k ∈ N.

Now, define a map α : [0,+∞) → X given by α(t) = fk(t − k), whenever k ≤ t < k + 1. Note
that, by construction, [α] ∈ ΩπS

0 (X): this is because

ϕn(α(0)) = ϕn(f0(0)) = ϕn(ϕx′(0)) = ϕx′(n) = fn(0) = α(n),

each path α|[k,k+1] = fk is intrinsic and α([k, k+1]) ⊂ C int
i , if n′i ≤ k, i ∈ N. Since ΩφX([α]) = b,

then ΩφX is surjective, as we wanted to show.

Next, to construct a natural transformation from Ωπ̌0 to ΩπBG
0 , consider the category EFfc(N)

and let Ωπ̌0 and ΩπBG
0 be functors from EFfc(N) to Set.

For each X = (X,ϕ, ε(X)) ∈ EFfc(N), remind that there exists a countable basis {Ei}i∈N ⊂
ε(X), E0 ⊃ E1 ⊃ E2 ⊃ . . . , and define a map

ΩθX : Ωπ̌0(X)→ ΩπBG
0 (X)

given in the following way: let a ∈ Ωπ̌0(X), which can be represented, considering the basis
above, by a = (C int

i )i∈N, so that C int
i is an intrinsic path component of Ei verifying that C int

i+1 ⊂
C int
i and, moreover, there exists x ∈ D(X) and there exists an increasing sequence n0 < n1 <

n2 < . . . such that, if ni ≤ j < ni+1, then ϕx(j) ∈ C int
i . Taking x′ = ϕx(n0) and n′i = ni − n0,

we have that n′0 = 0 and, for n′i ≤ k < n′i+1, ϕx′(k) ∈ C int
i ; in particular, ϕx(n0) ∈ C int

0 ⊂ E0,
and x′ = ϕx(n0) ∈ D(X). We set ΩθX(a) = [ϕx′ ].

It is easy to check that

Ωπ̌0(X)
ΩθX //

∼=
��

ΩπBG
0 (X)

∼=
��

ωπ̌0(Dint(X)) ωθ
Dint

// ωπBG
0 (Dint(X))
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is a commutative diagram. This implies that ΩθX is well-defined. Since we have natural iso-
morphisms Ωπ̌0(X) ∼= ωπ̌0(Dint(X)), ΩπBG

0 (X) ∼= ωπBG
0 (Dint(X)) and ωθX , we have that ΩθX is

natural with respect to morphisms. Therefore, we have the following result.

Proposition 3.2.9. There is a natural transformation

Ωθ : Ωπ̌0 → ΩπBG
0

given by the family of maps {ΩθX : Ωπ̌0(X)→ ΩπBG
0 (X)}X∈EFfc(N).

Moreover, one has the following proposition.

Proposition 3.2.10. Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow whose subja-
cent exterior space X is first-countable at infinity. Then,

ΩθX : Ωπ̌0(X)→ ΩπBG
0 (X)

is injective.

Let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. Then, observe that the map
ΩShX : ΩπBG

0 (X) → ΩπBG
0 (X) given by ΩShX([ϕx]) = [ϕx ◦ sh] is well-defined. Note that there

exists x′ = 1 · x ∈ D(X) such that

[ϕx′ ] = [ϕ1·x] = [ϕx ◦ sh] = ΩShX([ϕx]),

and then ΩShX([ϕx]) ∈ ΩπBG
0 (X).

Moreover, if we suppose that y ∈ D(X) so that [ϕx] = [ϕy] ∈ ΩπBG
0 (X), then there is an

exterior homotopy F : N×̄I → X such that F (n, 0) = ϕx(n), F (n, 1) = ϕy(n) and F (n, t) =
ϕn(F (0, t)), for all n ∈ N and t ∈ I. Consider the exterior homotopy G : N×̄I → X given by
G(n, t) = F (n+ 1, t), which satisfies

G(n, 0) = F (n+ 1, 0) = ϕx(n+ 1) = ϕx(sh(n)) = (ϕx ◦ sh)(n),

G(n, 1) = F (n+ 1, 1) = ϕy(n+ 1) = ϕy(sh(n)) = (ϕy ◦ sh)(n),

G(n, t) = F (n+ 1, t) = ϕn+1(F (0, t)) = ϕn(F (1, t)) = ϕn(G(0, t)),

for all n ∈ N, t ∈ I. This implies that [ϕx ◦ sh] = [ϕy ◦ sh].

Theorem 3.2.1. Let ΩR and Ωφ be the natural transformations defined in this section and
let X = (X,ϕ, ε(X)) be an exterior discrete semi-flow. Then:

(i) ΩIdX ◦ ΩRX = ΩShX ◦ ΩRX . Furthermore, ΩRX(ΩπS
0 (X)) = Eq(ΩIdX ,

ΩShX).

(ii) Let Ωθ be the natural transformation defined in this section. If the subjacent exterior space
X is first-countable at infinity, then in the diagram

ΩπS
0 (X)

ΩRX //

ΩφX %% %%

ΩπBG
0 (X)

ΩIdX //

ΩShX

//
ΩπBG

0 (X)

Ωπ̌0(X)
99 ΩθX

99

we have that ΩRX = ΩθX ◦ ΩφX , where ΩφX is surjective and ΩθX is injective. As a
consequence, ΩθX : Ωπ̌0(X)→ ΩπBG

0 (X) is the equalizer of ΩIdX and ΩShX .
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Proof. (i) Let [α] ∈ ΩπS
0 (X). Then, α : R+ → X is an exterior map satisfying α(n) = ϕn(α(0))

and so that each path α|[n,n+1] is intrinsic, ∀n ∈ N. We have that

(ΩIdX ◦ ΩRX)([α]) = ΩIdX(ΩRX([α])) = ΩRX([α]) = [α|N].

Besides,

(ΩShX ◦ ΩRX)([α]) = ΩShX(ΩRX([α])) = ΩShX([α|N]).

We must prove that [α|N] = ΩShX([α|N]) = [α|N◦sh]. For, define the homotopy F : N×̄I →
X given by F (n, t) = ϕn(α|[0,1](t)) and such that

F (n, 0) = ϕn(α|[0,1](0)) = ϕn(α(0)) = α(n),

F (n, 1) = ϕn(α|[0,1](1)) = ϕn(α(1)) = ϕn+1(α(0)) = α(n+ 1) = α(sh(n)) = (α ◦ sh)(n),

F (n, t) = ϕn(α|[0,1](t)) = ϕn(ϕ0(α|[0,1](t))) = ϕn(F (0, t)).

Furthermore, F is exterior, since F (0, t) = α|[0,1](t) is intrinsic. Therefore, ΩIdX ◦ ΩRX =
ΩShX ◦ ΩRX .

We have just shown that ΩRX(ΩπS
0 (X)) ⊂ Eq(ΩIdX ,

ΩShX). To show the other inclusion,
let [ϕx] ∈ ΩπBG

0 (X) such that [ϕx] = ΩShX([ϕx]) = [ϕx ◦ sh] for some suitable x ∈ D(X).
Observe that there is an exterior homotopy F : N×̄I → X such that F (n, 0) = ϕx(n),
F (n, 1) = ShX(ϕx)(n) = (ϕx ◦ sh)(n) = ϕx(sh(n)) = ϕx(n+ 1) and F (n, t) = ϕn(F (0, t)),
∀n ∈ N, ∀t ∈ I. Hence, there exists a continuous map β : [0,+∞) → X given by β(r) =
F (n, r − n), whenever n ≤ r < n+ 1, n ∈ N. We will see that [β] ∈ ΩπS

0 (X). For, observe
that, since F is exterior, β is also exterior,

β(n) = F (n, 0) = ϕn(F (0, 0)) = ϕn(β(0))

and β|[n,n+1] is intrinsic, for all n ∈ N. In order to prove this last statement, given

E ∈ ε(X), there exists kE ∈ N such that ϕk(F (0, t)) = F (k, t) ∈ E, ∀t ∈ I and ∀k ≥ kE .
Now, if k ≥ kE − n,

ϕk(β|[n,n+1](t)) = ϕk(F (n, t− n)) = ϕn+k(F (0, t− n)) ∈ E;

then, β|[n,n+1] is intrinsic, ∀n ∈ N. What is more, one has trivially that ΩRX([β]) =

[β|N] = [ϕx], so [ϕx] ∈ ΩRX(ΩπS
0 (X)). It follows that Eq(ΩIdX ,

ΩShX) ⊂ ΩRX(ΩπS
0 (X)).

Hence,
ΩRX(ΩπS

0 (X)) = Eq(ΩIdX ,
ΩShX).

(ii) Let {Ei}i∈N ⊂ ε(X) be a basis for ε(X) which satisfies that Ei ⊃ Ei+1 for every i ∈ N,
and let [α] ∈ ΩπS

0 (X) such that α(n) = ϕn(α(0)) and hn : I → X given by hn(t) = α(n+ t)
is an intrinsic path, ∀n ∈ N. Suppose that ΩφX([α]) = a = (αC int

i )i∈N ∈ Ωπ̌0(X). We can
modify the basis to a new one (denoting it again by {Ei}i∈N) in order to find x′ ∈ D(X)
such that ΩθX(a) = [ϕx′ ] and satisfying ϕx′(n) ∈ αC int

n ⊂ En, ∀n ∈ N. Then, one has that
(ΩθX ◦ ΩφX)([α]) = [ϕx′ ] and ΩR([α]) = [α|N]. We have to show that [α|N] = [ϕx′ ].
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By the definition of ΩφX([α]), there exists rn ∈ R+ such that α([rn,+∞)) ⊂ αC int
n ⊂ En,

∀n ∈ N; particularly, ∃r0 ∈ R+ | α([r0,+∞)) ⊂ αC int
0 ⊂ E0. Let n′ = min{n ∈ N | n ≥ r0};

then, α(n′) ∈ αC int
0 . Since αC int

0 is an intrinsic path component of E0, there is an intrinsic
path γ : I → αC int

0 such that γ(0) = α(n′) and γ(1) = x′. Define a path g : I → X given
by

g(t) =

{
hi((n

′ + 1)t− i), if i
n′+1 ≤ t <

i+1
n′+1 ;

γ((n′ + 1)t− n′), if n′
n′+1 ≤ t ≤ 1,

where i ∈ {0, . . . , n′ − 1}. This path satisfies g(0) = h0(0) = α(0), g(1) = γ(1) = x′ and,
by Lemma 3.1.1, it is intrinsic, since so are both γ and hi, where i = 0, . . . , n′ − 1.

Now, there exists a homotopy F : N×̄I → X given by F (n, t) = ϕn(g(t)) which is exterior
(because g is intrinsic) and such that

F (n, 0) = ϕn(g(0)) = ϕn(α(0)) = α(n), F (n, 1) = ϕn(g(1)) = ϕn(x′) = ϕx′(n),

ϕn(F (0, t)) = ϕn(ϕ0(g(t))) = ϕn(g(t)) = F (n, t),

for all n ∈ N and t ∈ I.

Therefore, [α|N] = [ϕx′ ] and ΩRX = ΩθX ◦ ΩφX . The fact that ΩφX and ΩθX are respec-
tively surjective and injective follows from Proposition 3.2.8 and Proposition 3.2.10, and
it immediately allows us to state that Eq(ΩIdX ,

ΩShX) ∼= Ωπ̌0(X).



Chapter 4

Basins of ω-representable end points
induced by periodic points

Along this chapter, different ways of associating some exterior discrete semi-flows to a given
discrete semi-flow are analyzed. Specifically, we consider those which are related to certain
noteworthy sub-flows, such as those of fixed points or m-periodic points, and some results are
proved concerning their structure and connections.

Given a subset A ⊂ X, suppose that we are working with the exterior space (X, ε(X,A), tX),
with ε(X,A) = {U ∈ tX | A ⊂ U}, which was defined in Example 0.3.1. In this chapter, we will
consider exterior discrete semi-flows of the form (X,ϕ, ε(X,A)). Denote

D(X,A) = D(X,ϕ, ε(X,A)) = {x ∈ X | ϕx is ε(X,A)-exterior}

the region of exterior attraction of the subset A.

In section 4.1, for a given discrete semi-flow (X,ϕ) and two right-invariant subsets A ⊂ B ⊂
X, we compare the induced exterior discrete semi-flows (X,ϕ, ε(X,A)) and (X,ϕ, ε(X,B)).
Note that ε(X,B) ⊂ ε(X,A) and that we have a canonical morphism IdAB : (X,ϕ, ε(X,A)) →
(X,ϕ, ε(X,B)), which induces the maps ωπBG

0 (IdAB) : ωπBG
0 (X, ε(X,A)) → ωπBG

0 (X, ε(X,B))
and D(IdAB) : D(X,A) → D(X,B). The main result of this section gives sufficient conditions
to ensure that ωπBG

0 (IdAB) is injective and the basin in D(X,B) of an end point of the form
ωπBG

0 (IdAB)(a), a ∈ ωπBG
0 (X, ε(X,A)), coincides with the basin of a in D(X,A).

Section 4.2 is devoted to the study of regions of exterior attraction of discrete semi-flows
provided with externologies induced by the open neighborhoods of a given finite union of asymp-
totically stable cycles. Roughly speaking, given a discrete semi-flow (X,ϕ), an m-cycle is said
to be asymptotically stable if the region of exterior attraction of this m-cycle is a neighborhood
of it and, if we take a point close to any point of the m-cycle, then the image of this point
under ϕ1 is also close to some point in the m-cycle. In Corollary 4.2.2, we will prove that, under
suitable conditions, we have a canonical isomorphism aPm(X) ∼= ωπBG

0 (X, ε(X, aPm(X))); that
is, all the ω-representable end points can be given by asymptotically stable m-periodic points.

65
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Another central theorem of this chapter appears in section 4.2: if (X, f) is a discrete semi-
flow induced by a continuous map f : X → X, X is first-countable, locally path-connected
and T2 and the union of asymptotically stable m-cycles turns out to be a finite set, then we
can decompose the region of exterior attraction of these asymptotically stable m-cycles into a
disjoint union of regions of exterior attraction of the asymptotically stable fixed points of the
composite fm.

In section 4.3, we analyze the particular case in which X = S2 and the action ϕ1 = f is
induced by a continuous map f : S2 → S2 such that, for all m ∈ N, Pm(S2) is a finite set.
This makes the set aPm(S2) finite; in fact, if x0 is an attracting m-cyclic point, one has that
x0 ∈ aPm(S2).

It is interesting to note that, as a consequence of the results appearing in section 4.2, the
study of the region of exterior attraction of (S2, f, ε(S2, aCm(S2, f))) can be reduced to the
study of the region of exterior attraction of (S2, fm, ε(S2, aFix(S2, fm))), and the basins of an
asymptotically stable m-cycle (considering f) are the union of the basins of the asymptotically
stable fixed points (with respect to fm) of that m-cycle.

4.1 Comparison between externologies

In the present chapter, the set of connected components of a topological space X will be denoted
by C(X). If a ∈ U and U is an open subset of X, denote by C(a, U) the connected component
of a in U . Note that, if X is locally connected, then C(a, U) is also an open subset of X.

In addition, suppose that (Z, ε(Z)), (X, ε1(X)) and (X, ε2(X)) are exterior spaces. Along
this chapter, given a continuous map f : Z → X, if f : (Z, ε(Z)) → (X, εk(X)) is an exterior
map, then we will say that f is an εk(X)-exterior map, k = 1, 2.

Given two exterior spaces (X, ε(X)), (Y, ε(Y )), we use exponential notation (Y, ε(Y ))(X,ε(X))

or a shorter notation such as (Y, ε(Y ))X or Y X for denoting the space of exterior maps from
(X, ε(X)) to (Y, ε(Y )).

Lemma 4.1.1. Suppose that A ⊂ B are subsets of a locally connected topological space X.
Consider the following commutative pullback diagrams, where d0(F )(n) = F (n, 0), ∀n ∈ N, and
the maps ıAB : (X, ε(X,A))N×̄I → (X, ε(X,B))N×̄I and AB : (X, ε(X,A))N → (X, ε(X,B))N are
induced by the map IdAB : (X, ε(X,A))→ (X, ε(X,B)):

P (X,A,A) //

((

��

(X, ε(X,A))N×̄I

ıAB

))d0

��

P (X,A,B) //

��

(X, ε(X,B))N×̄I

d0

��

(X, ε(X,A))N
AA=Id

//

AA=Id ((

(X, ε(X,A))N

AB

))
(X, ε(X,A))N

AB // (X, ε(X,B))N



4.1. COMPARISON BETWEEN EXTERNOLOGIES 67

If there is a sequence of open subsets U0 ⊃ U1 ⊃ U2 ⊃ . . . such that, for every integer i ≥ 0,
B ⊂ Ui satisfying, for a, b ∈ A and a 6= b, C(a, Ui) ∩ C(b, Ui) = ∅ and {Ci(A)}i∈N is a basis for
the externology ε(X,A), where Ci(A) =

⊔
a∈AC(a, Ui), then the canonical map

P (X,A,A)→ P (X,A,B)

is a bijection.

Proof. Let α : N→ X be ε(X,A)-exterior and let β : N→ X be ε(X,B)-exterior. Then, one has
that α : N → X is also ε(X,B)-exterior. Suppose that we have an ε(X,B)-exterior homotopy
F : N×̄I → X from α to β. Given E ∈ ε(X,A), since {Ci(A)}i∈N is a basis for the externology
ε(X,A), there is n0 such that Cn0(A) ⊂ E and there is n1 such that α(n) ∈ Cn0(A) ⊂ E, for
every n ≥ n1. Since Un0 ∈ ε(X,B), there is n2 ∈ N such that, for every n ≥ n2, F ({n} × I) ⊂
Un0 . Hence, for every n ≥ n3 = max{n1, n2}, α(n) ∈ Cn0(A) and F ({n} × I) ⊂ Un0 . Since
{n} × I is connected, one has that F ({n} × I) ⊂ Cn0(A), for n ≥ n3. Then, for every n ≥ n3,
F ({n} × I) ⊂ E. Therefore, β : N→ X and F : N×̄I → X are ε(X,A)-exterior maps.

As a consequence of Lemma 4.1.1, we have the following result.

Corollary 4.1.1. Suppose that A ⊂ B are subsets of a locally connected topological space
X. If there is a sequence of open subsets U0 ⊃ U1 ⊃ U2 ⊃ . . . such that, for every integer
i ≥ 0, B ⊂ Ui satisfying, for a, b ∈ A and a 6= b, C(a, Ui) ∩ C(b, Ui) = ∅ and {Ci(A)}i∈N
is a basis for the externology ε(X,A), where Ci(A) =

⊔
a∈AC(a, Ui), then the canonical map

πBG
0 (X, ε(X,A))→ πBG

0 (X, ε(X,B)) is injective.

Proof. Suppose that [α], [α′] ∈ πBG
0 (X, ε(X,A)) and that there is an ε(X,B)-exterior homotopy

F : N×̄I → X from α to α′. Then, the pair (α, F ) ∈ P (X,A,B). Applying Lemma 4.1.1, we
have that (α, F ) ∈ P (X,A,A). This implies that F is ε(X,A)-exterior. Therefore, it follows
that [α] = [α′].

Theorem 4.1.1. Let A ⊂ B be right-invariant subsets of a locally connected discrete semi-
flow (X,ϕ). Suppose that there is a sequence of open subsets U0 ⊃ U1 ⊃ U2 ⊃ . . . such that,
for every integer i ≥ 0, B ⊂ Ui satisfying, for a, b ∈ A and a 6= b, C(a, Ui) ∩ C(b, Ui) = ∅ and
{Ci(A)}i∈N is a basis for the externology ε(X,A), where Ci(A) =

⊔
a∈AC(a, Ui). Consider the

induced exterior semi-flows (X, ε(X,A)) = (X,ϕ, ε(X,A)) and (X, ε(X,B)) = (X,ϕ, ε(X,B)).
Then:

(i) The canonical map ωπBG
0 (X, ε(X,A))→ ωπBG

0 (X, ε(X,B)) is injective.

(ii) The following is a commutative pullback diagram:

D(X,A)
ωA //

��

ωπBG
0 (X, ε(X,A))

��
D(X,B) ωB

// ωπBG
0 (X, ε(X,B))

Equivalently, if a ∈ ωπBG
0 (X, ε(X,A)), then ω−1

A (a) = ω−1
B (a).
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Proof. (i) Let us consider the following commutative diagram:

ωπBG
0 (X, ε(X,A)) //

��

ωπBG
0 (X, ε(X,B))

��
πBG

0 (X, ε(X,A)) // πBG
0 (X, ε(X,B))

By definition, the canonical map ωπBG
0 (X, ε(X,A)) → πBG

0 (X, ε(X,A)) is injective and,
by Corollary 4.1.1, the map πBG

0 (X, ε(X,A))→ πBG
0 (X, ε(X,B)) is injective. This implies

that
ωπBG

0 (X, ε(X,A))→ ωπBG
0 (X, ε(X,B))

is also injective.

(ii) Take a = [ϕx] ∈ ωπBG
0 (X, ε(X,A)), with x ∈ D(X,A). It is obvious that ω−1

A (a) ⊂ ω−1
B (a).

Now, take y ∈ D(X,B) and suppose that y ∈ ω−1
B (a). Hence, there is an ε(X,B)-exterior

homotopy F : N×̄I → X from ϕx to ϕy. Notice that the pair (ϕx, F ) is in the pullback
P (X,A,B); therefore, by Lemma 4.1.1, we have that (ϕx, F ) is in P (X,A,A), and then
F and ϕy are ε(X,A)-exterior maps. This implies that y ∈ ω−1

A (a). Thus, one has that

ω−1
A (a) = ω−1

B (a).

4.2 Basins of end points related to periodic points

Although their proofs are quite trivial, the following pair of lemmas will be useful along this
section.

Lemma 4.2.1. Let A = {x1, . . . , xn} be a finite set in a T2 topological space X. Then,
there exist open neighborhoods U1, U2, . . . , Un of the respective points x1, x2, . . . , xn such that
Ui ∩ Uj = ∅, for any i 6= j, i, j ∈ {1, . . . , n}.

Lemma 4.2.2. Let X = (X,ϕ) be a discrete semi-flow. Suppose that x ∈ Pm(X) and let
a ∈ N. Then,

ϕx(a ·m) = x.

Proposition 4.2.1. Let X = (X,ϕ) be a discrete semi-flow. If A is a finite right-invariant
subset and X is T2, then the canonical map

A −→ ωπBG
0 (X, ε(X,A))

x 7−→ [ϕx]

is injective.
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Proof. Let A = {x1, . . . , xN}. Since A is a finite right-invariant subset, there is m ∈ N such that
A ⊂ Pm(X). By Lemma 4.2.1, there exist open neighborhoods U1, U2, . . . , UN of the respective
m-periodic points x1, x2, . . . , xN such that Ui ∩ Uj = ∅, for any i 6= j, i, j ∈ {1, . . . , N}.

Now, given i, j ∈ {1, . . . , N}, let us suppose that there is an exterior homotopy F : N×̄I → X
such that F (n, 0) = ϕxi(n) and F (n, 1) = ϕxj (n), ∀n ∈ N. Since F is exterior, for each
E ∈ ε(X,A) there exists nE ∈ N such that, for all n ≥ nE and t ∈ I, F (n, t) ∈ E. Note that we
can take E as a disjoint union of open neighborhoods,

E =
N⊔
k=1

Vk,

where Vk ⊂ Uk, ∀k ∈ {1, . . . , N}. Hence, F ({n} × [0, 1]) ∈
⊔N
k=1 Vk, ∀n ≥ nE . Since the

continuous images of connected sets are connected, one has that F ({n}× [0, 1]) is connected and
then there is ln ∈ {1, . . . , N} such that F (n, t) ∈ Uln , ∀t ∈ I, ∀n ≥ nE . This means that both
ϕxi(n) and ϕxj (n) belongs to the same open neighborhood Uln , and since there can only be one
m-periodic point in it, we have that ϕxi(n) = ϕxj (n), ∀n ≥ nE . Notice that one can find a ∈ N
such that a ·m ≥ nE . Then, as xi, xj ∈ Pm(X), by Lemma 4.2.2 we have that:

xi = ϕxi(a ·m) = ϕxj (a ·m) = xj .

Thus, the map is injective.

Corollary 4.2.1. Let X = (X,ϕ) be a discrete semi-flow. If Pm(X) is finite and X is T2,
then the canonical map

Pm(X)→ ωπBG
0 (X, ε(X,Pm(X)))

is injective.

In order to find a bijective map similar to the above-mentioned canonical map, we can deal
with asymptotically stable cycles. In addition, we need the discrete semi-flow X also to be
first-countable, locally path-connected and path-connected.

Definition 4.2.1. Let (X,ϕ) be a discrete semi-flow. An m-cycle {x0, . . . , xm−1} is said
to be attractor if D(X, {x0, . . . , xm−1}) is a neighborhood of {x0, . . . , xm−1}. An m-cycle
{x0, . . . , xm−1} is said to be stable if, for every neighborhood U of {x0, . . . , xm−1}, there is
an open subset V such that ϕ1(V ) ⊂ V and {x0, . . . , xm−1} ⊂ V ⊂ U . If an m-cycle is attractor
and stable, then it is said to be asymptotically stable. A periodic point x is said to be asymp-
totically stable if so is the l-cycle {x, 1 ·x, . . . , l ·x = x} that it generates. Given a right-invariant
subset S ⊂ X, the union of asymptotically stable cycles contained in S will be denoted by aS.

Theorem 4.2.1. Let X be a discrete semi-flow. If A ⊂ X is a finite union of asymptotically
stable cycles and X is T2, first-countable, locally path-connected and path-connected, then the
canonical map

A −→ ωπBG
0 (X, ε(X,A))

x 7−→ [ϕx]

is a bijection.
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Proof. Applying Proposition 4.2.1, we have that the canonical map

A −→ ωπBG
0 (X, ε(X,A))

x 7−→ [ϕx]

is injective.
Let A = {x1, . . . , xN} and denote D(X) = D(X,A) for short. Since the cycle generated

by any xk ∈ A is attractor, for each k ∈ {1, . . . , N} we can find an open neighborhood Uk
such that xk ∈ Uk ⊂ D(X); what is more, since X is a T2 space, we can take these open
neighborhoods satisfying Ui ∩ Ui′ = ∅, ∀i, i′ ∈ {1, . . . , N}, i 6= i′, and we can suppose that each
Uk is path-connected, for all k ∈ {1, . . . , N}, as X is locally path-connected. Notice that, since
X is first-countable, we can also take a countable neighborhood basis {V j

xk}j∈N at xk so that

V j+1
xk ⊂ V j

xk and V 0
xk

= Uk, being V j
xk path-connected, ∀k ∈ {1, . . . , N}, ∀j ∈ N. Moreover,

taking into account that every cycle contained in A is asymptotically stable, we can find also a
new countable neighborhood basis {W j

xk}j∈N at xk so that W j+1
xk ⊂W j

xk and V j+1
xk ⊂W j

xk ⊂ V
j
xk ,

ϕ1
(⊔N

k=1W
j
xk

)
⊂
⊔N
k=1W

j
xk , ∀j ∈ N.

To prove surjectivity, take y ∈ D(X) so that [ϕy] ∈ ωπBG
0 (X, ε(X,A)). Since the sequence

ϕy : N → X is ε(X,A)-exterior, we can assume that there are natural numbers K0 < K1 <

K2 < . . . such that ϕy(n) ∈
⊔N
k=1 V

j
xk , ∀n ≥ Kj ; in particular, ϕy(n) ∈

⊔N
k=1 V

1
xk

, ∀n ≥ K1.
Let ly ∈ {1, . . . , N} so that ϕy(K1) ∈ V 1

xly
. Because of the fact that V 1

xly
is path-connected and

xly ∈ V 1
xly

, there exists a path h : I → V 1
xly

such that h(0) = ϕy(K1) and h(1) = xly . Note

that V 1
xly
⊂ W 0

xly
and ϕ1

(⊔N
k=1W

0
xk

)
⊂
⊔N
k=1W

0
xk

. This implies that ϕn(h(I)) ⊂
⊔N
k=1W

0
xk
⊂⊔N

k=1 V
0
xk

, ∀n ∈ N.
Since ϕn(h(I)) is connected, there exists a unique l′n ∈ {1, . . . , N} so that ϕn(h(I)) ⊂ V 0

xl′n
.

