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Professor Maŕıa Paz Diago Santamaŕıa, Doctor Juan Fernández Novales,
Doctor Fernando Palacios, Doctor Sara Ceballos Marcaida, and especially to
Ignacio Barrio Fernández and Rubén Íñiguez Mangado for the ideas shared
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Abstract

Diseases and pests in agriculture represent a major problem worldwide,
severely impacting crop quality and yield. Among them, downy mildew
is a particularly devastating disease affecting grapevine. Early detection
is crucial for timely intervention, preventing disease spread and reducing
chemical treatments. Traditional evaluation relies on experts, which can be
laborious, subjective and time-consuming. The integration of artificial intel-
ligence into agricultural practices presents a promising solution for disease
management, facilitating the automation of qualitative and quantitative dis-
ease assessment.

The main objective of the PhD thesis was to develop new artificial intelli-
gence and computer vision-based methods for early assessment of grapevine
downy mildew using non-invasive sensing technologies under laboratory and
field conditions. In particular, the following objectives were proposed: i) the
exploration of artificial intelligence and non-invasive technologies to evalu-
ate downy mildew under laboratory conditions; ii) the development and
validation of a method to estimate downy mildew severity under labora-
tory conditions combining fuzzy logic and computer vision; iii) the use of
convolutional neural networks and explainable artificial intelligence to early
detect downy mildew under laboratory conditions; iv); the in-field detection
and localisation of downy mildew applying explainable deep learning; and
v) the use of deep semantic segmentation to assess downy mildew severity
in images taken in commercial vineyards.

For the first objective, artificial intelligence was used for analysing RGB
and hyperspectral images of grapevine leaf discs. Spectral pre-processing,
computer vision and machine learning were used to identify downy mildew
infection in hyperspectral images. At the same time, classic computer vision
was used to locate the symptoms in RGB images. The results demonstrated
the potential of artificial intelligence and non-invasive technologies to early
detect downy mildew and to estimate its severity accurately and objectively.

For the second objective, classic computer vision was used to localise
downy mildew symptoms on RGB images of grapevine leaf discs. Then,
fuzzy logic was used to evaluate the pixels detected as symptoms with a de-
gree of infection according to their intensity. The results demonstrated that
computer vision and fuzzy logic can automatically and accurately estimate
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the severity of grapevine downy mildew under laboratory conditions.
For the third objective, convolutional neural networks were applied to

early detect downy mildew and classify disease stages in RGB images of
grapevine leaf discs. In addition, Grad-CAM was used to interpret model
predictions. The results highlighted the accurate early detection of grapevine
downy mildew under laboratory conditions using low-cost techniques.

For the fourth objective, a sliding window was used for analysing the
grapevine canopy in images captured considering the variability of field
conditions. Convolutional neural networks and vision transformers used
transfer-learning for detecting regions with downy mildew in the canopy.
Predictions were interpreted with explainable artificial intelligence methods.
The results highlighted the use of convolutional neural networks for the auto-
matic and explainable detection and localisation of grapevine downy mildew
under field conditions.

Finally, different semantic segmentation architectures were compared to
detect downy mildew symptoms in grapevine canopy images. Imbalance
problems due to small symptom size were reduced with data augmenta-
tion, MixUp, oversampling and undersampling techniques. Neural networks
trained with light-weight encoders and using the Dice loss function allowed
accurate and fast assessment of downy mildew severity in grapevine under
field conditions.

The results of the research presented in this PhD thesis demonstrated the
capability of artificial intelligence and computer vision for objective, rapid
and accurate early assessment of grapevine downy mildew under both labo-
ratory and field conditions. The potential adaptability of these methods to
other crops, diseases and pests offers important advances in precision agri-
culture. Furthermore, the integration of these methods on mobile platforms,
such as tractors, would allow for enhanced disease management over large
crop areas, optimising monitoring and intervention directly in the field.



Resumen

Las enfermedades y plagas en cultivos agŕıcolas representan un grave prob-
lema en todo el mundo, repercutiendo gravemente en la calidad y rendimiento
de los cultivos. Entre ellas, el mildiu es una enfermedad especialmente dev-
astadora de la vid. La detección precoz es crucial para intervenir a tiempo,
evitando la propagación de la enfermedad y reduciendo los tratamientos
qúımicos. La evaluación tradicional depende de expertos, lo que puede re-
sultar laborioso, subjetivo y lento. La integración de la inteligencia artificial
en las prácticas agŕıcolas presenta una solución prometedora para la gestión
de enfermedades, facilitando la automatización de la evaluación cualitativa
y cuantitativa de las enfermedades.

El objetivo principal de la tesis doctoral era desarrollar nuevos métodos
basados en inteligencia artificial y visión artificial para la evaluación tem-
prana del mildiu de la vid utilizando sensores no invasivos en condiciones de
laboratorio y de campo. En concreto, se propusieron los siguientes objetivos:
i) la exploración de la inteligencia artificial y tecnoloǵıas no invasivas para
evaluar el mildiu en condiciones de laboratorio; ii) el desarrollo y validación
de un método para estimar la severidad de mildiu en condiciones de laborato-
rio combinando lógica difusa y visión artificial; iii) el uso de redes neuronales
convolucionales e inteligencia artificial explicable para la detección temprana
de mildiu en condiciones de laboratorio; iv); la detección y localización de
mildiu en campo aplicando aprendizaje profundo explicable; y v) el uso de
segmentación semántica profunda para evaluar la severidad de mildiu en
imágenes tomadas en viñedos comerciales.

Para el primer objetivo, se utilizó inteligencia artificial para analizar
imágenes RGB e hiperespectrales de discos foliares de vid. Se utilizó pre-
procesamiento espectral, visión artificial y aprendizaje automático para iden-
tificar la infección de mildiu en imágenes hiperespectrales. Al mismo tiempo,
se utilizó visión artificial clásica para localizar los śıntomas en imágenes
RGB. Los resultados demostraron el potencial de la inteligencia artificial y
las tecnoloǵıas no invasivas para detectar precozmente el mildiu y estimar
su severidad de forma precisa y objetiva.

Para el segundo objetivo, se utilizó la visión artificial clásica para lo-
calizar los śıntomas de mildiu en imágenes RGB de discos foliares de vid. A
continuación, se utilizó la lógica difusa para evaluar los ṕıxeles detectados
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como śıntomas con un grado de infección en función de su intensidad. Los
resultados demostraron que la visión artificial y la lógica difusa pueden es-
timar automáticamente y con precisión la severidad de mildiu de la vid en
condiciones de laboratorio.

Para el tercer objetivo, se aplicaron redes neuronales convolucionales
para detectar precozmente el mildiu y clasificar las fases de la enfermedad
en imágenes RGB de discos foliares de vid. Además, se utilizó Grad-CAM
para interpretar las predicciones del modelo. Los resultados resaltaron la
precisión de la detección precoz del mildiu de la vid en condiciones de lab-
oratorio utilizando técnicas de bajo coste.

Para el cuarto objetivo, se utilizó una ventana deslizante para analizar
el dosel de la vid en imágenes tomadas considerando la variabilidad de las
condiciones de campo. Las redes neuronales convolucionales y los trans-
formadores de visión utilizaron el aprendizaje por transferencia para de-
tectar regiones con mildiu en el dosel. Las predicciones se interpretaron
con métodos de inteligencia artificial explicable. Los resultados remarcaron
el uso de redes neuronales convolucionales para la detección y localización
automática y explicable del mildiu de la vid en condiciones de campo.

Por último, se compararon diferentes arquitecturas de segmentación
semántica para detectar śıntomas de mildiu en imágenes del dosel de la vid.
Los problemas de desequilibrio debidos al pequeño tamaño de los śıntomas
se redujeron con técnicas de aumento de datos, MixUp, sobremuestreo y
submuestreo. Las redes neuronales entrenadas con codificadores ligeros y
utilizando la función de pérdida Dice permitieron una evaluación precisa y
rápida de la severidad de mildiu en la vid en condiciones de campo.

Los resultados de la investigación presentada en esta tesis doctoral de-
mostraron la capacidad de la inteligencia artificial y la visión artificial para
la evaluación temprana objetiva, rápida y precisa del mildiu de la vid tanto
en condiciones de laboratorio como de campo. La potencial adaptabili-
dad de estos métodos a otros cultivos, enfermedades y plagas ofrece impor-
tantes avances en la agricultura de precisión. Además, la integración de
estos métodos en plataformas móviles, como tractores, permitiŕıa mejorar
la gestión de enfermedades en grandes extensiones de cultivo, optimizando
el seguimiento y la intervención directamente en el campo.
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1. HERNÁNDEZ, I., SILVA, R., MELO-PINTO, P., GUTIÉRREZ, S.,
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Chapter 1

Introduction

1.1 Disease assessment in agriculture

Crop diseases result in considerable economic losses in agricultural produc-
tion worldwide. A diverse range of pathogens, including fungi, bacteria,
mycoplasmas and viruses can cause significant crop diseases that pose a
considerable threat to global agriculture. These pathogens may affect plant
growth, yield, and quality, and under severe infestations, can even lead to
total crop failure (Lee and Tardaguila, 2023). Infected plants frequently ex-
hibit diverse visual and characteristic symptoms on different organs, includ-
ing stems, leaves, and fruits, while some infections may initially be asymp-
tomatic. Effective monitoring and timely interventions are of paramount
importance for the mitigation of these threats, ensuring food quality, and
improving agricultural productivity. Such measures assist in the reduction
of crop damage, the reduction of reliance on chemical treatments, the anal-
ysis of plant breeding, or the understanding of biological processes related
to diseases (Bock et al., 2010).

