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Abstract

Computer Vision is a multidisciplinary field that combines concepts from Artifi-
cial Intelligence, image processing, visual perception, and data science to enable
computers to understand and analyse visual content in a similar way to humans.
In the last years, significant advancements have been made in Computer Vision
thanks to the development of algorithms and techniques based on Deep Learn-
ing methods. Two areas of Computer Vision that have numerous applications in
various fields such as biology, agriculture, and medicine are Object detection and
semantic segmentation. Currently, the most successful techniques to tackle these
two tasks are also based on Deep Learning methods. However, although these
methods have achieved excellent results, using such techniques in contexts outside
machine learning can be complex. This is due to the large number of images that
are required to train Deep Learning models (which can be difficult to obtain in con-
text like biomedicine or precision agriculture), the process of annotating images (a
time-consuming and expertise-demanding problem), and the technical difficulties
for training and using Deep Learning models by domain experts. The aim of this
thesis is to address these limitations through different theoretical developments,
and evaluate the proposed solutions in actual contexts.

First of all, we have focused on the development of methods that allow us
to improve the performance of object detection models. For this purpose, we
have developed an algorithm that improves the accuracy and robustness of object
detection models by means of an ensemble method. This algorithm is also the basis
to define semi-supervised learning methods that reduce the number of annotated
images that are needed to train object detection models. Moreover, to facilitate the
create and usage of object detection models, we have developed an open source
tool that simplifies the process of creating and using object detection models,
thanks to a simple to use graphical interface. Furthermore, we have generalise
our work to facilitate the creation and usage of models for any computer vision
task. Finally, the developed techniques and tools have served as the foundation for
addressing real-world problems in plant physiology, and in precision agriculture.
As a summary, this work is a step towards the democratisation of Deep Learning
models for users outside the machine learning community.
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Resumen

La Visión por Computador es un campo multidisciplinar que combina conceptos
de Inteligencia Artificial, procesamiento de imágenes, percepción visual y ciencia
de datos para permitir que los ordenadores comprendan y analicen contenido vi-
sual de manera similar a los humanos. En los últimos años, se han logrado avances
significativos en la Visión por Computador gracias al desarrollo de algoritmos y
técnicas basadas en métodos de aprendizaje profundo o Deep Learning. La de-
tección de objetos y la segmentación semántica son dos áreas de la Visión por
Computador que tienen numerosas aplicaciones en diversos campos como la bi-
ología, la agricultura y la medicina. Actualmente, las técnicas más exitosas para
abordar estas dos tareas también se basan en métodos de Deep Learning. Sin
embargo, aunque estos métodos han logrado excelentes resultados, utilizar dichas
técnicas en contextos fuera del aprendizaje automático puede ser complejo. Esto
se debe al gran número de imágenes requeridas para entrenar modelos de Deep
Learning (que pueden ser difíciles de obtener en contextos como la biomedicina
o la agricultura de precisión), el proceso de anotación de imágenes (un problema
que consume mucho tiempo y requiere de experiencia) y las dificultades técnicas
para entrenar y utilizar modelos de Deep Learning por parte de usuarios no exper-
tos. El objetivo de esta tesis es abordar estas limitaciones a través de diferentes
desarrollos teóricos y evaluar las soluciones propuestas en contextos reales.

En primer lugar, nos hemos centrado en el desarrollo de métodos que nos per-
miten mejorar el rendimiento de los modelos de detección de objetos. Para este
propósito, hemos desarrollado un algoritmo que mejora la precisión y la robustez
de los modelos de detección de objetos mediante métodos de ensemble. Este algo-
ritmo también es la base para definir métodos de aprendizaje semisupervisado que
reducen el número de imágenes anotadas necesarias para entrenar los modelos de
detección. Además, para facilitar la creación y uso de modelos de detección, hemos
desarrollado una herramienta que simplifica el proceso de creación y uso de modelos
de detección gracias a una interfaz gráfica fácil de usar. Además, hemos general-
izado nuestro trabajo para facilitar la creación y uso de modelos para cualquier
tarea de Visión por Computador. Por último, las técnicas y herramientas desarrol-
ladas anteriormente han servido como base para abordar problemas en fisiología
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de plantas, y en agricultura de precisión. En resumen, este trabajo es un paso
hacia la democratización de los modelos de Aprendizaje Profundo para usuarios
fuera de la comunidad de aprendizaje automático.
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Chapter 1

Introduction

Computer Vision is a multidisciplinary field that combines concepts from Artificial
Intelligence, image processing, visual perception, and data science to enable com-
puters to understand and analyse visual content in a similar way to humans [1].
Roughly speaking, Computer Vision aims to develop algorithms and techniques
that allow machines to “see” and comprehend images and videos. This involves
extracting useful information from images by means of tasks, such as object de-
tection and recognition [2, 3], motion tracking [4], image segmentation [5], 3D
reconstruction [6], or complex scene analysis [7]. Computer Vision has applica-
tions in a wide range of fields. In medicine, for example, it is used for diagnosis
and early detection of diseases through medical imaging [8]. In the automotive
industry, it is employed in driver assistance systems and autonomous vehicles to
detect and recognize traffic signs, pedestrians, and real-time obstacles [9]. It is also
applied in security and surveillance, satellite image processing, augmented reality,
robotics, industrial automation, and many other domains where visual analysis is
crucial [10].

The term Computer Vision began to be used in the mid-1960s when researchers
started exploring image processing and the ability of computers to interpret vi-
sual information [11]. However, the field itself and its recognition as a specific
discipline developed gradually in the following decades. In its early stages, re-
searchers primarily focused on the recognition of simple patterns in images, such
as printed characters or basic geometric shapes [12]. One of the early significant
milestones was the development of the Canny edge detection algorithm in 1986,
which allowed for accurate identification of object contours in images [13]. As the
1980s progressed, more sophisticated techniques were introduced, such as the use
of geometric models and texture analysis to recognise objects in images [14]. How-
ever, Computer Vision remained a significant challenge due to the complexity and
variability of real-world images. Since then, the field has experienced significant
growth, especially in the last decade with the rise of Machine Learning and Deep
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2 Chapter 1 Introduction

Learning methods [15].
The traditional approach to apply Machine Learning methods to Computer

Vision problems can be summarised as follows. First of all, a person has to design
an algorithm that extracts some descriptors from a given image (for example,
descriptors such as LBP [16] or Haar [17] have been used to determine the relevant
characteristics of an image and applied to face detection). Specifically, the goal
is to extract descriptors that are discriminative enough to describe the content of
images. The second step consists in training a Machine Learning algorithm (such
as k-NN [18], Random Forest [19] or Neural Networks [20]) to perform a given task.
The main problem is that we have to consider that there can be a huge variability
of conditions in images; for instance lighting, occlusions, changes in angles, or
atmospheric phenomena. Therefore, it might be difficult to choose the correct set
of descriptors, and this might lead to unexpected behaviours of the models. This
problem has been recently tackled by means of Deep Learning methods.

Figure 1.1: Relations among Artificial Intelligence, Machine Learning, Deep Learn-
ing and Computer Vision.

Deep Learning is a subset of techniques from Machine Learning (see Figure 1.1)
based on Neuronal Networks. This set of techniques tries to learn the representa-
tion of a given image in terms of other simpler representations through a hierarchy
of increasing complexity and abstraction (see Figure 1.2) [21]. This process of
learning a useful representation is carried out during the training process of a net-
work, where the lower layers of the network encode a basic representation of the
problem, and the higher layers use the lower layers to build abstractions. For ex-
ample, in Figure 1.2, the first layer of the network focuses on basic patterns, which
are then used to construct abstractions like ears and eyes in deeper layers, which
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in turn are used to build complete faces. Therefore, the main difference between
traditional Machine Learning and Deep Learning is that in traditional Machine
Learning, image descriptors are manually selected, whereas in Deep Learning, de-
scriptors are learned at the same time than the algorithms are trained.

Figure 1.2: Extraction of representation from a Deep Learning model.

Deep Learning methods are currently the state-of-the-art approach to deal with
most Computer Vision tasks. Among those tasks, three of them are worth men-
tioning due to their numerous applications. Those tasks are image classification,
object detection and semantic segmentation. Image classification is probably the
most well-known problem in Computer Vision, and it involves categorising an im-
age into one of many possible classes, see Figure 1.3(a). When iterating on the
classification problem, we end up with the need to detect and classify multiple
objects simultaneously in a given image. Object detection is the problem of find-
ing and classifying a variable number of objects in an image. The key difference
here is the “variable” part. Unlike classification problems, the output of object
detection models is of variable length because the number of detected objects can
change from one image to another, as shown in Figure 1.3(b). Finally, semantic
segmentation goes beyond object detection by providing a precise pixel-by-pixel
classification for each detected object. This task allows for the separation and
distinction of different objects within an image at the pixel level, see Figure 1.3(c).
For these three tasks, given a dataset of images and their corresponding annota-
tions, Deep Learning algorithms are trained to produce a model. Lastly, given a
new image as input such trained model will output the corresponding label. In
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this work, we will mainly focus on the tasks of object detection and semantic
segmentation.

(a) (b) (c)

Figure 1.3: Problems of Computer Vision: (a) Image Classification. (b) Object
Detection. (c) Semantic Segmentation.

Deep Learning methods for object detection are mainly based on Convolu-
tional Neuronal Network (CNNs), a special kind of neuronal network that uses
specialised layers that performs convolutions to extract meaningful features from
images [22]. The CNNs models for object detection can be divided into two cat-
egories: two-phase and one-phase algorithms. In two-phase algorithms; the first
step involves generating a group of potential bounding rectangles or region pro-
posals that are considered “interesting”. In the second step, these proposals are
classified using convolutional neural networks. Examples of two-phase algorithms
include R-CNN [23], Fast R-CNN [24], and Faster R-CNN [25]. In the case of, one-
phase algorithms, they divide the image into regions, which are then processed by
a CNN. Finally, these regions are modified and grouped based on the obtained
prediction. Examples of one-phase algorithms are SSD [26] and YOLO [27].

In general, the first algorithms are more accurate but slower (due to the two-
phase approach), which poses challenges for real-time image processing. On the
other hand, the second algorithms are faster, although slightly less accurate be-
cause everything is done simultaneously. More recently, the transformer architec-
ture has also been used to define new Deep Learning models for object detection.
Example of these transformers models are DETR [28] or YOLOS [29]. The con-
crete details of these for object detection architectures are not necessary for the
work presented in this memoir, and, therefore, we refer the interested reader to [30]
— where a detailed introduction to the state-of-the-art Deep Learning methods
for object detection can be found.

In the case of semantic segmentation, the Deep Learning architectures are based
on either fully convolutional networks (FCN) [31] or encoder-decoder networks [32].
FCN architectures extract features from a given image using a backbone of convo-
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lutional layers and generate an initial coarse classification map. The classification
map is a spatially reduced version of the original image. Then, deconvolutional
layers restore the original resolution of the classification map to output the final
segmentation mask. In the encoder-decoder architectures, the encoder is usually
made of several convolutional and pooling layers responsible for extracting the fea-
tures and generating an initial coarse prediction map. In these architectures, the
encoder is known as the backbone. The decoder, commonly composed of convolu-
tion, deconvolution and/or unpooling layers, is responsible for further processing
the initial prediction map, increasing its spatial resolution gradually and generat-
ing the final prediction. The Unet architecture [32] was the first network to propose
an encoder-decoder architecture to perform semantic segmentation in medical con-
texts. From that seminal work, several variants have been proposed [33]. Likewise,
the object semantic segmentation case, details of these architectures are not nec-
essary for the work presented in this memoir, hence, we refer the interested reader
to [34] — where a detailed introduction to the state-of-the-art Deep Learning
methods for semnatic segmentation can be found.

Once that we have introduced the context of this work, in the next section we
present the limits of Deep Learning methods and our goals.

Challenges and objectives

In spite of the success of Deep Learning methods to tackle Computer Vision tasks,
there are several challenges that have not been addressed yet. First of all, Deep
Learning methods require a large amount of annotated images to achieve accu-
rate results [35]. Although massive datasets such as Imagenet [36], COCO [37],
and Pascal VOC [38] exist, acquiring images can be challenging in contexts like
biomedicine or precision agriculture due to budget constraints, data privacy, or the
need of invasive procedures [39]. Additionally, the images need to be annotated,
which involves assigning labels to each object in the image and providing their po-
sitions. Therefore, image annotation is a time-consuming and expertise-demanding
problem, particularly in object detection and segmentation tasks.

In the literature, we can find several techniques that deal with such limitations.
Among those techniques, we can highlight methods such as transfer learning [40],
data augmentation [41], or semi-supervised learning methods [42]. Some of those
techniques are based on the notion of ensembles [43]. Ensemble methods combine
the output of multiple models to produce more robust results. However, as many
other techniques in the Deep Learning context, ensemble methods are mainly ap-
plied in image classification problems, and some of the methods developed for
image classification tasks cannot be directly applied to other Computer Vision
problems.
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There are also technical limitations when using Deep Learning techniques. First
of all, there are multiple ways of approaching the same problem, and those ap-
proaches are usually implemented in different libraries. This may require different
sets of files, dependencies, and structures, making it difficult to transfer knowl-
edge and solutions between different problems. Moreover, users of Deep Learning
methods need a considerable experience to train and use Deep Learning models
and this might be a challenge for many non-expert users. Finally, Deep Learn-
ing methods are often computationally intensive and require specialised hardware,
such as graphics processing units (GPUs) or tensor processing units (TPUs), to
achieve efficient training and inference. This can be a barrier for those who do not
have access to these resources or lack the knowledge to use them effectively.