What is more, for every n ∈ N, there is jn ∈ N such that Kjn ≤ n+K1 < Kjn+1. Then,

ϕn(xly) = ϕn(h(1)) = xl′n ∈ V
jn
ϕn(xly ); ϕn(ϕy(K1)) = ϕn(h(0)) ∈ V jn

ϕn(xly ).

Therefore, for all r ∈ N satisfying Kjn ≤ r < Kjn+1, there is a path αr : I → V jn
ϕr−K1 (xly )

such

that αr(0) = ϕy(r) and αr(1) = ϕr−K1(xly).
We can also consider the m-cycle generated by xly , which is {xly , ϕ1(xly), . . . , ϕ

m−1(xly)} ex-
plicitly. Since ϕK1 : {xly , ϕ1(xly), . . . , ϕ

m−1(xly)} → {xly , ϕ1(xly), . . . , ϕ
m−1(xly)} is a bijection,

there is a unique x ∈ {xly , ϕ1(xly), . . . , ϕ
m−1(xly)} ⊂ A such that ϕK1(x) = xly . At this stage,

we are able to prove that [ϕx] = [ϕy] and this would imply that the canonical map is surjective.
Notice that X is path-connected, so there are paths α0, . . . , αK1−1 such that αk(0) = ϕy(k)

and αk(1) = ϕx(k), ∀k ∈ {0, . . . ,K1−1}. Thus, we can define an exterior homotopy F : N×̄I →
X given by F (r, t) = αr(t). This exterior homotopy verifies that F (r, 0) = ϕy(r) and F (r, 1) =
ϕx(r), for every r ∈ N. Therefore, the canonical map is surjective and the theorem is proved.

Remark 4.2.1. We can introduce the following notion: an m-cycle {x, ϕ1(x), . . . , ϕm−1(x)}
is weakly stable if there are disjoint open neighborhoods Vx, Vϕ1(x), . . . , Vϕm−1(x) of the respec-
tive points x, ϕ1(x), . . . , ϕm−1(x) such that

V = Vx ∪ Vϕ1(x) ∪ · · · ∪ Vϕm−1(x) ⊂ D(X, {x, ϕ1(x), . . . , ϕm−1(x)}), ϕ1(V ) ⊂ V.
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If the conditions of Theorem 4.2.1 involved a finite union of weakly stable cycles instead of a
finite union of asymptotically stable cycles, then the result would also hold.

Corollary 4.2.2. Let X = (X,ϕ) be a discrete semi-flow. Denote by aPm(X) the union of
k-cycles {x0, . . . , xk} such that k divides m and {x0, . . . , xk} is asymptotically stable. If aPm(X)
is finite and X is T2, first-countable, locally path-connected and path-connected, then

aPm(X) ∼= ωπBG
0 (X, ε(X, aPm(X))).

Remark 4.2.2. If we remove the path-connected condition from the theorem above, the
structure of ωπBG

0 (X, ε(X, aPm(X))) could be more complicated (being related with the completely
invariant subset of pre-m-periodic points of X).

Proposition 4.2.2. Let X = (X,ϕ) be a first-countable and locally path-connected discrete
semi-flow and suppose that A,B are disjoint right-invariant finite subsets of X. If there are
right-invariant open subsets U, V of X such that A ⊂ U ⊂ D(X,AtB), B ⊂ V ⊂ D(X,AtB)
and U ∩ V = ∅, then

D(X,A tB) = D(X,A) tD(X,B).

Proof. It is clear that D(X,AtB) ⊃ D(X,A)tD(X,B). To prove the other inclusion, suppose
that A = {a1, . . . , aN} and B = {b1, . . . , bN ′}, and let y ∈ D(X,A t B). Remember that X is
locally path-connected, so for each ak ∈ A we can find an open path-connected neighborhood
Uk such that ak ∈ Uk ⊂ U ⊂ D(X,A t B); similarly, for each bk′ ∈ B there exists an open
path-connected neighborhood Vk′ satisfying bk′ ∈ Vk′ ⊂ V ⊂ D(X,A tB).

Since X is first-countable, we can also take neighborhood bases {U jk}j∈N at ak ∈ A and

{V j
k′}j∈N at bk′ ∈ B so that, ∀j ∈ N, U jk ⊂ U j−1

k , U0
k = Uk, ∀k ∈ {1, . . . , N}, and V j

k′ ⊂ V j−1
k′ ,

V 0
k′ = Vk′ , ∀k′ ∈ {1, . . . , N ′}. Notice that Uk ∩ Vk′ = ∅, ∀k ∈ {1, . . . , N} and ∀k′ ∈ {1, . . . , N ′}.

Suppose that y ∈ D(X,A t B). Since the sequence ϕy : N → X is ε(X,A t B)-exterior,
we can assume that there are natural numbers K0 < K1 < K2 < . . . such that ϕy(n) ∈⋃N
k=1 U

j
k t

⋃N ′
k′=1 V

j
k′ , ∀n ≥ Kj , j ∈ N. Let us suppose that ϕy(K0) ∈

⋃N
k=1 U

0
k ⊂ U (if

ϕy(K0) was in V , the proof would be analogous). As a consequence, ∃ly ∈ {1, . . . , N} such that
ϕy(K0) ∈ U0

ly
. The neighborhood U0

ly
= Uly is path-connected and aly ∈ U0

ly
, so there exists a

path h : I → U0
ly

such that h(0) = ϕy(K0) and h(1) = aly . In addition, this path is contained in
U and U is right-invariant.

Since ϕn(h(I)) is connected, ∀n ∈ N, it follows that

ϕn(h(I)) ⊂ U, ∀n ≥ 0.

This last condition implies that, for any r ∈ N such that Kj ≤ r < Kj+1, we have that

ϕy(r) ∈
⋃N
k=1 U

j
k . Thus, y ∈ D(X,A). Had we supposed that ϕy(K0) ∈ V , we would have

obtained that y ∈ D(X,B). Either way, y ∈ D(X,A) tD(X,B).

One can easily split the set Pm(X) into equivalence classes by the equivalence relation ∼,
which associates two m-periodic points x, x′ ∈ Pm(X) if and only if there exists a positive
integer k such that ϕk(x) = x′. In this way, each equivalence class would be of the form
[x] = {x = x0, x1, . . . , xl−1} ∈ Pm(X)/ ∼, where l ∈ Div(m), ϕ1(xl−1) = x and ϕ1(xi) = xi+1,
∀i ∈ {0, . . . , l − 2}.
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Proposition 4.2.3. Let (X, f) be a discrete semi-flow induced by a continuous map ϕ1 = f
and let us suppose that X is first-countable, locally path-connected and T2, x ∈ aPm(X) and
[x] = {x = x0, . . . , xl−1}, where l ∈ Div(m). Then,

D((X, f), [x]) =
⊔
y∈[x]

D((X, f l), {y}).

Proof. Under the given conditions, since [x] is an asymptotically stable l-cycle, we can find two
bases of open neighborhoods {W j

k}j∈N and {V j
k }j∈N at xk ∈ [x], with k ∈ {0, . . . , l − 1}, such

that, for all j ∈ N, V j
k is path-connected, V j+1

k ⊂W j
k ⊂ V

j
k and V 0

k ∩ V 0
k′ = ∅, as long as k 6= k′,

and ϕ1
(⋃l−1

k=0W
j
k

)
⊂
⋃l−1
k=0W

j
k .

As a consequence of Theorem 4.2.1, we have that the canonical map

[x] −→ ωπBG
0 (X, ε(X, [x]))

x′ 7−→ [ϕx′ ]

is a bijection. Now, given z ∈ D((X, f), [x]), one has that [ϕz] ∈ ωπBG
0 (X, ε(X, [x])). Thus, there

is y ∈ [x] such that [ϕz] = [ϕy]. There also exists an ε(X, [x])-exterior homotopy F : N×̄I → X

such that there are positive integers K0 < K1 < . . . verifying that F ({r} × I) ⊂ W j
ϕr(y),

whenever Kj ≤ r < Kj+1. Since ϕy(r+ l) = ϕy(r), we have that W j
ϕy(r+l) = W j

ϕy(r). Therefore,

G(r, t) = F (lr, t) is an ε(X, {y})-exterior homotopy from (ϕl)z to (ϕl)y. This implies that
z ∈ D((X,ϕl), {y}).

Theorem 4.2.2. Let (X, f) be a discrete semi-flow induced by a continuous map ϕ1 = f
and suppose that X is first-countable, locally path-connected and T2.

(i) If aFix(X) is finite, then D(X, aFix(X)) =
⊔
x∈aFix(X)D(X, {x}).

(ii) If aPm(X) is finite, then D(X, aPm(X)) =
⊔
n∈Div(m)D(X, aCn(X)).

(iii) If aCn(X) is finite, then D(X, aCn(X)) =
⊔

[x]∈aCn(X)/∼D(X, [x]).

(iv) If aPm(X) is finite, then D(X, aPm(X)) =
⊔

[x]∈aPm(X)/∼D(X, [x]).

(v) If aPm(X, f) = aFix(X, fm) is finite, then

D((X, f), aPm(X, f)) =
⊔

x∈aFix(X,fm)

D((X, fm), {x}).

Proof. (i), (ii), (iii) and (iv) are consequences of Proposition 4.2.2. By (iv) and Proposition
4.2.3, we have (v):

D((X, f), aPm(X, f)) =
⊔

[x′]∈aPm(X,f)/∼

D((X, f), [x′]) =
⊔

[x′]∈aPm(X,f)/∼

 ⊔
x∈[x′]

D((X, fm), {x})


=

⊔
x∈aPm(X,f)

D((X, fm), {x}) =
⊔

x∈aFix(X,fm)

D((X, fm), {x}).
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Corollary 4.2.3. Let X be a discrete semi-flow and suppose that X is first-countable,
locally path-connected and T2. If m,n are coprime, m 6= n, such that aPm(X) and aPn(X) are
finite sets, then D(X, aPm(X)) ∩D(X, aPn(X)) = D(X, aFix(X)).

4.3 Basins of end points of discrete semi-flows on S2

In this section, we remark that the topological space S2, the 2-sphere, is T2, path-connected
and locally path-connected. Moreover, the conditions which are often required in the previous
section are satisfied, provided that one considers on S2 the structure of a discrete semi-flow
(S2, ϕ) induced by a continuous map ϕ1 = f such that, for all m ∈ N, Pm(S2, f) is a finite set.

Lemma 4.3.1. Let S2 be the 2-sphere and let A ⊂ B be subsets of S2. If A and B are
finite, then there is a sequence of open subsets U0 ⊃ U1 ⊃ U2 ⊃ . . . such that, for every integer
i ≥ 0, B ⊂ Ui satisfying, for a, b ∈ A and a 6= b, C(a, Ui) ∩ C(b, Ui) = ∅, and {Ci(A)}i∈N is a
basis for the filter ε(S2, A), where Ci(A) =

⊔
a∈AC(a, Ui).

Proof. Since B is finite and S2 is T2 and locally path-connected, we can take a basis of open
neighborhoods {U jb }j∈N at b ∈ B such that U jb is path-connected, U j+1

b ⊂ U jb and U0
b ∩ U0

b′ = ∅,
being b 6= b′. Now, take Ui =

⋃
b∈B U

i
b and let a ∈ A such that a 6= b. We have that C(a, Ui) = U ia

is an open subset so that C(a, Ui) ∩ C(b, Ui) = U ia ∩ U ib = ∅, and since Ci(A) =
⋃
a∈A U

i
a, then

{Ci(A)}i∈N is clearly a basis for ε(S2, A).

Lemma 4.3.2. Let S2 be the 2-sphere and let A ⊂ P be subsets of S2. If A is finite and P
is countable, then there is a sequence of open subsets U0 ⊃ U1 ⊃ U2 ⊃ . . . such that, for every
integer i ≥ 0, P ⊂ Ui satisfying, for a, b ∈ A and a 6= b, C(a, Ui)∩C(b, Ui) = ∅, and {Ci(A)}i∈N
is a basis for the filter ε(S2, A), where Ci(A) =

⊔
a∈AC(a, Ui).

Proof. It is not hard to find a triangulation T 1 of S2 such that P ∩ T 1
1 = ∅, where T 1

1 is the
union of 1-cells of T 1 (the 1-skeleton). Now, we can find subdivisions T 2 of T 1 and, in general
for every i ∈ N, subdivisions T i+1 of T i, such that P ∩ T i1 = ∅, where T i1 is the union of 1-cells
of T i, and diam(σ) < 1

i , being σ a cell of T i.
Let Ui be the union of the interior of the 2-cells of T iand suppose that the triangulation T 0

has been chosen in such a way that C(a, U0) ∩ C(b, U0) = ∅, for a, b ∈ A and a 6= b. Then, the
sequence (Ui) satisfies the conditions of the thesis of this lemma.

Theorem 4.3.1. Suppose that X = S2 is provided with the structure of a discrete semi-flow
induced by a continuous map f : S2 → S2 such that, for every m ∈ N, Pm(S2, f) is finite. Then:

(i) If n divides m, the inclusion Pn(X) ⊂ Pm(X) induces an injective map

ωπBG
0 (X, ε(X,Pn(X)))→ ωπBG

0 (X, ε(X,Pm(X)))

and one has the following commutative pullback diagram:

D(X, ε(X,Pn(X)))
ωn //

��

ωπBG
0 (X, ε(X,Pn(X)))

��
D(X, ε(X,Pm(X))) ωm

// ωπBG
0 (X, ε(X,Pm(X)))
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In particular, for a ∈ ωπBG
0 (X, ε(X,Pn(X))), one has that

ω−1
n (a) = ω−1

m (a).

(ii) For each m ≥ 1, the canonical map

ωπBG
0 (X, ε(X,Pm(X)))→ ωπBG

0 (X, ε(X,P (X)))

is injective, and we have the following commutative pullback diagram:

D(X, ε(X,Pm(X)))
ωm //

��

ωπBG
0 (X, ε(X,Pm(X)))

��
D(X, ε(X,P (X))) ω

// ωπBG
0 (X, ε(X,P (X)))

In this case, if a ∈ ωπBG
0 (X, ε(X,Pm(X))), one has that ω−1

m (a) = ω−1(a).

(iii) Denote by aPm(X) the union of k-cycles {x0, . . . , xk} such that k divides m and each
k-cycle is asymptotically stable. Then,

aPm(X) ∼= ωπBG
0 (X, ε(X, aPm(X))).

Proof. (i) and (ii) are a consequence of Lemma 4.3.2 and Theorem 4.1.1; (iii) follows from
Corollary 4.2.2.



Chapter 5

Metrics and Borel measures on
exterior discrete semi-flows

This chapter serves as a link between the most theoretical results of this work and its compu-
tational part, which will be developed along chapters 6 and 7, as we intend to adapt or take
advantage of some of the concepts and theorems seen above to obtain either a method to com-
pute some relevant aspects regarding exterior discrete semi-flows or a framework in which these
calculations make sense. In particular, we are interested in representing basins of end points (to
make it possible, it will be convenient, from a computational point of view, to measure distances
between points to check whether an orbit has converged or not) and finding a way to construct
a measure which allows us to estimate and compare the sizes of those basins.

Section 5.1 is focused on the development of the study of discrete semi-flows on metric spaces.
In it, we contribute a brand-new notion of end point, which will depend on the metrics of the
subjacent space and will bring about new decompositions of the basins associated with these
end points. The main results of this section analyze the connection between the set of end
points of a metric exterior discrete semi-flow and the set of ω-representable end points when the
externology is given by the family of neighborhoods of a right-invariant finite subset. In this
case, the set of end points induced by the externology can be considered as a subset of the set
of end points induced by the metrics. Moreover, for an end point induced by the externology,
the basins induced by the metrics match up with the basins induced by the externology.

In section 5.2, for a regular n-dimensional CW-complex with a sequence of consecutive
subdivisions of its cellular structure, we prove that, giving only the measure of all the n-cells
of the iterated subdivision verifying the subdivision invariance property (that is to say, the
measure of an n-cell agrees with the sum of the measures of the n-cells of its subdivision), then
there is a cellular-extension σ-algebra and an n-cellular-extension measure which extends the
given measures of the cells. Moreover, for a metrizable regular CW-complex, if the iterated
subdivision satisfies the vanishing-star property and has a countable number of vertexes, then
the Borel σ-algebra generated by the topology of the CW-complex is contained in this cellular-
extension σ-algebra. As an application, we see that the Lebesgue measure on [−1, 1]n, R and
Rn, as well as the measure of angles on the 1-sphere and solid angles on the 2-sphere, can be
considered as particular cases of this cellular procedure of measure construction.

75
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5.1 Discrete semi-flows on metric spaces

Along this section, we shall consider that (X, d) is a metric space with metric d. With this
assumption, we intend to define some similar concepts to those seen above in order to adapt
them to the particular cases in which we have to deal with topologies induced by metrics. Given
a metric space X = (X, d) and a discrete semi-flow ϕ : N × X → X, it is said that the triple
(X, d, ϕ) is a metric discrete semi-flow.

5.1.1 End points of a metric discrete semi-flow

Definition 5.1.1. Given a metric discrete semi-flow X = (X, d, ϕ), the space of end
points of X is defined as the quotient set

Π(X, d) =
{ϕx | x ∈ X}

∼d
,

where, given x, y ∈ X, ϕx ∼d ϕy if and only if

(d(ϕx(n), ϕy(n))) n→∞
// 0.

We will denote by [ϕx]d the equivalence class of ϕx induced by this relation.

An element a = [ϕx]d ∈ Π(X, d) is called an end point of the metric discrete semi-flow.

Given x ∈ X, we will sometimes denote the induced map ϕx : N→ X by (x, ϕx(1), ϕx(2), . . . ).
For instance, if y ∈ Fix(X), we can interpret that y is an end point:

y ≡ [(y)]d = [(y, y, . . . )]d ∈ Π(X, d).

We can define the natural map

ωd : X −→ Π(X, d)

given by ωd(x) = [ϕx]d = [(ϕx(0) = x, ϕx(1), ϕx(2), . . . )]d.

The map ωd allows us to decompose any metric discrete semi-flow.

Definition 5.1.2. Let (X, d) be a metric discrete semi-flow. The subspace

Xa = ω−1
d (a), a ∈ Π(X, d)

will be called the basin of the end point a.

There exists an induced partition of X,

X =
⊔

a∈Π(X,d)

Xa,

which will be called the ωd-decomposition of the metric discrete semi-flow (X, d).
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Definition 5.1.3. Two metrics d and d′ in a subset X are said to be strongly equivalent,
which will be denoted by d ≈ d′, if for each real number ε > 0 there are real numbers r ≡ r(ε) > 0
and s ≡ s(ε) > 0 such that, for all x ∈ X, the following two conditions are satisfied:

(i) Bd′(x; r) ⊂ Bd(x; ε);

(ii) Bd(x; s) ⊂ Bd′(x; ε),

where Bρ(x; δ) denotes the ball of center x and radius δ in the metric ρ ∈ {d, d′}.

Remark 5.1.1. Suppose that d and d′ are strongly equivalent metrics in X and x, y ∈ X.
One has that, if (X,ϕ) is a discrete semi-flow, then

ϕx ∼d ϕy in (X, d)⇐⇒ ϕx ∼d′ ϕy in (X, d′).

5.1.2 End points of exterior discrete semi-flows on metric spaces

Given a metric space (X, d) and an externology ε(X) ⊂ td, where td is the topology induced by
the metric d in X, the triple (X, d, ε(X)) will be called exterior metric space. In the same
way, given an exterior metric space (X, d, ε(X)) and an exterior discrete semi-flow (X,ϕ, ε(X)),
the 4-tuple (X, d, ϕ, ε(X)) will be called metric exterior discrete semi-flow. This definition
will be key in chapter 6, and its notation will be shorten by (X, d, ε(X)) when the action ϕ of
the discrete semi-flow is clear in the considered context.

Definition 5.1.4. An exterior metric space (X, d, ε(X)) is said to be a d-small exterior
metric space if there exists a sequence of exterior open subsets E1 ⊃ E2 ⊃ . . . (with Ek ∈ ε(X),
∀k ∈ N∗) such that, for all k ∈ N∗, diam(U) < 1

k , for every path component U of Ek.

A metric exterior discrete semi-flow (X, d, ϕ, ε(X)) such that the exterior metric space
(X, d, ε(X)) is d-small will be called d-small metric exterior discrete semi-flow.

Theorem 5.1.1. If X = (X, d, ϕ, ε(X)) is a d-small metric exterior discrete semi-flow,
then there exists a canonical map h : ωπBG

0 (X, ε(X)) −→ Π(X, d) given by h([ϕx]) = [ϕx]d.

Proof. Let us suppose that x, y ∈ D(X,ϕ, ε(X)) and that ϕx 'e ϕy. We have to show that
d(ϕx(n), ϕy(n))→ 0.

Let δ > 0. Then, ∃k ∈ N such that 1
k < δ. Consider the exterior open subset Ek. Since ϕx, ϕy

are exterior, ∃n′k ∈ N such that, ∀n ≥ n′k, ϕx(n), ϕy(n) ∈ Ek. Moreover, there is an exterior
homotopy F : N×̄I → X from ϕx to ϕy, so ∃n′′k ∈ N such that F ({n} × I) ⊂ Ek, ∀n ≥ n′′k. Let
nk = max{n′k, n′′k}. Then, ∀n ≥ nk, ϕx(n) and ϕy(n) are in the same path component U of Ek.
Since diam(U) < 1

k as X is d-small, one has that

d(ϕx(n), ϕy(n)) <
1

k
< δ, ∀n ≥ nk.



78 CHAPTER 5. METRICS AND MEASURES ON EXTERIOR DISCRETE SEMI-FLOWS

Theorem 5.1.2. Let X = (X, d, ϕ) be a locally path-connected and locally compact metric
discrete semi-flow, and let A ⊂ X be a finite and right-invariant subset. Consider the exter-
nology ε(X,A). Then, (X, d, ϕ, ε(X,A)) is a d-small metric exterior discrete semi-flow and the
canonical map

h : ωπBG
0 (X, ε(X,A)) −→ Π(X, d)

is injective.

What is more, given a = [ϕx] ∈ ωπBG
0 (X, ε(X,A)), with x ∈ D(X,A) = D(X, ε(X,A)), one

has that

ω−1
d (h(a)) = ω−1(a).

Proof. Suppose that A = {x1, . . . , xl}. Note that, by hypothesis, the externology ε(X,A) admits
a countable basis {Ei}i∈N ⊂ ε(X,A), E1 ⊃ E2 ⊃ E3 ⊃ . . . , so that:

(1) Ek = V 1
k ∪ · · · ∪ V l

k , being V i
k a path-connected open neighborhood of xi ∈ A such that V i

k

is compact.

(2) If i 6= j, V i
k ∩ V

j
k = ∅.

(3) diam(V i
k ) < 1

k .

From these properties, it follows that (X, d, ε(X)) is d-small. Thus, by Theorem 5.1.1, there
exists the canonical map

h : ωπBG
0 (X, ε(X,A)) −→ Π(X, d).

Let us prove that h is injective. Let x, y ∈ D(X,A). One has that

h([ϕx]) = [ϕx]d, h([ϕy]) = [ϕy]d.

Suppose that d(ϕx(n), ϕy(n)) → 0. Since ϕx, ϕy : N → X are exterior maps, for each k ∈ N∗
there is nk such that nk < nk+1 and ∀n ≥ nk, ϕx(n), ϕy(n) ∈ Ek.

Besides, let m = min{d(V i
1 , V

j
1 ) | i 6= j}. Notice that m > 0. Let k ∈ N such that

m > 1
k > 0. Since d(ϕx(n), ϕy(n))→ 0, ∃N ′k such that d(ϕx(n), ϕy(n)) < 1

k < m, for all n ≥ N ′k.
Take Nk = max{nk, N ′k}. Then, we have that, ∀n ≥ Nk,

ϕx(n), ϕy(n) ∈ Ek and d(ϕx(n), ϕy(n)) <
1

k
< m.

This implies that ∃V i(n)
k such that ϕx(n), ϕy(n) ∈ V i(n)

k . Now, since V
i(n)
k is path-connected,

there is a path αn : I → V
i(n)
k such that αn(0) = ϕx(n) and αn(1) = ϕy(n). Define the homotopy

F : N×̄I −→ X

given by F (n, t) = αn(t). Note that F ({n} × I) ⊂ V
i(n)
k ⊂ Ek, ∀n ≥ Nk. Therefore, F is

an exterior homotopy from ϕx to ϕy and then ϕx 'e ϕy. This is equivalent to the fact that
[ϕx] = [ϕy]. Hence, h is injective.
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Finally, let a ∈ ωπBG
0 (X, ε(X,A)) and suppose that a = [ϕx], being ϕx : N → X an exterior

map. Let y ∈ ω−1
d (h(a)); that is, such that

d(ϕx(n), ϕy(n))→ 0.

Keeping in mind that ϕx : N → X is exterior and that d(ϕx(n), ϕy(n)) → 0, it follows that
ϕy : N→ X is exterior. Thus, we have that

h([ϕx]) = [ϕx]d = [ϕy]d = h([ϕy]).

We had shown that h is injective, so [ϕx] = [ϕy] ∈ ωπBG
0 (X, ε(X,A)) and ω(x) = [ϕx] = [ϕy] =

ω(y). Then, [ϕx] = a = ω(y), which implies that y ∈ ω−1(a).

5.2 Borel measures on exterior discrete semi-flows

In this section, we use the properties of an n-dimensional regular CW-complex and its subdi-
visions to construct a subdivision algebra and a subdivision pre-measure and then, using the
extension technique developed by Carathéodory (remember subsection 0.6.1), we can extend
this pre-measure to an n-cellular-extension measure defined in a cellular-extension σ-algebra.

The author had already devised in [48] some methods of subdivision on the surface of the
sphere S2 to calculate areas and associated probabilities of basins of end points. These proce-
dures were generalized in [3] for regular n-dimensional CW-complexes. In the present thesis, we
preferred to include directly the contents and methods developed in [3] instead of the particular
case examined in the author’s work [48].

5.2.1 Measures on regular CW-complexes

Let 2Γ be the family of all the subsets of a set Γ. Given a map µ : Γ→ [0,∞), by Lemma 0.6.1
there exists an induced map µ : 2Γ → [0,∞] given by µ(Γ′) =

∑
γ∈Γ′ µ(γ), where Γ′ is a subset

of Γ.

In this section, we suppose that X is an n-dimensional regular CW-complex and Γ∗∗(X) is a
regular iterated subdivision on X –see the appropriate definitions in section 0.7.

Definition 5.2.1. An n-cellular measure on Γ∗∗(X) consists of a family µ∗∗ = {µr∗}r∈N of
maps µr∗ : Γr∗(X)→ [0,∞) verifying the following properties:

(i) If β ∈ Γrq(X) and q < n, then µrq(β) = 0.

(ii) (Subdivision invariance property): for every γ ∈ Γr∗(X),

µr∗(γ) =
∑

β∈Sd(γ)

µr+1
∗ (β) = µr+1

∗ (Sd(γ)).
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Note that, since Γ∗∗(X)→ {̊γ | γ ∈ Γ∗∗(X)}, γ 7→ γ̊ is a bijection, we have a canonical induced
map {̊γ | γ ∈ Γ∗∗(X)} → [0,∞], γ̊ 7→ µ∗∗(γ) that will also be denoted by µ∗∗.

Associated with a regular iterated subdivision Γ∗∗(X) on X, we can consider the following
family

AΓ∗∗(X)

of subsets of X: given B ⊂ X, B ∈ AΓ∗∗(X) if there is r ∈ N and B ⊂ Γr∗(X) such that
B =

⊔
γ∈B γ̊.

Proposition 5.2.1. AΓ∗∗(X) is an algebra of subsets of X.