Disease assessment, whether in the laboratory or the field, is essential
for understanding plant-pathogen interactions and implementing effective
management strategies. In addition, key parameters, such as incidence (the
proportion of infected plants) and severity (the percentage of affected tissue),
are crucial for determining the extent of an outbreak (Madden et al., 2017).
Traditional methods depend on trained professionals who perform intricate
analyses such as DNA assays to detect diseases (Lee and Tardaguila, 2023),
or visual assessments to identify symptoms like discolouration or lesions in
the plants. While these approaches are often effective, they are frequently
costly, subjective, time-consuming, and susceptible to errors, particularly
when symptoms are subtle or cryptic (Bock et al., 2010; Paulus et al., 1997).
Advances in digital phenotyping, such as high-throughput imaging, have sig-
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2 1.1. Disease assessment in agriculture

nificantly improved the precision and efficiency of these evaluations (Mahlein
et al., 2019). By leveraging these technologies, farmers and researchers can
enhance early detection, measure disease severity accurately, and identify
pathogens with greater reliability.

1.1.1 Sensing technologies for disease detection

The integration of non-invasive and proximal sensing technologies in agricul-
ture has revolutionised disease detection, enabling rapid and accurate iden-
tification of pathogens affecting crops without damaging the plants. Tech-
niques such as thermography, spectroscopy, chlorophyll fluorescence, RGB
imaging, multispectral imaging (MSI), and hyperspectral imaging (HSI) of-
fer numerous advantages over conventional diagnostic methods, including
objectivity, efficiency, cost-effectiveness, and reliability (Tardaguila et al.,
2021). Among these methods, image-based detection using RGB imaging
or hyperspectral imaging has been particularly effective in monitoring plant
health and detecting diseases (Lee and Tardaguila, 2023; Mahlein, 2016).
Both techniques offer distinct advantages and rely on different underlying
principles:

• RGB imaging captures visual information using the red, green, and
blue colour channels, which correspond to the way the human eye per-
ceives colour. This method involves the use of digital cameras equipped
with sensors that detect light in these three primary colour bands. The
captured images are then processed to produce a composite image that
represents the visible spectrum. RGB imaging is particularly useful for
visual inspection, allowing for the identification of visible symptoms of
diseases, such as discolouration, spots, or lesions in leaves and fruits
(Barbedo, 2013).

• Hyperspectral imaging (HSI), captures a wide spectrum of light
beyond the visible range, providing detailed spectral information for
each pixel in an image. This technique involves the use of hyperspec-
tral sensors that collect data across numerous narrow spectral bands,
ranging from the ultraviolet to the near-infrared regions of the electro-
magnetic spectrum. The resulting hyperspectral images contain rich
spectral information that can be used to identify subtle biochemical
changes in plants that could precede visible symptoms. This capability
allows for the early detection of diseases, enabling timely intervention.
Due to the complexity of natural and irregular illumination, HSI data
is often collected in controlled laboratory settings. Thus, studies have
demonstrated the efficacy of HSI in accurately detecting early-stage
diseases such as pear black spot (Pan et al., 2019) or apple rottenness
(Zhang et al., 2015).
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Sensing technologies play a critical role in agricultural data collection,
utilising manual methods as well as mobile platforms, including space-based,
air-based, and ground-based systems (Tardaguila et al., 2021). Manual
data acquisition, particularly in laboratory settings, remains essential for
plant disease research, offering precise, localised observations and facilitat-
ing the validation of automated systems. Despite being labour-intensive,
these methods are particularly valuable for conducting controlled experi-
ments. However, advancements in sensor technology and automation have
made mobile platforms, particularly ground-based systems, increasingly in-
dispensable for precise field-based disease monitoring (Lee and Tardaguila,
2023). In contrast to satellite or drone-based systems, which may exhibit
lower spatial resolution and fail to discern intricate plant-level character-
istics, ground-based systems offer high-resolution proximal sensing. Such
systems can be equipped with sophisticated sensors that permit the collec-
tion of georeferenced data from the plant canopy itself, thus facilitating the
detection of subtle physiological indicators that may otherwise be overlooked
by remote sensing at higher altitudes. Furthermore, ground-based platforms
are less susceptible to environmental influences such as cloud cover and at-
mospheric interference, ensuring consistent data acquisition. Integrated with
agricultural machinery, these platforms enable on-the-go monitoring across
extensive areas, significantly reducing operational costs and supporting pre-
cision agriculture practices like variable rate application (VRA) of fungicides
(Román et al., 2020).

1.1.2 Early disease detection

The detection of plant diseases in their early stages is of paramount impor-
tance, particularly in the field, in order to facilitate effective disease man-
agement and sustainable agricultural practices (Lee and Tardaguila, 2023).
Timely identification of infections allows for interventions that can prevent
secondary infections or cross-contamination with neighbouring plants, con-
trolling the disease before it progresses to more severe and costly stages.
Farmers can adopt sustainable practices, such as treatments only to af-
fected plants or areas within a field (Román et al., 2020). This approach
reduces the total volume of chemicals used, leading to lower economic costs
and decreases the risk of chemical residues in crops. Additionally, targeted
interventions minimise the likelihood of pathogens developing resistance to
treatments, a growing challenge in modern agriculture. These measures
contribute to more effective disease control while preserving the health of
broader crop systems and promoting ecosystem balance.

In laboratory settings, early detection plays a pivotal role in the devel-
opment of new treatments and resistant crop varieties. This detection is
usually made with DNA-based or serological techniques. The use of DNA-
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based methods, including polymerase chain reaction (PCR), enables the
precise identification of pathogens through the detection of their genetic
material. Serological techniques, such as the enzyme-linked immunosorbent
assay (ELISA), are capable of detecting specific proteins that are associated
with pathogens. Although these techniques are highly accurate, they neces-
sitate the collection, processing, and analysis of samples, which can require
several days and may not be feasible for large-scale applications (Martinelli
et al., 2015). As mentioned in Section 1.1.1, the application of non-invasive
technologies, such as hyperspectral and RGB imaging in conjunction with
artificial intelligence, is transforming the early detection of plant disease.
Hyperspectral imaging can capture subtle biochemical changes in plants be-
fore visible symptoms appear, as demonstrated by Gao et al. (2020) in the
detection of leafroll disease in grapevines. RGB imaging, while simpler,
provides high-resolution visual data to identify early structural or colour
changes in plants. These changes may help to accurately detect early symp-
toms of diseases in crops such as apple (Bansal et al., 2021) or sugar beet
(Adem et al., 2023).

1.1.3 Disease quantification

Quantification of diseases in agriculture is crucial to effective disease man-
agement, complementing early detection by providing essential information
for evaluating control strategies (Bock et al., 2010). Disease infection is
commonly quantified in terms of incidence, which represents the propor-
tion of affected plant units within a population, and severity, which refers
to the percentage of the plant exhibiting visible symptoms of the disease
(Madden et al., 2017). Accurate quantification of these metrics is crucial
for monitoring crop health, optimising intervention strategies, and improv-
ing agricultural productivity. In the field, disease quantification helps to
estimate potential yield losses, guide the targeted application of treatments,
and adjust crop practices to minimise further damage. Similarly, in labora-
tory settings, severity assessments are vital for analysing disease progression,
evaluating the effectiveness of experimental treatments, and studying plant-
pathogen interactions under controlled conditions. They also play a critical
role in assessing cultivar resistance to pathogens.

However, disease quantification presents a challenge in both field and
laboratory contexts. Traditional methods based on human visual obser-
vations are inherently subjective and susceptible to variability, leading to
inconsistent results (Bock et al., 2010). The complexity of disease symp-
toms—varying in intensity, distribution, and appearance—further compli-
cates the standardisation of assessments. In response, advances in image
analysis and computer vision have provided transformative tools that offer
more accurate, reproducible, and scalable alternatives to manual methods
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(Bock et al., 2020). For instance, studies such as that conducted by Mwe-
baze and Owomugisha (2016) demonstrated its application for the accurate
classification of leaves according to disease severity, utilising images captured
with a smartphone (Figure 1.1). This research illustrated the potential of in-
tegrating low-cost, accessible technologies with artificial intelligence to over-
come the limitations of disease assessment, particularly in resource-limited
settings.

Figure 1.1: Cassava leaves associated with five severity levels for mosaic
disease (CMD) and brown steak disease (CBSD). Source: Mwebaze and
Owomugisha (2016)

1.1.4 In-field crop disease assessment

The primary objective of laboratory and field-based assessments is to con-
trol the effects of diseases on crops. As highlighted in the previous sections,
field-based crop disease assessment plays a significant role in disease man-
agement (Lee and Tardaguila, 2023). Early detection of diseases in the
field is essential for timely interventions, limiting disease spread, reducing
crop losses, and optimising resource utilisation. Accurate identification and
quantification of disease symptoms in the plants are essential for monitoring
the severity and distribution of infections across extensive crops, evaluat-
ing the effectiveness of control measures, and contributing to environmen-
tally sustainable agricultural practices. Traditional methods, carried out by
trained personnel, analysing visual symptoms directly in the field, are of-
ten subjective, inconsistent, and time-consuming, particularly when applied
to large-scale crops. The variability and complexity of the disease symp-
toms under natural conditions, including the presence of similar symptoms
or damage to the plant caused by other diseases, pests, or crop machines,
further challenges the accuracy of these assessments. In addition, the het-
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erogeneity of disease distribution within fields, where some areas may be
heavily infected while others remain unaffected, requires extensive sampling
to obtain a representative assessment. These limitations underscore the ne-
cessity for advanced technologies capable of delivering precise and real-time
disease detection. The integration of innovative tools into disease manage-
ment practices offers significant potential to address these challenges and
transform agricultural monitoring (Abdullah et al., 2023).