The last problem of Deep Learning methods is the use of synthetic or artificially
generated datasets for testing such methods. These datasets can be useful when
there is a lack of sufficient real-world data or when specific aspects of the data
need to be controlled and manipulated for a more detailed analysis. Synthetic
datasets can also be helpful for training and fine-tuning models in initial stages.
However, if those methods are not tested against real datasets, it is unknown
whether the generated models are capable of solving real-world problems. Hence,
it is necessary to evaluate the performance and generalisation of Deep Learning
models in real-world scenarios.

Once that we have explained some of the limitations of Deep Learning methods,
we outline the objectives proposed in this work to address the aforementioned
problems in the context of object detection and semantic segmentation. Namely,
the main objectives of this work are:

O1. Develop new algorithms to improve the effectiveness of object detection
models.

O2. Reduce the amount of resources necessary to train object detection models.

O3. Facilitate all the stages involved in the process of training and using object
detection models.

O4. Generalise the methods developed in the previous objectives to other Com-
puter Vision tasks such as sementic segmentation.

O5. Evaluate the proposed solutions in real scenarios.

The rest of this memoir is organized as follows. In Chapter 2, we will develop
new methods to improve the performance of object detection models based on
ensemble methods (Objective O1). Moreover, those new methods will allow us
to reduce the number of images used to create new models (Objective O2). In
Chapter 3, we will present an infrastructure that facilitates the construction and
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usage of object detection models (Objective O3), and we will also introduce how
our methods can be generalised (Objective O4). Finally, in Chapters 4 and 5,
we will evaluate the methods and algorithms developed in the previous chapters
using datasets from real-world problems in two domains: plant physiology and
precision agriculture (Objective O5). The memoir ends with a chapter which
includes some conclusions and further work, and a chapter that showcases the
publications associated with this work.





Chapter 2

Ensemble Methods for Object
Detection

In this chapter, we focus on providing a general approach, based on ensemble
methods, to improve the accuracy and robustness of object detection models. In
addition, this approach allows us to reduce the number of images that are needed to
train object detection models by means of two semi-supervised learning methods.

Ensemble methods have been successfully employed in the literature to improve
object detection models. For instance, the mmAP in the COCO dataset was
improved from 50.6 to 52.5 in [44], or the mAP in the Pascal VOC dataset increased
by 3.2% in [45]. In fact, the leading methods on datasets like Pascal VOC or MS
COCO are based on the usage of ensembles [46, 47]. However, the process of
ensembling object detectors poses several challenges. First of all, some ensemble
approaches for object detection depend on the nature of the detection models
— for example, the procedure to ensemble models explained in [48] can only be
applied to models based on the FasterRCNN algorithm— therefore, these methods
cannot be generalised and lack the diversity provided by the ensemble of different
algorithms. Related to the previous point, those ensemble methods require the
modification of the underlying algorithms employed to construct the models, and
this might be challenging for many users. In order to deal with this problem, there
are ensemble methods that work with the output of the models [49, 50]; but, again,
they are focused on concrete models, and only work if the models are constructed
using the same framework. Finally, it does not exist an open-source library that
provides general ensemble methods for object detection, and this hinders their use.

We have tackled the aforementioned challenges by designing a generic method
that serves to ensemble the output produced by detection algorithms; that is,
bounding boxes which indicate the position and category of the objects contained in
an image. The method can be employed with any detection model independently of
its underlying algorithm and the framework employed to construct it. In particular,

9
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the contributions of this part of the memoir are the following ones:

• We present a general method for ensembling object detectors independently
of the underlying algorithm; and, in addition, we devised several voting
strategies to carry out the ensembling process.

• As a by-product of our ensemble method, we defined a test-time augmenta-
tion procedure that can be applied to boost the accuracy of object detection
models. Moreover, we explain how to reduce the burden of annotating im-
ages in the context of object detection using two semi-supervised learning
techniques based on ensemble methods.

• We conducted a comprehensive study of the impact of our ensemble method
and the devised voting strategies, and show the benefits of our method as
well as the advantages of using test-time augmentation and semi-supervised
learning methods.

• We implemented our methods in the EnsembleObjectDetection library1.
This open-source library can be extended to work with any object detection
model independently of the algorithm and framework employed to construct
it.

The rest of the chapter is organised as follows. In the next section, we provide
the necessary background to understand the rest of the chapter. Subsequently,
our approach to ensemble object detection models, and the extension of such an
approach for test-time augmentation, and semi-supervised learning is presented
in Section 2.2. In Section 2.3, we present the main highlights of the library that
implements our methods. After that, an analysis of the impact of our methods
on different datasets is provided in Section 2.4. The chapter ends with the main
conclusions of this part of the memoir.

2.1 Background

In this section, we briefly provide the necessary background and definitions needed
to understand the rest of the chapter. We start by providing the main definitions
used in the context of object detection.

1The library is available at https://github.com/ancasag/ensembleObjectDetection.

https://github.com/ancasag/ensembleObjectDetection.
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2.1.1 Definitions

Object detection is the task of determining the position and category of multiple
objects in an image. Formally, an object detection model can be seen as a function
that given an image I returns a list of detections D = [d1, . . . , dN ] where each di
is given by a triple [bi, ci, si] that consists of a bounding box, bi, the corresponding
category, ci, and the corresponding confidence score, si.

In order to evaluate the performance of detection models, we can use several
metrics, but all of them need to determine the overlap of bounding boxes. To that
aim, the IoU metric [51] is employed. Considering two bounding boxes b1 and b2,
the IoU formula for finding the overlapped region between them is given by:

IoU(b1, b2) =
area(b1 ∩ b2)
area(b1 ∪ b2)

.

Now, we can use the IoU to define the mAP metric [51]. Suppose we want to
evaluate our object detector on a set of test images T and that objects of a set of
classes ζ, with #|ζ| = n, can appear in these images. We start by defining what
a correct detection is. Given the ground truth of an object of a class C ∈ ζ (that
is, a bounding box provided by an annotator), we will say that such an object is
correctly detected, if our model produces a prediction where the IoU of the ground
truth with the prediction is greater than a given threshold, and C is equal to the
predicted class. The threshold value is usually set to 0.5; although this value may
vary.

From the detected objects, we compute their IoU with respect to each bound-
ing box of the ground truth. Using these values and the IoU threshold, we can
determine the number of correct detections for each class in an image. Next, for
each one of the images, we obtain the number of real objects of a given class C ∈ ζ
in that image I; and we define the precision of class C in an image I as follows:

PrecisionC,I =
# of correct detections of class C in I

# of objects of class C in I
.

Since we are interested in evaluating the model on the set of images T , we
define the Average Precision for class C as:

Average PrecisionC =

∑
I∈T PrecisionC,I

total number of images T with objects of class C
.

To represent the overall performance of our model, we will take the mean of
all the Average Precision defining the mean Average Precision (mAP) as:

mAP =

∑
C∈ζ Average PrecisionC

# of classes
.
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Sometimes, we use the notation mAP@threshold to indicate the used IoU thresh-
old; for instance, if 0.5 is used as threshold, we write mAP@0.5.

Other metrics have been used in the literature to evaluate the performace of
object detection models. Let us define these metrics in a formal way, using the
following concepts:

• True Positive (TP) are the correctly detected objects; that is, the model
produces a prediction of the same class of the object, and the IoU between
the ground truth of the object and the predicted bounding box is over a fixed
threshold.

• False Positive (FP) are the objects predicted by the model but that do not
appear in the ground truth.

• False Negative (FN) are the objects that are in the ground truth but that
have been not predicted by the model.

Then, we can define the precision, the recall and the F1-score as follows:

Precision =
TP

FP + TP

Recall =
TP

FN + TP

F1-score =
2 ∗ TP

2 ∗ TP + FP + FN

Roughly speaking, the precision (not to be confused with the precision of the
class C in an image I) is the relationship between the number of correctly predicted
detections and total predicted detections; the recall, is the ratio of the number of
correctly predicted detections to the total detections; and the F1-score takes into
account the precision and the recall. As in the case of mAP, we can indicate a
threshold value for these metrics using precision@threshold, recall@threshold and
F1@threshold. Once the basic notions about object detection have been presented,
we explain how ensemble methods have been applied for object detection models
in the literature.

2.1.2 Ensemble methods for object detection

Ensemble methods combine multiple models to obtain a final output [43]. These
methods have been successfully employed for improving accuracy in several ma-
chine learning tasks, and object detection is not an exception. We can distinguish
two kinds of ensembling techniques for object detection: those that are based on
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the nature of the algorithms employed to construct the detection models, and those
that work with the output of the models.

In the case of ensemble methods based on the nature of the algorithms, dif-
ferent strategies have been mainly applied to two-stage detectors. Some works
have been focused on ensembling features from different sources before feeding
them to the region proposal algorithm [52, 44], others apply an ensemble in the
classification stage [53, 54], and others employ ensembles in both stages of the
algorithm [48, 55, 56]. In the case of ensemble methods based on the output of
the models, the common approach consists in using a primary model which pre-
dictions are adjusted with a secondary model. This procedure has been applied
in [50] by combining Fast-RCNN and Faster-RCNN models, in [45] by combining
Fast-RCNN and YOLO models, and in [49] by using RetinaNet and Mask R-CNN
models. Another approach to combine the output of detection models is the ap-
plication of techniques to eliminate redundant bounding boxes like Non-Maximum
Suppression [57], Soft-NMS [58], NMW [59], fusion [60] or WBF [61]. However,
these techniques do not take into account the classes of the detected objects, or
the number of models that detected a particular object; and, therefore, if they are
blindly applied, they tend to produce lots of false positives.

In our work, we propose a general method for ensembling the output of de-
tection models using different voting strategies. The method is independent of
the underlying algorithm and framework of the models, and allows us to easily
combine a variety of multiple detection models. In addition, our method opens
the door to apply techniques such as test-time augmentation.

2.1.3 Test-time augmentation

Data augmentation [62, 63] is a technique widely employed to train deep learning
models that consists in generating new training samples from the original training
dataset by applying transformations. There is a variant of data augmentation for
the test dataset known as test-time augmentation [64]. This technique randomly
applies a set of transformations to the test images to create new images, performs
predictions on them, and, finally, returns an ensemble of those predictions.

Due to the cost of collecting data in the context of object detection, data
augmentation strategies such as random scaling [45] or cropping [26] are widely
employed [65]. On the contrary, and due to the lack of a general method to combine
predictions of object detectors, test-time augmentation has been mainly applied
in the context of image classification [64]. As far as we are aware, test-time aug-
mentation has only been applied for object detectors in [60], and only using colour
transformations. This limitation is due to the fact that some transformations, like
flips or rotations, change the position of the objects in the image and this issue
must be taken into account when combining the predictions. The method pre-
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sented in the next section deals with this problem and allows us to apply test-time
augmentation with any object detection model.

2.2 Methods

In this section, we explain our ensemble algorithm for combining the output of
object detection models. Such an algorithm can be particularised with differ-
ent strategies that are also explained in this section. Moreover, we explain how
our algorithm can be applied for test-time augmentation, and for semi-supervised
learning.

2.2.1 Ensemble of object detectors

We start by explaining the procedure that we have designed to combine object
detections obtained from several sources. The input of our ensemble algorithm is
a list LD = [D1, . . . , Dm] where each Di, with i ∈ {1 . . .m} where m is the number
of sources, is a list of detections for a given image I as explained in Section 2.1.
Usually, each Di comes from the predictions of a detection model; but, as we will
see in Section 2.2.2, this is not always the case. In general, each list Di is a list of
detections produced using a particular method Mi for a given image.

Given the list LD, our ensemble algorithm consists of four steps. First of all, the
list LD is flattened in a list F = [d1, . . . , dk], since the provenance of each detection
di is not relevant for the ensembling algorithm. Subsequently, the elements di of
F are grouped together based on the overlapping of their bounding boxes and
their classes. This step is employed to group the elements of F producing as a
result a list G = [DG

1 , . . . , D
G
n ] where each DG

i is a list of detections such that
for all d̄(= [b̄, c̄, s̄]), d̂(= [b̂, ĉ, ŝ]) ∈ DG

i , IoU(b̄, b̂) > 0.5, and c̄ = ĉ; that is, those
detections from the same class and that overlap at least a 0.5 IoU. At this point,
each list DG

i ∈ G is focused on a candidate object of the image, and the size of
DG
i will determine whether our algorithm considers whether such a region actually

contains an object. Namely, this decision can be taken using three different voting
strategies:

• Affirmative. In this strategy, all the lists DG
i are kept. This means that

whenever one of the methods that produce the initial predictions says that
a region contains an object, such a detection is considered as valid.

• Majority. In this case, only the lists DG
i which length is greater than m/2

(where m is the size of the initial list LD) are kept. This means that the ma-
jority of the initial methods must agree to consider that a region contains an
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object. This strategy is analogous to the majority voting strategy commonly
applied in ensemble methods for image classification [66].