Proof. Since X =
⊔
γ∈Γ0∗(X) γ̊, it follows that X ∈ AΓ∗∗(X).

If B ∈ AΓ∗∗(X), there is r ∈ N and B ⊂ Γr∗(X) such that B =
⊔
γ∈B γ̊. Then, one has that

X \B =
⊔
γ∈Γr∗(X)\B γ̊ and X \B is in AΓ∗∗(X).

If B1, B2 ∈ AΓ∗∗(X), there are r1, r2 ∈ N and B1,B2 subsets of Γ
max{r1,r2}
∗ (X) such that

B1 =
⊔
γ∈B1

γ̊ and B2 =
⊔
γ∈B2

γ̊. Then, one has that B1 ∪B2 =
⊔
γ∈(B1∪B2) γ̊ and B1 ∪B2 is in

AΓ∗∗(X).

Definition 5.2.2. Given an n-cellular measure µ∗∗ = {µr∗}r∈N, we define µ : AΓ∗∗(X) → [0,∞]
by the formula

µ(B) =
∑
γ∈B

µr∗(γ),

where B is the unique subset B ⊂ Γr∗(X) such that B =
⊔
γ∈B γ̊.

It is important to remark that µ is well-defined. This follows by applying Proposition 0.6.1
and taking into account that µ∗∗ has the subdivision invariance property.

Proposition 5.2.2. The map µ : AΓ∗∗(X) → [0,∞] is a pre-measure map.

Proof. It is easy to check that µ(∅) = 0. If B1, B2, · · · ∈ AΓ∗∗(X) are mutually disjoint subsets
and

⊔
k∈NBk ∈ AΓ∗∗(X), then there are r ∈ N and B ⊂ Γr∗(X) such that

⊔
k∈NBk =

⊔
γ∈B γ̊.

Thus, we have that B =
⊔
k∈N Bk, Bk =

⊔
γ∈Bk γ̊.

Applying Proposition 0.6.1, we have that

µ

(⊔
k∈N

Bk

)
=
∑
γ∈B

µr∗(γ) =
∑
k∈N

∑
γ∈Bk

µr∗(γ)

 =
∑
k∈N

µ(Bk).

Then, µ is countable additive. This implies that µ is a pre-measure.

Definition 5.2.3. AΓ∗∗(X) is said to be the subdivision algebra of Γ∗∗(X) and µ : AΓ∗∗(X) →
[0,∞] is said to be the subdivision pre-measure of Γ∗∗(X) induced by µ∗∗.
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Remark 5.2.1. If we consider the canonical inclusion in : {̊γ | γ ∈ Γ∗∗(X)} → AΓ∗∗(X), then
in the diagram

{̊γ | γ ∈ Γ∗∗(X)}

µ∗∗
��

in // AΓ∗∗(X)

µ
ww

[0,∞]

the pre-measure µ is an extension. It is interesting to remark that, if Γ∗∗(X) is countable, then
µ is the unique extension pre-measure (as a consequence of the countable additivity property).
Moreover, X =

⊔
γ∈Γ0∗(X) γ̊, with µ(̊γ) <∞. Therefore, in this case µ is a σ-finite pre-measure.

The following result, Theorem 5.2.1, establishes that, in order to construct a measure on an
n-dimensional regular CW-complex, it suffices to assign measures to all the n-cells of a regular
iterated subdivision. This assignment has to be compatible with the subdivision operation: the
sum of the measures assigned to the n-cells of the subdivision of any given n-cell has to be equal
to the measure assigned to that n-cell. The construction of this n-cellular measure can be done
in two steps: firstly, we construct an intermediate subdivision algebra by taking arbitrary unions
of cells for each r-subdivision Γr∗ and a subdivision pre-measure; after that, in the second step,
we apply Carathéodory’s extension theorem to obtain an n-cellular-extension measure defined
on the cellular-extension σ-algebra.

Theorem 5.2.1. Let µ∗∗ = {µr∗}r∈N be an n-cellular measure on Γ∗∗(X) and µ : AΓ∗∗(X) →
[0,∞] the induced subdivision pre-measure on AΓ∗∗(X). Then, if Eµ∗∗(X) is the Carathéodory
extension σ-algebra induced by (AΓ∗∗(X), µ), there is an extension measure µ̄ : Eµ∗∗(X) → [0,∞]
(that is, µ̄(̊γ) = µ∗∗(γ), for every γ ∈ Γ∗∗(X)). Moreover, if Γ∗∗(X) is countable, then µ̄ is the
unique extension measure of µ∗∗ and µ̄ is a σ-finite measure.

Proof. By Proposition 5.2.1 and Proposition 5.2.2, we have that µ : AΓ∗∗(X) → [0,∞] is a pre-
measure defined on an algebra of subsets of X. Applying Carathéodory’s Extension Theorem
0.6.1, one obtains a σ-algebra E = Eµ∗∗(X) and a measure µ̄ : E = Eµ∗∗(X) → [0,∞]. The last
part of the theorem follows from the observations given in Remark 5.2.1.

Definition 5.2.4. Given µ∗∗ an n-cellular measure on Γ∗∗(X), Eµ∗∗(X) is said to be the
cellular-extension σ-algebra of µ∗∗ and µ̄ : Eµ∗∗(X) → [0,∞] is said to be the n-cellular-
extension measure induced by µ∗∗.

Theorem 5.2.2 asserts that, if an n-dimensional metrizable CW-complex with a regular it-
erated subdivision having a countable number of vertexes satisfies the vanishing-star property,
then the Borel σ-algebra is contained in the cellular-extension σ-algebra given above in Theorem
5.2.1.

Theorem 5.2.2. Suppose that the n-dimensional CW-complex X is a metrizable space
(with a metric d) satisfying one of the following two conditions:

(i) The set of vertexes Γ∗0(X) =
⋃
r∈N Γr0(X) is countable and, for any sequence γr ∈ Γr∗(X),

with r ∈ N and γ̊r+1 ⊂ γ̊r, one has that

lim
r→∞

diam(st(̊γr,Γ
r
∗(X))) = 0.
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Figure 5.1: Iterated subdivision Γ1
∗([−1, 1]).

(ii) The set Γ∗∗(X) is countable and, for any sequence γr ∈ Γr∗(X), with r ∈ N and γ̊r+1 ⊂ γ̊r,
one has that

lim
r→∞

diam(̊γr) = 0.

Then, for every n-cellular measure µ∗∗ on Γ∗∗(X), the Borel σ-algebra σ(tX) generated by the
topology tX of X is contained in the cellular-extension σ-algebra Eµ∗∗(X) of µ∗∗.

Proof. Suppose that U ∈ tX and x ∈ U . For each r ∈ N, there is a unique γr ∈ Γr∗(X) such
that x ∈ γ̊r. Notice that γ̊r+1 ⊂ γ̊r. Then, under condition (i), limr→∞ diam(st(̊γr,Γ

r
∗(X))) = 0.

This implies that there is r0 such that x is in the interior of st(̊γr0 ,Γ
r0
∗ (X)) ⊂ U . Note that,

if v is a vertex of γr0 , one also has that x ∈ st(v,Γr0∗ (X)) ⊂ st(̊γr0 ,Γ
r0
∗ (X)) ⊂ U . Then, U is

the union of a countable family of subsets of the form st(v,Γr∗(X)). Taking into account that
st(v,Γr0∗ (X)) ∈ AΓ∗∗(X) ⊂ Eµ∗∗(X), it follows that U ∈ Eµ∗∗(X). For (ii), the proof is similar.

5.2.2 Examples of cellular-extension measures

As canonical examples of the method of measure construction that we have just seen in sub-
section 5.2.1, we can obtain the Lebesgue measure on [−1, 1]n using the canonical dyadic cubic
subdivision of [−1, 1]n, the Lebesgue measure on R and Rn extending the same procedure to
these sets and the standard measure of angles and solid angles using a dyadic iterated subdivision
on the unit 1-sphere S1 and a dyadic cubic iterated subdivision on the unit 2-sphere S2.

Lebesgue measure on [−1, 1] and [−1, 1]n

Take X = [−1, 1] and consider the following iterated subdivision Γ∗∗ = Γ∗∗([−1, 1]) and the
following 1-cellular measure µ∗∗ (see Figure 5.1):

Γr0 = {γ0
z
2r
| z ∈ Z, −2r ≤ z ≤ 2r}, γ0

w(0) = w;

Γr1 = {γr,1z
2r
| z ∈ Z, −2r ≤ z < 2r}, γr,1w : [0, 1]→ [−1, 1], γr,1w (t) = w +

t

2r
.

The subdivision operator is given by

Sd({γ0
z
2r
}) = {γ0

z
2r
}; Sd({γr,1z

2r
}) = {γr+1,1

z
2r

, γr+1,1
2z+1

2r+1

}.

Define µ∗∗ = {µr∗}r∈N, µr1 : Γr1 → [0,∞], µr1(γr,1z
2r

) = 1
2r . Notice that µ∗∗ has the subdivision

invariance property:

µr+1
1 (Sd({γr,1z

2r
})) = µr+1

1 ({γr+1,1
z
2r

, γr+1,1
2z+1

2r+1

}) =
1

2r+1
+

1

2r+1
=

1

2r
= µr1({γr,1z

2r
}).
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As a consequence of Theorem 5.2.1 and Theorem 5.2.2, we have that the Borel σ-algebra
σ(t[−1,1]) is contained in the cellular-extension σ-algebra Eµ∗∗([−1, 1]) of µ∗∗ and we also have that
the Lebesgue σ-algebra L([−1, 1]) = Eµ∗∗([−1, 1]) and the 1-cellular-extension measure µ̄ agrees
with the Lebesgue measure.

Now, taking X = [−1, 1]n, Γr∗([−1, 1]n) =
∏n
k=1 Γr∗ and µr1

(∏n
k=1 γ

r,1
zk
2r

)
=
∏n
k=1

1
2r = 1

2nr , we

also have that the cellular-extension σ-algebra Eµ∗∗([−1, 1]n) is the Lebesgue σ-algebra L([−1, 1]n)
of [−1, 1]n and the n-cellular-extension measure is the Lebesgue measure.

Measures on R and Rn

We can extend the procedure above to R by taking the following iterated subdivision Γ∗∗ = Γ∗∗(R)
and 1-cellular measure µ∗∗:

Γr0 = {γ0
z
2r
| z ∈ Z}, γ0

w(0) = w;

Γr1 = {γr,1z
2r
| z ∈ Z}, γr,1w : [0, 1]→ R, γr,1w (t) = w +

t

2r
.

The subdivision operator is given again by

Sd({γ0
z
2r
}) = {γ0

z
2r
}; Sd({γr,1z

2r
}) = {γr+1,1

z
2r

, γr+1,1
2z+1

2r+1

}.

Define µ∗∗ = {µr∗}r∈N, µr1 : Γr1 → [0,∞], µr1(γr,1z
2r

) = 1
2r . As before, µ∗∗ has the subdivision

invariance property, the Borel σ-algebra σ(tR) is contained in the cellular-extension σ-algebra
Eµ∗∗(R) of µ∗∗, the Lebesgue σ-algebra L(R) = Eµ∗∗(R) and the 1-cellular-extension measure µ̄
agrees with the Lebesgue measure.

Now, taking X = Rn, Γr∗(Rn) =
∏n
k=1 Γr∗ and µr1

(∏n
k=1 γ

r,1
zk
2r

)
=
∏n
k=1

1
2r = 1

2nr , we also

have that the cellular-extension σ-algebra Eµ∗∗(R
n) is the Lebesgue σ-algebra L(Rn) of Rn and

the n-cellular-extension measure is the Lebesgue measure.

Measures on S1 and S2

Take X = S1 the unit 1-sphere and consider the following iterated subdivision Γ∗∗ = Γ∗∗(S
1) and

the following 1-cellular measure µ∗∗ (see Figure 5.2):

Γr0 = {γ0
z
2r
| z ∈ Z, 0 ≤ z < 2r+1}, γ0

w(0) = eiπw;

Γr1 = {γr,1z
2r
| z ∈ Z, 0 ≤ z < 2r+1}, γr,1w : [0, 1]→ S1, γr,1w (t) = eiπ(w+ t

2r ).

The subdivision operator is given by

Sd({γ0
z
2r
}) = {γ0

z
2r
}; Sd({γr,1z

2r
}) = {γr+1,1

z
2r

, γr+1,1
2z+1

2r+1

}.
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Figure 5.2: Iterated subdivision Γ2
∗(S1) on the 1-sphere.

Define µ∗∗ = {µr∗}r∈N, µr1 : Γr1 → [0,∞], µr1(γr,1z
2r

) = π
2r . Notice that µ∗∗ has the subdivision

invariance property:

µr+1
1 (Sd({γr,1z

2r
})) = µr+1

1 ({γr+1,1
z
2r

, γr+1,1
2z+1

2r+1

}) =
π

2r+1
+

π

2r+1
=

π

2r
= µr1({γr,1z

2r
}).

Once again, as a consequence of Theorem 5.2.1 and Theorem 5.2.2, we have that the Borel
σ-algebra σ(tS1) is contained in the cellular-extension σ-algebra Eµ∗∗(S

1) of µ∗∗ and the 1-cellular-
extension measure µ̄ : Eµ∗∗(S

1)→ [0,∞] of µ∗∗ is the usual measure of angles.

Now, we are going to see how using an iterated subdivision on the unit 2-sphere S2 and the
measure of angles (on S1) we can give a measure of solid angles, that is, a measure on S2.

Recall that a spherical triangle ABC is formed by connecting three points on the surface of
a sphere with great arcs, so that these three points do not lie on a great circle of the sphere
–see Figure 5.3. The angle ∠A at the vertex A is measured as the angle between the tangents
to the incident sides in the vertex tangent plane. Note that a pair of unitary tangent vectors at
a vertex determines a canonical arc in the unit 1-sphere S1 contained in the tangent plane to
the 2-sphere at this vertex, and the procedure above can be used to find the measure (angle) of
this arc. If we add the condition that each angle of the triangle is smaller than π, we can avoid
a possible ambiguity between the triangle and its complement on the 2-sphere.

Definition 5.2.5. Let ABC be a triangle and ABCD a quadrilateral on a 2-sphere of
radius R with all their angles at vertexes smaller than π. Then, the non-negative real number
(∠A+∠B+∠C−π) is called the excess of the spherical triangle. Similarly, the excess of a
spherical quadrilateral ABCD is the non-negative real number (∠A+∠B+∠C+∠D− 2π).
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C

B
A

Figure 5.3: An example of a spherical triangle.

Remark 5.2.2. There is a result, known as Girard’s theorem, that asserts that the area
of a spherical triangle (or a quadrilateral) is equal to the excess multiplied by R2 and, in the
case that R = 1, the area is equal to the excess. We recall that a similar formula is used in the
hyperbolic plane to give the area of a triangle, but in this case one has to take the defect, given
by π − (∠A+ ∠B + ∠C).

It is interesting to note that one has a canonical cubic structure Γ0
∗ on the 2-sphere (with

8 vertexes, 12 edges and 6 faces). This can be obtained by taking the unit 2-sphere inside of
the 3-cube [−1, 1]3. Now, the canonical regular CW-structure on the boundary of [−1, 1]3 can
be projected onto the unit 2-sphere by dividing the vectors of the boundary by its norm –see
Figure 5.4.

We can use the following basic properties of the spherical geometry:

(1) Given two non-antipodal points A,B ∈ S2, with A 6= B, there is a unique spherical arc
AB determined by A and B.

(2) Given a spherical arc AB, there is a unique middle point (ÂB) = A+B
|A+B| .

(3) Given a spherical quadrilateral ABCD, there is a unique middle point which can be

obtained by the formula (ÂBCD) = A+B+C+D
|A+B+C+D| .

(4) Any spherical quadrilateral ABCD admits a canonical subdivision given by the following
four spherical quadrilaterals:

A(ÂB)(ÂBCD)(D̂A), (ÂB)B(B̂C)(ÂBCD),

(ÂBCD)(B̂C)C(ĈD), (ĈD)D(D̂A)(ÂBCD).

In this way, we can subdivide each quadrilateral of Γ0
∗ to obtain the subdivision Sd(Γ0

∗) = Γ1
∗.

Applying consecutively the operator Sd for r = 0, 1, 2, . . . , one has the r-th subdivision Γr∗, which
for r = 0, 1, 2 can be seen in Figure 5.4.
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Figure 5.4: Iterated subdivision Γ2
∗(S2) on the 2-sphere.

A sequence of consecutive subdivisions Γr∗ of the 2-sphere permits us to consider the 2-sphere
as a measure space and, dividing the measure function by the area of the 2-sphere, one can obtain
a canonical structure of probability space. In order to assign an area to a spherical quadrilateral
ABCD ∈ Γr∗ of a given subdivision, it suffices to associate to each quadrilateral of Γ∗∗ its excess:

µr2(ABCD) = ∠A+ ∠B + ∠C + ∠D − 2π.

Denote by Sd(ABCD) the family of the new spherical quadrilaterals of a subdivision of a spher-
ical quadrilateral ABCD and by µr+1

2 (Sd(ABCD)) the sum of the areas of the quadrilaterals of
the subdivision of ABCD, using the assignation above. Taking into account that the sum of the
measures of the angles at some vertexes is π or 2π, it is easy to check the subdivision invariance:

µr+1
2 (Sd(ABCD)) = µr2(ABCD).

Since µ∗2 has the subdivision invariance property, one has that µ∗∗ is a 2-cellular measure
for this iterated subdivision Γ∗∗ = Γ∗∗(S

2) on the 2-sphere. Then, applying Theorem 5.2.1 and
Theorem 5.2.2, one has that the Borel σ-algebra σ(tS2) is contained in the cellular-extension
σ-algebra Eµ∗∗(S

2) and we can consider the induced 2-cellular-extension measure µ̄.

5.2.3 Measure exterior discrete semi-flows

Just as we defined the notion of metric exterior discrete semi-flow in section 5.1, we can now
define a new hybrid concept involving exterior discrete semi-flows and measures created from a
Borel space induced by a σ-algebra. This new definition will be used throughout chapter 7.
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Definition 5.2.6. A measure exterior discrete semi-flow (X,ϕ, ε(X), tX , µ) is an
exterior discrete semi-flow (X,ϕ, ε(X)) provided with a measure

µ : σ(tX)→ [0,+∞],

where (X,σ(tX)) is the Borel space induced by the σ-algebra σ(tX) generated by the topology of
X. Given two measure exterior discrete semi-flows

X = (X,ϕX , ε(X), tX , µX), Y = (Y, ϕY , ε(Y ), tY , µY ),

a measurable morphism f from X to Y is just an exterior discrete semi-flow morphism

f : (X,ϕX , ε(X))→ (Y, ϕY , ε(Y )).

In some cases, given a measure exterior discrete semi-flow (X,ϕ, ε(X), tX , µ), we will shorten
the notation and use (X, ε(X), tX , µ) when the action ϕ of the discrete semi-flow is clear.

We note that the maps ϕnX : X → X are measurable because they are continuous maps and
every continuous map is measurable. If f : X → Y is an exterior discrete semi-flow morphism,
then f is also a measurable map.
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Chapter 6

A computational study of the
iteration of rational maps on the
Riemann sphere

In the previous chapters, for a given exterior discrete semi-flow (X,ϕ, ε(X)), we have analyzed
many properties about the set of ω-representable end points ωπBG

0 (X,ϕ, ε(X)). In this chapter,
we focus on the caseX = S2 ∼= C∪{∞} ∼= P1(C). This topological space has nice properties: it is
a path-connected, locally path-connected, compact, locally compact, Hausdorff space. Moreover,
it has got the structure of a 1-dimensional complex manifold, which is called the Riemann sphere.

In addition, in the present chapter, we study the semi-flow structure induced by a rational
map –see subsections 6.1.2 and 6.1.5. A rational map defined on the Riemann sphere has
the following important property: if f 6= IdS2 , then the set of m-periodic points is finite, for
every integer m ≥ 1. This implies that, for a rational map f 6= IdS2 , if we take the action
ϕ with ϕ1 = f , then the sets of m-cyclic points aCm(S2, f), Cm(S2, f) and m-periodic points

aPm(S2, f), Pm(S2, f) are finite, and the set of periodic points P (S2, f) is countable.

If n divides m, one has the following inclusions:

aCn(S2, f) ⊂ aPm(S2, f) ⊂ aP (S2, f)

⊂ ⊂ ⊂

Cn(S2, f) ⊂ Pm(S2, f) ⊂ P (S2, f).

Using a simpler notation by denoting aCn(S2, f) = aCn, aPm(S2, f) = aPm, aP (S2, f) = aP ,
Cn(S2, f) = Cn, Pm(S2, f) = Pm and P (S2, f) = P , we have the diagram of exterior discrete
semi-flows

(S2, ϕ, ε(S2, aCn)) //

��

(S2, ϕ, ε(S2, aPm)) //

��

(S2, ϕ, ε(S2, aP ))

��
(S2, ϕ, ε(S2, Cn)) // (S2, ϕ, ε(S2, Pm)) // (S2, ϕ, ε(S2, P )),

(6.1)

89
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the corresponding diagram of sets of ω-representable end points

ωπBG
0 (S2, ϕ, ε(S2, aCn)) //

��

ωπBG
0 (S2, ϕ, ε(S2, aPm)) //

��

ωπBG
0 (S2, ϕ, ε(S2, aP ))

��
ωπBG

0 (S2, ϕ, ε(S2, Cn)) // ωπBG
0 (S2, ϕ, ε(S2, Pm)) // ωπBG

0 (S2, ϕ, ε(S2, P ))

(6.2)

and the related diagram of regions of exterior attraction

D(S2, aCn) //

��

D(S2, aPm) //

��

D(S2, aP )

��
D(S2, Cn) // D(S2, Pm) // D(S2, P ).

(6.3)

As a consequence of the results achieved in chapter 4, one has that:

(1) The maps in diagram (6.2) are injective.

(2) The regions of exterior attraction in diagram (6.3) can be divided into basins of end
points in a compatible way; that is to say, all the basins of end points belonging to some
set appearing in diagram (6.2) can be computed in the corresponding region of exterior
attraction. This means that the basins have no new points in larger regions of exterior
attraction.

(3) For a union of asymptotically stable cycles, one has the following canonical isomorphisms:

aCn ∼= ωπBG
0 (S2, ϕ, ε(S2, aCn)),

aPm ∼= ωπBG
0 (S2, ϕ, ε(S2, aPm)).

(4) The calculation of the basins of an asymptotically stable n-cycle of f = ϕ1 6= IdS2 can be
reduced to the calculation of an asymptotically stable fixed point of fn.

On the Riemann sphere, we can also consider the structure of a metric space –see subsection
6.1.3. In this way, we have the metric exterior discrete semi-flows (S2, d, ϕ, ε(S2, A)) at our
disposal, where A is one of the sets in diagram (6.1).

From the results in section 5.1, given any of the above-mentioned metric exterior discrete
semi-flows (S2, d, ϕ, ε(S2, A)), we get that

h : ωπBG
0 (S2, ϕ, ε(S2, A))→ Π(S2, d)

is injective. Moreover, the basin of an ω-representable end point a ∈ ωπBG
0 (S2, ϕ, ε(S2, A)) can

be computed as the basin of the end point h(a) ∈ Π(S2, d) in S2. Therefore, for the case of a
rational map f 6= IdS2 defined on the Riemann sphere, the computation of ω-representable end
points and their basins can be reduced to the study of end points and basins induced by the
chordal (or Riemannian) metric on S2.
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Another view to look at is the graphic representation of the fractals that one can obtain from
the iteration of a rational function different from the identity on the surface of the sphere S2.
In Numerical Analysis, some authors such as J. L. Varona in [82], O. Lewis in [54], M. McClure
in [67] or W. T. Shaw in [77] developed graphic algorithms to study the basin of attraction
of a root when a numerical method is employed. In this context, we set as a goal to improve
some aspects of the existing programs for the visualization of basins of attraction and Julia sets
associated with a rational function on the Riemann sphere by using its geometry and complex
structure.

We present here a collection of algorithms based on the canonical bijection of the complex
projective line and C ∪ {∞}, which give us the following advantages:

a) the use of homogeneous coordinates which permits us to work at the point at infinity
∞ ∈ C ∪ {∞},

b) the representation of a rational function by a pair of homogeneous polynomials of two
variables and with the same degree that allows us to compute the numerical value of the
function at any pole point and at the point at infinity,

c) the calculus of multiplicators which enables the usual classification of fixed points: super-
attracting, attracting, indifferent or repelling,

d) the use of normalized homogeneous coordinates that avoids overflow and underflow errors
in our algorithms.

Other of our subroutines are based on the stereographic bijection from the unit 2-sphere to
C ∪ {∞}, and it permits us:

e) to compute the distance from an ordinary point to the point at infinity on the 2-sphere by
using the chordal metric,

f) to plot 3D-spherical global versions of the basins of attraction,

g) to draw global basins of attraction using two discs that correspond to the south and north
hemispheres of the 2-sphere.

Finally, for a given positive integer n, our algorithms allow us:

h) to plot the basins of attraction of end points associated with n-periodic points.

The chapter is divided into three parts. In section 6.1, a mathematical theoretical basis for
our program is given. Section 6.2 describes the tasks and source codes of our algorithms. In the
end, section 6.3 includes a brief user manual that explains how to use the developed software
properly.
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6.1 Theoretical justification and mathematical framework of the
algorithms

In order to create a theoretical basis to hold and justify the correct construction of our algorithms
for the representation of basins of end points corresponding to rational maps different from the
identity, we shall use the mathematical techniques described below in this section, apart from
the notions of metric discrete semi-flow and end points previously explained in the preceding
chapters. This study will be developed within the theoretical framework of complex dynamics
on the Riemann sphere.

6.1.1 Smooth and complex structures on C ∪ {∞}

Let S2 = {(r1, r2, r3) ∈ R3 | r2
1 + r2

2 + r2
3 = 1} be the unit 2-sphere and let N = (0, 0, 1) be

its north pole. Consider the stereographic atlas {x̂, ŷ} for S2, where x̂ : S2 \ {N} → R2 and
ŷ : S2 \ {−N} → R2 are both charts given by

x̂(r1, r2, r3) =

(
r1

1− r3
,

r2

1− r3

)
,

ŷ(r1, r2, r3) =

(
r1

1 + r3
,

r2

1 + r3

)
.

The stereographic atlas gives a 2-dimensional smooth structure to S2.

We can consider in a natural way a bijection Θ̃ : S2 → C ∪ {∞} given as follows:

Θ̃(r1, r2, r3) =

{
r1

1−r3 + i r2
1−r3 , if r3 < 1,

∞, if r3 = 1.

In this way, we can also regard C ∪ {∞} as a 2-dimensional smooth manifold by using the
bijection Θ̃.

Take the following equivalence relation on C2 \ {(0, 0)}: (z, t) ∼ (z′, t′) iff there exists a
λ ∈ C \ {0} such that (z, t) = (λz′, λt′). The equivalence class of (z, t) is denoted by [z, t] and
the quotient set is denoted by P1(C) and it is called the complex projective line.

Let x and y be functions from P1(C) to C with domains Domx = {[z, t] ∈ P1(C) | t 6= 0}
and Dom y = {[z, t] ∈ P1(C) | z 6= 0} given by x([z, t]) = z/t and y([z, t]) = t/z. Then, the atlas
{x, y} provides P1(C) with a 1-dimensional complex structure. Given a point [z, t] ∈ P1(C),
the coordinates (z, t) are called the homogeneous coordinates of the point and t/z (or z/t where
appropriate) is the absolute coordinate of that point. In our study, we often use normalized
homogeneous coordinates for any point in P1(C), which are given as follows:

[z, t] =

{
[z/t, 1] if |t| ≥ |z|,
[1, t/z] if |t| < |z|,

where |t| and |z| represent the absolute value (or modulus) of the complex numbers t and z,
respectively.
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We also have the induced bijection Θ: P1(C)→ C ∪ {∞} given by

Θ([z, t]) =

{
z/t, if t 6= 0,

∞, if t = 0.