Recent advancements in sensing technologies, artificial intelligence (AI),
and decision-support systems have paved the way for precision agriculture,
which employs data-driven methods to improve disease and pest manage-
ment in crops (Tardaguila et al., 2021). These methods typically involve
three fundamental steps: data acquisition, information extraction, and ac-
tionable management (Figure 1.2). Data acquisition utilises remote and
proximal sensing technologies to capture a range of visual, spectral, and
spatial information about plants. As commented in Section 1.1.1, image-
based sensors, especially RGB images, are a useful tool for disease assess-
ment under field conditions. Nevertheless, the practical deployment of im-
age analysis in the field is confronted with a number of challenges, including
variable lighting conditions, background noise, and the limited visibility of
early-stage lesions. The analysis of high-resolution images has demonstrated
the potential to address these challenges, facilitating the detection of subtle
symptoms such as late blight in potatoes (Gao et al., 2021) or downy mildew
in grapevine (Abdelghafour et al., 2020). Subsequently, artificial intelligence
processes these data to detect disease symptoms, estimate their severity, and
localise affected areas. In addition, the extraction of information with mo-
bile sensing platforms such as GPS-equipped tractors or robots utilising
non-invasive sensors could provide georeferenced disease assessments with-
out damaging the plants. This is exemplified by Abdelghafour et al. (2020),
who detected downy mildew in grapevines through the use of a ground-
based imaging platform. These platforms have the potential to facilitate
the extraction of comprehensive information across large fields, offering pre-
cise and spatially localised insights into crop health. Finally, the analyses
derived from these platforms provide actionable insights that contribute to
the formulation of targeted management strategies, including the precise
application of treatments and the adjustment of cultivation practices, thus
supporting the objective of sustainable crop production.



Introduction 7

Figure 1.2: Precision agriculture process. Source: Tardaguila et al. (2021)

1.1.5 Downy mildew assessment in viticulture

Viticulture is a crucial agricultural sector that supports the global produc-
tion of wine, table grapes, and must, contributing significantly to economic
activity worldwide (Buonassisi et al., 2017). However, grapevine cultivation
is highly vulnerable to diseases caused by fungi, bacteria, and viruses, which
severely affect yield and fruit quality. Among these, downy mildew (Plas-
mopara viticola) stands out as one of the most destructive pathogens. Under
warm and humid conditions, it has the capacity to infect multiple parts of
the plant (Toffolatti et al., 2018). The first symptoms of the disease are
characterised by oily spots on the abaxial surface of leaves, often accompa-
nied by white sporulation on the adaxial side (Figure 1.3). If not effectively
controlled, these symptoms can lead to rapid disease spread, significant crop
losses, and costly protective measures.

Similarly to other diseases in agriculture, the detection of grapevine
downy mildew is of critical importance for the advancement of treatment
strategies and its effective management. In laboratory settings, symptoms
are assessed through controlled inoculation and observation of symptom de-
velopment by analysing sporulation on leaf discs (Toffolatti et al., 2018).
The downy mildew assessment in the laboratory facilitates the precise iden-
tification and comprehensive assessment of the pathogen, thereby providing
crucial insights for the advancement of novel fungicides, the optimisation of
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(a) Sporulation in the laboratory (b) Oil spots in the field

Figure 1.3: Example of downy mildew symptoms in grapevine leaves

existing treatments and the breeding of grapevine varieties with enhanced
resistance. In the vineyard, oil spots usually represent an early indicator of
downy mildew (Boso et al., 2005). The detection of these spots is usually
made visually by experts. Field-based methods could provide rapid disease
monitoring over extensive vineyard areas. The emergence of proximal sens-
ing technologies and artificial intelligence (AI) has led to the development of
transformative tools for improving the precision and consistency of downy
mildew detection (Bock et al., 2020). For instance, AI-based approaches
have been employed to accurately identify downy mildew and differenti-
ate its symptoms from those of spider mite, despite their visual similarity
(Gutiérrez et al., 2021). These advances may enable precise monitoring of
downy mildew progression in both laboratory and field settings, thereby
reducing reliance on subjective and time-consuming visual assessments.

1.2 Artificial intelligence

The term “artificial intelligence” is used to describe the development of com-
puter systems that are capable of performing tasks that are typically associ-
ated with human intelligence. Such tasks include decision-making, problem-
solving, language comprehension and visual perception. The significance of
artificial intelligence (AI) lies in its capacity to process and analyse datasets
employing mathematical and statistical techniques, thereby enabling more
efficient and precise decision-making processes that can surpass human capa-
bilities in both speed and complexity (LeCun et al., 2015). Since its formal
introduction at the Dartmouth Conference in 1956, where John McCarthy
defined it as “the science and engineering of making intelligent machines”
(McCarthy et al., 1995), AI has evolved from a theoretical concept into a
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transformative technology. This evolution has been driven by notable ad-
vancements in algorithms, computational power, and the exponential growth
of data availability.

Initially, AI systems were primarily based on symbolic logic and rule-
based methodologies, necessitating explicitly programmed instructions and
predefined representations of knowledge (Shortliffe, 1977). Although these
systems were effective in constrained and predictable environments, they
lacked the necessary adaptability and scalability to cope with the complex-
ities of real-world applications. This limitation gave rise to the advent of
machine learning (ML), which introduced data-driven algorithms capable of
identifying patterns from examples without the necessity for explicit pro-
gramming (Mitchell, 1997). ML techniques, including support vector ma-
chines and random forests, provided more flexible and robust models for solv-
ing diverse and complex problems (Cortes et al., 1995; Breiman, 2001). The
subsequent development of deep learning (DL) constituted a paradigm shift
within the field of machine learning. The utilisation of artificial neural net-
works with multiple layers enabled deep learning systems to automatically
learn hierarchical features directly from raw data, thereby demonstrating
excellence in unstructured domains such as image recognition, speech pro-
cessing, and natural language understanding (LeCun et al., 2015; Sarker,
2021). These developments have led to significant breakthroughs in fields
such as healthcare diagnostics, autonomous vehicles, and intelligent virtual
assistants, demonstrating the potential of AI to address both repetitive tasks
and intricate problems with remarkable efficiency. Collectively, AI, ML,
and DL now represent a leading area of technological innovation, enabling
unprecedented progress in automating processes and solving challenges of
extraordinary complexity. As these technologies continue to evolve, they
are reshaping industries and expanding the boundaries of what intelligent
systems can achieve.

In recent years, artificial intelligence (AI) has become a crucial technol-
ogy, transforming numerous sectors and fields of research, including health-
care, education, finance or manufacturing (Akkem et al., 2023; Jiang et al.,
2017; Jordan and Mitchell, 2015). Its integration into agriculture has simi-
larly revolutionised modern farming practices, offering improvements in pro-
ductivity, sustainability, and food security (Akkem et al., 2023). By com-
bining AI with non-invasive sensing technologies, precision agriculture has
advanced significantly, allowing for the optimisation of tasks such as crop
monitoring, weed control, irrigation management and disease and pest treat-
ment through automation and data-driven insights (Fuentes et al., 2024;
Lee and Tardaguila, 2023). Within precision agriculture, disease detection
in crops is a key area of application, where AI systems can process vast
amounts of data to identify subtle changes in plant health with both ra-
pidity and accuracy. As an example, machine learning can facilitate the
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analysis of changes in plant organs generated by structural and biochemical
defence mechanisms using non-invasive technologies such as spectral sensors
(Mahlein et al., 2019). As AI evolves, its increasing capacity to address spe-
cialised agricultural challenges and global issues highlights its pivotal role in
shaping a sustainable future.

1.2.1 Machine learning process

Machine learning (ML) is a powerful computational paradigm that enables
the automatic extraction of patterns and insights from data, training mathe-
matical models to perform complex tasks based on the relationships inherent
in the data. By leveraging data-driven learning mechanisms, ML has be-
come a cornerstone for solving problems in diverse domains, ranging from
healthcare and agriculture to finance and autonomous systems. The success
of ML, however, depends on several critical factors: the quality of the input
data, the architectural design of the model, and its capability to generalise
effectively to unseen scenarios, ensuring robust performance in real-world
applications (Sarker, 2021).

A reliable ML system should be built on a structured process that trans-
forms raw data into actionable predictions or decisions. As outlined by
Garćıa et al. (2015), understanding the problem context and defining clear
objectives are foundational to initiating the ML pipeline. Then, the ML
process involves a series of interdependent steps (Figure 1.4), each playing
a vital role in ensuring the accuracy and robustness of the resulting model
(Garćıa et al., 2015; Paleyes et al., 2023):

1. Data acquisition is the first step, where relevant data for solving
the problem is collected from various sources, such as sensors or pub-
licly available datasets. The quality and representativeness of the data
are critical, as they directly affect model performance. However, chal-
lenges such as imbalanced datasets, insufficient coverage, or irrelevant
features often arise. For example, in plant pathology applications, like
apple leaf disease detection (Li et al., 2021), the imbalance between
healthy and diseased samples can hinder accurate model training.