• Unanimous. In the last strategy, only the lists DG
i which length is equal to

m are kept (where m is the size of the initial list LD). This means that all
the methods must agree to consider that a region contains an object.

After applying one of the aforementioned strategies, we end up with a list G′ ⊆
G. Since each list DG

′

k ∈ G′ might contain several detections for the same region,
the last step of our algorithm is the application of the non-maximum suppression
(NMs) algorithm to each DG

′

k [57]. The final result is a list D = [d1, . . . , dn] with
the ensemble detections. Our ensemble algorithm is summarised graphically in
Figure 2.1.

Figure 2.1: Example of the workflow of our ensemble algorithm. Three methods
have been applied to detect the objects in the original image: the first method has
detected the person and the horse; the second, the person and the dog; and, the
third, the person, the dog, and an undefined region. The first step of our ensemble
method groups the overlapping regions. Subsequently, a voting strategy is applied
to discard some of those groups. The final predictions are obtained using the NMs
algorithm.

From a theoretical point of view, the affirmative strategy reduces the number
of objects that are not detected (false negatives) — since some objects that are
not detected with a concrete approach might be detected by the others — but
increases the number of incorrect detections (false positives) — this is due to
the fact that the false positives obtained with each approach are accumulated.
The unanimous strategy has the opposite effect, it reduces the number of false
positives but increases the number of false negatives — since all the approaches
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that generated the initial detections must agree to detect an object. In general,
the majority strategy provides a better trade-off, and, therefore, at first glance,
the affirmative and unanimous strategies might seem too lose and too restrictive
respectively to be useful. However, as we will show in Section 2.4, they can produce
better results than the majority approach depending on the performance of the
detection models (for instance, if the detection models produce few false positives,
but lots of false negatives, the affirmative strategy might be more useful than the
other two strategies).

As we explained at the beginning of this section, the most natural way of
producing the input of our ensemble algorithm is by using the predictions that are
outputted by several object detection models. However, there are other ways, for
instance, applying test-time augmentation.

2.2.2 Test-time augmentation for object detectors

Test-time augmentation (from now on, TTA) in the context of image classification
is as simple as applying multiple transformations to an image (for example, flips,
rotations, colour transformations, and so on), making predictions for each of the
transformed images using a particular model, and finally returning the ensemble
of those predictions [64]. On the contrary, in the context of object detection, TTA
is not as straightforward due to the fact that there are some transformations, like
flips or crops, that alter the position of the objects in the image. This explain why
the works that apply TTA for object detection only apply colour operations [60] —
since those transformations do not alter the position of the objects in the image.
We have faced this limitation of the TTA method taking as a basis the ensemble
algorithm presented previously.

First of all, we define the notion of detection transformation. Given an image
I and a list of detections for I, D, a detection transformation, denoted by DTt, is
an operation that returns a transformed image I t and a list of detections Dt such
that the cardinal of Dt is the same of D, and all the objects detected by D in I
are also detected by Dt in I t. Roughly speaking, a detection transformation has
an inverse, denoted by DT−1t , to go from the detections in I t to the detections in
I.

Example 2.2.1. Given an image I of size (WI , HI) where WI and HI are respec-
tively the width and height of I, and a list of detections D = [d1, . . . , dn] such
that for each di = [bi, ci, si] and bi is given by (xi, yi, wi, hi) where (xi, yi) is the
position of the top-left corner of bi, and wi and hi are respectively the width and
height of bi; then, the horizontal flip detection transformation denoted by DThflip,
applies an horizontal flip to the image I, and returns it together with the list
Dhflip = [dhflip1 , . . . , dhflipn ] where dhflipi = [(WI −xi, yi, wi, hi), ci, si] — in this case,
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the inverse DT−1hflip is itself. Another example is the equalisation transformation,
denoted by DTequalized, that applies the histogram equalisation to the image I and
returns it together with Dequalized = D. Finally, the identity detected transfor-
mation, denoted by DTI , does not modify neither I or D. These examples are
depicted in Figure 2.2.

Figure 2.2: Example of none, equalisation transformation and horizontal flip de-
tection transformation.

Now, we can define the following procedure to apply TTA for object detection.
Given an image I, an object detection modelM , and a list of image transformations
T1, . . . , Tn, we proceed as follows. First of all, we apply each image transforma-
tion Ti to I, obtaining as a result new images I1, . . . , In. Subsequently, we detect
the objects in each Ii using the model M , and produce the lists of detections
D1, . . . , Dn. For each, (Ii, Di), we apply a detection transformation that returns
a list of detections Dt

i in the correct position for the original image I — such a
detection transformation has to take into account whether the image transforma-
tion changed the position of the objects in the image. Finally, we ensemble the
predictions using the procedure presented in the previous section using one of the
three voting strategies. An example of this procedure is detailled in Figure 2.3.

The ensemble of models and TTA are two techniques that can be employed to
improve the accuracy of object detectors, see Section 2.4. In addition, they are
the basis of two semi-supervised learning techniques that tackle one of the main
problems faced when training object detection models: the annotation of images.
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Figure 2.3: Example of the workflow of TTA for object detectors. First, we apply
three transformations to the original image: a histogram equalisation, a horizontal
flip, and a none transformation (that does not modify the image). Subsequently,
we detect the objects in the new images, and apply the corresponding detection
transformation to locate the objects in the correct position for the original im-
age for the equalisation and none transformation, DTI is applied, where as for
the horizontal flip transformation, DThflip is applied. Finally, the detections are
ensembled using the majority strategy.

2.2.3 Data and model distillation

Deep learning methods are data demanding, and acquiring and annotating the
necessary amount of images for constructing object detection models is a tedious
and time-consuming process that might require specialised knowledge [39]. This
has lead to the development of semi-supervised learning techniques [42], a suite of
methods that use unlabelled data to improve the performance of models trained
with small dataset of annotated images. Self-training [42] is a particular case
of semi-supervised learning where the model predictions are employed as ground
truth to train a new model. However, training a model on its own predictions does
not usually provide any benefit; and this has lead to the development of techniques
like data distillation and model distillation.

Data distillation [67] applies a model trained on manually labelled data to
multiple transformations of unlabelled data, ensembles the multiple predictions,
and, finally, trains a model on the union of manually and automatically labelled
data (see Figure 2.4). Similarly, model distillation [68] obtains multiple predictions
of unlabelled data by using several models, ensembles the result, and trains a
model with the combination of manually and automatically annotated data (see
Figure 2.5). Both techniques can also be combined as shown in [69].
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Figure 2.4: Data distillation process. (1) A model is trained with manually labelled
data, (2) multiple transformations are applied to unlabelled data, (3) the model
trained in (1) is used for making predictions over the images with transformations,
(4) the inverses of the transformations are used to recover the position of the
detections in the original image, (5) the multiple predictions are ensembled, (6)
and, finally, a model is trained on the union of manually and automatically labelled
data.

Figure 2.5: Model distillation process. After training several models with man-
ually labelled data: (1) Those models are used to obtain multiple predictions of
unlabelled data, (2) the multiple predictions are ensembled, (3) and, finally, a
model is trained with the combination of manually and automatically annotated
data.

Even if data distillation was applied to object detection in [67], these method
have not been widely employed in this context due to the lack of a library for
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ensembling predictions of detection models. This problem has been overcome
thanks to the techniques and the library developed in our work, and, as we show
in Section 2.4, different ensembling schemes to the one proposed in [67] will might
have a better impact on the distillation methods.

2.3 The EnsembleObjectDetection library

The techniques presented in the previous section have been implemented as an
open-source library called EnsembleObjectDetection. This library has been im-
plemented in Python and relies on several third-party libraries like Numpy [70],
OpenCV [71], or CLoDSA [72] (the last one provides the functionality to imple-
ment the image and detection transformations of the TTA procedure).

As we have previously mentioned, the EnsembleObjectDetection library has
been designed to be applicable to models constructed with any framework and
underlying algorithm. In order to provide such a functionality, we have used the
Abstract Factory Pattern [73], a design pattern that provides interfaces for creating
families of related or dependent objects without specifying their concrete classes.
In our case, we have defined an abstract class, called IPredictor (however, this
cannot be implemented directly in Python, so we have used the architecture of
classes presented in Figure 2.6), with a predict method that takes as input a
folder of images, imgFolder, and produces as a result a folder, outputFolder,
that contains XML files in the Pascal VOC format with the predictions of the
model for each image of the input folder — the PascalVOC format was choosen to
provide a standard output format since each object detection model produces its
output in a particular way. Hence, for each detection framework that we want to
include in the EnsembleObjectDetection library, we have to provide a class that
extends the IPredictor class and implements the predictmethod. Currently, the
EnsembleObjectDetection library supports models trained using the Darknet [74]
and MxNet [75] frameworks, and several Keras libraries [76, 77]. For example, to
implement models for the Darknet library, we provide a class, DarknetPredictor,
where the user has to provide the necessary configuration files to create a new
model: the path to the weights of the model, the path to the file with the names
of the classes that can be detected with the model, a threshold for the confidence
level and the configuration file with the architecture of the model.

In addition, the EnsembleObjectDetection library provides another abstract
class, called IEnsembleStrategy (see Figure 2.7), that provides the functionality
to apply the ensemble of models and the test-time augmentation method. In par-
ticular, this class provides two abstract methods called ensemble and tta. The
ensemble method receives as input a list of models (as IPredictor objects), the
path to the image folder and the path to the output folder. This method will serve
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Figure 2.6: Class diagram of the EnsembleObjectDetection library

to use each IPredictor object to obtain the detections on the images, ensemble
them, and store the result using the Pascal VOC format in the output folder. Sim-
ilary, for the tta method, that receives as input a model (an IPredictor object),
a list of image transformations provided by the CLODSA library or any other
library that associates for each image transformation a detection transformation
with inverse, the path to the image folder, and the path to the output folder.
This method will serve to use the IPredictor object to obtain the detections on
the transformed images ensemble the detections of the multiple transformations
of an image using the given strategy after applying the corresponding detection
transformation, and store the result using the Pascal VOC format in the output
folder.

Figure 2.7: Class diagram of the IEnsembleStrategy.
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Note that the IEnsemblesStrategy class does not implement neither the tta
or ensemble method. Such a functionality is provided by the classes that in-
herit from IEnsemblesStrategy and that implement the different strategies to
ensemble the detections. Currently, we provide three classes that inherit from the
IEnsemblesStrategy, and that implement respectively the affirmative, majority,
and unanimous strategies presented previously. This design allows us to easily
include new ensemble strategies without modifying the already implement code.

Finally, the functionality to apply the data and model distillation techniques
presented in Section 2.2.3 is not provided by the EnsembleObjectDetector library.
This is due to the fact that in order to apply those semi-supervised learning meth-
ods, we need to train object detection models; and the EnsembleObjectDetector
library is focused on using already trained models. However, providing those semi-
supervised learning methods in a simple way can facilitate the construction of ob-
ject detection models to many non-expert users; and, therefore, we have developed
an end-to-end application to build object detection models that incorporates those
semi-supervised learning methods and that will be presented in the next chapter.
We focus now on the results that can be obtained thanks to our methods.

2.4 Results

In this section, we conduct a thorough study of the ensemble methods presented
previously by using three different datasets.

2.4.1 Pascal VOC

In the first case study, we used the Pascal VOC dataset [38], a popular project
designed to create and evaluate algorithms for image classification, object detection
and segmentation. This dataset consists of natural images containing objects of
20 categories; and, the metric to evaluate the performance of detection models in
this dataset is the mAP@0.5 (since we use the same IoU threshold troughout this
section, we just write mAP).