All the bijections above induce a new bijection Θ−1 ◦ Θ̃ : S2 → P1(C), which can be defined as
follows:

(Θ−1 ◦ Θ̃)(r1, r2, r3) = [r1 + ir2, 1− r3].

The inverse map of this bijection Θ̃−1 ◦Θ: P1(C)→ S2 is given by the following formula:

(Θ̃−1 ◦Θ)([z, t]) =

(
z̄t+ zt̄

t̄t+ zz̄
,
i(z̄t− zt̄)
t̄t+ zz̄

,
−t̄t+ zz̄

t̄t+ zz̄

)
. (6.4)

Remark 6.1.1. A surface with a 1-dimensional complex structure is said to be a Riemann
surface and a Riemann surface of genus 0 is said to be a Riemann sphere. Using the bijections
defined above, we have that S2 and C ∪ {∞} are Riemann spheres.

Remark 6.1.2. We notice that the homogeneous coordinates presented in this subsection
allow us to represent the point at infinity, and the use of normalized coordinates will avoid
overflow and underflow errors in our computer programs.

6.1.2 Complex rational maps

Consider a rational function h : C→ C of the form h(u) = a
F (u)

G(u)
, where u, a ∈ C, a 6= 0, F (u) =

(u− z1) · · · (u− zp) and G(u) = (u− l1) · · · (u− lq). Suppose that {z1, . . . , zp} ∩ {l1, . . . , lq} = ∅.
Then, the function h induces an extension map h+ : C ∪ {∞} → C ∪ {∞}, where h+(li) = ∞
and h+(∞) is given as follows:

h+(∞) =


∞, if q < p,

0, if q > p,

a, if q = p.

Observe that the bijection
Θ: P1(C)→ C ∪ {∞}

induces the map h1 : P1(C) → P1(C) defined by h1 = Θ−1 ◦ h+ ◦ Θ, which is expressed in
homogeneous coordinates as follows:

h1([z, t]) =

{
[a(z − tz1) · · · (z − tzp), tp−q(z − tl1) · · · (z − tlq)], if p ≥ q,
[atq−p(z − tz1) · · · (z − tzp), (z − tl1) · · · (z − tlq)], if p ≤ q.

In this context, it is important to notice that, in the case that we take u = z/t and n = max{p, q}
in the expression

a(up + a1u
p−1 + · · ·+ ap)

(uq + b1uq−1 + · · ·+ bq)
,
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we have
a(zptn−p + a1z

p−1tn−p+1 + · · ·+ apt
n)

zqtn−q + b1zq−1tn−q+1 + · · ·+ bqtn
.

Now, take the following homogeneous polynomials of degree n in the variables z, t:

F1(z, t) = a(zptn−p + a1z
p−1tn−p+1 + · · ·+ apt

n),

G1(z, t) = zqtn−q + b1z
q−1tn−q+1 + · · ·+ bqt

n;

by using these polynomials, one has that

h1([z, t]) = [F1(z, t), G1(z, t)].

Conversely, if A(z, t) and B(z, t) are homogeneous polynomials of degree n, then A(λz, λt) =
λnA(z, t) and B(λz, λt) = λnB(z, t). This implies that the pair of homogeneous polynomials
A(z, t) and B(z, t) induces the map f : P1(C)→ P1(C) defined as follows:

f([z, t]) = [A(z, t), B(z, t)].

The associated rational map is given by F (z) = A(z, 1) and G(z) = B(z, 1).

The next lemma discuss how to find all the fixed points of any rational map different from
the identity which is represented by a pair of coprime homogeneous polynomials, even if it is
composed with itself a certain number of times.

Lemma 6.1.1. Let f 6= Id be a rational map represented by a pair of coprime homogeneous
polynomials A(z, t), B(z, t) of degree n. Then:

(i) The set {[z1, t1], . . . , [zn+1, tn+1]} of roots of A(z, t)t−B(z, t)z is the set of fixed points of
f ,

(ii) f r is a rational map of degree nr which has nr + 1 fixed points (taking into account its
multiplicity).

Remark 6.1.3. The representation of a rational function with a pair of homogeneous
polynomials of two variables with the same degree combined with normalized homogeneous coor-
dinates permits us to work with poles and the point at infinity, as well as to avoid overflows and
underflows in our algorithms.

6.1.3 Metrics on S2 ∼= C ∪ {∞} ∼= P1(C)

We have two natural metrics on S2: since S2 is a subspace of R3, the usual Euclidean metric of
R3 induces a Euclidean metric dE on S2; besides, we have as well that S2 inheres a Riemannian
metric dR from the canonical Riemannian structure of S2 ⊂ R3. The connection between
Riemannian metric dR and Euclidean metric dE on S2 is given by the expression:

dE((r1, r2, r3), (r′1, r
′
2, r
′
3)) = 2 sin

(
dR((r1, r2, r3), (r′1, r

′
2, r
′
3))

2

)
.
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Using the bijection Θ̃−1 ◦ Θ: P1(C) → S2 shown in (6.4), we can translate the metric
structures from S2 to P1(C) with the following formulas:

dE1 ([z, t], [z′, t′]) = dE((Θ̃−1 ◦Θ)([z, t]), (Θ̃−1 ◦Θ)([z′, t′])),

dR1 ([z, t], [z′, t′]) = dR((Θ̃−1 ◦Θ)([z, t]), (Θ̃−1 ◦Θ)([z′, t′])).

An explicit formula for the chordal metric dE1 is given by:

dE1 ([z, t], [z′, t′]) =((
z̄t+ zt̄

t̄t+ zz̄
− z̄′t′ + zt̄′

t̄′t′ + z′z̄′

)2

+

(
i(z̄t− zt̄)
t̄t+ zz̄

− i(z̄′t′ − z′t̄′)
t̄′t′ + z′z̄′

)2

+

(
−t̄t+ zz̄

t̄t+ zz̄
− −t̄

′t′ + z′z̄′

t̄′t′ + z′z̄′

)2
) 1

2

.

6.1.4 Tangent map of a rational map

Given an analytic map f : P1(C) → P1(C) and a point p = [z, t] ∈ P1(C), there is an induced
map between the tangent spaces

Tpf : Tp(P
1(C))→ Tf(p)(P

1(C)).

Taking the bases ∂
∂x if |t| ≥ |z| and ∂

∂y if |t| < |z| of the complex tangent space and writing

f(p) = [z′, t′], we have four cases when giving the 1× 1 Jacobian matrix of Tpf :

Jx,xp =
(
(x ◦ f ◦ x−1)′(z/t)

)
, if |t| ≥ |z| and |t′| ≥ |z′|,

Jy,xp =
(
(y ◦ f ◦ x−1)′(z/t)

)
, if |t| ≥ |z| and |t′| < |z′|,

Jx,yp =
(
(x ◦ f ◦ y−1)′(t/z)

)
, if |t| < |z| and |t′| ≥ |z′|,

Jy,yp =
(
(y ◦ f ◦ y−1)′(t/z)

)
, if |t| < |z| and |t′| < |z′|.

Notice that if f is a rational map induced by polynomials A(z, t), B(z, t), then the coordinate
representations of f with respect to the corresponding pairs of charts are given by

(x ◦ f ◦ x−1)(z) = A(z, 1)/B(z, 1),

(y ◦ f ◦ x−1)(z) = B(z, 1)/A(z, 1),

(x ◦ f ◦ y−1)(t) = A(1, t)/B(1, t),

(y ◦ f ◦ y−1)(t) = B(1, t)/A(1, t),

so that we can consider its corresponding derivatives:

d(A(z, 1)/B(z, 1))

dz
,

d(B(z, 1)/A(z, 1))

dz
,

d(A(1, t)/B(1, t))

dt
,

d(B(1, t)/A(1, t))

dt
.
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Hence, the norm of the tangent function at p, taking into account the metrics of Tp(P
1(C)) and

Tf(p)(P
1(C)), is given by the formula:

|Jp(f)| =


1+zz̄

1+z′z̄′Abs((x ◦ f ◦ x−1)′(z)), if t = 1, t′ = 1,
1+zz̄
1+t′ t̄′Abs((y ◦ f ◦ x−1)′(z)), if t = 1, z′ = 1,
1+tt̄

1+z′z̄′Abs((x ◦ f ◦ y−1)′(t)), if z = 1, t′ = 1,
1+tt̄

1+t′ t̄′Abs((y ◦ f ◦ y−1)′(t)), if z = 1, z′ = 1.

We remark that, in the case of a fixed point p = f(p) = [z, t] and using normalized homoge-
neous coordinates, we only have two cases for the 1× 1 Jacobian matrix:

Jx,xp =
(
(x ◦ f ◦ x−1)′(z)

)
if t = 1,

Jy,yp =
(
(y ◦ f ◦ y−1)′(t)

)
if z = 1.

We can use the norm of the tangent map to give the following definition.

Definition 6.1.1. Let f : P1(C) → P1(C) be an analytic function and p ∈ P1(C) a fixed
point. Then, p is said to be a super-attracting, attracting, indifferent or repelling fixed
point if the norm (absolute value) of the tangent map at that point is zero, lower than 1, equal
to 1 or greater than 1, respectively.

As a matter of fact, in order to know if a fixed point is super-attracting, attracting, indifferent
or repelling, it suffices to check if

|Jp(f)| =

{
Abs((x ◦ f ◦ x−1)′(z)), if t = 1, t′ = 1,

Abs((y ◦ f ◦ y−1)′(t)), if z = 1, z′ = 1,

is zero, lower than, equal to or greater than 1.

Knowing if a fixed point is super-attracting, attracting indifferent or repelling will be helpful
later. In general, the basins of attraction of super-attracting and attracting fixed points are
“easily visible”; however, for repelling fixed points it may be necessary “to apply some zooms”
on suitable local rectangles in order to see their basins of attraction.

6.1.5 Basins of end points induced by a rational function f 6= Id on C ∪ {∞}

Let z ∈ C and consider a function h : C→ C, h(z) 6= z, of the form h(z) = a
P (z)

Q(z)
, where a ∈ C,

a 6= 0 and P (z), Q(z) is a pair of irreducible polynomials of degree p, q, respectively. We have
seen in subsection 6.1.2 that h induces a new map f = h+ on C∪ {∞}, which gives to C∪ {∞}
the structure of a discrete semi-flow ϕ : N×C∪{∞} → C∪{∞} by the formula ϕ(n, p) = fn(p).
If we consider the metric discrete semi-flow (C ∪ {∞}, dE1 , ϕ), we also have the canonical map

ωdE1
: C ∪ {∞} → Π

(
C ∪ {∞}, dE1

)
given by

ωdE1
(p) = [(ϕ(0, p), ϕ(1, p), ϕ(2, p), . . . )] = [(p, f(p), f2(p), . . . )].
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By means of this approach, we obtain a representation of the basins of attraction of the
attracting fixed points of f on the Riemann sphere. If f is of degree greater than or equal
to 2, as we can read in [31], its Julia set J(f) is an uncountable compact set containing no
isolated points and it is the boundary of the basin of attraction of each attracting fixed point
of f , including ∞, and J(f) = J(fp) for each positive integer p; its corresponding Fatou set is
precisely the complementary set of J(f). Consequently, in that case, the Julia set of f would be
formed by the points lying on the boundary of the basins of the attracting points –and hence,
the rest of points would be in the Fatou set.

The Julia set of a rational function f of degree at least 2 can also be described as:

J(f) = {x ∈ X | x is a periodic repelling point}.

Intuitively, we can say that a point x belongs to the Fatou set if there exists an open neighborhood
U of x such that ω(x) = ω(y), ∀y ∈ U –that is, if the basin of an end point associated with any
point which is close to x is the same as the basin of the end point to which x belongs.

Now, we shall study a particular example of discrete semi-flow induced by a rational function.
Consider h(z) = P (z)/Q(z), where P (z) = 1 + 4z5 and Q(z) = 5z4. In this case, the induced
map f = h+ has six fixed points:

p0 =∞, p1 = −0.809017− 0.587785i, p2 = −0.809017 + 0.587785i,

p3 = 0.309017− 0.951057i, p4 = 0.309017 + 0.951057i, p5 = 1.

Therefore, the space X = C ∪ {∞} is divided into seven regions:

X = (X \D) tD∞ tDp1 tDp2 tDp3 tDp4 tDp5 ,

where
D = D∞ ∪Dp1 ∪Dp2 ∪Dp3 ∪Dp4 ∪Dp5 .

We can associate each one with a different color, as we see in Table 6.1. It is shown, moreover,
which kind of fixed point (super-attracting, attracting, indifferent, or repelling) corresponds to
every basin of attraction.

In region X \D, we can find points whose basin of attraction corresponds to an end point
which is not associated with any fixed point (for example, end points associated with a 2-cycle)
or even points such that, after doing a prefixed limited number of iterations, belong to a sequence
that has not converged to any fixed point yet (modulo a determined precision fixed beforehand).
The rest of colors correspond to points which belong to the basin of attraction of an end point
(and they are associated with a certain fixed point).

Figure 6.1 illustrates the particular example that we have considered in this subsection. It
is clear that the basins of the points {p1, p2, p3, p4, p5} corresponds to colors {2, 3, 4, 5, 6}. The
properties of the points of regions of color 0 (red) and 1 (yellow) is a little more complicated.
Note that the points colored in yellow belong to the basin of a repelling fixed point. In this
case, since we have chosen neither a high precision nor a high maximum number of iterations,
some of these yellow points are not actually in the basin of the repelling fixed point ∞. The red
points correspond to basins of end points induced by cycles and points that, with the specified
maximum number of iterations and the given precision, are not close enough to a fixed point
yet.
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Region Color Type of associated fixed point

X \D 0

D∞ = ω−1(ω(p0)) 1 Repelling

Dp1 = ω−1(ω(p1)) 2 Super-attracting

Dp2 = ω−1(ω(p2)) 3 Super-attracting

Dp3 = ω−1(ω(p3)) 4 Super-attracting

Dp4 = ω−1(ω(p4)) 5 Super-attracting

Dp5 = ω−1(ω(p5)) 6 Super-attracting

Table 6.1: Connection between regions, colors and types of fixed points.

Figure 6.1: 3D fractal on sphere S2. The image on the left represents those regions which are near the
origin of coordinates (south pole of the sphere) and the image on the right shows regions which are close
to the point at infinity (north pole of the sphere).

6.2 Description of the employed algorithms

Along previous subsections, we have introduced some mathematical techniques and developed
basic theoretical aspects necessary to build computer programs with the ability of representing
basins of attraction of end points associated with a determined rational function different from
the identity. As usual in this work, a rational function f on C ∪ {∞} will be represented by
a pair of homogeneous polynomials A(z, t), B(z, t) of the same degree –see subsection 6.1.2.
We shall show in the next lines the algorithms which have been developed to study the basins
induced by f 6= Id.
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6.2.1 Calculation of the fixed points of f 6= Id

By Lemma 6.1.1, the set of roots

{[z1, t1], . . . , [zn+1, tn+1]}

of A(z, t)t−B(z, t)z = 0 coincides with the set of fixed points of f 6= Id.

• If t = 0 is a root of B(1, t) and z1, . . . , zn are the roots of A(z, 1)−B(z, 1)z = 0, then the
set of fixed points of f is {[1, 0], [z1, 1], . . . , [zn, 1]}.

• If t = 0 is not a root of B(1, t) and z1, . . . , zn, zn+1 are the roots of A(z, 1)−B(z, 1)z = 0,
{[z1, 1], . . . , [zn, 1], [zn+1, 1]} is the set of fixed points of f .

A function called fixedPointsZeros(A,B) has been built in Sage. This function returns a
list containing all the fixed points of a given rational function f 6= Id induced by A,B.

The following is an example of use: let

P.<z,t> = PolynomialRing(CC,2)

A=t**4+3*z**4

B=4*t*z**3

If we take as input

fixedPointsZeros(A,B),

the obtained output is

[(1, 0), (-1.000, 1), (1.000, 1), (-1.000*I, 1), (1.000*I, 1)].

Note that every point in the output is given in normalized homogeneous coordinates. In this
case, the first point represents ∞.

The developed algorithm is:

def fixedPointsZeros (U, V) :

U = U + 0*I

V = V + 0*I

if (expand(U(t=1) - V(t=1)*z)!=0):

L = CC[z]

solaux = (L(U(t=1) - V(t=1)*z)).roots()

sol1 = [homogeneousNormalization((t[0], 1)) for t in solaux]

con = V(z=1, t=0)

if (con == 0):

sol1.insert(0, (1, 0))

else:

sol1 = []

print "There was a problem when solving equation f(x)=x: cannot solve

equation 0=0"

return sol1
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Observe that the subroutine homogeneousNormalization is used within the algorithm. Its
implementation in Sage is:

def homogeneousNormalization(twotuple):

if abs(twotuple[0]) < abs(twotuple[1]):

return (twotuple[0] / twotuple[1], 1)

else:

return (1, twotuple[1] / twotuple[0])

This subroutine allows us to obtain the normalized homogeneous coordinates of any point of
C ∪ {∞}.

Such algorithms have also been implemented in Mathematica:

FixedPointsZeros[A_, B_] := Module[{isInftyPole, solaux, le, sol, z},

solaux = NSolve[A[{z, 1}] - B[{z, 1}] z == 0, z];

le = Length[solaux];

sol = Table[HomogeneousNormalization[{z /. solaux[[l]], 1}], {l, 1, le}];

isInftyPole = B[{1, 0}];

If[isInftyPole == 0., Prepend[sol, {1, 0}], sol]

];

HomogeneousNormalization[{z_, t_}] :=

If[Abs[z] <= Abs[t], {N[z/t], 1}, {1, N[t/z]}];

6.2.2 Distance between two points

The chordal distance between any two points in P1(C) can be obtained by using the bijection
from P1(C) to S2 which appeared in subsection 6.1.3 and the Euclidean metric on S2. To that
end, the following functions were developed in Sage (an example of use is given):

sphereBijection((1,0))

(0,0,1)

chordalMetric((1,0),(1,1))

1.41421356237310

Function chordalMetric uses the Euclidean metric dE to calculate distances between pairs
of points in S2, instead of the Riemannian metric. This is because its computational cost would
be greater and it would be more inefficient if it employed the metric dR, since in that case it would
use inverse trigonometric functions to do the appropriate calculations. In fact, chordalMetric
makes use of the map dE1 defined in subsection 6.1.3.

An implementation in Sage of the functions that we have just presented is shown below:



6.2. DESCRIPTION OF THE EMPLOYED ALGORITHMS 101

def sphereBijection(twotuple):

z = twotuple[0]

t = twotuple[1]

return ((conjugate(z)*t + conjugate(t)*z) /

(conjugate(t)*t + conjugate(z)*z),

(I*(conjugate(z)*t - conjugate(t)*z)) /

(conjugate(t)*t + conjugate(z)*z),

(-conjugate(t)*t + conjugate(z)*z) /

(conjugate(t)*t + conjugate(z)*z))

def chordalMetric(twotuple, twotuple1):

t1 = sphereBijection(twotuple)

t2 = sphereBijection(twotuple1)

m1 = Matrix([[t1[0], t1[1], t1[2]]])

m2 = Matrix([[t2[0], t2[1], t2[2]]])

return n(norm(m1-m2))

In Mathematica, the source code is the following:

SphereBijection[{z_,t_}] :=

{Re[(Conjugate[z]*t+Conjugate[t]*z)/(Conjugate[t]*t+Conjugate[z]*z)],

Re[(I*(Conjugate[z]*t-Conjugate[t]*z))/(Conjugate[t]*t+Conjugate[z]*z)],

Re[(-Conjugate[t]*t+Conjugate[z]*z)/(Conjugate[t]*t+Conjugate[z]*z)]};

ChordalMetric[{a_, b_}, {c_, d_}] :=

N[Norm[SphereBijection[{a, b}] - SphereBijection[{c, d}]]];

6.2.3 Iteration of the rational map f

With a view to find an end point associated with a point x ∈ P1(C), the rational map f 6= Id
must be iterated to obtain a finite sequence

(x, f(x), f2(x), f3(x), . . . , fk−1(x), fk(x)).

In this context, remind that a maximum number of iterations l must be considered and a certain
precision c1 must be prefixed to determine when to stop the iterative process while programming
the function which returns such a sequence. That is why we shall always work with sequences
in which k ≤ l.

After each iteration, there will be two possible cases:

(1) If the chordal distance from fk(x) to fk+1(x) is lower than 10−c1 , then take as output the
list [fk+1(x), k]; otherwise, case 2) is applied.

(2) If k < l, a new iteration is done and case (1) is applied again; otherwise (if k = l), then
the output [f l+1(x), l] is taken.
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The following implementation, newstep, was developed in Sage according to what was in-
tended (an example of use is given):

newstep(A,B,25,4,(0.5,1))

[(1, 0.999999999998902), 7]

The source code of the function is:

def newstep(U, V, iter, precision, pointinternumber):

point = pointinternumber

number = 0

imagepoint = rationalFunction(U, V, point)

while (chordalMetric(point, imagepoint) > 10.**(-precision))

and (number < iter):

point = imagepoint

imagepoint = rationalFunction(U, V, point)

number = number + 1

return [imagepoint, number]

Observe that newstep uses the subroutine rationalFunction in order to calculate after each
iteration the image by the given rational map of the corresponding point and to normalize its
coordinates. The source code of the subroutine in Sage is shown below:

def rationalFunction(U, V, twotuple):

c = twotuple[0]

d = twotuple[1]

return homogeneousNormalization((U(z=c, t=d), V(z=c, t=d)))

We have also developed these algorithms in Mathematica:

Newstep[{A_,B_},iter_,precision_][pointInterNumber_] :=

Module[{point,number,imagePoint},

point=pointInterNumber[[1]];

number=pointInterNumber[[2]];

imagePoint=RationalFunction[A,B][point];

Which[number>=iter,{imagePoint,iter},

ChordalMetric[point,imagePoint]<10.^-precision,{imagePoint,number},

True,Newstep[{A,B},iter,precision][{imagePoint,number+1}]]

];

RationalFunction[A_, B_][{z_, t_}] :=

HomogeneousNormalization[{A[{z, t}], B[{z, t}]}];
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6.2.4 Determination of the fixed point to which an iteration sequence con-
verges and number of iterations until convergence

Consider the ordered set of fixed points {x1, x2, . . . , xn+1} associated with a rational map dif-
ferent from the identity. In the same way, given a point x ∈ C ∪ {∞}, consider the iteration
sequence (x, f(x), . . . , fk(x)). Fixed a precision c2, if there exists i ∈ {1, . . . , n + 1} such that
the chordal distance from fk(x) to the fixed point xi is lower than 10−c2 , then the function
positionIterationNumber described below must return [i, k]. Otherwise, k = l and the output
must be [0, l], where l is the maximum number of iterations which was prefixed beforehand.
Examples of use:

positionIterationNumber(A,B,fixedPointsZeros(A,B),25,4,2,(-0.1-0.1*i,1))

[0,25]

positionIterationNumber(A,B,fixedPointsZeros(A,B),25,4,2,(-0.1-0.09*i,1))

[5,23]

The implementation of positionIterationNumber in Sage is:

def positionIterationNumber(U, V, fixedpointlist, iter, precisionpoints,

precisionroots, twotuple):

result = newstep(U, V, iter, precisionpoints, twotuple)

if (result[1] != iter):

return [position(fixedpointlist, precisionroots, result[0]), result[1]]

else:

return [0, iter]

The parameter fixedpointlist is assigned to the list of fixed points associated with the given
rational map, which will have been previously created within the function fixedPointsZeros

and will be different from the identity, and parameters precisionpoints and precisionroots

refer to precisions c1 and c2 previously defined, respectively.

The subroutine position, which appears in the subprogram above, returns the exact position
within the list fixedpointlist where the fixed point to which the iteration sequence converges
is found; in case that such a sequence does not converge to any fixed point, it returns 0. An
implementation of this subroutine in Sage is shown in the next lines:

def position(fixedPointList, precision, twotuple):

pos = -1; iter = 0; le = len(fixedPointList)

while (iter < le) and (pos == -1):

if (chordalMetric(twotuple, fixedPointList[iter]) < 10.**(-precision)):

pos = iter

else:

iter = iter + 1

else:

return pos + 1



104 CHAPTER 6. STUDY OF RATIONAL MAPS ON THE RIEMANN SPHERE

These subroutines have been implemented in Mathematica, too, as follows:

PositionIterationNumber[{A_,B_},fixedPointList_,iter_,precpoints_,precroots_]

[{z_,t_}] := Module[{result},

result=Newstep[{A,B},iter,precpoints][{{z,t},0}];

{position[fixedPointList,precroots][result[[1]]],result[[2]]}

];

position[fixedPointList_, precision_][{z_, t_}] := Module[{len, PositionAux},

len = Length[fixedPointList];

PositionAux[{a_, b_}, i_] := If[i == len + 1, 0,

If[ChordalMetric[{a, b}, fixedPointList[[i]]] < 10.^(-precision), i,

PositionAux[{z, t}, i + 1]]];

PositionAux[{z, t}, 1]

];

6.2.5 Derivative of a rational function at a fixed point

In order to know if a fixed point is super-attracting, attracting, indifferent or repelling (see
subsection 6.1.4), the derivative of the corresponding rational function can be calculated by
using the following algorithm (an example of use is given):

fixedPointsTangentMapNorm(A,B,(1,0))

((1,0),1.33333333333333)

Suppose that A(z, t), B(z, t) are homogeneous polynomials and [z0, t0] is a fixed point repre-
sented in normalized homogeneous coordinates. The subprogram fixedPointsTangentMapNorm

returns a list containing two elements: the considered fixed point [z0, t0] and the absolute value
of the derivative of the rational function at that point.

The implementation of the described algorithm, developed in Sage, is given by:

def fixedPointsTangentMapNorm(A, B, twotuple):

a, b = var(’a, b’)

nor = homogeneousNormalization(twotuple)

if (nor[1] == 1):

return (nor, abs(derivative(A(z=a, t=1) / B(z=a, t=1), a) (a=nor[0])))

else:

return (nor, abs(derivative(B(z=1, t=b) / A(z=1, t=b), b) (b=nor[1])))

In Mathematica, the source code for the same subroutine is the following:

FixedPointsTangentMapNorm[{A_, B_}][{z_, t_}] := Module[{result},

result = TangentMap[{A, B}][{z, t}];

{result[[1]], Abs[result[[2]]]}

];
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TangentMap[{A_, B_}][{z_, t_}] := Module[{nor, imagePoint, a, b},

nor = HomogeneousNormalization[{z, t}];

imagePoint = HomogeneousNormalization[{A[{z, t}], B[{z, t}]}];

If[nor[[2]] == 1, {nor, D[A[{a, 1}]/B[{a, 1}], a] /. {a -> nor[[1]]}},

{nor, D[B[{1, b}]/A[{1, b}], b] /. {b -> nor[[2]]}}]

];

6.2.6 Fractal plotting

Next we shall show the algorithms and subroutines which have been developed in Sage and
Mathematica with the aim of representing basins of end points associated with a rational function
different from the identity on C∪{∞} and even on S2, as well as the coloring strategies employed
to build those subprograms which have been followed in order to plot the corresponding fractals.