2. Data preparation, involves data preparation for model training.
This process involves several sub-tasks, including data cleaning, data
transformation, and feature engineering. Data cleaning focuses on
eliminating errors, inconsistencies, missing values, and noise, thereby
improving the quality of the data. Data transformation adjusts raw
data into a format that aligns with the requirements of the model,
while feature engineering extracts or creates meaningful attributes
that enhance the model’s learning capability. By addressing these
aspects, data preparation significantly boosts the relevance and qual-
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ity of the inputs, which is essential for effective pattern recognition.
Afterwards, the processed data is typically divided into training and
testing datasets, enabling the model to learn from one subset and be
evaluated on the other.

3. Model training is the phase where the machine learning algorithm
learns to recognise patterns and make predictions based on the pre-
pared data. This step involves selecting an appropriate model, tuning
its hyperparameters, and iteratively optimising the model to minimise
errors and improve accuracy. Depending on the complexity of the data
and the task, training can range from straightforward to highly intri-
cate. Often, researchers use pre-trained models and fine-tune them
for specific applications to expedite the training process. The primary
objective is to develop a model capable of generalising effectively to
unseen data, ensuring robust and reliable performance.

4. Model testing, the model is evaluated using unseen data to assess its
generalisation capabilities and predictive performance. This involves
using a separate dataset, known as the test set, to assess how well
the model performs on new data. Model testing helps in identifying
issues like overfitting and underfitting, and provides insights into the
model’s accuracy, precision, recall, and other performance metrics. It
is crucial to ensure that the test data is representative of real-world
scenarios to obtain a reliable evaluation.

5. Model deployment is the final step, where the trained model is inte-
grated into a production environment to make predictions on new, real-
world data. This involves embedding the model into operational sys-
tems, setting up monitoring protocols, and performing regular main-
tenance to ensure consistent performance over time.

Figure 1.4: Machine learning workflow
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1.2.2 Machine learning categories

The ML process can be categorised into four principal types, depending on
the data used to evaluate the training process and how the learning pro-
cess is performed (Sarker, 2021): supervised learning, unsupervised learn-
ing, semi-supervised learning, and reinforcement learning. In supervised
learning, models are trained with labelled data, which enables the learning
process to concentrate on the anticipated outcome. This approach is partic-
ularly suited to classification and regression tasks. In contrast to supervised
learning, unsupervised learning operates with unlabelled data, whereby the
model identifies hidden patterns or structures. This approach is frequently
employed in clustering and dimensional reduction tasks. Semi-supervised
learning involves the combination of labelled and unlabelled data, typically
utilising a limited amount of labelled data to guide the learning process on
a larger set of unlabelled data. This makes it a valuable approach when
labelling is costly or time-consuming, such as in fraud detection or text
classification. Finally, reinforcement learning focuses on training an agent
to make decisions by interacting with an environment, receiving rewards
or penalties based on its actions. This makes it particularly well suited
to dynamic tasks such as robotics or autonomous driving. Consequently,
the complexity of the task to be solved and the characteristics of the data
available will determine the most appropriate machine learning category to
use.

Supervised machine learning is the most widely used category of ML due
to its capability of guiding the learning process with the desired outcomes.
This approach is particularly powerful for classification and regression tasks,
where the goal is to predict discrete classes or continuous values, respectively,
based on input features. Some examples of the models commonly used for
these tasks are:

• Support Vector Machine (SVM): it identifies the optimal hyper-
plane that maximises the margin between two classes, with the support
vectors being the data points closest to the hyperplane (Cortes et al.,
1995). This capability to maximise the margin makes SVM particu-
larly effective in high-dimensional spaces. For instance, SVM has been
effectively used for disease diagnosis, such as cancer classification from
gene expression data (Guyon et al., 2002).

• K-Nearest Neighbors (KNN): it classifies data points considering
the majority class of their nearest neighbours (Cover and Hart, 1967).
The distance between data points is often calculated using Euclidean
distance, and the choice of the number of neighbours (k) significantly
impacts the performance of the model. Its main advantages are that
it is computationally simple and does not require an explicit training
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phase. In the context of text classification systems, the algorithm is
capable of assigning a category to a given document based on its text
similarity with other documents (Bijalwan et al., 2014).

• Partial Least Squares Discriminant Analysis (PLS-DA): it can
be thought as a supervised version of Principal Component Analysis
(PCA), achieving dimensionality reduction considering the class la-
bels. It models the relationship between predictor variables and class
labels by projecting both into a lower-dimensional space, maximising
the covariance between them to improve class separation (Barker and
Rayens, 2003). PLS-DA is extensively applied in chemometrics, partic-
ularly for classifying chemical compounds based on high-dimensional
and multicollinear data such as spectral data. For instance, PLS-DA
can distinguish between diseased and healthy tomato plants in early
stages of the disease by analysing hyperspectral images, even when the
number of features far exceeds the number of observations (da Cunha
et al., 2023).

• Multilayer Perceptron (MLP): it is an artificial neural network
inspired by the structure and function of biological neural networks.
It is comprised of multiple layers of interconnected nodes (neurons),
linked by weighted edges, and is designed for tasks such as classi-
fication and regression (Aggarwal, 2018). An MLP is comprised of
three principal components: an input layer that receives data, one
or more hidden layers that process and transform input features into
higher-level representations, and an output layer that generates pre-
dictions or classifications (Figure 1.5). A distinctive feature of MLPs
is their utilisation of non-linear activation functions, including ReLU,
sigmoid, and tanh, which facilitate the network’s capacity to approxi-
mate intricate, non-linear mappings between inputs and outputs. This
capability renders MLPs suitable for modelling intricate relationships
in data across a wide range of applications. Training is conducted us-
ing backpropagation (Hinton, 1989), a method wherein the gradient
of a loss function, which quantifies the discrepancy between predicted
and actual outputs, is propagated backward through the network to
iteratively update connection weights. In plant pathology, MLPs have
been successfully applied to tasks such as the early detection of bacte-
rial canker in tomatoes by analysing the spectral signatures of plants
(Vallejo-Pérez et al., 2021).
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Figure 1.5: Example of an artificial neural network with multiple outputs
for categorical classification. Source: Aggarwal (2018)

1.2.3 Deep learning architectures

Deep learning, as a subfield of machine learning, has emerged as a domi-
nant approach for solving complex computational tasks that were previously
intractable. Deep learning has demonstrated remarkable advancements in
recent years, particularly in tasks that involve high-dimensional data, such
as images, video, audio, and text (LeCun et al., 2015). A key strength of DL
lies in its capability to automatically learn hierarchical feature representa-
tions from raw data, reducing the need for extensive feature engineering, a
time-consuming and often labour-intensive pre-processing step in traditional
machine learning (ML) pipelines. This reduction in pre-processing efforts
optimise the ML workflow and enables more efficient model development.

Several deep learning models have become standard tools in various
domains due to their unique architectures and capabilities (Serre, 2019).
Convolutional Neural Networks (CNNs) are widely used for tasks involving
spatial data, such as image and video processing, by utilising convolutional
layers to extract local patterns (Krizhevsky et al., 2012). Recurrent Neu-
ral Networks (RNNs) are effective in sequential data tasks such as natural
language processing (NLP) and time series prediction, as they can retain
information across time steps. Autoencoders are employed for unsuper-
vised learning tasks like dimensionality reduction and anomaly detection,
compressing input data into a latent space and reconstructing it. Addition-
ally, Generative Adversarial Networks (GANs), introduced by Goodfellow
et al. (2014), consist of two networks (a generator and a discriminator)
that are trained simultaneously, producing highly realistic synthetic data
and advancing fields like image generation and video synthesis. Finally,
Transformer models, particularly those using the attention mechanism, have
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gained prominence in NLP tasks achieving state-of-the-art results in tasks
such as language translation, text summarisation, and question answering
(Vaswani et al., 2017).

1.2.4 Challenges of deep learning

Deep learning models often require vast amounts of data to achieve optimal
performance. To address these limitations, researchers have adopted tech-
niques such as transfer learning, fine-tuning, and data augmentation, which
help improve model generalisation and reduce overfitting:

• Transfer Learning: this approach involves utilising neural networks
pre-trained on large-scale datasets for a different but related task.
Transfer learning allows models to leverage knowledge gained from
one domain and apply it to another domain with limited data. A well-
known example in image analysis is the utilisation of the ImageNet
dataset (Russakovsky et al., 2015) as a basis for training CNNs, due
to its general purpose.

• Fine-Tuning: it is a specialised technique within transfer learning
where a pre-trained model is partially or fully re-trained on a new,
smaller dataset to adapt it to a specific task. During fine-tuning,
earlier layers of the pre-trained model (which capture general features)
are often frozen, while the later layers (which capture task-specific
features) are updated. This approach is particularly useful in domains
where labelled data is limited, accelerating the training process and
reducing overfitting.

• Data Augmentation: this method artificially increases the size of
the training dataset by applying random transformations to the orig-
inal data. Shorten and Khoshgoftaar (2019) highlighted how data
augmentation improves generalisation in image classification models
by exposing them to a broader variety of input data.