For our experiments with the Pascal VOC dataset, we have employed 5 models
pre-trained for this dataset using the MxNet library [75]; namely, a Faster R-CNN
model, two YOLO models (one using the Darknet backbone and another one using
the MobileNet backbone) and two SSD models (one using the ResNet backbone
and the other using the MobileNet backbone). The performance of these models
on the Pascal VOC test set is given in the first five rows of Table 2.1. As can
be seen in such a table, the best model is the YOLO model using the Darknet
backbone with a mAP of 69.78%. Such a mAP can be greatly improved by using
model ensembling and TTA.
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Datasets mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Faster R-CNN 0.69 0.70 0.77 0.71 0.64 0.50 0.78 0.78 0.80 0.45 0.74 0.58 0.79 0.80 0.79 0.70 0.42 0.75 0.67 0.77 0.67
SSD MobileNet 0.62 0.59 0.70 0.61 0.51 0.33 0.68 0.71 0.78 0.43 0.57 0.61 0.69 0.79 0.71 0.61 0.36 0.59 0.60 0.77 0.67
SSD ResNet 0.64 0.62 0.80 0.70 0.57 0.42 0.78 0.79 0.88 0.50 0.73 0.63 0.78 0.80 0.80 0.70 0.39 0.69 0.65 0.79 0.69
YOLO Darknet 0.69 0.80 0.72 0.70 0.57 0.60 0.80 0.80 0.81 0.43 0.75 0.63 0.78 0.81 0.71 0.70 0.39 0.71 0.65 0.79 0.70
YOLO MobileNet 0.59 0.62 0.71 0.52 0.49 0.43 0.70 0.71 0.70 0.36 0.66 0.47 0.68 0.71 0.62 0.61 0.24 0.60 0.55 0.70 0.61

All affirmative 0.77 0.79 0.80 0.79 0.72 0.64 0.87 0.86 0.88 0.55 0.83 0.68 0.87 0.87 0.80 0.78 0.51 0.79 0.75 0.78 0.76
All majority 0.68 0.71 0.72 0.71 0.60 0.44 0.79 0.80 0.80 0.45 0.76 0.63 0.80 0.81 0.71 0.70 0.39 0.71 0.65 0.78 0.62
All unanimous 0.51 0.54 0.63 0.45 0.35 0.27 0.62 0.63 0.63 0.32 0.53 0.42 0.63 0.63 0.63 0.53 0.17 0.54 0.51 0.62 0.54

Three best affirmative 0.77 0.79 0.80 0.79 0.71 0.64 0.86 0.87 0.89 0.55 0.83 0.69 0.87 0.88 0.80 0.78 0.51 0.79 0.75 0.84 0.76
Three best majority 0.71 0.71 0.80 0.71 0.60 0.52 0.80 0.80 0.81 0.51 0.76 0.64 0.80 0.81 0.80 0.70 0.47 0.71 0.71 0.78 0.70
Three best unanimous 0.61 0.63 0.72 0.63 0.52 0.35 0.71 0.72 0.81 0.39 0.61 0.57 0.71 0.72 0.72 0.62 0.33 0.62 0.58 0.71 0.62

Three worst affirmative 0.73 0.77 0.79 0.77 0.66 0.56 0.78 0.79 0.80 0.52 0.80 0.62 0.79 0.80 0.80 0.77 0.48 0.76 0.73 0.79 0.74
Three worst majority 0.66 0.71 0.71 0.62 0.60 0.43 0.70 0.71 0.80 0.44 0.68 0.56 0.71 0.80 0.72 0.70 0.39 0.69 0.64 0.79 0.69
Three worst unanimous 0.52 0.54 0.63 0.54 0.44 0.27 0.62 0.63 0.63 0.32 0.53 0.49 0.63 0.63 0.63 0.53 0.24 0.53 0.50 0.62 0.53

Table 2.1: Results for the Pascal VOC dataset applying our model ensemble al-
gorithm. The first five rows provide the result for the base models. The next
three rows correspond with the ensemble for the base models. Rows 9 to 11 con-
tain the results of applying the ensemble techniques to the three best base models
(SSD ResNet, YOLO Darknet and Faster R-CNN); and the last three rows con-
tain the results of ensembling the worst three best models (YOLO MobileNet, SSD
MobileNet and Faster R-CNN). The best results are in bold face.

For model ensembling, we conducted an ablation study by considering the en-
semble of the five models, the ensemble of the three models with the best mAP
(that are Faster R-CNN, YOLO with the Darknet backbone, and SSD with the
ResNet backbone), and the three models with the worst mAP (that are YOLO
with the Mobilenet backbone and the two SSD models). The results for such an
ablation study are provided in the last 9 rows of Table 2.1. In those results, we
can notice that all the ensembles conducted with the affirmative strategy obtained
better results than the individual models — the best result were obtained by en-
sembling the three best models (mAP of 77.50%, almost an 8% better than the best
individual model). On the contrary, the unanimous strategy produced worse re-
sults than the individual models; and the majority strategy only achieved a better
mAP when the three best models were combined. These results are due to the fact
that the individual models produce few false positives, and some objects that are
detected by one of the models are missed by the others. Therefore, the affirmative
strategy helps to greatly reduce the number of false negatives but without con-
siderably increasing the number of false positives; on the contrary, the unanimous
strategy is too restrictive and increases the number of false negatives. Something
similar happens with the majority strategy. If we focus on the results for each par-
ticular category, we can notice an improvement of up to a 10% with respect to the
results obtained by the best individual model. In addition, we applied TTA to all
the base models to improve their accuracy. Namely, we have applied three kinds of
data augmentations: colour transformations (applying gamma and histogram nor-
malitation, and keeping the original detection), position transformations (applying
a horizontal flip, a rotation of 10º, and keeping the original prediction) and the
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TTA Colour TTA Position TTA All
No TTA Aff. Maj. Una. Aff. Maj. Una. Aff. Maj. Una.

Faster R-CNN 0.69 0.69 0.69 0.08 0.53 0.53 0.22 0.63 0.61 0.21
SSD MobileNet 0.62 0.63 0.63 0.09 0.58 0.58 0.52 0.61 0.58 0.47
SSD ResNet 0.64 0.70 0.70 0.08 0.65 0.65 0.60 0.68 0.63 0.09
YOLO Darknet 0.69 0.71 0.71 0.09 0.68 0.68 0.63 0.70 0.68 0.57
YOLO MobileNet 0.59 0.61 0.61 0.10 0.57 0.57 0.50 0.61 0.58 0.44

Table 2.2: Results for the Pascal VOC dataset applying TTA. In the first column,
we provide the result for the models without applying TTA. The rest of the table
is divided into three blocks of three columns (one per each voting strategy): the
first block provides the results with colour transformations, the second contains
the results for position transformations, and, the last block presents the results
combining all the transformations. The best results are in bold face.

combination of both. Moreover, for each augmentation scheme, we have applied
the three voting strategies, see Table 2.2. As in the case of model ensembling, all
the models were improved (the improvement ranges from 0.08% to 5.54%) thanks
to TTA when using the affirmative strategy; but the most beneficial augmentation
scheme varies from model to model. For instance, the SSD model with the ResNet
backbone as improved with the three augmentation schemes; but, the Faster R-
CNN model only improved with the colour scheme. Regarding the other voting
strategies, the unanimous strategy obtained worst results than the original models;
and the majority strategy only got better results in some cases. The explanation
for these results is the same provided previously for model ensembling. It is also
worth noting that adding more augmentation techniques does not always improve
the ensembling results.

As a conclusion for this study, we can say that model ensembling is more
beneficial than TTA; and, this is due to the fact that the former introduces a
higher variability (thanks to the heterogeneity of models) in the predictions than
the latter.

2.4.2 Stomata detection

In the second example, we applied TTA and data distillation to two proprietary
datasets of stomata images. Stomata (singular “stoma”) are pores on a plant
leaf that allow the exchange of gases, mainly CO2 and water vapor, between the
atmosphere and the plant — this problem will be addressed more thoroughly in
Chapter 4.

In order to analyse stomata of plant leaves, plant biologists take microscopic
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images of leaves, and manually measure the stomata density in those images. This
is a tedious, error-prone, time-consuming and subjective task due to the large
number of stomata in each image but, it can be automatised by means of detection
algorithms. In particular, we have constructed a stomata detection model using
the YOLOv3 algorithm implemented in the Darknet framework [78]. The YOLO
model was trained by using 4,050 stomata images, and it was evaluated on a test
set of 450 images using the F1-score and the mAP (we used 0.5 as threshold), see
the first row of Table 2.3. As can be seen from that table, the number of false
positives is considerably higher than the number of false negatives, and this will
have an impact in the voting strategy to apply. In this section, we show how such
a model can be improved thanks to TTA.

Datasets F1-score TP FP FN mAP

Original 0.90 16600 2341 1239 0.84

Affirmative 0.88 17003 3600 836 0.80
Majority 0.92 16509 1551 1330 0.84
Unanimous 0.80 12272 589 5567 0.61

Colour 0.93 16502 1324 1337 0.85
Flips 0.92 16480 1448 1359 0.85
Rotations 0.91 16463 1999 1376 0.82
Flips & colour 0.92 16572 1529 1267 0.84
Flips & rotations 0.92 16580 1659 1259 0.84
Rotations & colour 0.92 16556 1633 1283 0.84

Table 2.3: Results of our YOLO model for stomata detection. In the first row, we
provide the results for the original model. In the next three rows, we have applied
TTA with 9 transformations using the three voting strategies; and, in the next six
rows, we have applied the TTA method for different kinds of transformations and
using the majority strategy. The best results are in bold face.

First of all, we applied TTA by using 9 transformations: three colour trans-
formations (histogram normalisation, gamma correction and Gaussian blurring),
three flips (vertical, horizontal and both) and three rotations (90º, 180º and 270º).
Moreover, we applied the three voting schemes — the results for these experiments
are given in rows 2 to 4 in Table 2.3. As can be seen in that table, the only strat-
egy that improved the results is the majority approach, that improved a 2% the
F1-score. Note that each strategy had the expected effect, the affirmative scheme
increased the number of FP and decreased the number of FN; on the contrary, the
unanimous strategy had the opposite effect. Then, the majority strategy provided
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the best trade-off by considerably reducing the number of FP but only slightly
increasing the number of FN.

In addition to the above results, we have also inspected the impact of each
kind of transformation for this dataset. In particular, we applied TTA using
colour transformations, rotation transformations, flip transformations, and their
combinations — see the last 6 rows of Table 2.3. In this case, we only included the
majority strategy in Table 2.3 since the other strategies produced the same effect
previously explained. As can be seen from those results, the same improvement
obtained using all the transformation can be achieved by using only some of them
— this considerably reduces the time needed to apply TTA. In fact, we achieved
better results by applying TTA using only colour transformations. This indicates
that it is necessary to study different combinations of transformations to find the
one that produces the best results; and this shows the benefits of having a library
like the one presented here.

Finally, we also studied the benefits of data distillation in the context of stomata
detection. It is worth noting that each stomata image contains approximately 45
stomata, and, hence, annotating those images is a time-consuming task. Therefore,
the application of semi-supervised learning techniques, like data distillation, can
reduce the burden of annotating those images. In our data distillation experiments,
see Table 2.4, we have employed a dataset of stomata images from a different
variety than the original dataset employed for the results of Table 2.3.

Such a dataset contains 450 annotated images for training, 150 annotated im-
ages for testing, and 1,620 unlabelled images. Using the 450 annotated images,
we constructed a YOLO model that achieved a F1-score of 0.85 and a mAP of 0.8
when using a confidence threshold of 0.25, and a F1-score of 0.83 and a mAP of
0.79 when using a confidence threshold of 0.5. Using such models, we have applied
data distillation using three schemes: applying colour transformations (gamma cor-
rection, histogram, normalisation and Gaussian blurring), applying flips (vertical,
horizontal and both), and combining colour and flip transformations. Moreover,
we used the three voting schemes, see Table 2.4. In this case, the best strategy
consists in applying all the transformations together with the unanimous strategy.
This improved a 3% the F1-score value, and an 8% the mAP. Note that using the
unanimous strategy, we can increase the confidence threshold to consider a detec-
tion as correct since using such a strategy the new model is trained with images
where the detections have been agreed by the predictions of the 9 transformations.
Based on the results obtained for this example, we have shown the benefits of
trying different alternatives for TTA; and, in addition, that techniques like data
distillation can produce accurate models starting from small datasets of images.
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Confidence 0.25 Confidence 0.5

Datasets F1-score mAP F1-score mAP

Original 0.85 0.80 0.83 0.79

All Affirmative 0.84 0.82 0.80 0.82
All Majority 0.86 0.85 0.87 0.85
All Unanimous 0.86 0.88 0.88 0.88

Colour Affirmative 0.86 0.86 0.83 0.86
Colour Majority 0.82 0.78 0.77 0.78
Colour Unanimous 0.74 0.77 0.62 0.77

Flips Affirmative 0.83 0.80 0.76 0.78
Flips Majority 0.04 0.61 0 0.55
Flips Unanimous 0.01 0.30 0 0.30

Table 2.4: Results of data distillation for the stomata dataset. This table is divided
into two blocks: in the first block (columns 2 and 3), we use a confidence threshold
of 0.25; and, in the second block (the last two columns), we use a confidence
threshold of 0.5. In the first row of the table, we provide the result for the original
model. In the next three rows, we present the results of applying data distillation
with colour and flip transformations. In rows 5 to 7, we include the results of
applying data distillation only using colour transformations, and the last three
rows present the results of applying data distillation using flip transformations.
The best results are in bold face.

2.4.3 Table detection

In the last case study, we analysed the effects of model ensembling and model
distillation for table detection — an important problem since it is a key step to
extract the semantics from tabular data [79]. To this aim, we employed the IC-
DAR2013 dataset [80], and the Word part of the TableBank dataset [81]. Both
datasets have been designed to test table detection algorithms; however, the IC-
DAR2013 dataset is too small to directly apply deep learning algorithms (it only
contains 238 images), and the TableBank dataset is a big enough dataset (160k
images) but it was semi-automatically annotated and contains several incorrect
annotations. Therefore, these two datasets provide the perfect scenario for ap-
plying model ensembling and model distillation. In particular, we have trained
different models for the ICDAR2013 dataset, and have improved them by using
our ensemble algorithm, and by applying model distillation using the TableBank
dataset.
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In our experiments, we have split the ICDAR2013 dataset into a training set
of 178 images and a testing set of 60 images. Using the training set, we have
constructed three models using the YOLO algorithm, implemented in the Dark-
net library; the SSD algorithm, implemented in MxNet; and the Mask RCNN
algorithm, implemented in the Keras library [82] — note that we have employed
different libraries and algorithms, but our ensemble library can deal with all of
them. These three models have been evaluated (see the three first rows of Ta-
ble 2.5) in the testing set using the W1Avg F1-score [83], a metric that computes
the weighted sum of the F1-score using different IoU thresholds ranging from 0.6
to 0.9 — the F1-score at 0.6 is employed to measure the number of tables that
are detected, even if the detection bounding boxes are not perfectly adjusted; and,
on the contrary, the F1-score at 0.9 measures the tables that are detected with a
bounding box perfectly adjusted to them. As can be seen in Table 2.5, the best
model is obtained using the YOLO algorithm (WAvgF1-score of 0.63).