Coloring strategies

We shall plot a fractal by using the pair given by the fixed point to which the iteration sequence
converges (maybe such a point does not exist) and the number of iterations until convergence,
together with one of the following strategies:

(1) Fixed point to which the iteration sequence converges: A color is assigned to each point x

in C∪{∞} according to the fixed point to which the trajectory (fk(x))k∈N converges. That
point is drawn with another different color if the trajectory has not converged yet after
a determined number of iterations. In this way, basins of attraction can be distinguished
by their colors. The algorithm which sets the color of each point in C∪ {∞} developed in
Sage is the following:

def onlyPosition(U, V, fixedpointlist, iter, precisionpoints,

precisionroots, twotuple):

return positionIterationNumber(U, V, fixedpointlist, iter,

precisionpoints, precisionroots, twotuple)[0]

In Mathematica, the algorithm is written as follows:

OnlyPosition[{A_, B_}, fixedpointlist_, iter_, precpoints_,

precroots_][{z_, t_}] := Module[{pair},

pair = PositionIterationNumber[{A, B}, fixedpointlist, iter,

precpoints, precroots][{z, t}];

N[pair[[1]]]

];
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(2) Number of iterations until convergence: Instead of assigning a color to each point taking
into account the reached fixed point, that color is assigned in accordance with the number
of needed iterations until convergence, given a prefixed precision. Eye-catching drawings
may be generated with this strategy, too. The subroutine which allows us to find the
number of iterations associated with a given point in Sage is:

def onlyConvergence(U, V, fixedpointlist, iter, precisionpoints,

precisionroots, twotuple):

return positionIterationNumber(U, V, fixedpointlist, iter,

precisionpoints, precisionroots, twotuple)[1]

The same subroutine in Mathematica has the source code shown below:

OnlyConvergence[{A_, B_}, fixedpointlist_, iter_, precpoints_,

precroots_][{z_, t_}] := Module[{pair},

pair = PositionIterationNumber[{A, B}, fixedpointlist, iter,

precpoints, precroots][{z, t}];

pair[[2]]

];

(3) Combination of the both previous strategies: In this case, a color is assigned to each basin
of attraction, but making it lighter or darker depending on the number of needed iterations
until convergence. An implemented subprogram in Sage which satisfies this strategy is
shown below:

def positionPlusConvergence(U, V, fixedpointlist, iter, precisionpoints,

precisionroots, twotuple):

pair = positionIterationNumber(U, V, fixedpointlist, iter,

precisionpoints, precisionroots, twotuple)

if(pair[0] == 0):

away = 0

else:

away = pair[1]

return n(pair[0] + away / iter * 3/4)

The same subprogram in Mathematica is given by the following source code:

PositionPlusConvergence[{A_, B_}, fixedpointlist_, iter_, precpoints_,

precroots_][{z_, t_}] := Module[{pair, away},

pair = PositionIterationNumber[{A, B}, fixedpointlist, iter,

precpoints, precroots][{z, t}];

away = If[pair[[2]] == iter, iter + 1, pair[[2]]];

N[pair[[1]] + away/(iter + 2)]

];
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Our programs use specific color palettes to plot fractals. If we are working with strategy (1)
and the homogeneous polynomials which induce the rational function are of degree n, then a
palette with n+ 2 colors will be used: the first color of the palette will be associated with points
belonging to a basin of an end point which corresponds to no fixed points (for example, end points
associated with 2-cycle points) or points whose induced trajectories have not converged to any
fixed point yet, after a prefixed finite number of iterations; the other colors are related to points
which are in the basin of attraction of an end point associated with a fixed point. If strategy (2) is
considered, a palette with l+1 colors will be used (where l is the number of predefined maximum
iterations), being the last color reserved for those points whose corresponding trajectory does not
converge to any fixed point (because of any of the reasons explained above in this paragraph)
and being the rest of colors associated with each one of the possible numbers of iterations
k ∈ {0, 1, . . . , l − 1}. On the other hand, if strategy (3) is chosen, then a graduated palette
constructed from a specified color map will be given. Figure 6.2 shows some examples of such
color palettes.

0 1 2 3 4 5 6

0 5 10 15 20 25

Figure 6.2: Different color palettes associated with the same color map in Sage (on the left) and Math-
ematica (on the right). The images correspond respectively to the strategies (1), (2) and (3) referenced.

Algorithms in Sage

The subprograms developed in Sage for plotting fractals related to basins of end points associated
with rational functions different from the identity will be described in the following lines. They
are fractalPlotInsideOutside, fractalPlot, spherePlot and cubicSpherePlot.

• Function fractalPlotInsideOutside returns two disks: one of them represents the inter-
section between the basins of attraction and the unit disk, and the other shows by means
of the inversion method the intersection of those basins with the complementary of the
unit disk on C ∪ {∞} –see Figure 6.3.
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Figure 6.3: Fractal plotted by fractalPlotInsideOutside in Sage, obtained applying strategy (3).

• With function fractalPlot, a colored fractal in a rectangular region is obtained –see
Figure 6.4.

• A 3D fractal in the unit sphere is obtained with spherePlot, showing all the fixed points
in a bigger size than the others. An example of what we can get with this function was
shown in Figure 6.1, and another one can be found in Figure 6.5.

• The subprogram cubicSpherePlot returns the same as spherePlot, but the sphere ob-
tained with the former function is a bit different from the one returned by the latter, since
its points are distributed all over its surface in a different way (by projecting the bound-
ary of a subdivided cube onto the unit sphere). A comparison between both functions
is established in Figure 6.6. In order to boost the efficiency of the algorithm and reduce
its execution time, cubicSpherePlot reads the necessary data from a file attachment to
plot the corresponding 3D fractal. The required data consists of two lists: those points
on the sphere’s surface which will be drawn in the fractal plot and their associated points
in P1(C). If the file attachment does not exist, the subprogram creates it and stores the
data in it. The stored data will depend on the number of plot points.

In all cases above, a list containing the fixed points of the rational map, the absolute values
of the derivative of the rational function at those fixed points (which allows us to know if every
fixed point is super-attracting, attracting, repelling or indifferent) and a color palette associated
with the basins of attraction are returned as well.

Moreover, there are other available subprograms which are used for plotting a certain single
basin chosen by the user, such as fractalPlotBasin and fractalPlotInsideOutsideBasin.
These algorithms return the same as fractalPlotInsideOutside and fractalPlot, but show-
ing only one basin, which has to be specified as an input parameter. What is more, the al-
gorithms spherePlot and cubicSpherePlot include an optional parameter that allows us to
represent a single basin on the sphere’s surface. Some examples of what we can obtain with
these subprograms are shown in Figure 6.7.
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Figure 6.4: Fractals plotted by algorithm fractalPlot in Sage. The image on the left corresponds to
strategy (1) and the image on the right was drawn applying strategy (2).

Figure 6.5: Fractals plotted by algorithm spherePlot in Sage by considering strategies (2) (on the left)
and (3) (on the right), respectively. Both fractals were obtained from the same rational function.

fractalPlotInsideOutside, spherePlot and cubicSpherePlot have the numerator and
denominator of a rational function as input parameters, whereas fractalPlot has in addition as
compulsory input parameters the points which delimit the rectangular area where the fractal will
be plotted. Furthermore, all the plotting algorithms described also have several other optional
input parameters: precision, maximum number of iterations, plot points, coloring strategy,
color map (except spherePlot and cubicSpherePlot) and number of compositions of the given
rational function f with itself.

This latter parameter allows us to work with polynomials associated with f2, f3,. . . As an
example of what it is useful for, note that the basins of attraction of the fixed points of f2 = f ◦f
correspond, together, to basins of fixed points and 2-cycle points of f ; that is, if two fixed points
of f2 form a 2-cycle, its associated basin of attraction is the union of the basins of these two
fixed points. This fact can be generalized to any number of iterations.
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Figure 6.6: Comparison between output plots obtained with spherePlot (on the left) and
cubicSpherePlot (on the right) in Sage. Algorithm cubicSpherePlot projects points belonging to
the faces of a cube onto the unit sphere.

The subprogram responsible for composing n times a given rational function f/g with itself
and obtaining a homogeneous rational map from it is:

composeHomogenize(f,g,n).

An implementation in Sage of this subprogram is given:

def composeHomogenize(f, g, n):

x = var(’x’)

if(g.degree() == 0): comp = compose(f, n); homo = homogenize(comp, g)

else:

h = f/g; comp = compose(h, n)

comp1 = (comp+0*I).simplify_rational(’simple’)

S = P.fraction_field()

comp2 = S(sage_eval(repr(comp1),locals=locals()))

num = comp2.numerator(); den = comp2.denominator()

homo = homogenize(num, den)

A = homo[0]; B = homo[1]

return [A, B]

Observe that the subroutines compose(h,num) and homogenize(f,g) are used in the subpro-
gram above. The first of these subroutines composes a rational function h with itself a number of
times indicated by the input parameter num (option simplify_rational(’simple’) is passed
to preserve the composed rational function in the form of a quotient of polynomials) whereas
the second one homogenizes a given rational function f/g. Their implementations developed in
Sage are the following:
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Figure 6.7: Representation of a single basin by means of the subprograms
fractalPlotInsideOutsideBasin (on the top left), fractalPlotBasin (on the top right) and
spherePlot (on the bottom) in Sage.

def compose(h, num):

H = h

if (num < 1): print("Rational function must be composed once at least")

for cont in range(num-1): H = h.subs(x = H)

return H

def homogenize(f, g):

z = var(’z’)

P.<x,t> = PolynomialRing(CC,2)

fdeg = f.degree(); gdeg = g.degree()

deg = max(fdeg, gdeg)

f = f.homogenize(’t’); g = g.homogenize(’t’)

if (fdeg > gdeg):

g = g*t**(fdeg - gdeg)

else:

f = f*t**(gdeg - fdeg)

F = f.subs(x = z); G = g.subs(x = z)

return [F, G]

To conclude, the source codes of the plotting algorithms we have just presented are shown
below together with subprogram basinOfFixedPoint, which given a point on the Riemann
sphere returns the fixed point to which it converges, if there is any.
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from sage.plot.density_plot import DensityPlot

def fractalPlotInsideOutside(M,N,points=150,function=onlyPosition,ncomp=1,colorfunction=’spectral’,iter=25,

precpoints=3,precroots=3,reflection=-1):

ch=composeHomogenize(M,N,ncomp); A=ch[0]; B=ch[1]; p=fixedPointsZeros(A,B)

if len(p)>0:

grad=len(p)-1

if function==onlyConvergence: range=iter+1; else: range=grad+1.99

x,y=var(’x,y’); disfp=[]

if function!=onlyConvergence:

colorpoints=[]

def hidef(x,y):

if x<=0:

if (x+1)**2+y**2>1: colorpoints.append(0)

else: colorpoints.append(function(A,B,p,iter,precpoints,precroots,(x+1+y*I,1)))

else:

if (x-1)**2+y**2>1: colorpoints.append(0)

else: colorpoints.append(function(A,B,p,iter,precpoints,precroots,

(1,x-1+reflection*y*I)))

return 0

hideplot=density_plot(hidef,(x,-2,2),(y,-1,1),plot_points=points,aspect_ratio=1)

if function!=positionPlusConvergence: colorpointsfloor=colorpoints

else: colorpointsfloor=[floor(k) for k in colorpoints]

posfp=0

while posfp<grad+1:

if posfp+1 not in colorpointsfloor: disfp.insert(0,posfp); p.append(p[posfp])

posfp=posfp+1

for fp in disfp:

cp=0

while cp<len(colorpoints):

if colorpoints[cp]>fp+1: colorpoints[cp]=colorpoints[cp]-1

cp=cp+1

aux=p.pop(fp)

count=[-1]

def f(x,y):

count[0]=count[0]+1

return colorpoints[count[0]]

else:

def f(x,y):

if x<=0:

if (x+1)**2+y**2>1: return 0

else: return onlyConvergence(A,B,p,iter,precpoints,precroots,(x+1+y*I,1))

else:

if (x-1)**2+y**2>1: return 0

else: return onlyConvergence(A,B,p,iter,precpoints,precroots,(1,x-1+reflection*y*I))

table=[fixedPointsTangentMapNorm(A,B,t) for t in p]

from matplotlib import ticker

L=density_plot(f,(x,-2,2),(y,-1,1),cmap=colorfunction,plot_points=points,aspect_ratio=1)

xcoords=[]; ycoords=[]

for fp in p:

if fp[1]==1: xcoords.append(real(fp[0])-1); ycoords.append(imag(fp[0]))

else: xcoords.append(real(fp[1])+1); ycoords.append(-imag(fp[1]))

h2=list_plot(zip(xcoords,ycoords),rgbcolor=’black’,size=15); h=L+h2

h[1].set_zorder(10); h.axes_color((0.35,0.35,0.35)); h.tick_label_color((0.35,0.35,0.35))

if(function!=positionPlusConvergence):

return h.show(tick_formatter=ticker.IndexFormatter([0,0])),

density_plot(floor(x),(x,0,range-len(disfp)),(y,0,1),cmap=colorfunction,

plot_points=100,aspect_ratio=1).show(ticks=[None,[]]), table

else:

maxcp=max(colorpoints); if maxcp==0: maxcp=range

return h.show(tick_formatter=ticker.IndexFormatter([0,0])),density_plot(x,(x,0,maxcp),(y,0,1),

cmap=colorfunction,plot_points=100,aspect_ratio=1).show(ticks=[None,[]],

gridlines=["minor",None]),table
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def fractalPlot(M,N,xmin,xmax,ymin,ymax,points=100,function=onlyPosition,ncomp=1,

colorfunction=’spectral’,iter=25,precpoints=3,precroots=3):

ch=composeHomogenize(M,N,ncomp); A=ch[0]; B=ch[1]; p=fixedPointsZeros(A,B)

if len(p)>0:

grad=len(p)-1

if function==onlyConvergence: range=iter+1

else: range=grad+1.99

x,y=var(’x,y’); substract=0

if function!=onlyConvergence:

colorpoints=[]

def hidef(x,y):

colorpoints.append(function(A,B,p,iter,precpoints,precroots,(x+y*I,1)))

return 0

hideplot=density_plot(hidef,(x,xmin,xmax),(y,ymin,ymax),plot_points=points,

aspect_ratio=1)

if function!=positionPlusConvergence: colorpointsfloor=colorpoints

else: colorpointsfloor=[floor(k) for k in colorpoints]

disfp=[]; posfp=0

while posfp<grad+1:

if posfp+1 not in colorpointsfloor:

disfp.insert(0,posfp); p.append(p[posfp])

posfp=posfp+1

for fp in disfp:

cp=0

while cp<len(colorpoints):

if colorpoints[cp]>fp+1: colorpoints[cp]=colorpoints[cp]-1

cp=cp+1

aux=p.pop(fp)

count=[-1]

def f(x,y):

count[0]=count[0]+1; return colorpoints[count[0]]

substract=len(disfp); aux=0

if 0 not in colorpointsfloor:

substract=substract+1; aux=1

else:

def f(x,y):

return onlyConvergence(A,B,p,iter,precpoints,precroots,(x+y*I,1))

table=[fixedPointsTangentMapNorm(A,B,t) for t in p]

h1=density_plot(f,(x,xmin,xmax),(y,ymin,ymax),cmap=colorfunction,plot_points=points,

aspect_ratio=1)

if function!=positionPlusConvergence:

colorPalette=density_plot(floor(x),(x,0,range-substract),(y,0,1),

cmap=colorfunction,plot_points=100,aspect_ratio=1).show(ticks=[None,[]])

else:

colorPalette=density_plot(x,(x,0,max(colorpoints)-aux),(y,0,1),cmap=colorfunction,

plot_points=100,aspect_ratio=1).show(ticks=[None,[]],gridlines=["minor", None])

xcoords=[]; ycoords=[]

for fp in p:

if fp[1]!=0:

re=real(fp[0]/fp[1]); im=imag(fp[0]/fp[1])

if (xmin<=re<=xmax) and (ymin<=im<=ymax):

xcoords.append(re); ycoords.append(im)

h2=list_plot(zip(xcoords,ycoords),rgbcolor=’black’,size=15);h=h1+h2;h[1].set_zorder(10)

return h.show(frame=true),colorPalette,table
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def spherePlot(M,N,function=onlyPosition,rotzoom=((0,0,0),1),points=100,ncomp=1,view=’tachyon’,

basin=0,iter=25,precpoints=3,precroots=3):

ch=composeHomogenize(M,N,ncomp)

A=ch[0]; B=ch[1]

p=fixedPointsZeros(A,B)

if len(p)>0:

grad=len(p)-1

if function==onlyConvergence: ran=iter+1

else: ran=grad+2

x,y,twot=var(’x,y,twot’)

def f(x,y,twot):

if sphereBijection(twot)[2]>0:

return function(A,B,p,iter,precpoints,precroots,(1,x-y*I))

else: return function(A,B,p,iter,precpoints,precroots,(x+y*I,1))

def g(x,y):

if x**2+y**2<=1:

colorpoint=f(x,y,(1,x-y*I))

if 0<basin<=len(p):

if (floor(colorpoint)==basin) or (colorpoint==0):

return point3d(sphereBijection((1,x-y*I)),color=hue(colorpoint/ran))

else: return point3d(sphereBijection((1,x-y*I)),color=hue(colorpoint/ran))

def g1(x,y):

if x**2+y**2<=1:

colorpoint=f(x,y,(x+y*I,1))

if 0<basin<=len(p):

if (floor(colorpoint)==basin) or (colorpoint==0):

return point3d(sphereBijection((x+y*I,1)),

color=hue(f(x,y,(x+y*I,1))/ran))

else: return point3d(sphereBijection((x+y*I,1)),color=hue(colorpoint/ran))

table=[fixedPointsTangentMapNorm(A,B,t) for t in p];

l=[(n(k/(points//2))) for k in range(1,(points//2)+1)]

for k in range((points//2)): l.append(n((-1)*l[k]))

l.append(0)

pl=[g(u,v) for u in l for v in l]

for u in l:

for v in l:

pl.append(g1(u,v))

if function!=onlyConvergence:

for ind in range(ran-1):

pl.append(point3d(sphereBijection(p[ind]),size=15,color=hue((ind+1)/ran)))

if function!=positionPlusConvergence:

return sum(pl,sphere(color=’black’)).rotateX(rotzoom[0][0])

.rotateY(rotzoom[0][1]).rotateZ(rotzoom[0][2])

.show(frame=False,viewer=view,aspect_ratio=[1,1,1],zoom=rotzoom[1]),

density_plot(floor(x),(x,0,ran),(y,0,1),cmap=’hsv’,plot_points=100,

aspect_ratio=1).show(ticks=[None,[]]),

table

else:

return sum(pl,sphere(color=’black’)).rotateX(rotzoom[0][0])

.rotateY(rotzoom[0][1]).rotateZ(rotzoom[0][2])

.show(frame=False,viewer=view,aspect_ratio=[1,1,1],zoom=rotzoom[1]),

density_plot(x,(x,0,ran),(y,0,1),cmap=’hsv’,plot_points=100,aspect_ratio=1)

.show(ticks=[None,[]],gridlines=["minor", None]),

table
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import os.path; import csv

def cubicSpherePlot(M,N,function=onlyPosition,rotzoom=((0,0,0),1),numdiv=40,ncomp=1,view=’tachyon’,basin=0,

iter=25,precpoints=3,precroots=3):

ch=composeHomogenize(M,N,ncomp); A=ch[0]; B=ch[1]; p=fixedPointsZeros(A,B)

if len(p)>0:

grad=len(p)-1

if function==onlyConvergence: ran=iter+1; else: ran=grad+2

cubeSphereList=[]; sphereComplexList=[]; exist=False; sz=6*numdiv**2; pl=[]

def sphereComplexProjLine(p):

if p[2]==1:return (1,0);else:return homogeneousNormalization((p[0]/(1-p[2])+I*p[1]/(1-p[2]),1))

if not os.path.isfile(DATA+’csp’+str(numdiv)+’.csv’):

cube=[]

for y1 in range(numdiv):

for x1 in range(numdiv):

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2,-1))

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2,1))

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

-1,((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

1,((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

cube.append((-1,((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

cube.append((1,((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

def cubeSphere(p):

root=sqrt(p[0]**2+p[1]**2+p[2]**2); return (n(p[0]/root),n(p[1]/root),n(p[2]/root))

for k in cube:

spherePoint=cubeSphere(k); cubeSphereList.append(spherePoint)

sphereComplexList.append(sphereComplexProjLine(spherePoint))

with open(DATA+’csp’+str(numdiv)+’.csv’,’w’) as f:

writefile=csv.writer(f)

for i in range(sz): writefile.writerow([cubeSphereList[i],sphereComplexList[i]])

else:

exist=True; with open(DATA+’csp’+str(numdiv)+’.csv’,’rU’) as f: data=list(csv.reader(f))

for i in data: cubeSphereList.append(i[0]); sphereComplexList.append(i[1])

for j in range(sz):

if exist: colorpoint=function(A,B,p,iter,precpoints,precroots,eval(sphereComplexList[j]))

else: colorpoint=function(A,B,p,iter,precpoints,precroots,sphereComplexList[j])

if 0<basin<=len(p):

if (floor(colorpoint)==basin) or (colorpoint==0):

if exist: pl.append(point3d(eval(cubeSphereList[j]),color=hue(colorpoint/ran)))

else: pl.append(point3d(cubeSphereList[j],color=hue(colorpoint/ran)))

else:

if exist: pl.append(point3d(eval(cubeSphereList[j]),color=hue(colorpoint/ran)))

else: pl.append(point3d(cubeSphereList[j],color=hue(colorpoint/ran)))

if function!=onlyConvergence:

for ind in range(ran-1):

pl.append(point3d(sphereBijection(p[ind]),size=15,color=hue((ind+1)/ran)))

table=[fixedPointsTangentMapNorm(A,B,t) for t in p]; x,y=var(’x,y’)

if function!=positionPlusConvergence:

return sum(pl,sphere(color=’black’)).rotateX(rotzoom[0][0])

.rotateY(rotzoom[0][1]).rotateZ(rotzoom[0][2])

.show(frame=False,viewer=view,aspect_ratio=[1,1,1],zoom=rotzoom[1]),

density_plot(floor(x),(x,0,ran),(y,0,1),cmap=’hsv’,plot_points=100,aspect_ratio=1)

.show(ticks=[None,[]]),table

else: return sum(pl,sphere(color=’black’)).rotateX(rotzoom[0][0])

.rotateY(rotzoom[0][1]).rotateZ(rotzoom[0][2])

.show(frame=False,viewer=view,aspect_ratio=[1,1,1],zoom=rotzoom[1]),

density_plot(x,(x,0,ran),(y,0,1),cmap=’hsv’,plot_points=100,aspect_ratio=1)

.show(ticks=[None,[]],gridlines=["minor", None]), table
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def fractalPlotInsideOutsideBasin(M,N,basin,points=150,ncomp=1,iter=25,

precpoints=3,precroots=3,reflection=-1):

ch=composeHomogenize(M,N,ncomp)

A=ch[0]

B=ch[1]

p=fixedPointsZeros(A,B)

if len(p)>0:

if 0<basin<=len(p):

x,y=var(’x,y’)

def f(x,y):

if x<=0:

if (x+1)**2+y**2>1: return 0

else: ncolor=positionPlusConvergence(A,B,p,iter,precpoints,

precroots,(x+1+y*I,1))

else:

if (x-1)**2+y**2>1: return 0

else: ncolor=positionPlusConvergence(A,B,p,iter,precpoints,

precroots,(1,x-1+reflection*y*I))

if ncolor==0: return 0

elif floor(ncolor)!=basin: return 2

else: return 1.0+ncolor-floor(ncolor)

table=[fixedPointsTangentMapNorm(A,B,t) for t in p]

from matplotlib import ticker

L=density_plot(f,(x,-2,2),(y,-1,1),cmap=’gnuplot’,

plot_points=points,aspect_ratio=1)

L.axes_color((0.35,0.35,0.35))

L.tick_label_color((0.35,0.35,0.35))

return L.show(tick_formatter=ticker.IndexFormatter([0,0])),table,

p[basin-1]

else: print "Integer ’basin’ must be greater than 0 and less or equal

than the number of fixed points."
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def fractalPlotBasin(M,N,xmin,xmax,ymin,ymax,basin,points=100,ncomp=1,iter=25,

precpoints=3,precroots=3):

ch=composeHomogenize(M,N,ncomp)

A=ch[0]

B=ch[1]

p=fixedPointsZeros(A,B)

if len(p)>0:

if 0<basin<=len(p):

x,y=var(’x,y’)

def f(x,y):

ncolor=positionPlusConvergence(A,B,p,iter,precpoints,precroots,

(x+y*I,1))

if ncolor==0: return 0

elif floor(ncolor)!=basin: return 2

else: return 1.0+ncolor-floor(ncolor)

table=[fixedPointsTangentMapNorm(A,B,t) for t in p]

h=density_plot(f,(x,xmin,xmax),(y,ymin,ymax),cmap=’gnuplot’,

plot_points=points,aspect_ratio=1)

return h.show(frame=true),table,p[basin-1]

else: print "Integer ’basin’ must be greater than 0 and less or equal

than the number of fixed points."

def basinOfFixedPoint(M,N,point,ncomp=1,iter=25,precpoints=3,precroots=3):

ch=composeHomogenize(M,N,ncomp)

A=ch[0]

B=ch[1]

p=fixedPointsZeros(A,B)

if len(p)>0:

pos=onlyPosition(A,B,p,iter,precpoints,precroots,(point,1))

if pos!=0:

return p[pos-1]

else:

print "The point does not converge to any fixed point."
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Algorithms in Mathematica

Part of the algorithms written in Sage and shown in the previous paragraph have also been devel-
oped in Mathematica; these algorithms are called FractalPlotInsideOutside, FractalPlot,
SpherePlot and SubdividedSpherePlot.

• Function FractalPlotInsideOutside returns the same as fractalPlotInsideOutside

in Sage –see Figure 6.8.

Figure 6.8: Fractal plotted by algorithm FractalPlotInsideOutside in Mathematica, obtained apply-
ing strategy (3).

• With function FractalPlot, one obtains the same as with fractalPlot in Sage –see
Figure 6.9.

• A 3D fractal in the unit sphere is obtained with SpherePlot, showing the stereographic
projection of the intersection between the basins of attraction and the unit complex disk
onto the southern hemisphere and, by means of the inversion method, the stereographic
projection onto the northern hemisphere of the intersection between those basins and the
complementary of the unit complex disk. An example of what we can get with this function
is shown in Figure 6.10.

• The subprogram SubdividedSpherePlot returns the same as SpherePlot, but the sphere
obtained with the former function is a bit different from the one returned by the latter,
since SubdividedSpherePlot actually shows a set of 3D points in the space and these
points are distributed in a different way, by projecting the boundary of a subdivided cube
onto the unit sphere. To make this subprogram more efficient, SubdividedSpherePlot
follows a recursive algorithm by which the middle points of the subdivision cells formed
in the boundary of the cube are part of the vertices in the next higher subdivision order.
An example of this kind of fractal can be found in Figure 6.11.
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Figure 6.9: Fractals plotted by algorithm FractalPlot in Mathematica. The image on the left corre-
sponds to strategy (1) and the image on the right was drawn applying strategy (2).

0 5 10 15 20 25

Figure 6.10: Fractals plotted by algorithm SpherePlot in Mathematica by considering strategies (2)
(on the left) and (3) (on the right), respectively. Both fractals were obtained from the same rational
function.

Again, a list containing the fixed points of the rational map, the absolute values of the
derivative of the rational function at those fixed points and a color palette associated with the
basins of attraction are returned in all the cases above.
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0 1 2 3 4 5 6

Figure 6.11: Output plot obtained with SubdividedSpherePlot in Mathematica, following strategy (1).

FractalPlotInsideOutside, SpherePlot and SubdividedSpherePlot have the numera-
tor and denominator of a rational function as input parameters, whereas FractalPlot has in
addition as compulsory input parameter the rectangular area in the complex plane where the
fractal will be plotted. Furthermore, all the plotting algorithms described also have several
other optional input parameters: precision, maximum number of iterations, plot points, color-
ing strategy, color map and number of compositions of the given rational function f with itself
to work with polynomials associated with fn and detect n-cyclic points, for every n ∈ N∗.

The user could define any color map and introduce it as an input parameter. By way of
example, we offer the user certain color maps based on some graphics directives of Mathematica,
such as Hue or CMYKColor. These specific color maps, whose codes can be seen in the following
lines, take into account the number of colors degr appearing in the corresponding palette to be
used, and they are called SpiralCMYKColor, CosCMYKColor, KnotCMYKColor and CosHueColor.
Figure 6.12 shows the palettes associated with them for a number of colors equal to 7.