These techniques have shown promise in agricultural applications, par-
ticularly in field-based disease assessment. Deep learning has proven ef-
fective in tasks such as identifying cassava leaf disease (Thai et al., 2021)
and differentiating grapevine diseases (Gutiérrez et al., 2021). Deep learn-
ing algorithms are capable of adapting to diverse environmental conditions,
enabling the identification of complex disease symptoms even in challeng-
ing scenarios. However, the practical deployment of these models requires
the collection and labelling of substantial datasets, a labour-intensive pro-
cess. To overcome this, data augmentation, transfer learning and fine-tuning
are often employed. For example, Li et al. (2021) demonstrated improved
accuracy in detecting apple leaf diseases using these techniques in limited
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datasets. As these methods evolve, detection systems will become more effi-
cient, providing farmers with actionable insights that enable effective disease
management and optimized resource use.

Additionally, while deep learning (DL) models have demonstrated re-
markable success across various domains, they often suffer from a lack of
interpretability, commonly referred to as the “black box” problem. Unlike
traditional machine learning models, which can provide insights into feature
importance and decision-making processes, DL models are generally opaque,
making it difficult to understand the reasoning behind their predictions. To
address this issue, researchers have developed a range of Explainable Ar-
tificial Intelligence (XAI) techniques aimed at increasing the transparency
and accountability of DL models (Arrieta et al., 2020). One widely used
XAI method is Grad-CAM (Gradient-weighted Class Activation Mapping),
which generates class-specific heatmaps to highlight the regions of an image
that most influence a model’s predictions by computing the gradient of the
class output with respect to feature maps in the final convolutional layer
(Selvaraju et al., 2020). Similarly, attention maps, commonly employed in
models handling sequential data, such as in natural language processing and
machine translation, provide visual representations of where the model fo-
cuses at each time step, offering insights into its decision-making process.
In image classification tasks, attention maps can also highlight important
regions that the model attends to when making predictions, thereby enhanc-
ing interpretability (Dosovitskiy et al., 2020). In conclusion, deep learning
has revolutionised machine learning by automating feature extraction and
enabling the development of highly accurate models for complex tasks. By
addressing challenges such as data scarcity and interpretability, DL has the
potential to transform the automation of solving complex real-world prob-
lems.

1.3 Computer vision

Computer vision, a subfield of artificial intelligence, focuses on developing
techniques that allow machines to process and interpret visual information,
such as images and videos, with the goal of emulating human visual com-
prehension. By leveraging advanced algorithms and models, this technology
enhances the automation of tasks that depend on visual analysis, resulting in
improvements in efficiency, accuracy, and scalability across various domains
(Szeliski, 2022). For instance, in healthcare, computer vision is pivotal in
medical image analysis and aiding diagnostics (Litjens et al., 2017), while in
the automation of robots, it may enable real-time image processing for navi-
gation and obstacle avoidance (Ball et al., 2016). Similarly, in agriculture, it
helps to optimise crop management through weed or disease detection, yield
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estimation or soil analysis (Rehman et al., 2019). The expanding application
of computer vision in these and other sectors underscores its crucial role in
driving technological innovation.

Considering the variety of possible applications of computer vision, this
technology can cover a range of tasks, each designed to address a specific
challenge in image analysis. One of the most common tasks is image clas-
sification, which involves assigning predefined labels to entire images based
on their content, such as determining whether an image contains a specific
object or scene. Regression tasks, similarly, involve the prediction of con-
tinuous values associated with images or objects. Object detection extends
classification by localising objects within images, identifying their bound-
ing boxes, and assigning class labels. Image segmentation, on the other
hand, focuses on partitioning an image into meaningful regions or objects
to achieve a more granular understanding of the scene. Segmentation can
be categorised into semantic segmentation, where each pixel in an image
is classified into a category with consistent labelling across the image, and
instance segmentation, which not only classifies pixels but also distinguishes
between different instances of the same object type, making it essential for
tasks requiring recognition of multiple occurrences of similar objects.

The transition from classical computer vision techniques to those based
on deep learning represents a revolutionary change in the field, driven by ad-
vances in computational power, algorithmic innovation, and the accessibility
of large annotated datasets (O’Mahony et al., 2020). Classic methods de-
pend on manually designed features and algorithms for the analysis of visual
data. Although these techniques are effective for specific, well-structured
tasks, they are inherently limited in their capability to handle variability
caused by factors such as noise, scale, or changes in illumination. Deep
learning, particularly through convolutional neural networks (CNNs), ad-
dresses these challenges by automating feature extraction and enabling end-
to-end learning (Figure 1.6). This allows models to generalise across diverse
and complex datasets without the need for task-specific feature engineering
(Voulodimos et al., 2018). Rather than supplanting classical methods, deep
learning can be integrated with them to create hybrid systems that combine
the interpretability and robustness of classical techniques with the adapt-
ability and scalability of neural networks. Such hybrid approaches have
been demonstrated to be particularly effective in domains where high relia-
bility and constrained resources are required. For example, Gutiérrez et al.
(2021) showed that combining traditional computer vision techniques for the
extraction of disease symptoms from grapevine leaves with CNNs for leaf
classification resulted in superior outcomes compared to using raw images.
As observed by O’Mahony et al. (2020), this complementary relationship
offers a promising direction for advancing computer vision applications by
leveraging the unique strengths of both paradigms.
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Figure 1.6: Workflows of classic computer vision (a) vs. deep learning (b).
Source: O’Mahony et al. (2020)

In agriculture, the different computer vision tasks are pivotal for au-
tomating the identification of disease symptoms based on visual patterns
such as leaf spots, discolourations, and necrosis. Studies have demonstrated
the efficacy in detecting diseases like canker, melanose, sunscald, anthrac-
nose and greening in citrus fruits (Zhang et al., 2022); coffee leaf miner,
soybean rust or wheat tan spot (Gonçalves et al., 2021); as well as downy
mildew and spider mite in grapevine (Gutiérrez et al., 2021). Due to the spe-
cific characteristics of each agricultural problem, deep learning techniques
demonstrated their potential to address distinct computer vision tasks. This
included image classification using classic computer vision techniques to pre-
pare the data and convolutional neural networks (CNNs) to differentiate
grapevine diseases, object detection using a combination of YOLO-v4 and a
CNN to localise and classify the fruits, and image segmentation using deep
learning models for lesion localisation in leaves affected by diseases or pests
(Figure 1.7).
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Figure 1.7: Examples of the use of deep learning to solve computer vision
tasks in disease detection in agriculture: 1) CNN for disease and pest dif-
ferentiation in grapevine (Source: Gutiérrez et al. (2021)), 2) YOLO for
disease detection in citric fruits (Source: Zhang et al. (2022)), 3) UNet,
SegNet, PSPNet and FPN for leaf segmentation (Source: Gonçalves et al.
(2021)).

1.3.1 Image preparation with classic methods

Early developments in computer vision relied heavily on manual engineering
techniques to pre-process images and extract meaningful features, thereby
guiding the subsequent analysis of the data in order to obtain the desired
results. A fundamental technique is colour space conversion, which involves
transforming the image from RGB (Red, Green, Blue) to colour spaces such
as HSL (Hue, Saturation, Lightning), HSV (Hue, Saturation, Value), LAB
or grayscale, helping to highlight specific features, such as intensity or chro-
matic components, facilitating the extraction of relevant information. Con-
trast Limited Adaptive Histogram Equalization (CLAHE) is frequently ap-
plied to improve the local contrast in images with uneven lighting. Kumar
and Jindal (2019) remarked the possibility of improving the analysis of foggy
images using HSV colour space and CLAHE method. Morphological trans-
formations, such as erosion, dilation, opening and closing, are crucial for
refining object boundaries, removing noise, and enhancing specific struc-
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tures. Noise reduction may also be done using filters such as median filter
or blurring, improving the quality of the images, allowing for clearer identifi-
cation of objects or individuals without compromising the edge details. For
instance, Íñiguez et al. (2021) used HSV and RGB colour spaces to segment
grapevine components, applying morphological transformations like erosion
and dilation to enhance the segmentation quality, particularly in analysing
the impact of leaf occlusion on yield assessment. Similarly, Rodŕıguez et al.
(2020) showcased the utility of these techniques in detecting cherry beans
on coffee trees. Their method involved converting the colour space, applying
a median blur filter to reduce noise, equalizing histograms to enhance con-
trast, and using morphological transformations to highlight features critical
to cherry bean detection. Collectively, these manual engineering techniques
underline the importance of pre-processing in traditional computer vision,
enabling the effective extraction and enhancement of image features for di-
verse applications.

1.3.2 Information extraction with classic methods

In addition to image enhancement techniques that facilitate feature extrac-
tion for tasks like image classification, classic computer vision methods can
also be applied to higher-level tasks such as object detection and image seg-
mentation. The Hough transform is widely used for detecting geometric
shapes such as lines, ellipses or circles. Diago et al. (2015) applied this tech-
nique to estimate yield components in grapevine, detecting and analysing
berries of different varieties represented as circles. Another robust technique
is the watershed algorithm, which segments images based on topographical
surface analysis by treating pixel intensities as elevations, making it effective
in biomedical applications such as cell segmentation in microscopy (Gamarra
et al., 2019). While the watershed algorithm excels at separating overlap-
ping objects, it is sensitive to noise and often requires preprocessing steps
to enhance accuracy, similar to the Hough transform.