The three models can be improved thanks to model ensembling, and model
distillation. First of all, we have ensembled the three models using the three voting
strategies (see rows 3 to 5 of Table 2.5), and we have obtained an improvement of
2% using the affirmative strategy, and a 6% using the majority approach; as we
have seen previously, the unanimous approach is too restrictive and obtains the
worst results.

Moreover, we have applied model distillation using the TableBank dataset;
applying the three voting strategies, and retraining the three models, see the last
9 rows of Table 2.5. Using this approach we have improved the SSD model a
4%, the Mask R-CNN model a 6%; but, the YOLO model did not improve at all.
However, if we inspect the F1-score value at 0.6, the improvement is more evident,
SSD improved a 2%, Mask R-CNN a 10%, and YOLO a 5%. This is due to the
fact that the ensemble of models usually produces bounding boxes that are not
perfectly adjusted to the objects; the issue of improving those adjustments remain
as further work.

As a conclusion of this example, we can again notice the benefits of applying our
ensemble algorithm, and the improvements that can be achieved applying model
distillation when a large dataset of images is available, even if it is not annotated.
Seeing the benefits of this study of applying our ensemble algorithm, we believe
that it could be extended to other computer vision tasks, for example, semantic
segmentation, but that remains as further work.

2.5 Conclusions

In this part of the memoir, we have presented an ensemble algorithm that works
with the bounding boxes produced by object detection models, and, hence, it is
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F1@0.6 F1@0.7 F1@0.8 F1@0.9 WAvgF1

Mask R-CNN 0.58 0.52 0.39 0.19 0.39
SSD 0.85 0.79 0.62 0.26 0.59
YOLO 0.83 0.8 0.69 0.33 0.63

Affirmative 0.86 0.81 0.69 0.37 0.65
Majority 0.88 0.84 0.75 0.42 0.69
Unanimous 0.4 0.36 0.28 0.08 0.26

Mask R-CNN Affirmative 0.58 0.54 0.39 0.11 0.37
Mask R-CNN Majority 0.68 0.63 0.49 0.13 0.45
Mask R-CNN Unanimous 0.57 0.48 0.29 0.06 0.32

SSD Affirmative 0.77 0.71 0.58 0.24 0.54
SSD Majority 0.87 0.8 0.67 0.32 0.63
SSD Unanimous 0.82 0.74 0.56 0.26 0.56

YOLO Affirmative 0.75 0.71 0.57 0.18 0.52
YOLO Majority 0.88 0.8 0.67 0.32 0.63
YOLO Unanimous 0.77 0.69 0.52 0.16 0.50

Table 2.5: Results for the ICDAR2013 dataset applying model ensembling and
model distillation. The first three rows are the results for the base models. The
next three rows include the results of applying our ensemble method with the
three different voting strategies; and, the next three blocks provide the results of
applying model distillation to the three base algorithms. The best results are in
bold face.

independent of the underlying algorithm employed to construct those models. Our
ensemble algorithm can be particularised with three voting strategies (affirmative,
majority, and unanimous) that have different effects depending on the performance
of the base models. Namely, the affirmative strategy works better when the detec-
tions of the base models are mostly correct (that is, there are few false positives)
but several objects are left undetected (that is, there are lots of false negatives);
the unanimous strategy obtains better results in the opposite case; and, the ma-
jority strategy provides a better trade-off when there is not a significant difference
between false negatives and false positives in the base models.

In addition, the ensemble method presented here has been employed to define a
test-time augmentation procedure for object detection that improves the accuracy
of object detection models. Moreover, the ensemble of models and the test-time
augmentation procedure are the basis for data and model distillation, two semi-
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supervised learning techniques that can considerably reduce the number of images
that must be manually annotated to train an object detection model; but that, up
to now, had not been broadly adopted in the context of object detection due to
the lack of a simple to use ensemble method.

As a by-product of this work, we have developed EnsembleObjectDetection,
an open-source library that implements all the methods presented troughout this
chapter. This library provides support for models constructed with several al-
gorithms and deep learning frameworks, and can be easily extended with others
models. Our methods and library have been tested with several datasets, and we
have improved some models up to a 10%.

In this chapter, we have seen how we can improve the performance of object
detection models, but such models must be built first, and this can be a challenge
that we address in the next chapter.



Chapter 3

Simplifying the construction and
usage of object detection models

In the previous chapter, we have focused on improving the accuracy of object
detection models. However, for many users, building and using those models is
not a straightforward task. In this chapter, we explain our work to simplify the
construction and usage of object detection models.

The process of training and using object detection models poses several chal-
lenges. First of all, for both the creation and usage of those models, it is necessary
to have some programming skills, and know how to use the detection algorithms
and the variety of libraries that implement them. Another problem that arises
when building detection models is that they need a large number of annotated
images, and this is a tedious, error-prone, and time-consuming task that may re-
quire expert knowledge [39]. Furthermore, annotation tools for object detection
might produce the annotation files in a format that is not suitable for all object
detection frameworks. In addition, once object detection models are trained, using
them is not trivial since most of them can only be used within the framework where
they were built; and, therefore, it is necessary to have the necessary dependencies
installed in the users’ computers, and know how the specific framework works.
Finally, it is usually not possible to interact with the models’ predictions due to
the lack of a simple and intuitive graphical interface designed for that purpose.

Taking into account the aforementioned problems, we have developed an open-
source end-to-end application that allows users to conduct three tasks: annotate
images for object detection, build object detection models, and use them. This
tool is called LabelDetection1 and its main features are described as follows.

• LabelDetection is a graphical tool that helps the user in all the steps required
to train a variety of object detection algorithms.

1https://github.com/ancasag/LabelDetection
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• LabelDetection can be employed to train object detection models not only
from fully annotated datasets but also from partially annotated datasets
thanks to the semi-supervised techniques presented in the previous chapter.

• LabelDetection can be used as the graphical interface for a wide variety of
object detection models trained used different libraries. In addition, La-
belDetection allows users to interact with the predictions generated by those
models.

• LabelDetection can improve the accuracy of object detection models thanks
to test-time augmentation, and without writing a single line of code.

In the rest of the chapter, we explain how LabelDetection has been designed and
implemented. Namely, we first analyse the existing libraries and annotation tools
for object detection. Subsequently, in Section 3.2, we introduce the architecture
and design of LabelDetection. We use this tool for the detection of wheat heads
to show the feasibility and benefits of using LabelDetection in Section 3.3. In
Section 3.4, we generalise our work to other Computer Vision tasks. Finally, we
end the chapter with some conclusions.

3.1 Background
In this section, we briefly introduce the existing libraries and annotation tools for
object detection.

3.1.1 Object detection libraries

Deep learning for object detection is a growing field where new architectures and
algorithms are publicly released in a monthly basis [84]. However, in their ini-
tial form, most new architectures are released as research artefacts that are not
prepared for using them in custom datasets. This problem has been solved with
the development of several object detection libraries, see Table 3.1, that provide
a common pipeline to train different detection models. The outstanding work
conducted by the developers of object detection libraries might be enhanced by
including two features that are missed in all those libraries.

The first feature that is missing in these libraries is a simple way of producing
the input dataset that will be used for training the algorithms. Each library
requires images annotated in a particular format (being Pascal VOC and COCO
the most common formats), and structured in a particular way (split of training
and test sets, and configuration files). This hinders the usage of the libraries since
the task of annotating the images must be conducted in an external tool, and the
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Library Language Year Underlying library Annotation format # models

Darknet detection [85] C++ 2018 Darknet YOLO 7
YOLOv7 [86] Python 2022 PyTorch YOLO 6
Ultralytics [27] Python 2022 PyTorch COCO, YOLO, VOC, CSV 2
Detectron [87] Python 2019 PyTorch COCO, VOC, KITTI 14
IceVision [88] Python 2020 PyTorch COCO, VOC, YOLO, KITTI 4
MaskRCNN-benchmark [89] Python 2018 PyTorch COCO, VOC 2
MXNet Detection [90] Python 2019 MXNet COCO, VOC, YOLO, MxNet RecordIO 11
MMDetection [91] Python 2019 PyTorch COCO, VOC, YOLO, TXT 35
SimpleDet [92] Python 2019 MXNet COCO, VOC, KITTI 9
Tensorflow Detection API [55] Python 2019 Tensorflow COCO, VOC, TFRRecord 4
Tensorpack [93] Python 2019 Tensorflow COCO, VOC, YOLO, TFRecord 6

Table 3.1: General features of libraries for object detection.

output produced by those tools must be manually organised, and in some cases
transformed to the correct format.

The second issue with object detection libraries is the lack of an interface to
interact with the predictions produced by the trained models. Object detection
models can be mainly employed within the library that was used for producing
them and, hence, some programming skills are required. Moreover, the predictions
produced by the models in a given image are usually drawn on the image; and,
hence, it is not possible to interact with them (that is, add, remove or edit the
predicted bounding boxes), a task that is necessary when using the detection
models for analysing images. These two missing features could be provided by
annotation tools for object detection.

3.1.2 Annotation tools for object detection

Annotation tools are a fundamental component for training computer vision algo-
rithms. These tools allow developers to easily label objects in images or videos,
and save the annotations to later train the machine learning models. These tools
improve annotation accuracy, since they can automate much of the annotation
process, and this allows a faster and more efficient annotation, enabling the anno-
tation of large amounts of data in a short amount of time.

There are various object detection annotation tools, each with their own fea-
tures, see Table 3.2. Many of these tools can be used locally so it is not necessary
to upload the dataset to the cloud avoiding in this way privacy issues. There
are also online tools that avoid the installation of different libraries in the local
computer and allow collaborative annotation.

When working with object detection annotation tools, one of the main chal-
lenges is that each tool may have its own format for outputting annotated images.
For example, the output of LabelImg are XML files in the Pascal VOC format,
whereas YOLOMark stores labels in the YOLO format using txt files. Hence, the
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Tool Language Year of creation Output format Local/Online

LabelImg [94] Python 2015 VOC, YOLO Local
CVAT [95] Python 2016 VOC, COCO, YOLO, KITTI, JSON Local
VGG Image Annotator (VIA) [96] JavaScript 2016 JSON, CSV, COCO, VOC, Avoc Online
RectLabel [97] Mac App 2017 VOC, COCO, YOLO, CSV, Custom Local
YOLOMark [98] Python 2018 YOLO Local
VoTT [99] TypeScript 2018 COCO, VOC, YOLO, TFRecord, CSV, Custom Online or Local
Labelbox [100] TypeScript 2018 COCO, VOC, YOLO, TFRecord, CSV, Custom Online
Supervisely [101] Python 2018 COCO, VOC, YOLO, TFRecord, KITTI, Custom Local
Anno-Mage [102] TypeScript 2019 JSON, CSV, YOLO, VOC, Custom Online
CV-Toolkit [103] Python 2020 COCO, VOC, YOLO, TFRecord, Custom Local
Labelbox Training Data Platform [100] TypeScript 2020 COCO, VOC, YOLO, TFRecord, Custom Online

Table 3.2: Annotation tools for object detection.

output of LabelImg cannot be directly used to train a model with the Darknet
library, or the output of YOLOMark with IceVision. It is worth noting that con-
verting annotated data from one format to another can be an error-prone process,
which may lead to a loss of information. Therefore, it is important to have a tool
that, in addition to annotate images, allows us to train different object detection
models with different libraries, thus avoiding annotation format problems; and this
is what we have tried to achieve with LabelDetection.

3.2 LabelDetection
LabelDetection is a graphical tool implemented in Python, and developed using
LabelImg as a basis. LabelDetection solves the problems of both object detection
libraries and annotation tools. First, it provides the necessary features to annotate
a dataset of images and convert it to multiple formats suitable for most object
detection libraries. Moreover, it generates all the necessary files to train an object
detection model using different libraries from an annotated dataset. Finally, it
allows users to employ object detection models trained with different libraries and
interact with the predictions. It is worth noting that users of LabelDetection can
use any of the aforementioned three features (annotation, training and prediction)
independently of the others. The rest of this section is devoted to explain how we
have developed such a functionality.

3.2.1 LabelDetection for image annotation

LabelDetection uses the features provided by LabelImg to allow efficient and pre-
cise annotation of objects in images. The use of LabelImg as a basis of LabelDetec-
tion was due to the fact that LabelImg is a widely used tool for annotating object
detection datasets, and has been tested by many users. To use LabelDetection for
annotation, the first step consist in loading the images into the user interface. The
next step is to delimit each object of the image and provide its associated label,
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see Figure 3.1. Additionally, LabelDetection allows adjusting the position and size
of the annotation box to ensure that it fits perfectly around the object.

Figure 3.1: Create a bounding box and provide a label to the object.

Once all objects in the image have been annotated, the annotations are saved
in an XML file, using the Pascal VOC format. Such an annotation can be used to
train object detection models in different deep learning frameworks as we will see
in the next section.