SpiralCMYKColor[degr_][z_] := Module[{intpart, fracpart},

intpart = IntegerPart[z];

fracpart = FractionalPart[z];

CMYKColor[0.5 + 0.5*Cos[-2*Pi*intpart/(degr)],

0.5 + 0.5*Sin[-2*Pi*intpart/(degr)], 1 - (intpart/(degr)), 0.5*fracpart]

];

CosCMYKColor[degr_][z_] := CMYKColor[0.5 + 0.4*Cos[Pi*z/(degr^(1/3))],

0.5 + 0.5*Cos[Pi*z/(degr^(2/3))], 0.5 + 0.5*Cos[Pi*z/degr],

(0.7*FractionalPart[z])];
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Figure 6.12: Different color palettes associated with the color maps SpiralCMYKColor, CosCMYKColor,
KnotCMYKColor and CosHueColor in Mathematica for degr= 7. The first three color maps are based on
the graphics directive CMYKColor and the last one is based on the graphics directive Hue.

KnotCMYKColor[degr_][z_] :=

CMYKColor[(0.9 - FractionalPart[5*IntegerPart[z]/16]),

(0.9 - FractionalPart[7*IntegerPart[z]/16]),

(0.9 - FractionalPart[11*IntegerPart[z]/16]), (0.7*FractionalPart[z])];

CosHueColor[degr_][z_] := Hue[0.5 + 0.5*Cos[(Pi*IntegerPart[z]/(degr))], 1,

0.8 + 0.2*(1 - FractionalPart[z]), 0.5 + 0.5*(FractionalPart[z])];

The following lines of code in Mathematica are employed within all the plotting algorithms
to compose n times a given rational function f/g with itself and obtain a homogeneous rational
map from it –parameters A1 and B1 represent the numerator and the denominator polynomials
of the rational function introduced by the user, respectively, and parameter ncomp represents
variable n (that is to say, the number of compositions):

h[z_] := A1[z]/B1[z];

rfh[{z_, t_}] := Together[Nest[h, z, ncomp] /. z -> z/t];

Besides, these algorithms use the formula given in Lemma 6.1.1 to compute the number of
fixed points deg of the rational function composed with itself n (or ncomp) times:

deg = (Max[Exponent[A1[z], z], Exponent[B1[z], z]])^ncomp + 1;

We end showing the source codes of the plotting algorithms we have just presented.
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FractalPlotInsideOutside[{A1_, B1_}, points_: 200, function_: OnlyPosition, ncomp_: 1,

fractalcolorfunction_: SpiralCMYKColor, iter_: 25, precpoints_: 3, precroots_: 3,

reflection_: -1] := Module[{a, b, c, d, h, z, t, rfh, deg, range, palette, A, B,

fixedpointlist},

h[z_] := A1[z]/B1[z];

rfh[{z_, t_}] := Together[Nest[h, z, ncomp] /. z -> z/t];

{A[{z_, t_}], B[{z_, t_}]} = {Numerator[rfh[{z, t}]], Denominator[rfh[{z, t}]]};

deg = (Max[Exponent[A1[z], z], Exponent[B1[z], z]])^ncomp + 1;

range = {0, If[SymbolName[function] == SymbolName[OnlyConvergence], iter + 1,

deg + 1]};

If[SymbolName[function] == SymbolName[PositionPlusConvergence], palette[x_] := x,

palette[x_] := IntegerPart[x]

];

fixedpointlist = FixedPointsZeros[A, B];

a = DensityPlot[function[{A, B}, fixedpointlist, iter, precpoints, precroots]

[{x + I*y, 1}], {x, -1, 1}, {y, -(1 - x^2)^(1/2), (1 - x^2)^(1/2)},

PlotRange -> range, ColorFunction -> (fractalcolorfunction[range[[2]]][#] &),

ColorFunctionScaling -> False, PlotPoints -> points, Mesh -> False

] // Timing;

b = DensityPlot[function[{A, B}, fixedpointlist, iter, precpoints, precroots]

[{1, x + reflection *I*y}], {x, -1, 1}, {y, -(1-x^2)^(1/2), (1-x^2)^(1/2)},

PlotRange -> range, ColorFunction -> (fractalcolorfunction[range[[2]]][#] &),

ColorFunctionScaling -> False, PlotPoints -> points, Mesh -> False

] // Timing;

c = If[SymbolName[function] == SymbolName[PositionPlusConvergence],

DensityPlot[palette[x], {x, 0, range[[2]]}, {y, 0, 1}, PlotRange -> range,

ColorFunction -> (fractalcolorfunction[range[[2]]][#] &),

ColorFunctionScaling -> False, PlotPoints -> 200, Mesh -> False,

AspectRatio -> 1/range[[2]], Frame -> {{False, False}, {True, False}}

],

ArrayPlot[Table[palette[y], {x, 0, 1}, {y, 0, range[[2]] - 1}],

FrameTicks -> Automatic, DataRange -> {{0, range[[2]] - 1}, {0, 1}},

ColorFunction -> (fractalcolorfunction[range[[2]]][#] &),

ColorFunctionScaling -> False, Frame -> {{False, False}, {True, False}}

]

];

d = Map[FixedPointsTangentMapNorm[{A, B}][#1] &, fixedpointlist];

{a, b, c, d}

];
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FractalPlot[{A1_, B1_}, rectangle_, points_: 200, function_: OnlyPosition, ncomp_: 1,

fractalcolorfunction_: SpiralCMYKColor, iter_: 25, precpoints_: 3,

precroots_: 3] := Module[{a, b, c, h, z, t, rfh, deg, range, palette, A, B,

fixedpointlist},

h[z_] := A1[z]/B1[z];

rfh[{z_, t_}] := Together[Nest[h, z, ncomp] /. z -> z/t];

{A[{z_, t_}], B[{z_, t_}]} = {Numerator[rfh[{z, t}]], Denominator[rfh[{z, t}]]};

deg = (Max[Exponent[A1[z], z], Exponent[B1[z], z]])^ncomp + 1;

range = {0, If[SymbolName[function] == SymbolName[OnlyConvergence], iter + 1,

deg + 1]};

If[SymbolName[function] == SymbolName[PositionPlusConvergence], palette[x_] := x,

palette[x_] := IntegerPart[x]

];

fixedpointlist = FixedPointsZeros[A, B];

a = DensityPlot[function[{A, B}, fixedpointlist, iter, precpoints, precroots]

[{x + I*y, 1}], {x, rectangle[[1]][[1]], rectangle[[1]][[2]]},

{y, rectangle[[2]][[1]], rectangle[[2]][[2]]}, PlotRange -> range,

ColorFunction -> (fractalcolorfunction[range[[2]]][#] &),

ColorFunctionScaling -> False, PlotPoints -> points, Mesh -> False

];

b = If[SymbolName[function] == SymbolName[PositionPlusConvergence],

DensityPlot[palette[x], {x, 0, range[[2]]}, {y, 0, 1}, PlotRange -> range,

ColorFunction -> (fractalcolorfunction[range[[2]]][#] &),

ColorFunctionScaling -> False, PlotPoints -> 200, Mesh -> False,

AspectRatio -> 1/range[[2]], Frame -> {{False, False}, {True, False}}

],

ArrayPlot[Table[palette[y], {x, 0, 1}, {y, 0, range[[2]] - 1}],

FrameTicks -> Automatic, DataRange -> {{0, range[[2]] - 1}, {0, 1}},

ColorFunction -> (fractalcolorfunction[range[[2]]][#] &),

ColorFunctionScaling -> False, Frame -> {{False, False}, {True, False}}

]

];

c = Map[FixedPointsTangentMapNorm[{A, B}][#1] &, fixedpointlist];

{a, b, c}

] // Timing;
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SpherePlot[{A1_, B1_}, points_: 200, function_: OnlyPosition, ncomp_: 1,

fractalcolorfunction_: SpiralCMYKColor, iter_: 25, precpoints_: 3,

precroots_: 3] := Module[{a, b, c, h, z, t, rfh, deg, range, palette, A, B,

fixedpointlist},

h[z_] := A1[z]/B1[z];

rfh[{z_, t_}] := Together[Nest[h, z, ncomp] /. z -> z/t];

{A[{z_, t_}], B[{z_, t_}]} = {Numerator[rfh[{z, t}]], Denominator[rfh[{z, t}]]};

deg = (Max[Exponent[A1[z], z], Exponent[B1[z], z]])^ncomp + 1;

range = {0, If[SymbolName[function] == SymbolName[OnlyConvergence], iter + 1,

deg + 1]};

If[SymbolName[function] == SymbolName[PositionPlusConvergence], palette[x_] := x,

palette[x_] := IntegerPart[x]

];

fixedpointlist = FixedPointsZeros[A, B];

a = ParametricPlot3D[{SphereBijection[{u+I*v, 1}], SphereBijection[{1, u-I*v}]},

{u, -1, 1}, {v, -1, 1}, ColorFunction -> Function[{z, u, v},

fractalcolorfunction[range[[2]]][function[{A, B}, fixedpointlist, iter,

precpoints, precroots][If[z <= 0, {u + I*v, 1}, {1, u - I*v}]]

]

],

ColorFunctionScaling -> False, PlotPoints -> points, Mesh -> False,

Axes -> False, Boxed -> False

] // Timing;

b = If[SymbolName[function] == SymbolName[PositionPlusConvergence],

DensityPlot[palette[x], {x, 0, range[[2]]}, {y, 0, 1}, PlotRange -> range,

ColorFunction -> (fractalcolorfunction[range[[2]]][#] &),

ColorFunctionScaling -> False, PlotPoints -> 200, Mesh -> False,

AspectRatio -> 1/range[[2]], Frame -> {{False, False}, {True, False}}

],

ArrayPlot[Table[palette[y], {x, 0, 1}, {y, 0, range[[2]] - 1}],

FrameTicks -> Automatic, DataRange -> {{0, range[[2]] - 1}, {0, 1}},

ColorFunction -> (fractalcolorfunction[range[[2]]][#] &),

ColorFunctionScaling -> False, Frame -> {{False, False}, {True, False}}

]

];

c = Map[FixedPointsTangentMapNorm[{A, B}][#1] &, FixedPointsZeros[A, B]];

{a, b, c}

];
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SubdividedSpherePlot[{A1_, B1_}, subdivision_: 8, function_: OnlyPosition, ncomp_: 1,

fractalcolorfunction_: SpiralCMYKColor, iter_: 25, precpoints_: 3, precroots_: 3] := Module[{a, b, c, h,

z, t, rfh, deg, range, palette, A, B, fixedpointlist, points},

h[z_] := A1[z]/B1[z];

rfh[{z_, t_}] := Together[Nest[h, z, ncomp] /. z -> z/t];

{A[{z_, t_}], B[{z_, t_}]} = {Numerator[rfh[{z, t}]], Denominator[rfh[{z, t}]]};

deg = (Max[Exponent[A1[z], z], Exponent[B1[z], z]])^ncomp + 1;

range = {0, If[SymbolName[function] == SymbolName[OnlyConvergence], iter + 1, deg + 1]};

If[SymbolName[function] == SymbolName[PositionPlusConvergence], palette[x_] := x,

palette[x_] := IntegerPart[x]

];

fixedpointlist = FixedPointsZeros[A, B];

points = 2^subdivision;

a = ListPointPlot3D[Centers[subdivision], ColorFunction -> Function[{x, y, z},

fractalcolorfunction[range[[2]]][function[{A, B}, fixedpointlist, iter, precpoints, precroots]

[ComplexProjectiveLineBijection[{x, y, z}]]

]

],

ColorFunctionScaling -> False, Axes -> False, Boxed -> False, BoxRatios -> {1, 1, 1}] // Timing;

b = If[SymbolName[function] == SymbolName[PositionPlusConvergence], DensityPlot[palette[x],

{x, 0, range[[2]]}, {y, 0, 1}, PlotRange -> range,

ColorFunction -> (fractalcolorfunction[range[[2]]][#] &), ColorFunctionScaling -> False,

PlotPoints -> 200, Mesh -> False, AspectRatio -> 1/range[[2]],

Frame -> {{False, False}, {True, False}}

],

ArrayPlot[Table[palette[y], {x, 0, 1}, {y, 0, range[[2]] - 1}], FrameTicks -> Automatic,

DataRange -> {{0, range[[2]] - 1}, {0, 1}},

ColorFunction -> (fractalcolorfunction[range[[2]]][#] &), ColorFunctionScaling -> False,

Frame -> {{False, False}, {True, False}}

]

];

c = Map[FixedPointsTangentMapNorm[{A, B}][#1] &, FixedPointsZeros[A, B]];

{a, b, c}

];

ConstructCubeComplex[divisionNumber_] :=

Module[{first, firstOp, second, secondOp, third, thirdOp, sphereComplex, subdivide},

first = {{-1., -1., -1.}, {1., -1., -1.}, {1., 1., -1.}, {-1., 1., -1.}};

firstOp = {{-1., 1., 1.}, {1., 1., 1.}, {1., -1., 1.}, {-1., -1., 1.}};

second = {{-1., -1., -1.}, {-1., -1., 1.}, {1., -1., 1.}, {1., -1., -1.}};

secondOp = {{-1., 1., -1.}, {1., 1., -1.}, {1., 1., 1.}, {-1., 1., 1.}};

third = {{-1., -1., -1.}, {-1., 1., -1.}, {-1., 1., 1.}, {-1., -1., 1.}};

thirdOp = {{1., -1., 1.}, {1., 1., 1.}, {1., 1., -1.}, {1., -1., -1.}};

sphereComplex = {Map[Normalize[#] &, first], Map[Normalize[#] &, firstOp],

Map[Normalize[#] &, second], Map[Normalize[#] &, secondOp],

Map[Normalize[#] &, third], Map[Normalize[#] &, thirdOp]};

subdivide[{a_, b_, c_, d_}] := Module[{ab, bc, cd, da, abcd},

ab = (a + b) / 2; bc = (b + c) / 2; cd = (c + d) / 2; da = (d + a) / 2;

abcd = (a + b + c + d) / 4;

{Map[Normalize[#] &, {a, ab, abcd, da}], Map[Normalize[#] &, {ab, b, bc, abcd}],

Map[Normalize[#] &, {abcd, bc, c, cd}], Map[Normalize[#] &, {da, abcd, cd, d}]}

];

If[divisionNumber == 1, sphereComplex,

Flatten[Map[subdivide[#1] &, ConstructCubeComplex[divisionNumber - 1]], 1]]

];

ComplexProjectiveLineBijection[{a_, b_, c_}] :=

If[c == 1, {1, 0}, HomogeneousNormalization[{a + b*I, 1 - c}]];

Centers[subdivisionnumber_] := Module[{center},

center[{a_, b_, c_, d_}] := Normalize[(a + b + c + d)/4];

Map[center[#] &, ConstructCubeComplex[subdivisionnumber]]];
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6.3 User manual

6.3.1 For Sage

The program is really easy to use. In order to plot the fractal associated with a given ratio-
nal function, it suffices to specify the polynomials which form its numerator and denominator
in variable x and execute one of the following subroutines, depending on what kind of frac-
tal we want to draw: either fractalPlotInsideOutside, fractalPlotInsideOutsideBasin,
spherePlot, cubicSpherePlot, fractalPlot or fractalPlotBasin; the same works for sub-
routine basinOfFixedPoint –see paragraph Algorithms in Sage in subsection 6.2.6. The rational
function must be different from the identity; otherwise, one would obtain an infinite number of
fixed points and basins.

For example, the fractal plotted in Figure 6.3, whose associated rational function is
4x5 + 1

5x4
,

was obtained simply by typing and executing the following sequence in Sage:

P.<x,t> = PolynomialRing(CC,2)

M=4*x**5+1; N=5*x**4

fractalPlotInsideOutside(M,N,200,positionPlusConvergence,1,’spectral’,50,4,2)

Next we show the input parameters of the plotting functions that are supported, as well as
basinOfFixedPoint:

• fractalPlotInsideOutside(M, N, points = 150, function = onlyPosition, ncomp = 1,
colorfunction = ‘spectral’, iter = 25, precpoints = 3, precroots = 3, reflection = −1)

– M,N are the numerator and the denominator of the given rational function in variable
x, respectively.

– points is an integer (default: 150) that represents the number of points to plot in
each direction of the grid.

– function indicates the coloring strategy employed to plot the fractal: onlyPosition
(which is set by default), onlyConvergence or positionPlusConvergence.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– colorfunction is a colormap of Sage that is used to assign a color to each complex
point. The colormap set by default is spectral.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.
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– reflection is a number either equal to 1 or to −1 (default: −1) that indicates the
sign of the reflection of the inversion method.

• fractalPlot(M, N, xmin, xmax, ymin, ymax, points = 100, function = onlyPosition,
ncomp = 1, colorfunction = ’spectral’, iter = 25, precpoints = 3, precroots = 3)

– M,N are the numerator and the denominator of the given rational function in variable
x, respectively.

– The tuple given by xmin,xmax,ymin,ymax represents the vertices of the rectangle in
which the fractal will be plotted.

– points is an integer (default: 100) that represents the number of points to plot in
each direction of the grid.

– function indicates the coloring strategy employed to plot the fractal: onlyPosition
(which is set by default), onlyConvergence or positionPlusConvergence.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– colorfunction is a colormap of Sage that is used to assign a color to each complex
point.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.

• spherePlot(M, N, function = onlyPosition, rotzoom = ((0,0,0),1), points = 100, ncomp
= 1, view = ’tachyon’, basin = 0, iter = 25, precpoints = 3, precroots = 3)

– M,N are the numerator and the denominator of the given rational function in variable
x, respectively.

– function indicates the coloring strategy employed to plot the fractal: onlyPosition
(which is set by default), onlyConvergence or positionPlusConvergence.

– rotzoom is a tuple given by two elements: a 3-tuple (xrot, yrot, zrot) and a positive
real number z. Due to this parameter, the algorithm returns the sphere zoomed z
times and self-rotated about the x-axis, y-axis and z-axis by the angles xrot, yrot
and zrot, respectively.

– points is an integer (default: 100) that represents the number of points to plot in
each direction of the grid.
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– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– view is a string that indicates the viewer which will be used in order to see the plot.
Possible values: ’jmol’, ’tachyon’ (by default), ’java3d’ and ’canvas3d’.

– basin is an integer (default: 0) which refers to the unique basin of a fixed point that
will be plotted, according to the order of the fixed points in the list returned by this
program, if its value is different from 0; otherwise, all the basins of attraction will be
drawn.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.

• cubicSpherePlot(M, N, function = onlyPosition, rotzoom = ((0,0,0),1), numdiv = 40,
ncomp = 1, view = ’tachyon’, basin = 0, iter = 25, precpoints = 3, precroots = 3)

– M,N are the numerator and the denominator of the given rational function in variable
x, respectively.

– function indicates the coloring strategy employed to plot the fractal: onlyPosition
(which is set by default), onlyConvergence or positionPlusConvergence.

– rotzoom is a tuple given by two elements: a 3-tuple (xrot, yrot, zrot) and a positive
real number z. Due to this parameter, the algorithm returns the sphere zoomed z
times and self-rotated about the x-axis, y-axis and z-axis by the angles xrot, yrot
and zrot, respectively.

– numdiv is an integer (default: 40) that indicates the number of subdivisions of the
faces of the cube which is projected upon the unit sphere.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– view is a string that indicates the viewer which will be used in order to see the plot.
Possible values: ’jmol’, ’tachyon’ (by default), ’java3d’ and ’canvas3d’.

– basin is an integer (default: 0) which refers to the unique basin of a fixed point that
will be plotted, according to the order of the fixed points in the list returned by this
program, if its value is different from 0; otherwise, all the basins of attraction will be
drawn.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.
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– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.

• fractalPlotInsideOutsideBasin(M, N, basin, points = 150, ncomp = 1, iter = 25,
precpoints = 3, precroots = 3, reflection = −1)

– M,N are the numerator and the denominator of the given rational function in variable
x, respectively.

– basin is an integer which refers to the unique basin of a fixed point that will be
plotted, according to the order of the fixed points in the list returned by this program.

– points is an integer (default: 150) that represents the number of points to plot in
each direction of the grid.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.

– reflection is a number either equal to 1 or to −1 (default: −1) that indicates the
sign of the reflection of the inversion method.

• fractalPlotBasin(M, N, xmin, xmax, ymin, ymax, basin, points = 100, ncomp = 1, iter
= 25, precpoints = 3, precroots = 3)

– M,N are the numerator and the denominator of the given rational function in variable
x, respectively.

– The tuple given by xmin,xmax,ymin,ymax represents the vertices of the rectangle in
which the fractal will be plotted.

– basin is an integer which refers to the unique basin of a fixed point that will be
plotted, according to the order of the fixed points in the list returned by this program.

– points is an integer (default: 100) that represents the number of points to plot in
each direction of the grid.
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– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.

• basinOfFixedPoint(M, N, point, ncomp = 1, iter = 25, precpoints = 3, precroots = 3)

– M,N are the numerator and the denominator of the given rational function in variable
x, respectively.

– point is the point in C that will be iterated in order to determine to which fixed
point it converges.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.

6.3.2 For Mathematica

The level of difficulty to use this program in Mathematica is quite similar to that of Sage: low. In
order to plot the fractal related to a given rational map, it is enough to specify the numerator and
denominator polynomials in any variable and execute one of the following subroutines, depending
on what kind of fractal we want to draw: either FractalPlotInsideOutside, FractalPlot,
SpherePlot or SubdividedSpherePlot –see paragraph Algorithms in Mathematica in subsection
6.2.6. The rational function should be different from the identity.

For instance, the fractal plotted in Figure 6.8, whose associated rational map is again
4x5 + 1

5x4
, was obtained just by typing and executing the following sequence in Mathematica:
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A[x_] := 4*x^5 + 1

B[x_] := 5*x^4

FractalPlotInsideOutside[{A, B}, 200, PositionPlusConvergence]

Next we show the input parameters of the plotting functions that are supported:

• FractalPlotInsideOutside[{A1 , B1 }, points : 200, function : OnlyPosition, ncomp :
1, fractalcolorfunction : SpiralCMYKColor, iter : 25, precpoints : 3, precroots : 3,
reflection : −1]

– A1,B1 are the numerator and the denominator of the given rational function in any
variable, respectively.

– points is an integer (default: 200) that represents the number of points to plot in
each direction of the grid.

– function indicates the coloring strategy employed to plot the fractal: OnlyPosition
(which is set by default), OnlyConvergence or PositionPlusConvergence.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– fractalcolorfunction is a color map previously defined by the user in Mathematica
that is used to assign a color to each complex point. The color map set by default,
given by the developer, is SpiralCMYKColor. Other color maps that have already
been predefined are CosCMYKColor, KnotCMYKColor and CosHueColor.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.

– reflection is a number either equal to 1 or to −1 (default: −1) that indicates the
sign of the reflection of the inversion method.

• FractalPlot[{A1 , B1 }, rectangle , points : 200, function : OnlyPosition, ncomp : 1,
fractalcolorfunction : SpiralCMYKColor, iter : 25, precpoints : 3, precroots : 3]

– A1,B1 are the numerator and the denominator of the given rational function in any
variable, respectively.

– rectangle is a 2-tuple {{x, x′}, {y, y′}} that represents the rectangle on the complex
plane of vertices x+ iy, x′+ iy, x′+ iy′ and x+ iy′ in which the fractal will be plotted.

– points is an integer (default: 200) that represents the number of points to plot in
each direction of the grid.
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– function indicates the coloring strategy employed to plot the fractal: OnlyPosition
(which is set by default), OnlyConvergence or PositionPlusConvergence.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– fractalcolorfunction is a color map previously defined by the user in Mathematica
that is used to assign a color to each complex point. The color map set by default,
given by the developer, is SpiralCMYKColor. Other color maps that have already
been predefined are CosCMYKColor, KnotCMYKColor and CosHueColor.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.

• SpherePlot[{A1 , B1 }, points : 200, function : OnlyPosition, ncomp : 1,
fractalcolorfunction : SpiralCMYKColor, iter : 25, precpoints : 3, precroots : 3]

– A1,B1 are the numerator and the denominator of the given rational function in any
variable, respectively.

– points is an integer (default: 200) that represents the number of points to plot in
each direction of the grid.

– function indicates the coloring strategy employed to plot the fractal: OnlyPosition
(which is set by default), OnlyConvergence or PositionPlusConvergence.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– fractalcolorfunction is a color map previously defined by the user in Mathematica
that is used to assign a color to each complex point. The color map set by default,
given by the developer, is SpiralCMYKColor. Other color maps that have already
been predefined are CosCMYKColor, KnotCMYKColor and CosHueColor.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.
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• SubdividedSpherePlot[{A1 , B1 }, subdivision : 8, function : OnlyPosition, ncomp :
1, fractalcolorfunction : SpiralCMYKColor, iter : 25, precpoints : 3, precroots : 3]

– A1,B1 are the numerator and the denominator of the given rational function in any
variable, respectively.

– subdivision is an integer (default: 8) that indicates the number of times that the
projection of the original cube’s faces (spherical quadrilaterals) on the unit sphere
are subdivided.

– function indicates the coloring strategy employed to plot the fractal: OnlyPosition
(which is set by default), OnlyConvergence or PositionPlusConvergence.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– fractalcolorfunction is a color map previously defined by the user in Mathematica
that is used to assign a color to each complex point. The color map set by default,
given by the developer, is SpiralCMYKColor. Other color maps that have already
been predefined are CosCMYKColor, KnotCMYKColor and CosHueColor.

– iter is an integer l (default: 25) that represents the maximum number of iterations
of the rational function.

– precpoints is an integer c1 (default: 3) such that, given a rational map f and a
point p on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is
lower than 10−c1 , k < l, then the developed algorithm stops the iteration of f .

– precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed
point p0 is lower than 10−c2 , then the developed algorithm considers that this iteration
sequence converges to p0.
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Chapter 7

Computing areas on the Riemann
sphere of basins of attraction

The single cellular procedure of measure construction that we considered in section 5.2 has got
many interesting advantages, since the combinatorial nature of this method permits us, in some
cases, to develop computational algorithms in order to obtain the measure of some subsets which
are defined by iteration of finite construction methods. Incidentally, in this chapter, we develop
and implement an algorithm for computing, up to a given precision, the measure of basins of
attraction of rational maps different from the identity defined on the Riemann sphere. This
algorithm is based on the subdivisions of a cubic decomposition of a sphere and it was made by
using different computational environments.

As an application, we study the basins of attraction of the fixed points of the rational func-
tions obtained when Newton’s method is applied to a polynomial with two roots of multiplicities
m and n. We focus our attention on the analysis of the influence of the multiplicities m and n
on the measure of both basins of attraction. As a consequence of the numerical results given in
this chapter, we conclude that, if m > n, then the probability of a point in the Riemann Sphere
belonging to the basin of the root with multiplicity m is bigger than the probability associated
with the root with multiplicity n. In addition, if n is fixed and m tends to infinity, then the
probability of reaching the root with multiplicity n tends to zero.

Our study on the influence of the multiplicity of the roots on the area of the basins of
attraction will be divided into three phases:

a) We will give two different computational algorithms to calculate the area of a basin of
attraction of a fixed point of a rational function different from the identity on the Riemann
sphere.

b) We will apply these algorithms and their implementations to compute the area of the
basins of attraction of the rational functions obtained when Newton’s method is applied
to a non-constant polynomial.

c) In the particular case of a polynomial of the form p(z) = (z−1)m(z+1)n, we will quantify
the influence of the multiplicities m, n on the measure of the corresponding basins.

135
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All above considered, the chapter will be organized as follows. The geometrical notions
that were given along section 5.2 allowed us to introduce a usual measure on the 2-sphere in a
computational way by using consecutive subdivisions of a cubic structure on the 2-sphere and
the Girard’s theorem, which gives the area of a spherical triangle in terms of the measure of
its angles. In this process, the unit sphere was inscribed in the boundary of the 3-cube [−1, 1]3

and the central projection gave a homeomorphism from the boundary of the 3-cube to the unit
sphere. Remember that, in the referred section, the subdivision method that was considered
consisted in the iterated subdivision of the projection of the boundary of the 3-cube; in section
7.1, a new canonical way of subdivision will be used: the projection of the iterated subdivisions
of the cube. Both procedures induce the same standard measure on the unit 2-sphere; however,
the former will give a more homogeneous distribution of the areas and, as a consequence, a faster
algorithm, since fewer subdivisions will be needed to achieve a given precision.