Another common technique for separating regions in an image is thresh-
olding. Crisp thresholding uses a fixed intensity value to segment pixels.
It can be applied in task like the separation of cherry bean pixels from the
background in Rodŕıguez et al. (2020). The threshold value is often manu-
ally selected, but the Otsu method allows the automation of the calculation
of the optimum threshold by minimising the intra-class variance of pixel
intensity (Goh et al., 2018). For more complex images with gradual tran-
sitions or noise, fuzzy thresholding offers a more flexible approach. Fuzzy
logic is a mathematical method designed to handle the concept of partial
truth, where values are not limited to strict binary classifications. This
flexibility allows fuzzy logic to model uncertainty, making it highly effective
for solving complex problems where precise boundaries or classifications are
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difficult to define. For example, fuzzy logic has been employed in applica-
tions such as wine quality classification, where human interpretation plays
a significant role (Petropoulos et al., 2017). In the context of image seg-
mentation, fuzzy logic addresses challenges such as ambiguity and gradual
transitions by assigning degrees of membership to pixels rather than rigidly
categorising them. This results in smoother transitions between regions and
more accurate segmentation of images with complex patterns. An illustra-
tion of this was the use of fuzzy c-means clustering for detecting diseased
regions in the leaves of cucumber and pumpkin species (Sekulska-Nalewajko
and Goclawski, 2011), and a fuzzy approach for estimating disease severity
in grapevine leaves (Nagi and Tripathy, 2021).

Despite their limitations, classic methods like Hough transform, water-
shed, and thresholding, remain widely used due to their computational effi-
ciency and ease of implementation. These methods are particularly valuable
in scenarios with controlled conditions, such as laboratory experiments.

1.3.3 Machine learning in computer vision

Computer vision techniques have established a robust foundation for the
preparation of data for the application of machine learning models, which
has in turn led to the development of more sophisticated and efficient sys-
tems for the solution of complex visual tasks (Smith et al., 2021). For ex-
ample, Mwebaze and Owomugisha (2016) illustrated how the integration of
computer vision and machine learning can be utilised to assess the severity
of cassava leaf diseases. In this study, image features were classified using
machine learning algorithms, including the Linear Support Vector Classifier,
KNN, and Extremely Randomized Trees. Similarly, Mukherjee (2020) used
Gray-Level Co-Ocurrence Matrix (GLCM) to extract disease symptoms in
potato leaf images and classified the images into two diseases using SVM.

Furthermore, the rise of deep learning has significantly transformed the
field of computer vision, automating the feature extraction process and
thereby facilitating substantial enhancements in accuracy and scalability
(Voulodimos et al., 2018). Deep learning models are capable of learning
hierarchical representations of data, which has resulted in notable advance-
ments in tasks such as classification, segmentation, and object detection. As
an example, deep learning has demonstrated its efficacy in optimising fea-
ture engineering in agricultural fields, generalising simple problems such as
fruit counting, or developing robust models that consider challenging condi-
tions such as illumination, background noise or different image resolutions
(Kamilaris and Prenafeta-Boldú, 2018).
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1.3.4 Image classification with deep learning

The evolution of deep learning in image classification has been marked by
pivotal milestones that transformed computer vision by enabling methods
to automatically extract meaningful features from visual data and classify
them based on their content. One of the earliest breakthroughs was the in-
troduction of convolutional neural networks (CNNs), with LeNet by LeCun
et al. (1995) demonstrating their potential for tasks like digit recognition.
A paradigm shift occurred with the advent of AlexNet (Krizhevsky et al.,
2012), which leveraged GPUs and ReLU activation functions to achieve un-
precedented accuracy on the ImageNet dataset, setting a new standard for
performance. Subsequent architectures such as VGGNet (Simonyan and
Zisserman, 2015), with its deep yet straightforward stacked convolutional
layers, and GoogLeNet (Szegedy et al., 2015), featuring Inception modules
for improved computational efficiency, further refined CNN capabilities. The
introduction of ResNet (He et al., 2016) addressed the vanishing gradient
problem by incorporating skip connections, enabling the training of much
deeper networks. More recently, Vision Transformers (ViTs) have revolu-
tionised the domain by adopting attention mechanisms (Dosovitskiy et al.,
2020), previously dominant in natural language processing (Vaswani et al.,
2017), to model global dependencies in images. In addition, as deep learning
models grow in complexity and computational demand, the development of
lightweight architectures has emerged as a critical area of research, partic-
ularly for deployment on resource-constrained devices such as smartphones,
drones, and IoT (Internet of Things) systems. Models such as MobileNet
(Howard et al., 2019), which introduced depthwise separable convolutions to
reduce the number of parameters and computations, and EfficientNet (Tan
and Le, 2021), which optimally balances model depth, width, and resolu-
tion through compound scaling, exemplify this trend. Similarly, lightweight
adaptations of ViTs, such as MobileViT (Mehta and Rastegari, 2021), in-
tegrate attention mechanisms into compact architectures for low-resource
environments. These lightweight models achieve competitive accuracy while
significantly reducing memory and processing requirements, making them
indispensable for real-time applications and scenarios requiring edge com-
puting. The design of such models underscores the increasing emphasis on
sustainability and accessibility in the deployment of deep learning systems
across diverse environments. Together with advances in large-scale datasets,
optimisation techniques, and hardware acceleration, these innovations have
firmly established deep learning as the cornerstone of modern image classi-
fication.

Convolutional Neural Networks (CNNs) are deep learning architectures
biologically inspired by the working of the cat’s visual cortex, in which
specific portions of the visual field seemed to excite particular neurons
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(Aggarwal, 2018). This inspiration drives the design of convolutional neural
networks to efficiently process and analyse the spatial structure of images
by leveraging pixel-level spatial relationships (Figure 1.8). The convolution
operation, which applies learnable filters to localised regions of an image,
constitutes the fundamental operation of a convolutional neural network.
This mechanism enables convolutional neural networks to extract both low-
level and high-level features. Low-level features, such as edges and corners,
are extracted in the initial layers of the network, while more complex pat-
terns, such as shapes and textures, are extracted in the deeper layers. A
significant advantage of convolutional neural networks is their capacity to
discern local dependencies and spatial hierarchies within images. The trans-
lational equivariance of the convolution operation guarantees that the fea-
tures learned by the network remain robust to positional changes, thereby
enhancing the network’s capacity for generalisation across tasks. To further
refine the representation of features, pooling layers (such as max pooling or
average pooling) reduce the spatial dimensions of feature maps, focusing on
the most relevant features while reducing the computational overhead and
mitigating overfitting by introducing spatial abstraction. In order to en-
hance the efficiency and performance of the training process, convolutional
neural networks (CNNs) incorporate additional techniques, such as batch
normalisation and dropout. Batch normalisation serves to reduce internal
covariate shift by standardising the inputs to each layer, thereby accelerating
convergence during training. Dropout, a regularisation method, randomly
disables a fraction of neurons during training, encouraging the network to
learn robust and distributed representations and reducing the risk of over-
fitting. These enhancements contribute to the generalisability and efficiency
of CNNs across diverse datasets and applications. For instance, CNNs have
revolutionised image classification, with applications such as medical diag-
nosis, where they can be used to detect diseases in images using transfer
learning from non-medical images (Shin et al., 2016).
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Figure 1.8: Convolutional Neural Network architecture. Source: Aggarwal
(2018)

On the other hand, Vision Transformers (ViTs) have introduced a trans-
formative approach to image classification by relying on self-attention mech-
anisms instead of convolutions (Dosovitskiy et al., 2020). In ViTs, images
are divided into patches, which are treated as individual tokens in a manner
similar to that employed in a Natural Language Processing (NLP) applica-
tion (Figure 1.9). The self-attention mechanism enables the model to learn
relationships between these tokens, capturing both local details and global
dependencies. This allows ViTs to excel in tasks requiring a comprehen-
sive understanding of image context, often outperforming CNNs on large
datasets. However, ViTs typically have higher computational requirements
and rely on extensive pretraining due to the absence of inductive biases like
locality and translational equivariance, which are inherent in CNNs.

Figure 1.9: Vision Transformer architecture. Source: Dosovitskiy et al.
(2020)
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In general, CNNs and ViTs have demonstrated considerable potential
in agricultural applications. CNNs have been widely applied to tasks such
as crop yield prediction and disease detection (Akkem et al., 2023). For
example, Sharma et al. (2021) implemented a CNN to classify the severity
of mustard downy mildew. Similarly, Thai et al. (2021) highlighted the ad-
vances of vision transformers over CNNs for classifying cassava leaf diseases.
However, ViTs often face challenges with limited data sets. To address this,
Zhou et al. (2023) developed a residual distillation transformer for rice leaf
disease identification that outperformed CNNs. In addition, some studies
have explored innovative integrations for the analysis of high-resolution im-
ages. For example, (Li et al., 2019) combined CNNs with a multi-scale
sliding window method for accurate oil palm detection and geolocation in
satellite images. These studies demonstrated the potential of deep learning
for image classification, providing scalable solutions to agricultural chal-
lenges.

1.3.5 Image segmentation with deep learning

The rise of deep learning, particularly convolutional neural networks (CNNs),
has revolutionised segmentation by enabling highly accurate, automated
approaches to process large and diverse datasets. Over the years, several
specialised architectures have emerged, each addressing specific challenges
such as spatial information preservation, multi-scale feature integration, and
computational efficiency.

• FPN (Feature Pyramid Network) takes a top-down approach, in-
tegrating high-level semantic features from deeper layers with spatially
detailed features from shallower layers via lateral connections. This
architecture excels at multi-scale feature representation (Krizhevsky
et al., 2012).