3.2.2 LabelDetection for training models

LabelDetection helps users in the process of training object detection models with
different libraries. Such a functionality has been implemented in Python and relies
on several third-party libraries like Numpy [70], OpenCV [71], CLoDSA [72] and
the EnsembleObjectDetection library presented in the previous chapter. We
start by explaining the common issues faced when training an object detection
model and how they have been solved in LabelDetection.

To be able to use an annotated dataset to train an object detection algorithm
with a given library, it is necessary that the dataset must be stored in a concrete
format. In addition, the dataset must be split into a training and testing set.
However, the algorithms are sensitive to the folder structure containing the training
and testing files, and such an organisation depends on the concrete algorithm and
library. Moreover, object detection algorithms require several configuration files,
that also depend on the particular algorithm and library implementing them.

LabelDetection solves these issues by generating a zip file containing the dataset
annotated with the structure and format required by different algorithms and also
the necessary configuration files. Moreover, LabelDetection generates a Jupyter
notebook [104] that configures the environment, installs the necessary libraries,
trains a model with the training set, and finally evaluates the model against the
testing set — the Jupyter notebooks generated by LabelDetection can be run
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either locally, provided the users have a GPU; or using cloud services like Google
Colaboratory [105].

LabelDetection can currently generate Jupyter notebooks for the following al-
gorithms and libraries: YOLO [85], based on the Darknet library [74]; SSD [26],
using the MxNet framework [75]; and several algorithms implemented in Keras,
namely, Mask R-CNN [76], RetinaNet [77], and some of the latest detection algo-
rithms: EfficientDet [106], FSAF [107] and FCOS [108]. Moreover, we provide the
functionality to apply data augmentation for training the models by just selecting
the augmentation techniques that will be applied. The interface used to provide
this functionality is shown in Figure 3.2. In addition, LabelDetection has been
designed to easily provide this functionality for other algorithms as we explain as
follows.

Figure 3.2: LabelDetection interface for generating the necessary files to train
object detection models. The users choose which library they are going to use, the
algorithm and finally the techniques they are going to apply.

We have used the Abstract Factory Pattern to provide the functionality to gen-
erate the necessary training files in LabelDetection. In particular, we have defined
an abstract class, called ITrainer (see Figure 3.3), with a generateTrainFiles
abstract method that will be in charge of generating all the files that are nec-
essary to train a model with a given library. The ITrainer class has four ar-
guments: initialWeights, pathAnnotatedImages, tranforms and outputPath.
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The pathAnnotatedImages is the path to the image folder together with the an-
notations in the Pascal VOC format, and the outputPath is the path to the out-
put folder. The transforms argument is a list of transformations to apply data
augmentation. Finally, the initialWeights argument is used to apply transfer
learning [40], a technique that reuses a model trained with a large amount of data
to create another model that has less data and that will be applied in our library —
if the argument is empty the model is trained from scratch but this is not usually
recommended since it takes a lot of time and worse results are obtained. For each
library that is included in LabelDetection, we provide a class that inherits from
ITrainer, and generates the training files taking into account the characteristics
of each library. For example to train models for the Darknet library, we provide
a class called DarknetTrainer, that receives an additional argument, model, that
indicates the concrete YOLO version model to be built.

Figure 3.3: Class diagram of ITrainer classes.

In general, a problem that users may encounter when training object detection
models is that it takes too much time to annotate the necessary images to achieve
good results. This problem has been faced in LabelDetection by providing a simple
to use approach to apply the semi-supervised learning methods presented in the
previous chapter.
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3.2.3 Semi-supervised learning in LabelDetection

LabelDetection offers the possibility of applying semi-supervised learning methods
as we explain as follows. Given a partially annotated dataset and an object detec-
tion algorithm, LabelDetection will generate the necessary files to automatically
annotate the unlabelled images and later train the algorithm combining the man-
ually and automatically annotated images. This functionality is provided to the
users by means of the graphical interface of Figure 3.4.

Figure 3.4: Interface for apliying Data Distillation and TTA. The users choose
which library they are going to use, the model, the weights to apply data distillation
and finally the techniques they are going to apply.

This functionality is provided in LabelDetection with an abstract class called
ISemiSupervisedTrainer (see Figure 3.5). The ISemiSupervisedTrainer class
has an abstract method called generateSemiSupervisedFiles that will gener-
ate the necessary files to annotate the unlabelled images stored in a path given
by the attribute pathUnlabelledImages, and to train the object detection algo-
rithm. The later functionality is provided by means of an ITrainer object, called
trainer, that is an attribute of the ISemiSupervisedTrainer class. In this way,
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the semi-supervised learning algorithm can be applied to all the object detection
algorithms available in LabelDetection.

Figure 3.5: Class diagram of ISemiSupervisedTrainer classes.

As we have seen in the previous chapter, there are several semi-supervised
methods, and we have implemented them as classes that inherit from the class
ISemiSupervisedTrainer. For instance, the data distillation method (imple-
mented by the DataDistillation class) requires an additional ITrainer ob-
ject, called auxtrainer, a list of transformations and an IEnsembleStrategy
object (defined in the EnsembleObjectDetection library). The method that
generates the training files of this class proceeds as follows. It first uses the
generateTrainFiles of the auxTrainer object to generate the training files to
create a model only with a set of manually labelled images. The result pro-
duced by those files will be an IPredictor object that using the TTA function-
ality provided by the IEnsembleStrategy object will annotate the images from
pathUnlabelledImages. Finally, trainer will be used to generate the training
files to build a model combining both the labelled and unlabelled images. Sim-
ilarly, we have implemented the functionality to apply model distillation and to
combine model and data distillation. Note that this design allows us to implement
other automatic annotation strategies that do not require ensemble methods; for
instance PseudoLabeling [109]. Such a functionality could be implemented by
extending the ISemiSupervisedTrainer class.

Once object detection models are trained, it remains the task of using them in
a simple way.

3.2.4 LabelDetection for object detection

LabelDetection can be employed not only to train object detection models, but
also to use them — this facilitates the dissemination of object detection models
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and avoids the development of new graphical interfaces for individual models, a
task that is almost an art [110].

LabelDetection can use models trained with any of the algorithms indicated
in Section 3.2.2 (as in the case of model creation, this functionality can be easily
extended to other algorithms), and it only requires the weights of those models (see
Figure 3.6). This functionality is provided thanks to the IPredictor class from
the EnsembleObjectDetection library. That is, users do not need to install any
additional library or write a single line of code. Moreover, the detections obtained
by the models can be visualised and modified using the LabelDetection interface;
and, a summary of them can be exported to an Excel file.

Figure 3.6: Load a model in LabelDetection to predict.

In addition, LabelDetection allows users to apply TTA to all the supported
models in order to improve their accuracy. This technique can be employed by
LabelDetection users thanks to the EnsembleObjectDetection library and using
a simple to use interface to select the model and the transformations to apply, see
Figure 3.4.

3.3 Application
In this section, we employ the different algorithms and methods included in La-
belDetection to illustrate the advantages of using this tool. Towards this aim, we
have used the Global WHEAT Dataset [111], a dataset for wheat head detection
from field optical images, see Figure 3.7. All images from this dataset share a com-
mon format of 1024×1024 pixels with a resolution of 0.1-0.3mm per pixel. The
dataset contains 6278 high-resolution RGB images (4578 were used for training,
422 for testing, and there were 1578 unlabelled images) and 190000 labelled wheat
heads collected from several countries around the world at different growth stages
with a wide range of genotypes.

Using LabelDetection, we built detection models for this dataset in the Google
Colaboratory environment. Namely, we trained the models using only the labelled
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Figure 3.7: Different range of cultivars.

data with the v3, v4, and CSResnet versions of the YOLO algorithm; and the
FSAF, FCOS, and EfficientDet algorithms. All the models were trained for 50
epochs and using the default parameters of each algorithm. Moreover, we studied
the impact of applying TTA and data distillation in all the models.

The results, in terms of precision, recall and F1-score, of our study are presented
in Table 3.3. The first block of Table 3.3 contains the results obtained from the
models trained using only the labelled data, the second block contains the results
obtained by applying TTA, and in the last block we include the results of the
models trained using data distillation.

The model that offers the best trade-off between precision and recall was the
version 4 of the YOLO algorithm, and the other 2 versions of the YOLO algorithm
also achieved an F1-score over 0.80. This was also the case for the FSAF algorithm,
whereas FCOS achieved a F1-score of 0.6 and EfficientDet was the worse model.
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Normal TTA Data distillation

Algorithm Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Csresnet 0.94 0.69 0.80 0.93 0.73 0.82 0.93 0.76 0.84
EfficientDet 0.40 0.31 0.35 0.93 0.79 0.85 0.93 0.80 0.86
FCOS 0.67 0.54 0.60 0.89 0.80 0.84 0.92 0.85 0.89
FSAF 0.93 0.85 0.89 0.81 0.81 0.81 0.83 0.87 0.85
YOLO v3 0.95 0.79 0.86 0.91 0.83 0.87 0.92 0.87 0.89
YOLO v4 0.89 0.92 0.91 0.90 0.81 0.90 0.90 0.91 0.91

Table 3.3: Results for the Global Wheat dataset using the different networks and
methods available in LabelDetection.

The performance of all the aforementioned models, but FSAF and the v4 ver-
sion of YOLO, were improved thanks to the application of TTA. As transfor-
mations, we applied both vertical and horizontal flips, a rotation of 90º, gamma
correction, and histogram normalisation. Moreover, we considered the predictions
on the images without transforming them. Using this approach, we achieved an
improvement ranging from 1% (in the v3 version of YOLO) to 50% (in the Effi-
cientDet model).

Finally, we applied data distillation by using the unlabelled images that were
pseudo labelled by transforming them (using vertical and horizontal flips) and
ensembling the predictions obtained by each model. All architectures but the v4
version of YOLO an FSAF improved their performance between a 3% and a 51%.

This entire process could be carried out from the functionality presented in
the previous chapter, but it would require a considerable effort, and not all users
might be able to do it because programming knowledge would be necessary. This
is because it involves writing a line of code. This case study allows us to illustrate
that LabelDetection can be employed to construct a variety of detection models
and easily compare them without having experience working on deep learning or
too much experience working with the libraries. Moreover, those models can be
considerably improved thanks to data distillation and TTA. The advantage of the
former technique is that it is faster in inference time, but it takes longer to train
the models.

3.4 Generalising to other Computer Vision tasks

Up to this point, we have focused on solving different drawbacks of object detec-
tion models. However, we have noticed that the techniques presented in these two
chapters of the memoir can be generalised to other Computer Vision problems such
as semantic segmentation or image classification. In this section, we will explore a
proof of concept approach for extending our methods to multiple Computer Vision
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tasks. Our approach consists of four modules that can be particularised for differ-
ent Computer Vision tasks: one for prediction, one for training, one for applying
ensemble methods and one for applying semi supervised learning techniques.

The first module is focused on simplifying the usage of Computer Vision models
for making predictions. In order to implement such a functionality, we have used
the Abstract Factory Pattern to enhance the functionality of the IPredictor class
presented in Chapter 2. In particular, we have redefined the IPredictor abstract
class with a predictmethod that takes as input a folder of images, imgFolder, and
outputs a folder, outputFolder, that contains files in the corresponding format
for the problem being addressed. Moreover, the IPredictor class needs some
configuration files to load a model that are independent of the Computer Vision
task: the path to the weights of the model and a threshold for the confidence level,
see Figure 3.8.

Figure 3.8: Class diagram of IPredictor classes.

From a conceptual point of view, we could use the notion of generics [112]
to parametrise the Computer Vision task in IPredictor using IPredictor<T>
where T would be the Computer Vision problem. However, this cannot be directly
implemented in Python, so we have used the architecture of classes presented
in Figure 3.8, where we have defined an abstract class that extends IPredictor
for each Computer Vision task. In particular, we have defined several abstract
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classes that extends the class IPredictor for particular problems; for instance
IPredictorSegmentation or IPredictorClassification — other classes can be
easily included. From those classes, we can implement particular classes for con-
crete algorithms and libraries. For instance, in the semantic segmentation case, we
have implemented a class for the Pytorch library, by providing a PytorchPredictor
class, where the user has to provide the necessary configuration files to create a
new model and also a modelName to identify the concrete architecture that is
loaded. Similarly, in the case of image classification, we provide a class called
FastAIPredictor that allows users to make predictions with any FastAI model
by providing the name of the model and the other parameters of the abstract class
called IPredictorClassification. To sum up, this module provides a common
interface to use Computer Vision models trained with different algorithms and
libraries; and, hence, facilitates their use.

Figure 3.9: Class diagram of IEnsembleStrategy classes.
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The second module helps users to apply ensemble methods to improve the
performance of Computer Vision models. As in the previous module, we have used
the Abstract Factory Pattern to define an IEnsembleStrategy abstract class. This
class has two abstract methods named tta and ensemble with the same signature
presented in Chapter 2, see Figure 3.9. These methods are not implemented in the
IEnsembleStrategy class, but this functionality is provided by the classes that
inherit from it and depend on the concrete Computer Vision task. Namely, for each
Computer Vision task, we have defined an IEnsembleStrategyTask abstract class
where the ensemble method receives as input a list of IPredictorTask models,
the path to the image folder and the path to the output folder; and similarly for
the tta method — a similar signature was already presented in Chapter 2 for the
object detection case.