In section 7.2, we will give a description of the algorithms that we use to compute the
measure of the area of the basins of attraction of a rational map different from the identity on
the Riemann sphere. In addition, some implementations of these algorithms using the computer
programs Mathematica and Sage will be described in section 7.2.3. It is interesting to remark
that the order of convergence plays an important role in the design of our algorithm, as we will
show in subsection 7.2.1. To avoid some problems derived from the slow convergence in the
case of linear order of convergence, we have to be careful when choosing precisions c1 and c2

–see subsections 6.2.3 and 6.2.4 for more details about such precisions. In the case of Newton’s
method, both precisions can be related with the formula c2 = c1− log10(m− 1), where m is the
maximum of the multiplicities of the roots.

In section 7.3, we will study the effects of the multiplicity of the roots on the basins of
attraction of Newton’s method applied to polynomials with two roots. In particular, we shall
look for an answer to the following question: if we choose randomly a point in the Riemann
sphere and we iterate the rational function given by Newton’s method, what is the probability
of the generated sequence converging to a given root? So, we can associate to each root a
probability with the criterium above. In the case of polynomials with two simple roots (Cayley’s
problem), both roots have the same probability. However, the inspection of Figure 7.2 reveals
that the probability related to the root with the biggest multiplicity is bigger than the other one.
Although they could be many other ways to associate a probability to a root, in this work we
have used the area (divided by the area of the sphere) of the corresponding basin of attraction
in the Riemann sphere as the probability of the root. Section 7.3 also contains some numerical
experiments with values of the probabilities associated with the fixed points 1 and −1 of the
rational function Bm,n introduced in equation (7.3) as a function of m and n, or more generally,
probabilities of polynomials with two unitary opposite roots α1 = −α2 (|α1| = |α2| = 1).

7.1 Two different iterated subdivisions of the sphere

In this section, we describe another computational method to give a measure function on a
sphere based once again on the excess of a spherical quadrilateral and a system of consecutive
subdivisions of the sphere.
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(a) The iterated subdivision Γ̃1
∗(S

2). (b) The iterated subdivision Γ2
∗(S

2).

Figure 7.1: Processes of consecutive cubic subdivisions of the sphere.

First of all, recall from section 5.2 that the unit 2-sphere can be inscribed in the boundary
of the cube [−1, 1]3 and, in that case, observe that the Euclidean norm induces a canonical
bijective projection

η : ∂([−1, 1]3)→ S2, η(x) =
x

‖x‖
.

Apart from this, remember the iterated subdivision Γ∗∗([−1, 1]n) which was constructed in
that section; setting n = 3 and taking the boundary of the resulting cube, we have a sequence
of consecutive subdivisions for the boundary of the 3-cube that permits us to consider it as a
measure space. These subdivision structures can be transformed by η into new subdivisions of
the 2-sphere:

Γ̃r∗(S
2) = η(Γr∗(∂([−1, 1]3))).

For instance, for r = 1, one has the cubic structure of Figure 7.1(a). Besides, Figure 7.1(b)
shows the iterated subdivision Γ2

∗(S
2) on the 2-sphere considered in section 5.2.

Hence, we have described two different methods to obtain consecutive cubic subdivisions of
the 2-sphere: Γ̃∗∗(S

2) = η(Γ∗∗(∂([−1, 1]3))) and Γ∗∗(S
2). It would be nice if both iterative processes

gave rise to the same measure on the 2-sphere. Remember, from the example about measures on
S2 we saw in subsection 5.2.2, that the 2-cellular-extension measure µ̄ : Eµ∗∗(S

2)→ [0,∞] induced
by the iterated subdivision Γ∗∗(S

2) can be also considered as the solid angle measure which
generalizes to dimension 2 the usual circle angle measure; therefore, any spherical quadrilateral,
just like those formed by means of the iterated subdivision Γ̃∗∗(S

2), is measurable with respect
to the measure µ̄ –take into account that µ̄ is a Borel measure and any spherical quadrilateral
is a closed subset of S2. Given γ̃r ∈ Γ̃r∗(S

2), consider the following subdivision operator:

SdS(γ̃r) = {η(γ) | γ ∈ Sd(η−1(γ̃r))}.
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Define the 2-cellular measure µ̃∗∗ = {µ̃r∗}r∈N so that µ̃r2 : Γ̃r2 → [0,∞] is given by µ̃r2(γ̃r) = µ̄(̊γ̃r).
Notice that µ̃∗∗ has the subdivision invariance property shown in Definition 5.2.1:

µ̃r+1
2 (SdS(γ̃r)) =

∑
β̃r+1∈SdS(γ̃r)

µ̃r+1
2 (β̃r+1) =

∑
β̃r+1∈SdS(γ̃r)

µ̄
(

˚̃
βr+1

)
=

∑
γr+1∈Sd(η−1(γ̃r))

µ̄(η(̊γr+1))

= µ̄(η(η−1(̊γ̃r))) = µ̄((η ◦ η−1)(̊γ̃r)) = µ̄(̊γ̃r) = µ̃r2(γ̃r).

Since µ̃∗2 has the subdivision invariance property, one has that µ̃∗∗ is a 2-cellular measure for
this iterated subdivision Γ̃∗∗(S

2) on the 2-sphere. Then, applying Theorem 5.2.1 and Theorem
5.2.2, one has that the Borel σ-algebra σ(tS2) is contained in the cellular-extension σ-algebra
Eµ̃∗∗(S

2) and we can consider the induced 2-cellular-extension measure ¯̃µ : Eµ̃∗∗(S
2) → [0,∞] of

µ̃∗∗, which is the usual measure of solid angles. As a result, since µ̄ : Eµ∗∗(S
2)→ [0,∞] also agrees

with the usual measure of solid angles, we have that µ̄ = ¯̃µ and the iterated subdivisions Γ∗∗(S
2)

and Γ̃∗∗(S
2) induce the same measure.

The probability measure of a measurable subset A belonging to the unit sphere is given by

P (A) =
µ̄(A)

4π
=

¯̃µ(A)

4π
. In order to compute the measure of a basin, or probability associated

with it, the author has developed algorithms implemented in Sage to construct the subdivisions
Γ̃∗∗(S

2) and other algorithms implemented in Mathematica to construct Γ∗∗(S
2). This will allow

us to compare different algorithms and different computational environments.

Remark 7.1.1. A measure on the 2-sphere can be also introduced using a volume form,
and the measure of many regions whose boundary is given by a smooth curve can be computed
in many cases using suitable coordinates and by usual integration formulas. However, many
problems appear when one wants to compute the area of a basin of attraction whose frontier
is a Julia set with a fractal dimension between 1 and 2, and its length (if the Julia set can be
considered as a measurable set) could be infinite.

In the following sections, we will describe some computational algorithms to specifically give
the area (or probability) of the basin of a fixed point of a rational function different from the
identity on the Riemann sphere. As an application, we will compute, up to a given precision, the
area of the basins of attraction of the rational function obtained by applying Newton’s method
to a certain non-constant polynomial, and we will also quantify the influence of the multiplicity
for the case of a polynomial with two roots.

7.2 Multiplicities, algorithms and implementations

Previously, we have introduced some mathematical techniques and developed basic theoretical
aspects necessary to build computer programs with the ability of representing basins of attraction
of end points associated with a determined rational function different from the identity. We shall
show in the next lines the algorithms which have been developed to study the basins induced
by a rational function f 6= Id on the Riemann 2-sphere.
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7.2.1 Adjusting the precisions c1 and c2 when considering Newton’s method

When we apply Newton’s method to a polynomial with non-simple roots, we have that the
order of convergence is linear and, for this very reason, the considerations described below are
convenient in order to obtain right plots and measure of basins. In fact, since the rational
function h(z) = 4z5+1

5z4 defined in subsection 6.1.5 is induced by applying Newton-Raphson’s
algorithm to the complex polynomial p(z) = z5 − 1 (see (7.1)), all the illustrations of basins of
end points of h that appear along chapter 6 –most of which correspond to the basins of attraction
of the roots of p– have been drawn taking into account the following ideas.

Let X = C∪{∞} and f : X → X be a rational function on the Riemann sphere and suppose
that we are working with a metric discrete semi-flow (X, d, ϕ), where ϕ : N×X → X is given by
ϕ(n, x) = fn(x) and d = dE is the chordal distance recalled in subsection 6.1.3. If for a given
point x ∈ X one has that (fk(x))k∈N converges to a given fixed point y of f and

lim
k→∞

(
d(fk(x), y)

d(fk−1(x), y)

)
= λ < 1,

then one has linear convergence. In this case, for large k, we have that

d(fk(x), y) ∼ λd(fk−1(x), y).

If we suppose that (d(fk(x), y))k∈N is a decreasing sequence, then one has that, for a large k,

d(fk(x), fk−1(x)) ≥ d(fk−1(x), y)− d(fk(x), y) ∼ 1

λ
d(fk(x), y)− d(fk(x), y)

=

(
1

λ
− 1

)
d(fk(x), y);

or equivalently,

d(fk(x), y) .
λ

1− λ
d(fk(x), fk−1(x)).

For Newton’s method, if we consider the rational map f = Np, where p is a non-constant
polynomial, one of the difficulties that arise when calculating numerically a multiple root of
multiplicity m is that the convergence is slower than for the case of a simple root. For a root of

multiplicitym, one has linear convergence with λ = 1− 1

m
; hence,

λ

1− λ
= m− 1 and, therefore,

d(fk(x), y) . (m− 1)d(fk(x), fk−1(x)).

Then, for a large k, if d(fk(x), y) ∼ (m− 1)d(fk(x), fk−1(x)), one could have that

d(fk−1(x), y) ∼ (m− 1)d(fk(x), fk−1(x)).

This implies that, when the iterative process stops because

d(fk(x), fk−1(x)) ∼ 10−c,

then one can have
d(fk(x), y) ∼ (m− 1)10−c > 10−c (m > 2)

and the algorithm will give a wrong result, which is that x is not actually in the basin of y.
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This problem can be avoided working with two precision numbers: 10−c1 is the precision
we use in order to stop the iteration process and a new precision 10−c2 can be introduced to
determine if the final point of the iteration is close to a given root (fixed point) of multiplicity
m > 2. In order to compare both precision numbers, as a consequence of the effect of the
multiplicity m, one has 10−c2 ∼ (m− 1)10−c1 ; thus, it suffices to take

c2 = c1 − log10(m− 1).

In general, for a polynomial with at least one non-simple root and multiplicities m1, . . . ,ms, one
can take

c2 = c1 − log10(max{m1 − 1, . . . ,ms − 1})
to compute the basins of the corresponding rational function and their measure.

These precision numbers were kept in mind when designing the algorithms described along
section 6.2, as reflected in the manuals shown in section 6.3: the parameter precpoints refers
to the variable c1 and the parameter precroots alludes to the variable c2. Obviously, they have
also been considered when developing algorithms for computing the area of basins of end points,
as we will see in next subsections.

7.2.2 Algorithms to compute the area of basins of end points

Projection of subdivisions: Γ̃r∗(S
2) = η(Γr∗(∂([−1, 1]3)))

Let X = C ∪ {∞} ∼= S2. Suppose that we are working with a metric exterior discrete semi-
flow (X, dE , ε(X,Fix(X))), where dE is the chordal metric and Fix(X) is a finite subset, and
consider the measure exterior discrete semi-flow (X, ε(X,Fix(X)), tS2 , ¯̃µ|σ(tS2 )), which is well-

defined since ¯̃µ : Eµ̃∗∗(S
2)→ [0,∞] is the 2-cellular-extension measure constructed in section 7.1

and the Borel σ-algebra σ(tS2) is contained in the cellular-extension σ-algebra Eµ̃∗∗(S
2).

For each 2-cube γ of Γr∗(∂([−1, 1]3)), we compute its barycenter γ̂ and the point η(γ̂). After
that, we use the algorithms given in subsections 6.2.3 and 6.2.4 to check whether η(γ̂) is in
the basin of one of the fixed points x1, . . . , xn+1 (we remark that we have a prefixed maximal
number of iterations l, as well as precisions 10−c1 and 10−c2). We have two possibilities: if η(γ̂)
is in the basin of a fixed point xi ∈ Fix(X), then the 2-cube γ is included in a list of 2-cubes
Li(r) associated with the fixed point xi; otherwise, the 2-cube γ is not included in any of the
lists L1(r), . . . , Ln+1(r).

Remember that the measure ¯̃µ satisfies ¯̃µ(̊γ) = µ̃∗∗(γ), ∀γ ∈ Γ̃∗∗(S
2), where ¯̃µ agrees with

the usual measure of solid angles and µ̃∗∗ = {µ̃r∗}r∈N, µ̃r2 : Γ̃r2 → [0,∞], is the 2-cellular measure
defined in section 7.1. Thus, for each list Li(r), i = 1, . . . , n+ 1, we can compute the finite sum
of the areas of its spherical 2-cubes (quadrilaterals) ¯̃µ(Li(r)) =

∑
γ∈Li(r) µ̃

r
2(η(γ)), where the

area µ̃r2(η(γ)), γ ∈ Li(r), is given by computing the excess of the spherical quadrilateral η(γ);
see Remark 5.2.2. In order to calculate the probability Pi(r) associated with the list of 2-cubes

Li(r), it suffices to divide by the area 4π of the unit 2-sphere: Pi(r) =
¯̃µ(Li(r))

4π .

Should you want to obtain the area module a precision 10−c, then the process above must
be repeated for higher values of r until you find one such that | ¯̃µ(Li(r))− ¯̃µ(Li(r+ 1))| < 10−c.
Now, take ¯̃µ(Li(r + 1)) as the area of the basin of xi.
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Note the following fact: our algorithm states that, if the point η(γ̂) is in the basin of a fixed
point, then every point of η(γ) is wrongly expected to be contained in that basin. Since we can
work with very fine subdivisions, this is not actually a serious problem; however, this step of
the algorithm could be improved by checking whether more points of η(γ) are in the same basin
(and finding which points they are, if there is any) or by using more information, namely the
value of the derivative of an iterated function at η(γ̂).

Subdivisions of the projection: Γr∗(S
2)

In this case, the algorithm is similar to the process above. The difference is that we consider
consecutive subdivisions of the first projection η(∂([−1, 1]3)) instead of projections of consecutive
subdivisions; see the paragraph regarding measures on S2 contained in subsection 5.2.2.

The main difference of this second process, Γr∗(S
2), is that the areas of the 2-cubes of a given

subdivision are more similar between one another than those of the 2-cubes obtained by the
iterative method Γ̃r∗(S

2).

This implies that the election of the “middle points” is more homogeneous in this second
method than in the first method and, as a matter of fact, we can obtain a better approximation
of the area of a basin when considering the iterative subdivision Γr+1

∗ (S2) rather than when
using Γ̃r∗(S

2) –notice that, given a subdivision order r, the cardinalities of the sets Γr+1
2 (S2) and

Γ̃r2(S2) are the same. The fact that the distributions of areas is more homogeneous can be seen
just by looking the following matrices M1 and M2, which represent the areas of the “2-cubes” of
one of the six faces corresponding to the boundary of the cube [−1, 1]3 when using respectively
the first iterative subdivision method, Γ̃1

∗(S
2), or the second one, Γ2

∗(S
2), illustrated in Figures

7.1(a) and 7.1(b).

M1 =


0.0814556 0.120393 0.120393 0.0814556
0.120393 0.201358 0.201358 0.120393
0.120393 0.201358 0.201358 0.120393
0.0814556 0.120393 0.120393 0.0814556



M2 =


0.109805 0.131197 0.131197 0.109805
0.131197 0.151401 0.151401 0.13119
0.131197 0.151401 0.151401 0.13119
0.109805 0.131197 0.131197 0.109805


Note that the distribution of the areas is more homogeneous in the second matrix; that is,

the discrepancy among the areas is lower in the second case than in the first one.

7.2.3 Implementation of graphic algorithms in Sage and Mathematica

We have implemented in Sage the first algorithm (projection of subdivisions), whose name is
cubicProbabilityList, to compute the probabilities of the different basins. The specification
for this function is the following:
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cubicProbabilityList(M, N, numdiv=40, ncomp=1, iter=25, precpoints=3, precroots=3)

• M,N are the numerator and the denominator of the given rational function in variable x,
respectively.

• numdiv is an integer (default: 40) that indicates the number of subdivisions of the faces of
the cube which is projected upon the unit sphere. The parameter numdiv and the variable
r are related in the following way: numdiv(r) = 2r+1.

• ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

• iter is an integer l (default: 25) that represents the maximum number of iterations of the
rational function.

• precpoints is an integer c1 (default: 3) such that, given a rational map f and a point p
on the Riemann sphere, if the chordal distance between fk(p) and fk+1(p) is lower than
10−c1 , k < l, then the developed algorithm stops the iteration of f .

• precroots is an integer c2 (default: 3) which satisfies that, given an iteration sequence
(p, f(p), f2(p), . . . , fk(p)), if the chordal distance between fk(p) and a certain fixed point
p0 is lower than 10−c2 , then the developed algorithm considers that this iteration sequence
converges to p0.

The algorithm cubicProbabilityList works as follows. Firstly, it composes the rational

function f(z) = M(z)
N(z) (z ∈ C ∪ {∞}) with itself the amount of times indicated in the parameter

ncomp and homogenizes the resulting rational map in the variables z, t. Then, it computes the
fixed points of the generated rational map. The vectors cubeSphereList, areaSquareList and
areasum will contain the points on the complex projective line in normalized homogeneous co-
ordinates that will be iterated (obtained from the barycenters of the original cubic structure),
the areas of the quadrilaterals formed on the surface of the sphere by projecting the cubic sub-
divisions and the sums of the areas of the spherical quadrilaterals whose middle points converge
to the same end point (that is, the approximations to the area of each basin of attraction),
respectively.

If the algorithm has been previously run with a certain number of subdivisions, it retrieves
the data related to the vectors cubeSphereList and areaSquareList from a file; otherwise, it
computes this information from the barycenters of the 2-cells of the initial regular CW-complex
–by calculating within this process the vertices of the spherical quadrilaterals on the surface of
S2– and stores the data creating a new file for future executions.

After that, it iterates the middle points contained in the vector cubeSphereList in order
to see which fixed point they converge to and adds the area of the corresponding spherical
quadrilateral to the appropriate element of the vector areasum. Finally, it divides the area
associated with each basin of attraction by 4π (the area of the unit sphere) to get the probability
related to the basins.

Next, we show the source code written in Sage of the function cubicProbabilityList.
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import os.path; import csv

def cubicProbabilityList(M,N,numdiv=40,ncomp=1,iter=25,precpoints=3,precroots=3):

ch=composeHomogenize(M,N,ncomp); A=ch[0]; B=ch[1]; p=fixedPointsZeros(A,B)

if len(p)>0:

grad=len(p)-1; ran=grad+2; areasum=[]

for k in range(ran): areasum.append(0.0)

cubeSphereList=[]; areaSquareList=[]; exist=False; sz=6*numdiv**2

if not os.path.isfile(DATA+’cpl’+str(numdiv)+’.csv’):

cube=[]

for y1 in range(numdiv):

for x1 in range(numdiv):

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2,-1))

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2,1))

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

-1,((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

1,((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

cube.append((-1,((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

cube.append((1,((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

def cubeSphere(p):

root=sqrt(p[0]**2+p[1]**2+p[2]**2)

return (n(p[0]/root),n(p[1]/root),n(p[2]/root))

def sphereComplexProjLine(p):

if (p[2]==1): return (1,0)

else: return homogeneousNormalization((p[0]/(1-p[2])+I*p[1]/(1-p[2]),1))

def squareFromBarycenter(barycenter):

if abs(barycenter[0])==1:

return ((barycenter[0],barycenter[1]-1/numdiv,barycenter[2]-1/numdiv),

(barycenter[0],barycenter[1]-1/numdiv,barycenter[2]+1/numdiv),

(barycenter[0],barycenter[1]+1/numdiv,barycenter[2]+1/numdiv),

(barycenter[0],barycenter[1]+1/numdiv,barycenter[2]-1/numdiv))

elif abs(barycenter[1])==1:

return ((barycenter[0]-1/numdiv,barycenter[1],barycenter[2]-1/numdiv),

(barycenter[0]+1/numdiv,barycenter[1],barycenter[2]-1/numdiv),

(barycenter[0]+1/numdiv,barycenter[1],barycenter[2]+1/numdiv),

(barycenter[0]-1/numdiv,barycenter[1],barycenter[2]+1/numdiv))

else:

return ((barycenter[0]-1/numdiv,barycenter[1]-1/numdiv,barycenter[2]),

(barycenter[0]+1/numdiv,barycenter[1]-1/numdiv,barycenter[2]),

(barycenter[0]+1/numdiv,barycenter[1]+1/numdiv,barycenter[2]),

(barycenter[0]-1/numdiv,barycenter[1]+1/numdiv,barycenter[2]))

def areaSquare(square):

v1=Matrix(square[0]); v2=Matrix(square[1])

v3=Matrix(square[2]); v4=Matrix(square[3])

return n(arccos(dotProduct(tangent(v1,v2),tangent(v1,v4)))+

arccos(dotProduct(tangent(v2,v3),tangent(v2,v1)))+

arccos(dotProduct(tangent(v3,v4),tangent(v3,v2)))+

arccos(dotProduct(tangent(v4,v1),tangent(v4,v3)))-2*pi)

def dotProduct(v,w): return v[0][0]*w[0][0]+v[0][1]*w[0][1]+v[0][2]*w[0][2]

def tangent(a,b): w=b-a-(dotProduct((b-a),a))*a; return w/norm(w)
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for k in cube:

spherePoint=sphereComplexProjLine(cubeSphere(k));

cubeSphereList.append(spherePoint);

sq=squareFromBarycenter(k);

spsq=(cubeSphere(sq[0]),cubeSphere(sq[1]),cubeSphere(sq[2]),cubeSphere(sq[3]))

asq=areaSquare(spsq);

areaSquareList.append(asq)

with open(DATA+’cpl’+str(numdiv)+’.csv’,’w’) as f:

writefile=csv.writer(f)

for i in range(sz): writefile.writerow([cubeSphereList[i],areaSquareList[i]])

else:

exist=True

with open(DATA+’cpl’+str(numdiv)+’.csv’,’rU’) as f: data=list(csv.reader(f))

for i in range(sz):

cubeSphereList.append(data[i][0])

areaSquareList.append(eval(data[i][1]))

for j in range(sz):

if exist:

colorpoint=onlyPosition(A,B,p,iter,precpoints,precroots,eval(cubeSphereList[j]))

else: colorpoint=onlyPosition(A,B,p,iter,precpoints,precroots,cubeSphereList[j])

areasum[colorpoint]=areasum[colorpoint]+areaSquareList[j]

areasumprob=[n(ar/(4*pi)) for ar in areasum]

return areasumprob,p

Besides, we have also implemented the second algorithm (subdivisions of the projection)
using the programming environment of Mathematica. The function developed for this purpose
is called CubicAreaComplementAreaFixedPoints, and it returns the area Ap of the basins of
attraction related to each fixed point p ∈ Fix(C ∪ {∞}) on the surface of the unit sphere
(to obtain the probabilities, just divide the resulting areas by 4π). The specification for this
subroutine is the following:

CubicAreaComplementAreaFixedPoints[{P , Q },iter ,precpoints ,precroots ,
subdivisionBaryNumber ,ncomp :1]

• P,Q are the numerator and the denominator of the given rational function, respectively.

• iter is an integer l that represents the maximum number of iterations of the rational
function.

• precpoints is an integer c1 such that, given a rational map f and a point p on the Riemann
sphere, if the chordal distance between fk(p) and fk+1(p) is lower than 10−c1 , k < l, then
the developed algorithm stops the iteration of f .

• precroots is an integer c2 such that, given an iteration sequence (p, f(p), f2(p), . . . , fk(p)),
if the chordal distance between fk(p) and a certain fixed point p0 is lower than 10−c2 , then
the developed algorithm considers that this iteration sequence converges to p0.

• subdivisionBaryNumber is an integer that indicates the number of times that the projec-
tion of the original cube’s faces (spherical quadrilaterals) on the unit sphere are subdivided.
The parameter subdivisionBaryNumber and the variable r are related in the following
way: subdivisionBaryNumber(r) = r + 1.
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• ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

The function CubicAreaComplementAreaFixedPoints works as follows. After forming the

rational map h(z) = P (z)
Q(z) (z ∈ C ∪ {∞}), composing it with itself as many times as indicated

in the parameter ncomp and computing its fixed points, it constructs recursively the iterated
subdivision Γr∗(S

2) on the surface of the 2-sphere, finds the set of middle points M(Γr2(S2)) of
the 2-cells in this complex and calculates their areas. The algorithm makes this process more
efficient by taking into account that, given a determined subdivision order r, the middle points
of the cells in Γr2(S2) are part of the vertices in Γr+1

0 (S2). After that, it iterates the middle
points to see which fixed point they converge to (if there is any) and adds the corresponding
areas of the spherical quadrilaterals whose middle points converge to the same fixed point (if the
iteration of a middle point did not reach any fixed point, the area of the spherical quadrilateral
to which it belongs is included in the surface of the region X \D, with X = C∪ {∞}). In order

to do this last step, the program calculates the sum given by Ap =
∑

x∈M(Γr2(S2))

fx(p) for every

fixed point p ∈ Fix(X), where fx : Fix(X)→ [0, 4π] ⊂ R is defined as follows:

fx(p) =

{
Sx if px = p;

0, if px 6= p,

being Sx the area of the spherical square in Γr2(S2) that contains the middle point x ∈M(Γr2(S2))
and being px ∈ Fix(X) the fixed point to which x converges.

Before compiling the subroutine CubicAreaComplementAreaFixedPoints, it might be ad-
visable to compute in advance the middle points and the areas of the 2-cells of the iterated
subdivision Γr∗(S

2) (storing the data in a vector called centerAreaList), as long as the number
of subdivisions r is not too high (say, less than 8). This strategy could be certainly advantageous,
especially when we intend to work repeatedly with a low value for r.

The algorithm CubicAreaComplementAreaFixedPoints written in Mathematica is presented
in the next lines, together with the subprograms that are part of it –remember that the subrou-
tines ConstructCubeComplex and ComplexProjectiveLineBijection were shown in subsection
6.2.6.

Tangent[a_, b_] := Normalize[b - a - ((b - a).a) a];

Area[{a_,b_,c_,d_}] := ArcCos[Tangent[a,b].Tangent[a,d]] + ArcCos[Tangent[b,c].Tangent[b,a]] +

ArcCos[Tangent[c,d].Tangent[c,b]] + ArcCos[Tangent[d,a].Tangent[d,c]] - 2 Pi;

CentersArea[subdivisionNumber_] := Module[{center},

center[{a_, b_, c_, d_}] := Normalize[(a + b + c + d) / 4];

Map[{center[#], Area[#1]} &, ConstructCubeComplex[subdivisionNumber]]

];

centerAreaList = Table[CentersArea[k], {k, 1, 8}];
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CubicAreaComplementAreaFixedPoints[{P_,Q_},iter_,precpoints_,precroots_,subdivisionBaryNumber_,

ncomp_:1] :=

Module[{h,rf,A,B,z,t,fixedPointList,listPointsAreas,listPointsAreas1,areaListAux,f},

h[z_] := P[z]/Q[z];

rf[{z_,t_}] := Together[Nest[h,z,ncomp] /. z -> z/t];

{A[{z_,t_}],B[{z_,t_}]} = {Numerator[rf[{z,t}]],Denominator[rf[{z,t}]]};

fixedPointList = FixedPointsZeros[A,B];

listPointsAreas1 = If[subdivisionBaryNumber<=8,centerAreaList[[subdivisionBaryNumber]],

CentersArea[subdivisionBaryNumber]];

listPointsAreas = Transpose[{Map[ComplexProjectiveLineBijection[#] &,

Transpose[listPointsAreas1][[1]]],Transpose[listPointsAreas1][[2]]}];

areaListAux[point_,k_] := Module[{pos,niter},

{pos,niter} =

PositionIterationNumber[{A,B},fixedPointList,iter,precpoints,precroots][point];

f[k][i_] := If[i==pos,listPointsAreas[[k]][[2]],0]

];

Do[areaListAux[listPointsAreas[[i]][[1]],i],{i,1,Length[listPointsAreas]}];

Table[Sum[f[i][j],{i,1,Length[listPointsAreas]}],{j,0,Length[fixedPointList]}]

];

In the next section, we shall see how these two different algorithms implemented in two
different environments give similar results when one computes the measure of the basins of some
rational function.