• UNet builds upon this concept with a symmetric U-shaped structure
and skip connections that directly link encoder and decoder layers.
These connections allow fine-grained details to propagate across the
network, making UNet especially effective in domains like biomedical
imaging, where high precision is required. U-Net has demonstrated
particular efficacy in biomedical imaging, with its capability to accu-
rately segment neuronal structures or cells (Ronneberger et al., 2015).

• PSPNet (Pyramid Scene Parsing Network) introduces a pyra-
mid pooling module that extracts contextual information from mul-
tiple receptive fields (Zhao et al., 2016). By fusing global and local
features, PSPNet achieves robust segmentation even in images with
scale variation and complex scenes.
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• SegNet, one of the earlier deep learning-based segmentation models,
employs an encoder-decoder architecture. The encoder compresses the
spatial dimensions of the input image, while the decoder restores them
using unpooling layers that leverage max-pooling indices from the en-
coder. This design reduces computational complexity while maintain-
ing spatial detail. SegNet has shown potential in autonomous driving,
which its capacity to segment objects such as pedestrians and vehicles
in road scenes (Badrinarayanan et al., 2017). Additionally, it has been
employed in agricultural applications, including the detection of the
number of flowers in grapevines (Palacios et al., 2020).

• DeepLab, with its multiple iterations (DeepLabv1-v3+), enhances
segmentation accuracy using atrous (dilated) convolutions, which ex-
pand the receptive field without increasing the number of parameters
(Chen et al., 2017). Some versions integrated Conditional Random
Fields (CRFs) to refine segment boundaries by enforcing consistency
along edges. Additionally, DeepLabv2 included atrous spatial pyramid
pooling (ASPP) for capturing multi-scale information.

• MANet (Multi-Attention Network) leverages attention mecha-
nisms to focus on salient features while suppressing irrelevant infor-
mation. By integrating spatial and channel attention modules, MANet
improves feature representation, making it suitable for complex sce-
narios such as the segmentation of images containing near-infrared and
RGB data captured by different satellite sensors (Li et al., 2022).

Deep learning-based semantic segmentation represents a transformative
tool in the field of agriculture, facilitating precise identification and localisa-
tion of crop features for a range of applications. Casado-Garćıa et al. (2022)
demonstrated the efficacy of deep learning for plant segmentation, show-
casing the effectiveness of DeepLabV3+ and MANet architectures in accu-
rately analysing grapevine canopy components, including bunches, leaves,
and wood. Tong et al. (2021) employed the PSSNet architecture, which
was based on an encoder-decoder network, for the detection and counting
of trees. Furthermore, disease evaluation might be conducted using deep
semantic segmentation, as demonstrated in the study by Li et al. (2023),
where a Multi-fusion U-Net was employed for the segmentation of grapevine
leaf images captured using an unmanned aerial vehicle (UAV). Similarly,
Gonçalves et al. (2021) further expanded the application scope by com-
paring six convolutional neural network (CNN) architectures to segment
disease-affected areas in crops like coffee, soybean, and wheat. This work
demonstrated the efficacy of architectures like DeepLabV3+ in capturing
multi-scale features, while simpler models like U-Net and SegNet proved ef-
fective in less complex scenarios. In addition, Gao et al. (2021) developed
a method for segmenting field images of potato crops, localising late bight
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symptoms using a SegNet-based architecture. These developments illustrate
the capacity of deep learning to automate labour-intensive procedures, fa-
cilitate precision agriculture, and promote sustainable crop management.

1.3.6 Challenges in image analysis with deep learning

Despite the advances made by deep learning, one of the primary challenges
in computer vision remains the necessity for a substantial quantity of quality
labelled data to effectively train these models and facilitate the acquisition
of intricate visual patterns. The time and effort required to obtain these
annotations varies depending on the task, with the complexity of the labels
influencing the level of work needed. This can range from classification to
segmentation, ranging from the classification of a whole image to the classi-
fication of each of its pixels. This issue is particularly evident in specialised
domains such as medical imaging, where expert knowledge is essential to
guarantee accurate labelling (Litjens et al., 2017). In order to overcome the
limitations posed by scarce data and the intricacy of labelling, techniques
such as transfer learning, data augmentation and test-time augmentation
(TTA) may be utilised. Data augmentation entails the generation of sup-
plementary training examples through the application of arbitrary transfor-
mations, including rotations, scaling, flipping, cropping, blurring, shifting
or contrast and brightness changes, to the images of the original dataset.
This approach expands the size of the dataset without necessitating addi-
tional labelled examples (Shorten and Khoshgoftaar, 2019). Additionally,
more sophisticated data augmentation techniques may be applied to enhance
the complexity of the dataset. This could entail combining images and la-
bels with MixUp (Ethiraj and Bolla, 2022) or generating synthetic data with
Generative Adversarial Networks (GANs) (Gutiérrez and Tardaguila, 2023).
Moreover, TTA can be applied during the inference phase to improve the
robustness of the predictions. It applies several simple transformations to
the input image at test time, running the model on each transformed ver-
sion and averaging the predictions. This technique reduces the sensitivity
of the model to variations in the input data, such as changes in orientation
or illumination, and thus helps to improve generalisation (Ahamed et al.,
2023).





Chapter 2

Objectives

The main objective of this PhD thesis was to develop new artificial in-
telligence and computer vision-based methods for the early assessment of
downy mildew in grapevine using non-invasive sensing technologies under
laboratory and field conditions.

The specific objectives of this research work were:

• To explore the application of artificial intelligence and non-invasive
technologies for assessing downy mildew in grapevine using RGB and
hyperspectral images under laboratory conditions.

• To develop and validate a new method to automatically assess the
severity of downy mildew disease in grapevine by combining fuzzy
logic and computer vision techniques under laboratory conditions

• To use convolutional neural networks and explainable artificial intelli-
gence for early detection of downy mildew in grapevine under labora-
tory conditions.

• In-field downy mildew detection and localisation in grapevine using
explainable deep learning using RGB images.

• To employ deep semantic segmentation for the severity assessment of
downy mildew in grapevine using RGB images taken in commercial
vineyards.
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Chapter 3

Artificial intelligence and
non-invasive sensing
technologies for downy
mildew evaluation

The assessment of grapevine downy mildew is essential for advancing ef-
fective treatment development and mitigating disease spread. Traditional
methods rely on visual assessment by trained experts and are time-consuming.
The integration of artificial intelligence and non-invasive sensing technolo-
gies can facilitate the rapid and accurate assessment of plant health without
damaging the plants. Hyperspectral imaging (HSI) captures spectral data
that can assist in identifying biochemical alterations in plants, whereas RGB
imaging provides visual information that can facilitate the preliminary as-
sessment of symptoms and monitoring. The present study explored the
use of artificial intelligence and non-invasive sensing technologies for assess-
ing grapevine downy mildew under laboratory conditions. Two innovative
approaches were employed for assessing grapevine leaf discs infected with
downy mildew. The first method utilised spectral processing, classic com-
puter vision and machine learning to identify downy mildew with HSI. The
second method employed classic computer vision to localise downy mildew
symptoms in RGB images. The results demonstrated the potential of ar-
tificial intelligence and non-invasive technologies to automate and optimise
downy mildew assessment in grapevine. HSI proved effective for early disease
detection, while RGB imaging facilitated severity assessment. The combi-
nation of these methodologies offers a promising framework for accelerating
the development and evaluation of treatments and advancing the study of
plant-pathogen interactions.
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Chapter 4

Fuzzy logic and computer
vision for the evaluation of
downy mildew severity

The potential of classic computer vision to estimate grapevine downy mildew
severity using RGB images taken in the laboratory was demonstrated in
Chapter 3. These techniques could facilitate the development of disease
treatments or the analysis of plant-pathogen interactions through the analy-
sis of RGB images of plant infections. However, traditional visual evaluation
of symptoms made by experts relies on their capability to discriminate and
rate disease symptoms, taking into account the intensity and distribution of
the symptoms in the leaves. On this basis, the following work developed and
validated a computer vision-based method combined with fuzzy logic to au-
tomate disease severity assessment in the laboratory. This method employed
classic computer vision to localise downy mildew symptoms in grapevine leaf
discs. A fuzzy threshold was used for rating symptoms based on their inten-
sity and estimating the disease severity. To evaluate its effectiveness, this
approach was compared to a traditional method that used crisp threshold-
ing for disease evaluation, as developed in Chapter 3. The robustness of the
method was evaluated across two grapevine varieties, thereby ensuring its
adaptability and reliability in diverse conditions. The proposed approach
offered a precise, objective and rapid solution for assessing grapevine downy
mildew severity, optimising the monitoring of downy mildew infection under
laboratory conditions. The reliability of the method was increased by offer-
ing the visualization of symptom intensities on leaf discs. Additionally, the
capability of the method to extract valuable insights from limited datasets
provides a key advantage, supporting its application in adapting to new
conditions or diseases.
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Chapter 5