It is worth noting that the IEnsembleStrategyTask classes are abstract since
several strategies for ensembling predictions can be applied in the Computer Vision
tasks. Therefore, those strategies are implemented by classes that inherit from
the corresponding IEnsembleStrategyTask and provide the actual functionality
for the tta and ensemble methods. Thanks to this approach is straightforward
to apply ensemble methods to Computer Vision models coming from different
libraries.

Figure 3.10: Class diagram of ITrainer classes.
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The third proposed module is focused on simplifying the process to train Com-
puter Vision models. This is achieved with an abstract ITrainer class with the
same arguments and methods presented for the ITrainer class of LabelDetection,
see Figure 3.10. Given a path of images, some initial weights to apply transfer
learning, a list of transformations to apply data augmentation, and an output
path; the generateTrainFiles method of this class will be in charge of generat-
ing all the necessary files to train a Computer Vision model. The particularities of
each Computer Vision task are implemented by means of abstract ITrainerTask
classes, and the actual implementation is given by the classes that extend those
ITrainerTask classes.

Figure 3.11: Class diagram of ISemiSupervisedTrainer classes.

Finally, the last module serves to reduce the burden of annotating a great
amount of images to train Computer Vision models by means of semi-supervised
learning methods. To implement such a functionality, we have defined an ab-
stract class called ISemiSupervisedTrainer, see Figure 3.11. This class provides
a method generateTrainSemiSupervisedFiles that will generate the necessary
files to train a Computer Vision model with a semi-supervised technique pro-
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vided a path of unlabelled images and a ITrainer object — this is the same
approach presented previously for LabelDetection. It is worth noting that the
ISemiSupervisedTrainerTask classes are abstract since several techniques for
semi-supervised learning can be applied in Computer Vision tasks as we showed
previously. Moreover, for each of these classes, the ITrainer object comes from
the corresponding ITrainerTask class.

Similarly to the work presented for LabelDetection the four models presented
in this section can be used independently of each other for using Computer Vision
models and training them. The approach presented in this section has been imple-
mented in a library available at https://github.com/ancasag/GeneralisingCV.
This library is a work in progress and several tasks remain as further work. In
particular, we want to populate our library with multiple Computer Vision tasks
and integrate such a library with graphical interfaces like we did with LabelDetec-
tion to create end-to-end applications for multiple Computer Vision tasks. This is
a step towards the democratisation of deep learning models.

3.5 Conclusions
In this section, we have presented LabelDetection, an end-to-end graphical appli-
cation that aims to facilitate the construction and usage of robust object detection
models by providing access to state-of-the-art detection algorithms, and also sim-
plifying the application of advance techniques like semi-supervised learning meth-
ods or test-time augmentation. In the future, we plan to extend LabelDetection
with new object detection models and libraries, a straightforward task thanks to
the design of this tool.

After analysing the functionality of LabelDetection, we realised that it could
be interesting to extend it to also work with other Computer Vision problems, and
also to particularise it to concrete object detection tasks. We showed how Label
Detection can be generalised to deal with any Computer Vision task thanks to
the development of a library that makes easier to create and use Computer Vision
models, and the application of ensemble methods and semi-supervised learning
techniques. In addition, our approach is independent of the underlying library
and algorithm that we use to train the models, and it can be easily extended.

In the rest of the memoir, we change our aim and focus on concrete problems
in plant physiology and precision agriculture that can be solved thanks to our
methods and tools.

https://github.com/ancasag/GeneralisingCV




Chapter 4

Applications to the Study of Plant
Physiology

In the previous chapters, we have explained how Deep Learning models for object
detection can be improved, and how we have built an end-to-end application to
train and use those models. In this chapter, we focus on the use of those methods
to construct tools that deal with actual problems in the study of plant physiology.
In particular, we address the problems of detecting stomata and bladder cells. The
results presented in this chapter come from a collaboration with the Department
of Plant Biology and Ecology from the University of the Basque Country, and
with the Department of Crop, Soil, and Environmental Science from the Auburn
University.

4.1 Measuring Stomatal Density

Stomata (singular “stoma”) are pores on a plant leaf that allow the exchange of
gases, mainly CO2 and water vapor, between the atmosphere and the plant. Stom-
ata respond to changes in the environment and regulate the photosynthesis and
the transpiration of plants, and thus their productivity and water use efficiency.
Because of their critical nature, scientists have studied the number, density, size,
and behaviour of stomata to understand plant physiology against stress [113, 114],
to improve crop breeding and crop management programs [113, 115], to model CO2

dynamics in the atmosphere, and to predict future carbon and water cycles [114].
In order to analyse stomata, plant biologists take microscopic images of leaves,

and manually measure characteristics such as stomata density, individual stomata
opening, and morphological traits like the size and shape of the stomata guard cells
(a pair of cells that regulate the opening and closing of the stomatal pore). Some
computer programs, like ImageJ [116], are used for those tasks, but they have

49
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little to no automatisation [117, 118, 119]. Note that those measurements are re-
peated over hundreds of images from different plant species and growth conditions;
hence, this is a tedious, error-prone, time-consuming and, in some cases, subjective
task due to the large number of stomata in each image. Hence, researchers have
tried to automatise this task since the 1980s [120]. Initially, the proposed detec-
tion methods were based on the application of image processing techniques and
were focused on specific plant species. Omasa and Onoe [120] applied the Fourier
transform and a thesholding mechanism to measure stomatal aperture from Sun-
flower leaves. In [121], stomata from Olea europaea leaves were detected using
several filters and the background subtraction technique from plant leaves with
fluorescence. Image processing techniques, namely preprocessing techniques and
the watershed algorithm, were applied in [122] to segment stomata from tomato
leaves. Several mathematical morphology techniques were employed in [123] to
automatically detect stomata from 5 different species; and, the MSER algorithm
was applied to measure stomatal aperture in grapevines [124]. Finally, the most
recent work based on image processing techniques for stomata detection employed
Wavelet spot detection and the Watershed transform on images from Ugni Molinae
species [125].

In spite of the success of some image processing approaches — for instance,
Duarte et al. [125] reported a precision over 98% — those methods require users to
fix some parameters and do not usually generalise to different species and condi-
tions. This has led to the adoption of more advanced computer vision and machine
learning techniques. Namely, a genetic algorithm and self-organizing map cluster-
ing method was proposed in [126] to detect stomata from Arabidopsis leaf surface;
and, the template matching algorithm was employed in [127] to detect stomata
in wheat. In addition, up to 2013, object detection using machine learning was
conducted by performing object classification using different feature extractors via
a sliding window on multiscale images [128]. This approach has been applied for
stomata detection with the Haar feature extractor for Quercus afares Pomel and
Quercus suber L. leaves [129], and the HOG feature extractor for grapevines [130]
and dayflowers [131].

Nowadays, Deep Learning techniques are the state of the art approach to deal
with stomata detection. The first works using deep learning employed convolu-
tional models as feature extractors and combined them with the sliding window
technique. For instance, in [132], 5 classical feature extractors were compared with
six deep learning descriptors for detecting stomata in maize leaves; and, in [133] a
deep neural network was employed for stomata detection in 38 species. Moreover,
in [134], deep convolutional networks were applied to generate heatmaps that in-
dicate the position of stomata in a wide variety of species. Finally, general deep
object detection algorithms like SSD [26] or Faster R-CNN [25] have also been
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trained to construct accurate detection models for species like rice [135], Chinese
Necklace poplar and black poplar [136], or soybean [137].

There are two main drawbacks in the methods proposed in the literature for
stomata detection. First of all, most of those methods can only be applied to par-
ticular species and do not generalise properly since images from plant leaves greatly
vary from species to species, and also depend on the conditions and equipment em-
ployed to capture them. And secondly, the necessary code to run these methods on
the users’ images is not generally available. Currently, there are only three publicly
available tools for detecting stomata: DeepStoma [131], StomataCounter [134] and
Stomata Detector [138]. Unfortunately, those tools do not provide the necessary
features to interact with the predictions, and the underlying models cannot be
easily retrained to adapt them for new species — StomataCounter provides an
on-demand mechanism for re-training the underlying algorithm, but this requires
sending the images to the developers of StomataCounter and waiting until they
produce a new model. These drawbacks are tackled in the current work with the
development of a stomata detection model, and an a simple-to-use application
based on LabelDetection, called LabelStoma1, that employs such a model. The
main features of LabelStoma are described as follows.

• LabelStoma is a open-source graphical tool that helps user in detecting stom-
ata in leaves of plants of several species.

• LabelStoma can be employed to measure stomatal density.

• LabelStoma allows non-expert users to use and train models for stomata
detection. Moreover, the predictions of LabelStoma can be easily modified.

• LabelStoma provides a simple method to adapt the model to other species
of plants using a small number of annotated images.

In the rest of the section, we explain how LabelStoma has been designed and
implemented. We first explain the methods used to capture images for stomata
detection, and to train the detection models. Subsequently, we show the results
obtained by our models under different conditions. Finally, we explain how we
have developed LabelStoma.

4.1.1 Materials and methods

In this section, we present both the biological and computational materials and
methods employed in our work for stomata detection.

1https://github.com/ancasag/labelStoma

https://github.com/ancasag/labelStoma
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4.1.1.1 Biological material

In our experiments, we have employed images from three species that were ac-
quired by three laboratories. These laboratories work with several plant species
and varieties, both dicotyledons (common bean, Phaseolus vulgaris ; and soybean,
Glycine Max ) and monocotyledons (barley, Hordeum vulgare). Besides, the plants
were grown under different environmental conditions such as drought, and elevated
CO2 which could enhance even more the variability in the size, density and dis-
tribution of stomata [139, 140]. Images were captured using different equipment
(microscopes and digital cameras) and conditions (focus and magnification) form-
ing three datasets. Examples of the images from the three datasets are provided
in Figure 4.1.

(a) (b) (c)

Figure 4.1: Examples of images from 3 species: (a) Common bean. (b) Barley. (c)
SoyBean.

Common bean dataset. Leaf imprints were taken from recently cut leaves of
twelve different varieties of common beans (Phaselous vulgaris L.): Arrocina de
Álava, Amarilla de Kuartango, Borlotto, Coco Blanco, Canela de León, Lingot,
Morada de Gandarias, Negrita, Negra de Basaburua, Pinta Alavesa, Riñón de
León and Verde de Orbiso; grown in a greenhouse under well-watered and drought
conditions (100% and 40% field capacity respectively) during the summer of 2017.
Samples were collected in the morning, when the leaves are more turgid and the
possibility of tearing them was reduced.

Imprints of epidermal cells were taken according to the technique described
by [141], from the youngest full expanded leaf from the adaxial (upper) and abaxial
(lower) side of the blade, because common bean is an amphiestomatic species.
Briefly, a drop of cyanoacrylate adhesive (Superglue-3, Loctite Corporation, Henkel
Ibérika, S.A., Barcelona) was spread on the surface of the leaf epidermis. To remove
excess of adhesive, a strip of acetate paper was attached and gently pressed down
during three seconds. Once the acetate paper has been carefully removed, the leaf
surface with adhesive is gently pressed against a microscope slide for 10 seconds.
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At that point, the slide is carefully removed from the leaf to avoid that any leaf
traces remain attached to the adhesive.

Once in the laboratory, five digital photographs of 1280× 960 px were taken of
each imprint, using a digital camera (Digital Sight DS-Fi1, Nikon) attached to a
light microscope (Eclipse 80i, Nikon). The pictures were taken without coverslip,
with the 20× objective, without filters and medium light intensity. A total of 1050
images were captured employing this procedure.

Barley dataset. Images from barley stomatal prints of barley plants grown
under different environmental conditions (drought, elevated CO2 and/or elevated
temperature applied alone or in combination) were used. Barley plants (Hordeum
vulgare cv. Henley) were grown in a Conviron PGR15 controlled-environment
growth chamber (Conviron, Manitoba, Canada). The light regimen was 14h of
light and 10h of darkness. During the light period a photosynthetic photon flux
density (PPFD) of 400 µmol m−2 s−1 was applied to plants. Light was provided by
a combination of incandescent bulbs and warm-white fluorescent lamps. For each
environmental condition, the youngest fully expanded leaf on the main tiller per
plant was used for leaf imprinting. To measure the stomatal traits in steady-state
conditions, imprints were 3h after lights turned on.

Leaf imprints were obtained from both adaxial and abaxial leaf surfaces from
the center of the leaf along its length and from the entire leaf width. Immediately
after application of cyanoacrylate glue (Loctite Superglue-3, Loctite Corporation,
Henkel Ibérica, S.A., Barcelona.) on the leaf, it was gently pushed onto a glass
microscope slide for a few seconds. After that, the leaf was removed obtaining the
final impression on the glass slide. The prints were stored in darkness to prevent
degradation. Epidermal prints were observed and images acquired using a Nikon
ECLIPSE 50i fluorescence microscope (Nikon corporation, Japan) with a Leica
DFC 420C camera (Leica Microsystems, Germany).