7.3 Quantifying the influence of the multiplicities with numeri-
cal experiments

Let p : C → C be a d-degree polynomial, with d > 0, whose roots are not necessarily distinct
and let Np be the iterating function of the well-known Newton’s method:

zn+1 = Np(zn) = zn −
p(zn)

p′(zn)
. (7.1)

It is well-known [81, 5] that, if the previous sequence starts at an initial approximation z0

close enough to a root of the polynomial p, then it converges to such a root. If the root is simple,
then the order of convergence of the sequence (7.1) is quadratic; but if the root is multiple, the
order of convergence is only linear. This fact reveals that the multiplicity of the roots plays an
important role on the convergence of Newton’s method.

There are other effects of the multiplicity of the roots on Newton’s method. For instance,
when Newton’s method is applied to d-degree polynomials with simple roots, a rational function
of degree d is obtained. However, for multiple roots, the degree of the corresponding rational
function is strictly lower than d.

The classical Cayley’s problem [68] is related to the basins of attraction of the roots of
a quadratic polynomial when Newton’s method is considered. To be more precise, Newton’s
method is applied to the polynomial p(z) = (z − α1)(z − α2), where α1 and α2 are two distinct
complex roots. Let us denote

Basin(αi) = {z0 ∈ C | Nk
p (z0)→ αi, k → +∞}, i = 1, 2,
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the i-th basin of attraction (Nk
p = Np ◦ · · · ◦ Np, k-times). Cayley was able to show that, if

|z0 − α1| < |z0 − α2|, then z0 ∈ Basin(α1) and that z0 ∈ Basin(α2) if |z0 − α2| < |z0 − α1|.
The Julia set related to this problem ([7], for more details) is the frontier of both basins of
attraction, that is, the Julia set for Newton’s method (7.1) applied to the quadratic polynomial
p(z) = (z − α1)(z − α2) is the locus of points equidistant from the two roots. This problem has
been profusely studied in the mathematical literature, not only for Newton’s method but also
for other different iterative procedures for solving nonlinear equations [2].

Furthermore, when Newton’s method is applied to polynomials of the form

p(z) = (z − α1)m(z − α2)m, m ≥ 1,

it is also known [89] that the Julia set is again the perpendicular bisector of the segment joining
the roots α1 and α2. That is, when the roots have the same multiplicity, the Julia set is a line.
However, when the roots α1 and α2 have different multiplicity, the structure of the Julia set is
more intricate. This fact was pointed out by Gilbert in [42] for the cubic polynomial

p(z) = (z − α1)2(z − α2).

In this chapter, we go a step beyond and analyze the influence of the multiplicities of the roots
on the corresponding basins of attraction when Newton’s method (7.1) is applied to polynomials
of the form:

p(z) = (z − α1)m(z − α2)n, α1, α2 ∈ C, α1 6= α2, m, n ∈ N∗. (7.2)

For each polynomial p(z) in (7.2), the application of Newton’s method (7.1) gives a rational
function Bm,n(z) whose coefficients depend on the multiplicities m,n:

Bm,n(z) =
(m+ n− 1)z2 + (α1 + α2 − α1n− α2m)z − α1α2

(m+ n)z − (α1n+ α2m)
. (7.3)

Notice that the rational function Bm,n(z) has quadratic degree, regardless of the values of the
multiplicities m and n.

In our work, we are interested in the study of the influence of the multiplicity on the geo-
metrical properties of the basins (and Julia sets) associated with the rational function Bm,n(z).
This implies that we can only modify the rational functions of this type using transformations
preserving the geometrical properties of the basins that we are studying.

As a starting point in our study, we consider the roots α1 = 1, α2 = −1. A first graphical
inspection (see Figure 7.2) shows that there exists a clear influence of the multiplicities of the
roots on the shapes of the basins of attraction. We can also observe that the basin of the root
with higher multiplicity invades the basin of the root with lower multiplicity. In Figure 7.2, we
have considered the rectangle [−3, 1]× [−2.5, 2.5] as a framework. One can see in these images
that the area of the corresponding basin (in grey) of the root z = 1 increases when multiplicity
m grows (m = 2, 3, 4). Since the entire areas of the basins on the complex plane C are not finite,
this property cannot be easily extended to compare the basins.
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Figure 7.2: Basins of attraction of Newton’s method applied to the polynomials p(z) = (z − 1)m(z + 1)
for m = 2, 3, 4. We see how the basin of the multiple root (in grey) “invades” the other basin (in black)
when m increases.

However, this difficulty can be avoided using the canonical bijection between the extended
complex plane and the unit sphere C∪{∞} ∼= S2 –see subsection 6.1.1. Using the usual measure
of S2, we can calculate a new measure of the area of the basins on S2, with the important property
that now these areas are finite. In this way, we can compare the area of different basins.

Since the structure of the boundary of any basin of attraction (the Julia set) is, in general,
very complicated, the standard methods based on a good election of coordinates and integration
theory using a volume (area) form cannot be easily applied –see Remark 7.1.1. We have sorted
out this problem by developing some combinatorial methods and using the excess of a spherical
triangle to compute, module a given precision, the area of a basin on the Riemann sphere.

In this section, we use the algorithms seen in section 7.2 to analyze the influence of the
multiplicities m and n on the basins of attraction of the fixed points of a rational function of
the form Bm,n given in (7.3). In particular, for polynomials

p(z) = (z − 1)m(z + 1)n, m, n ∈ N∗, (7.4)

Bm,n can be written as follows:

Bm,n(z) =
(m+ n− 1)z2 + (m− n)z + 1

(m+ n)z + (m− n)
. (7.5)

Subsequently, our experiment allows us to show the influence of the multiplicities on the prob-
abilities related to the roots 1 and −1 of the polynomial (7.4), as explained above. Taking into
account the criterium which was introduced there, for each m,n ∈ N we denote by P1(m,n) the
probability of the root z = 1 and by P−1(m,n) the probability of the root z = −1; that is,

P−1(m,n) =
A−1

4π
, P1(m,n) =

A1

4π
,
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P−1(2, 1) = 0.23

P−1(3, 1) = 0.14 P−1(3, 2) = 0.34

P−1(4, 1) = 0.11 P−1(4, 2) = 0.26 P−1(4, 3) = 0.39

Figure 7.3: Basins on the Riemann sphere of the roots z = −1 (light blue) and z = 1 (dark blue) as fixed
points of the rational function (7.5), together with the probability P−1(m,n) for different multiplicities
m and n.

where A−1 and A1 are respectively the areas of the basins of attraction on the Riemann sphere
of the roots −1 and 1, considered as fixed points of (7.5).

7.3.1 A graphic approach plotted with Sage

In Figure 7.3, we have plotted the basins of attraction of the roots z = −1 and z = 1 for
different values of m and n (m > n). We can see how the basin of the root z = −1 is smaller
than the other basin. In addition, we have quantified this graphical fact by calculating the
probability related with the two roots. In fact, we only have included the values of P−1(m,n),
since P1(m,n) = 1 − P−1(m,n). In order to obtain these images, we have used the projection
of a subdivision with order r = 5.

Our numerical experiments reveal the following facts:

(1) It is necessary to increase the number of maximum iterations when multiplicities m and
n go up.

(2) For a fixed m, the function P−1(m,n) is increasing on the variable n.

(3) For a fixed n, the function P−1(m,n) is decreasing on the variable m.



150 CHAPTER 7. COMPUTING AREAS ON THE RIEMANN SPHERE OF BASINS

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

m = 1 0.5 0.7659 0.8513 0.8883 0.9080 0.9285 0.9342 0.9466

m = 2 0.2341 0.5 0.6539 0.7402 0.7930 0.8283 0.8536 0.8715

m = 3 0.1487 0.3461 0.5 0.6054 0.6810 0.7310 0.7684 0.7966

m = 4 0.1117 0.2598 0.3946 0.5 0.5831 0.6430 0.6926 0.7298

m = 5 0.0920 0.2070 0.3190 0.4169 0.5 0.5641 0.6195 0.6620

m = 6 0.0715 0.1717 0.2690 0.3570 0.4359 0.5 0.5565 0.6014

m = 7 0.0658 0.1464 0.2317 0.3074 0.3805 0.4435 0.5 0.5448

m = 8 0.0534 0.1285 0.2034 0.2702 0.3380 0.3986 0.4552 0.5

Table 7.1: Probabilities PM5
−1 (m,n) (related to the basin of z = −1) for different multiplicities m and n

calculated with Mathematica by taking the iterated subdivision Γ5
∗(S2).

(4) For a fixed (m,n), m ≥ n, the function P−1(m + s, n + s) is increasing on the integer
variable s ≥ 0.

7.3.2 Computing the precision obtained using two consecutive subdivisions

In Table 7.1, we have gathered the values of probabilities PM5
−1 (m,n) for 1 ≤ m ≤ 8 and

1 ≤ n ≤ 8 when taking the iterated subdivision Γ5
∗(S

2) and a maximum number of iterations
equal to 100. These probabilities have been calculated using the process described in subsection
5.2.2 implemented in Mathematica.

Note that one has
P−1(m,n) + P−1(n,m) = 1.

From the results obtained by means of this simulation, one also obtains that the Julia set in
S2 has probability measure equal to zero and the same happens for the basins associated with
periodic points, so that P−1(m,n) + P1(m,n) = 1. Then, the resulting table for P1(m,n) can
be also obtained by transposing rows and columns in the table above:

P1(m,n) = P−1(n,m).

Taking the iterated subdivision Γ6
∗(S

2) and a maximum number of iterations equal to 100,
the values of probabilities PM6

−1 (m,n) have been computed with Mathematica in Table 7.2. When
we compare with the iterated subdivision Γ5

∗(S
2), we have:∣∣PM5

−1 (m,n)− PM6
−1 (m,n)

∣∣ < 4.8 · 10−3, 1 ≤ m,n ≤ 8.

So one can easily check that a precision of two decimal places is obtained.

Remark 7.3.1. The level of accuracy of these algorithms can be improved using finer
subdivisions. For instance, for m = 2 and n = 1, taking a new iterated subdivision Γ7

∗(S
2), we

obtain a better precision: ∣∣PM6
−1 (2, 1)− PM7

−1 (2, 1)
∣∣ < 1.2 · 10−4.
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n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

m = 1 0.5 0.7665 0.8512 0.8898 0.9127 0.9259 0.9357 0.9447

m = 2 0.2335 0.5 0.6527 0.7402 0.7928 0.8287 0.8532 0.8711

m = 3 0.1488 0.3473 0.5 0.6060 0.6801 0.7325 0.7712 0.7989

m = 4 0.1102 0.2598 0.3940 0.5 0.5818 0.6445 0.6920 0.7284

m = 5 0.0873 0.2072 0.3199 0.4182 0.5 0.5667 0.6196 0.6632

m = 6 0.0741 0.1713 0.2675 0.3555 0.4333 0.5 0.5543 0.6018

m = 7 0.0643 0.1468 0.2288 0.3080 0.3804 0.4457 0.5 0.5480

m = 8 0.0553 0.1289 0.2011 0.2716 0.3368 0.3982 0.4520 0.5

Table 7.2: Probabilities PM6
−1 (m,n) (related to the basin of z = −1) for different multiplicities m and n

calculated with Mathematica by taking the iterated subdivision Γ6
∗(S2).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

m = 1 0.5 0.7660 0.8502 0.8893 0.9114 0.9259 0.9360 0.9438

m = 2 0.2340 0.5 0.6538 0.7397 0.7927 0.8284 0.8526 0.8711

m = 3 0.1498 0.3462 0.5 0.6067 0.6805 0.7327 0.7702 0.7989

m = 4 0.1107 0.2603 0.3933 0.5 0.5814 0.6446 0.6921 0.7285

m = 5 0.0886 0.2073 0.3195 0.4186 0.5 0.5659 0.6193 0.6627

m = 6 0.0741 0.1716 0.2673 0.3554 0.4341 0.5 0.5563 0.6028

m = 7 0.0640 0.1474 0.2298 0.3079 0.3807 0.4437 0.5 0.5478

m = 8 0.0562 0.1289 0.2011 0.2715 0.3373 0.3972 0.4522 0.5

Table 7.3: Probabilities P S5
−1(m,n) (related to the basin of z = −1) for different multiplicities m and n

calculated with Sage by taking the iterated subdivision Γ̃5
∗(S2).

However, in our study, we focus on the analysis of the influence of multiplicity more than on
the observation of the level of accuracy in the calculation of the probability.

7.3.3 Comparing two different algorithms implemented in different compu-
tational environments

In Table 7.3, we have written the probability P S5
−1(m,n) obtained by the implementation in Sage

of the algorithm referred in subsection 7.2.2 (projection of the subdivisions) taking the iterated
subdivision Γ̃5

∗(S
2).

Remember that the consecutive subdivisions Γr+1
∗ (S2) and Γ̃r∗(S

2) give rise to the same
cardinality, so r = 6 for Γr∗(S

2) and r′ = 5 for Γ̃r
′
∗ (S2) are exactly the subdivision orders that we

must take into consideration to properly compare both procedures. Although different strategies
and programs have been used to estimate the probabilities PM6

−1 (m,n) and P S5
−1(m,n),∣∣P S5

−1(m,n)− PM6
−1 (m,n)

∣∣ < 2.1 · 10−3, 1 ≤ m,n ≤ 8;

that is, both processes provide similar results.
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n PM6
−1 (m,n) R2

1 0.4872m−1.0547 0.9987
2 1.0099m−0.9876 0.9987
3 1.4223m−0.9358 0.9979
4 1.7165m−0.883 0.9986
5 1.9384m−0.8391 0.9989

Table 7.4: Potential approach to PM6
−1 (m,n) for m ≥ n and a fixed n.

m PM6
−1 (m,n) R2

8 −0.0022n2 + 0.084n− 0.0287 0.9999
7 −0.0028n2 + 0.0961n− 0.0315 0.9998
6 −0.004n2 + 0.1141n− 0.0377 0.9999
5 −0.0065n2 + 0.1425n− 0.0497 0.9999
4 −0, 0109n2 + 0, 1849n− 0, 0644 0.9999

Table 7.5: Polynomic approach to PM6
−1 (m,n) for m ≥ n and a fixed m.

7.3.4 Quantification of the influence of multiplicity with potential and poly-
nomial functions

In order to obtain a more precise quantification of the influence of multiplicities m and n on
the probability related to the roots of the polynomial (7.4), we show in Table 7.4 and Table 7.5
functions that are rather good approximations of P−1(m,n), in the first case for a fixed n and
in the second case for a fixed m. These approximations have been calculated by means of the
method of least squares. In both tables, the value R2 represents the coefficient of determination,
which measures the goodness-of-fit.

For each fixed n ∈ [1, 5], a graphic of the original probabilities PM6
−1 (m,n) and the correspond-

ing potential fitting functions can be seen in Figure 7.4, and another plot of these probabilities
for 4 ≤ m ≤ 8 and their relative polynomic fitting functions is shown in Figure 7.5.

Remark 7.3.2. Note that Newton’s method can also be applied when the multiplicities m,
n are not integers. Even more, the algorithms described in this paper also work in this case, and
the potential and polynomic functions given in Table 7.4 and Table 7.5 give a good approximation
to the probability when one of the two multiplicities is an integer. For instance, let us consider
the case n = 2. The potential function obtained from Table 7.4 (see also Figure 7.4) for n = 2
is denoted by g2(m) = 1.0099m−0.9876.

The following pairs give the values of PM6
−1 (m, 2) and its approximations by g2(m) for different

not necessarily integer values of m:

PM6
−1 (5, 2) = 0.2072, g2(5) = 0.2060; PM6

−1 (5.2, 2) = 0.1988, g2(5.2) = 0.1982;
PM6
−1 (5.4, 2) = 0.1916, g2(5.4) = 0.1909; PM6

−1 (5.6, 2) = 0.1853, g2(5.6) = 0.1842;
PM6
−1 (5.8, 2) = 0.1777, g2(5.8) = 0.1779; PM6

−1 (6, 2) = 0.1713, g2(6) = 0.1720.
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Figure 7.4: Values of the probabilities PM6
−1 (m,n) when the lowest multiplicity n is fixed.
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Figure 7.5: Values of the probabilities PM6
−1 (m,n) when the highest multiplicity m is fixed.
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Similar observations can be done for the functions of Table 7.5 plotted in Figure 7.5.

Remark 7.3.3. The graphics shown in Figure 7.4 suggest that, for a fixed n, the probability
PM6
−1 (m,n) → 0 when m → +∞. Note that, for multiple roots, the rational functions given by

Newton’s method have always quadratic degree. For this reason, in this case we can avoid the
problem of working with rational functions of high degree that appears when Newton’s method
is applied to a high order polynomial with simple roots. We have checked the goodness of fit of
the calculations performed for n = 2 and higher values of m; in particular, m = 10, 20, 30. In
these cases, the values of the potential function given in Table 7.4 for n = 2 (that is to say,
g2(m) = 1.0099m−0.9876) are

g2(10) = 0.103915, g2(20) = 0.052406, g2(30) = 0.0351134,

whereas the values of the probabilities obtained by our algorithms are

PM6
−1 (10, 2) = 0.104219, PM6

−1 (20, 2) = 0.0532655, PM6
−1 (30, 2) = 0.0375119.

As we can see, the corresponding values are quite similar. This fact suggests that the potential
functions also give a good approximation when m tends to infinity. Consequently, the probability
of reaching the root with lower multiplicity decreases to 0 when the multiplicity of the other root
goes to infinity.

Besides, note that the functions defined in Table 7.5, whose graphics are given in Figure 7.5,
are polynomials of degree 2. From these graphics, one could infer that in general, for a fixed m
and for 1 ≤ n ≤ m, the discrete function PM6

−1 (m,n) can be approached by quadratic polynomials.
In Figure 7.5, we also observe that, for m = n, one obtains PM6

−1 (m,n) = 0.5, as we have already
mentioned. This idea is supported by the result previously obtained in [89].

To summarize, the discrete function PM6
−1 (m,n), whose values are numerically given by our

algorithms, can be approached, for a fixed n, by potential functions with (negative) non-integer
exponents. In the same way, for a fixed m, the corresponding discrete function with domain
{1, . . . ,m} is approached by a polynomial of degree 2.

Remark 7.3.4. One interesting question is to study how the probability of reaching a root
changes when we consider different numerical methods. For instance, we have also made some
experiments when the relaxed Newton’s method,

zn+1 = Rp,λ(zn) = zn − λ
p(zn)

p′(zn)
,

is applied to the polynomial p(z) = (z − 1)3(z + 1)2. In particular, we have chosen the values
λ = 2 and λ = 3 for the relaxing parameter. Let us consider the root z = −1 and let us denote

P
Rp,3
−1 (3, 2) and P

Rp,2
−1 (3, 2) the probabilities of reaching the root z = −1 by the relaxed Newton’s

method for λ = 3 and λ = 2, respectively. P
Np
−1 (3, 2) denotes the probability obtained by Newton’s

method (given in Table 7.2). Then, we have

P
Rp,3
−1 (3, 2) = 0.2842 < P

Rp,2
−1 (3, 2) = 0.3250 < P

Np
−1 (3, 2) = 0.3473.
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In our opinion, the behavior of the probability of reaching a given root when using different
generalized Newton’s methods should be analyzed in more detail in future works by using more
numerical calculi and new simulations. We are aware that, for generalized Newton’s methods,
there are other factors that must be taken into account to analyze the structure of the related
Julia sets, such as the existence of extraneous fixed points.
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Conclusions

Main ideas and techniques developed

The central idea of the first three chapters is that the use of Brown-Grossman, Steenrod and
Borsuk-Čech invariants in dimension zero is a nice tool to study the basins of attraction of a
discrete semi-flow.

Instead of employing all the end points of the sets πBG
0 (X), πS

0 (X) and π̌0(X), it is advisable
to consider only ω-representable end points to obtain the sets ωπBG

0 (X), ωπS
0 (X) and ωπ̌0(X)

associated with an exterior discrete semi-flow X. The existence of the map ω : D(X)→ ωπBG
0 (X)

allows us to decompose an exterior discrete semi-flow X into the following disjoint union:

X = (X \D(X)) t

 ⊔
a∈ωπBG

0 (X)

ω−1(a)

 .

Another important technique consists in the use of intrinsic topologies and intrinsic paths
to study local stability properties of exterior discrete semi-flows. Through intrinsic topologies
and paths, one can define new 0-dimensional invariant sets ΩπBG

0 (X), ΩπS
0 (X) and Ωπ̌0(X),

as well as natural transformations ΩπBG
0 (X) → ωπBG

0 (X), ΩπS
0 (X) → ωπS

0 (X) and Ωπ̌0(X) →
ωπ̌0(X). When an exterior discrete semi-flow has good local stability properties, then these
natural transformations become isomorphisms.

Moreover, we have discussed the notion of end point for metric discrete semi-flows; this
allows us to consider the connections between end points of exterior semi-flows and end points
associated with metrics, as well as how the basins of both types of end point are related, when
having externologies given by open neighborhoods of a finite set of periodic points of the metric
discrete semi-flow.

Being mindful of how the common iterative numerical methods induce rational functions, we
have seen how to apply the algorithms described in chapter 6 to such processes (like Newton-
Raphson or Tchebychev methods), which are used in the search of complex polynomial roots: in
general, the roots of a complex polynomial are fixed points of the rational function obtained with
the most usual iterative numerical methods. As indicated in subsection 5.1.1, each fixed point
of a rational function can be directly regarded as an end point. Thus, every basin of attraction
of a complex polynomial root is just the basin of attraction of its associated end point.
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If p is a root of the original complex polynomial, the fact that a point x is in the basin of
attraction corresponding to the fixed point p means that, when applying the rational function
associated with the considered numerical method to the point x, the trajectory is approaching
the root p of the given polynomial.

We have also analyzed the structure of a CW-complex which is provided with a system of
subdivisions. This structure permits to construct algorithms to give graphical representations
of basins of attraction associated with the iteration of a rational map defined on the Riemann
sphere. In addition, the designed programs are able to indicate the number of iterations until
convergence up to a given tolerance, which will be useful to know the speed of convergence of a
point that belongs to the basin of a determined root.

This work is also closely connected to some aspects of fractal geometry, since the programs
that we have developed and implemented along chapter 6 make possible the visualization of
Julia sets of rational functions of degree greater than or equal to 2 on the sphere S2. What is
more, the cubic subdivision techniques that we have devised allow us to approximate the Julia
set by means of finite cubical complexes, and we think that some portions of the algorithms
regarding these iterative subdivisions may be useful to make a detailed study of the Julia sets
of the obtained fractals by calculating their fractal dimension and Betti numbers, which would
allow us to know the number of connected components, topological holes, etc.

Besides, the structure of a CW-complex and its consecutive subdivisions can be employed
to give a measure map on a CW-complex. Furthermore, in the case of the Riemann sphere,
one can give an algorithm to compute the area of basins of attraction. In this work, we have
developed two programs to measure such basins: one of them has been implemented with Sage
and the other one with Mathematica.

As an application, despite the difficulty of measuring, due to the fractal structure of its
boundary, the area of a basin of attraction of a fixed point induced by a rational function
obtained when Newton’s method is applied to a polynomial with two roots α1 = −1 and α2 = 1
of multiplicities n and m, respectively, the techniques and algorithms introduced have allowed
us to approximate the probability Pαi(m,n) for a point on the Riemann sphere to belong to the
basin of attraction of αi, i = 1, 2. With this, we have been able to quantify the influence of the
multiplicity of the roots on the size of the corresponding basins of attraction.

Trying to find a representative sample on the sphere in order to study probability phenom-
ena is a well-known problem. This question is strongly related to the study of astronomical
data distributed on the entire sky. In some cases, it is only necessary to cover a partial area
corresponding to a galactic object. We think that the use of cubic structures of the sphere and
measure procedures developed in this dissertation could be a very useful technique in Astronomy
and Astrophysics. The satellite observation of the cosmos can be organized using cellular and
cubic decompositions of the 2-sphere, and some modifications of the algorithms developed in
this work can be useful for the study of astronomical data. Similar conclusions can be obtained
when one tries to analyze geological data given by observation satellites, specifically designed
to observe the Earth from orbit for uses such as environmental monitoring, meteorology, map
making etc. There are other possible application fields as, for instance, the study of spherical
viruses or spherical fullerene structures [26, 4], et cetera.
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Further work

Following the results achieved, a lot of questions and problems whose consideration and solution
are reason for further research have been contemplated. Regarding exterior discrete semi-flows,
we will try to tackle the objectives shown below:

a) To study, in higher dimensions, diverse sequences of homotopy groups of ω-representable
and Ω-representable end points.

b) To analyze continuous semi-flows by using results concerning exterior discrete semi-flows.

c) To obtain possible completions of exterior discrete semi-flows.

Furthermore, in our study, we have been working with intrinsic topologies associated with an
exterior discrete semi-flow; however, other types of intrinsic topologies had been used before for
the study of attractors of continuous flows by employing techniques related to shape invariants
and the Conley index. In that sense, we think that it could be interesting to develop further
research in order to establish a comparison between intrinsic topologies associated with exterior
semi-flows and flows and the intrinsic topologies considered in [76].

Also, when a semi-flow is induced by a rational map f of degree d defined on the Riemann
sphere, the associated Julia set J(f) is right-invariant and the restriction map f |J(f) : J(f) →
J(f) has d sheets and it admits an overlay structure. Our algorithms provide an inverse system
of cubic complexes approaching J(f), and the shape invariants of the Julia space could be used
to study the overlay structure of the map f |J(f) as a future work. For the classification and
properties of overlays and shape invariants, the following references can be taken into account:
see [63, 65, 21, 66] and [11, 20, 18, 12, 19].

Moreover, we will carry on with the design of new algorithms and their implementation in
some programming environments (such as Sage, Mathematica, Julia, et cetera) for:

d) The graphic representation of basins on the torus.

e) The graphic representation of Julia sets.

f) The computation of the fractal dimension.

Besides, one of the aims of this doctoral thesis has been to connect to different theories
such as the numerical solution of nonlinear equations and the dynamics of some topological
spaces. We are aware that there are many other questions that could be taken into account in
further works. For instance, we think that it would be worthy to complete our initial numerical
experiments with, at least, the following aspects:

g) Analysis of the probabilities Pαi(m,n) and their properties for other choices of the roots,
and not only for two opposite unitary roots −α1 = α2 = 1.

h) Generalization to polynomials with three or more roots and their corresponding multiplic-
ities.
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i) Comparison of the influence of multiplicity on the measure of basins of attraction when
other numerical methods are considered: relaxed Newton’s method, Tchebychev’s method,
Halley’s method, etc. In this way, it would be interesting to take into account previous
results obtained for these methods in the references [85] or [87], for instance.

j) Application of our algorithms for the iteration of not necessarily rational functions, such
as complex exponential functions, trigonometric functions, et cetera. The references [88]
and [86] could be very helpful in that way.

k) Development of some algorithms to evaluate the length of the Julia set on the Riemann
sphere.

l) Search and implementation of new measure algorithms based on a spherical subdivision in
quadrilaterals with the same area. In our opinion, this fact would improve the efficiency
of the algorithms.

m) Development of new measure algorithms based on the subdivision of other regular polyhe-
dra; for instance, the icosahedron or other spherical subdivisions with adequate dispersion
and discrepancy –see [43, 90].
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[36] J. M. Garćıa-Calcines, L. J. Hernández. Sequential homology, Topology Appl.
114, 201–225 (2001).
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Villars et fils, Paris, 1892/99.
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