Deep learning for early
detection of downy mildew

The timely identification of plant diseases at their early stages is of paramount
importance for the effective implementation of intervention strategies and
for gaining a comprehensive understanding of the progression of the disease.
The potential of HSI for early detection was demonstrated in Chapter 3,
while RGB sensors were highlighted as cost-effective. Furthermore, classic
computer vision techniques have demonstrated in Chapters 3 and 4 their
effectiveness in localising symptoms in RGB images under laboratory condi-
tions. The present study aimed to use explainable deep learning to facilitate
early detection of grapevine downy mildew and to classify infection stages
under laboratory conditions. The study compared the use of different com-
puter vision techniques for feature extraction to simplify disease detection
in grapevine leaf discs. Disease symptoms were localised with fuzzy and
crisp thresholds (in the same way as in Chapter 4), the colour space was
transformed to HSV and the original RGB images were used. The detection
of downy mildew in the discs was performed using convolutional neural net-
works (CNN). Grad-CAM was used to interpret model predictions. Finally,
CNNs were used to identify disease stages in the images of symptomatic leaf
discs. The findings demonstrated that the integration of deep learning with
XAI can facilitate objective, accurate and rapid plant disease monitoring
with cost-effective methods that can be readily interpreted and utilised by
farmers or researchers. The work demonstrated the efficacy of CNNs in the
early detection of disease symptoms using raw data, thereby reducing the
time required for the development of specific image processing techniques
and facilitating adaptation to new crops or diseases. Furthermore, CNNs en-
abled the accurate categorisation of infection stages into early, intermediate
and high.
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Chapter 6

In-field downy mildew
detection using explainable
deep learning

The detection of plant diseases in the field is a complex process influenced by
natural conditions, such as daylight or plant damage. The detection of small
downy mildew symptoms in grapevine could allow for timely and targeted
interventions, which can mitigate the spread of the disease and prevent sig-
nificant crop losses. Traditional detection is conducted visually by trained
personnel in the field, which is a time-consuming process when evaluating
large areas of crops. As demonstrated in the previous chapters, computer
vision and deep learning might detect downy mildew in RGB images. The
objective of this study was to develop an automated and interpretable system
for the detection and localisation of downy mildew under field conditions.
This work presented a novel approach that integrates deep learning models
with a sliding window method for the evaluation of high-resolution RGB
images of the grapevine canopy. The collection of images was conducted in
14 plots, manually and using a mobile platform, with consideration given to
the impact of different lighting and grapevine variety. Convolutional neural
networks and vision transformer models were used for the identification of
symptomatic regions on the plant. Transfer learning, fine-tuning and data
augmentation were employed to mitigate overfitting and develop a robust
method. Furthermore, Grad-CAM and attention maps were employed to
interpret the neural network predictions. The method demonstrated the ca-
pacity of deep learning to detect grapevine downy mildew under challenging
field conditions and its potential for extensive crop assessment using ground
vehicles such as tractors, thereby paving the way for more sustainable and
efficient farming practices. The adaptability of the method to new condi-
tions, crops, or diseases was a key advantage, achieved through straight-
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forward labelling by classifying plant areas. Furthermore, the integration
of explainable artificial intelligence offered an understandable approach for
agricultural professionals, facilitating the validation of the decisions made
by the AI system.
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Chapter 7

Deep semantic segmentation
for severity estimation of
downy mildew under field
conditions

The precise localisation of downy mildew symptoms in the vineyard enables
detailed monitoring, aiding in the effective management of the disease, and
reducing the use of chemical treatments or helping to test new treatments.
Traditionally, the evaluation of the disease severity is carried out visually
by trained experts. However, as demonstrated in Chapter 6, deep learn-
ing offers a powerful alternative by extracting infection-related information
from field-captured images. The aim of this work was to assess the sever-
ity of downy mildew in grapevine under field conditions by employing deep
semantic segmentation for localising visual symptoms. State-of-the-art se-
mantic segmentation architectures were utilised to detect the symptoms in
the grapevine canopy. The data collected in Chapter 6 was utilised, con-
sidering the variability present in the field. The study explored different
approaches to address data imbalance caused by the small size of the symp-
toms, including the use of simple data augmentation, oversampling, under-
sampling, and the MixUp method. Furthermore, Test-Time Augmentation
(TTA) was employed to make the results robust to brightness changes, min-
imising the occurrence of false positive values. This method presented a
robust and objective solution for the assessment of downy mildew severity
in the vineyard. The models were developed for real-time application, using
efficient neural networks to facilitate their deployment on mobile platforms
for disease monitoring in the field. Furthermore, the strategies to address
data imbalance further enhanced sensitivity to minor and early symptoms,
thus marking a significant advance in non-invasive crop health assessment.
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Chapter 8

Conclusions

Main conclusion: This PhD thesis demonstrates the potential of artificial
intelligence, particularly machine learning, deep learning, and computer vi-
sion, combined with proximal sensing technologies, to enable non-invasive,
rapid, objective, and accurate detection of early symptoms of grapevine
downy mildew under both laboratory and field conditions.

The specific conclusions of this PhD thesis were:

Artificial intelligence and non-invasive sensing technologies for
downy mildew evaluation

1.1. Artificial intelligence methods and proximal sensing technologies have
demonstrated their capability to automate the non-invasive evaluation
of downy mildew in grapevine under laboratory conditions.

1.2. Classic computer vision techniques applied to RGB images have demon-
strated their capability for cost-effective, accurate and rapid estima-
tion of downy mildew severity, providing an interpretable localisation
of the symptoms that supported disease evaluation.

1.3. The combination of machine learning models, particularly artificial
neural networks such as MLP and CNN, with hyperspectral imaging
(HSI) has facilitated the analysis of complex spectral data, enabling
the early detection of downy mildew.

Fuzzy logic and computer vision for the evaluation of downy
mildew severity

2.1. Classic computer vision and fuzzy logic proved their capability for au-
tomatic, rapid, accurate, and objective estimation of grapevine downy
mildew severity under controlled laboratory conditions.
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2.2. The use of a fuzzy threshold to estimate disease severity outperformed
the use of a crisp threshold, creating a method strongly related to
expert visual assessment. In addition, it provided a comprehensive
visual representation of the disease symptoms showing their intensity
in the leaves.

2.3. The robustness of the method was demonstrated by its capability to
accurately estimating downy mildew severity in different grapevine
varieties acquired in different conditions, which showed the potential
of its adaptability.

Deep learning for early detection of downy mildew

3.1. The use of convolutional neural networks, combined with transfer
learning, enabled the automatic and effective early detection of downy
mildew in grapevine in the laboratory, even when the symptoms were
barely visible to humans. The Grad-CAM method demonstrated the
focus of the neural networks on the downy mildew symptoms of the
leaves.

3.2. Image thresholding, especially using fuzzy logic, facilitated the conver-
gence of the neural networks focusing the detection on the symptoms
of the disease. On the other hand, the use of raw images helped to
achieve an accurate detection in early stages of the infection, avoiding
false negative values caused by the thresholding.

3.3. The use of convolutional neural networks also helped to identify the
stage of downy mildew infection in the laboratory, differentiating early,
intermediate and late stages.

In-field downy mildew detection using explainable deep learn-
ing

4.1. The application of convolutional neural networks combined with fine-
tuning allowed the accurate detection and localisation of grapevine
downy mildew under field conditions, outperforming vision transform-
ers. In addition, explainable artificial intelligence (XAI) offered results
that could be comprehensible to farmers.

4.2. The sliding-window method enabled the analysis of grapevine canopy,
detecting regions containing small downy mildew symptoms in high-
resolution images of plants, allowing straightforward adaptation to
new crops or diseases through the annotation of image regions.

4.3. The use of data collected from different vineyards and in different day-
light conditions manually and with a mobile platform demonstrated
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the robustness of the method and opened the possibility for the in-
tegration of the algorithm into crop treatment machines like tractors,
enhancing in-field disease detection and management.

Deep semantic segmentation for severity estimation of downy
mildew under field conditions

5.1. The utilisation of deep semantic segmentation enabled the efficient and
objective evaluation of disease severity in images taken in commercial
vineyards, localising downy mildew symptoms in the grapevine canopy.

5.2. The combination of models such as U-Net with lightweight encoders
like MobileVit-S and transfer learning exhibited superior performance
in comparison to smaller architectures like adhoc SegNet, providing a
rapid and precise solution that could be adaptable to compact devices
or mobile platforms for real-time disease management.

5.3. The localisation of small symptoms was enhanced through background
reduction and augmentation of the samples with downy mildew symp-
toms, while training the models with a dice loss function focused on the
symptom. Furthermore, the employment of Test-Time-Augmentation,
in conjunction with a restrictive prediction threshold, has been demon-
strated to enhance disease detection, thereby reducing errors caused
by leaf defects, background variability, and natural light conditions.

8.1 Future work

This research has opened the door to several promising avenues, that col-
lectively aim to enhance the scalability, precision, and practical utility of
AI-based disease detection systems in agriculture:

• The adaptation of the developed methodologies to new crops, diseases,
and pests would expand their applicability and provide a broader im-
pact in agriculture.

• Further exploration of hyperspectral imaging (HSI), incorporating the
use of spectral wavelengths greater than 1000 nm or the considera-
tion of spatial information, could offer a promising approach for the
asymptomatic detection of downy mildew, with the potential to im-
prove early assessment in the laboratory or in the field.

• The development of real-time detection systems for field conditions
that could enable timely interventions and minimise disease progres-
sion.



120 8.1. Future work

• The improvement of deep learning methods incorporating advanced
data augmentation techniques, such as Generative Adversarial Net-
works (GANs), could address the difficulty of data collection and im-
prove model robustness and accuracy.
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Vallejo-Pérez, M. R., Sosa-Herrera, J. A., Navarro-Contreras, H. R., Álvarez
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