Four images were taken at 4× and 10× magnifications from each epidermal
print, using the LAS V3.7 program (Leica Microsystems, Germany). For that,
each epidermal print was divided into four squares. For each square, one image
was taken at 4× and one at 10× magnification. The objective of taking a photo
for each square was to analyse the variability that could be in the sample itself.
After that, to delimit the area in the image for assessment of stomatal traits, the
epidermal idioblast cells (siliceous and suberose cells) were identified on the print.
The images and analyses that were taken at the 10× magnification comprised the
stomata between two rows of epidermal idioblast cells. A total of 1050 images
were captured employing this procedure.
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Soybean dataset. Two soybean (Glycine max. L.) cultivars (PI 398223 and
PI 567201) were grown under field conditions at the Bradford Research Center
(University of Missouri, Columbia, Missouri, USA) during the 2017 growing season.
Plants were grown on a field modified to restrict rooting to depths of 0.3 0.6 and 0.9
m [142, 143] with 4 replications per depth and genotype. The site was modified
in 1978 by excavating a series of 61-m long and 7.5-m wide channels that were
lines with plastic to limit rooting depth, and drain tiles to eliminate chances for
water logged conditions. Following installation of the plastic liner and the drain
tiles, the channels were filled with top soil. The range in top soil depths creates
environments with different soil water holding capacity and thus differences in
water stress producing differences in soybean yield [143, 144].

Leaf samples for epidermal prints were taken at four different growth stages
(V5, R2, R4, R6) [145]. Leaf imprinting was carried out for both the adaxial
and the abaxial side of the leaf. The leaf surfaces were prepared by applying
cyanoacrylate glue (Gorilla Super-glue, USA) near the longitudinal center of the
uppermost, fully expanded leaf on one side of the midrib using a brush to homoge-
neously distribute the glue. To remove excess of adhesive, a strip of acetate paper
was attached and gently pressed down for one second. Immediately after careful
removal of the acetate paper, the leaf was gently pressed against a glass slide for 5
seconds. After that, the leaf was removed to leave a final impression on the glass
slide.

The prints were stored in darkness to prevent their degradation. The prints
were observed using a Leica DM 5500B Compound Microscope outfitted with
a Leica DFC290 Color Digital Camera (Leica Microsystems, Germany). Each
epidermal print was examined at 20× magnification and four composed images,
consisting of at least 20 images captured using the z-stacking capability of the
microscope, were generated. A total of 1050 images were captured employing this
procedure.

A summary of the features of the three datasets employed in this work is
provided in Table 4.1.

Dataset ] Images Image size Mean(std) stomata per image Magnification

Common bean 1050 1280 × 960 31.92(25.12) 20×
Barley 1050 1728 × 1296 26.03(24.30) 4× and 10×
Soybean 1050 1600 × 1200 55.12(25.29) 20×

Table 4.1: Features of the three datasets employed in this work.
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4.1.1.2 Computational methods

In this work, we have employed the YOLOv3 algorithm [85], and its implementa-
tion in the Darknet library [146], to create several stomata detection models from
the aforementioned datasets. YOLO is one of the multiple algorithms based on
Deep Learning [147], and has been employed in several contexts such as agricul-
ture [148], medicine [149] or security [150]. The YOLO algorithm frames object
detection as a regression problem where a single neural network predicts bounding
boxes and class probabilities directly from full images in one evaluation.

Using the datasets presented in the previous section we have trained several
YOLO models. Namely, the datasets were annotated using LabelDetection and
split using 85% for training and 15% for testing (imprints of the same plant only
appeared either on the training set or in the test set). If not stated otherwise,
all the models built in this section were trained using the default parameters in
YOLO (namely, we set the base learning rate to 0.001, the momentum to 0.9,
the weight decay to 0.0005, the batch size to 64, the subdivisions to 16, and we
trained the models for 125000 steps), and using a GPU GeForce RTX 2080 Ti.
During the training process, we faced three main challenges that commonly arise
when working with microscopic images, namely the size of the training images,
the number of training images, and the time required for the manual annotation
of the training images.

The first challenge occurs due to the fact that YOLOv3 is constrained to work
with images of limited resolution; namely, images of size 416 × 416 or 600 × 600.
However, standard microphotographs are taken on a higher resolution, and resizing
them was not a feasible option since the details of the stomata are lost when the
images are scaled. In order to deal with this problem, the images of the dataset
were sliced in images of size 416 × 416 (since this size allows us to make more
experiments in a reasonable time), and used for training. It is worth mentioning
that the size problem only occurs during the training stage, since YOLO models
can be employed to detect objects in images of bigger size once the model is trained
— a YOLO model trained with patches of images can be employed for inference
on full size images by just changing the input size parameter.

The second challenge is the considerable amount of images required to train
Deep Learning models. This problem was faced using data augmentation [62, 63],
a technique already explained in Chapter 2. In our experiments, we have tried
different augmentation schemes (namely, colour and geometric transformations)
using the CLODSA library [72]. Moreover, we have also applied transfer learning
in the experiments starting from a model pre-trained in the Pascal VOC dataset.

The final challenge is the time needed to manually annotate images for object
detection. This is a common problem when working with detection problems,
as we have seen in Chapter 2 and thus has lead to the use of semi-supervised
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learning techniques. In our study, we employed data distillation [67] using the
EnsembleObjectDetection library presented in Chapter 2 and using as a basis
the files generated by LabelDetection.

In the next sections, we first address the construction and evaluation of individ-
ual models for each of the three datasets presented in Section 4.1.1.1. Subsequently,
we combine the three datasets and construct several models from such a combined
dataset. Finally, we show that our model generalises properly to stomata images
of plant species, by evaluating the performance of our model using the images from
the dataset presented in [134] and the grapevines dataset from [130].

4.1.2 Individual models

First of all, for each dataset presented in the previous section, we trained and
evaluated four models using different data augmentation regimes. Namely, using
the training dataset without augmentations; increasing the training dataset with
geometric transformations (by applying horizontal flips, vertical flips, horizontal
and vertical flips, a rotation of 90º to each image of the original training dataset,
and keeping the original image, we obtained a training dataset of 4500 images);
increasing the training dataset with colour transformations (by applying gamma
and histogram normalisation, and Gaussian and average blurring to each image of
the training dataset, and keeping the original image, we obtained a training dataset
of 4500 images); and, increasing the training dataset by combining both geometric
and colour transformations (this dataset contains 8100 images). The constructed
models were evaluated using the corresponding test set (without augmentations)
and using different metrics such as precision, recall, F1-score, and IoU (Intersection
over Union); and using two threshold values for positive predictions (0.25 and
0.5) — experiments with other thresholds were conducted but worse results were
obtained.

The results of this study are presented in Table 4.2. All models achieved values
greater than 90% for precision, recall and F1-score, but none of them excelled
over the others. The metrics employed in this study measure different aspects
of the model. A high precision indicates that the detections produced by the
model were correct, even if this means that some stomata were not detected.
In our experiments, to achieve the highest precision, a confidence level of 0.5
had to be used for all datasets. The best augmentation procedure varied from
dataset to dataset. Namely, geometric augmentations produced better models
for the soybean and common bean dataset, whereas colour transformations were
more beneficial for the barley dataset. In order to obtain a higher recall (that is,
detect as many stomata as possible, even if some of the detections are incorrect),
a confidence level of 0.25 had to be used for all datasets. In this case, none of the
data augmentation procedures benefit either the soybean or the barley dataset; in
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Dataset Augmentation threshold = 0.25 threshold = 0.50

(Train size/Test size) Prec. Rec. F1 TP FP FN IoU Prec Rec. F1 TP FP FN IoU

None (900/150) 0.90 0.95 0.92 7695 897 424 0.69 0.93 0.91 0.92 7352 592 767 0.72
Geometric (4500/150) 0.91 0.94 0.92 7616 756 503 0.71 0.95 0.79 0.86 6417 316 1702 0.76Soybean Colour (4500/150) 0.92 0.89 0.90 7258 671 861 0.70 0.93 0.87 0.90 7059 527 1060 0.72
Both (8100/150) 0.90 0.95 0.93 7720 835 399 0.71 0.95 0.83 0.89 6765 371 1354 0.75

None (900/150) 0.96 0.96 0.96 4721 186 180 0.80 0.97 0.93 0.95 4554 130 347 0.81
Geometric (4500/150) 0.94 0.97 0.96 4616 269 156 0.77 0.97 0.93 0.95 4449 142 323 0.79Common Bean Colour (4500/150) 0.97 0.93 0.95 4572 128 329 0.81 0.98 0.80 0.88 3924 73 977 0.82
Both (8100/150) 0.93 0.98 0.96 4685 352 87 0.77 0.95 0.95 0.95 4555 219 217 0.79

None (900/150) 0.90 0.92 0.91 4096 470 356 0.66 0.94 0.86 0.90 3834 240 618 0.70
Geometric (4500/150) 0.89 0.91 0.90 4063 482 389 0.65 0.96 0.76 0.85 3396 153 1056 0.71Bearly Colour (4500/150) 0.89 0.91 0.90 4057 490 395 0.65 0.94 0.84 0.89 3746 248 706 0.69
Both (8100/150) 0.88 0.92 0.90 4105 544 347 0.67 0.95 0.75 0.84 3347 176 1105 0.73

Table 4.2: Results of the different models for the three datasets. Prec., Rec., F1,
TP, FP, FN, IoU stand respectively for Precision, Recall, F1-score, True Positive,
False Positive, False Negative and Intersection over Union. In bold face the best
result for each metric and dataset.

contrast, the highest recall in the common beans dataset is obtained when both
colour and geometric transformations were applied. A trade-off between precision
and recall metrics is provided by measuring the F1-score. As in the case of the
recall metric, a confidence level of 0.25 had to be used to obtain the best F1-
score for all datasets (note that this value decays when increasing the confidence
level since the precision increases but the recall decreases), and, only the soybean
dataset improved with one of the augmentation procedures (namely, when both
geometric and colour transformations are applied). Precision, recall, and F1-score
are metrics that assess how well a model is able to detect stomata, but they do
not indicate how the detections are adjusted to the stomata, but this can be
assessed with the IoU. For this metric, the best results were obtained using 0.5
as confidence level and using different augmentation schemes; namely, the colour
scheme for the common beans dataset and the combination of colour and geometric
transformations for the other two datasets.

These results show that it is possible to achieve accurate results with the YOLO
model for several datasets of stomata images. However, the main drawback of these
models is that they have been trained to work with specific species, and, therefore
do not generalise to other species. We explain how we have faced this problem in
the following section.

4.1.3 A combined model

The models described in the previous section were specialised for stomatal images
of particular species, and were not designed to be applied to other species. Thus, we
combined the three datasets to generate one training dataset and one test dataset
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Augmentation thresh = 0.25 thresh = 0.50

(Train size/Test size) Prec. Rec. F1 TP FP FN iOu Prec Rec. F1 TP FP FN iOu

None (2700/450) 0.91 0.93 0.92 16482 1655 1309 0.70 0.95 0.85 0.90 15201 806 2590 0.73
Geometric (13500/450) 0.92 0.92 0.92 16340 1515 1451 0.70 0.96 0.81 0.88 14468 654 3323 0.74
Colour (13500/450) 0.91 0.93 0.92 16484 1647 1307 0.70 0.95 0.82 0.88 14658 717 3133 0.74
Both (24300/450) 0.92 0.93 0.93 16590 1447 1201 0.72 0.96 0.76 0.85 13569 532 4222 0.76

Table 4.3: Results for the model trained with the combined dataset. Best results
are in bold face.

from the images of all three species, and used the combined training dataset to train
four YOLO models using the augmentation procedures described in the previous
section — as in the case of individual models, we build these new models.

The performance of these models is reported in Table 4.3. Similar to the results
achieved for the models based on single datasets (Section 4.1.2), all models achieved
values higher than 90% for precision, recall and F1-score. In addition, although
differences between the models were limited, the results for the model constructed
using the dataset augmented with colour and geometric transformations achieved
slightly better results than those of the other models. In addition, as show in
Table 4.4 this model performs properly well when evaluated for each individual
dataset.

Precision

Dataset Soybean Common Barley Combinedbean

Soybean 0.91 0.88 0.94 0.90
Common bean 0.82 0.93 0.34 0.80
Barley 0.69 0.64 0.90 0.84
Combined 0.91 0.95 0.92 0.92

Recall

Dataset Soybean Common Barley Combinedbean

Soybean 0.95 0.84 0.22 0.74
Common bean 0.74 0.98 0.13 0.65
Barley 0.03 0.08 0.92 0.27
Combined 0.92 0.96 0.93 0.93

F1-score

Dataset Soybean Common Barley Combinedbean

Soybean 0.93 0.86 0.36 0.81
Common bean 0.78 0.96 0.19 0.72
Barley 0.05 0.14 0.91 0.41
Combined 0.92 0.96 0.93 0.93

Table 4.4: Results for the best models trained with each dataset evaluated on
the other datasets. The brighter the red color in the heatmap, the higher the
associated metric.

The three tables included in Table 4.4 indicate how well the best model trained
for each dataset generalises to the other datasets. As expected, the model trained
using the combined dataset obtains good results for the three metrics in all datasets.
Whereas, in general, the other models only obtain good results when evaluated
against their own datasets (the exception is the precision achieved by the soybean
model for the Barley dataset, but its recall is really low). This occurs due to, not
only the difference of species, but also the different magnification level employed
to acquire the images. Indeed, the combined model produced results that were
similar to those results of individual models when evaluated against individual
datasets. Namely, the combined model achieved equal or higher precision than the
individual models, but equal or slightly worse recall. The achieved F1-score was
similar for the specific models and the combined model for each dataset.
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Figure 4.2: Results of the combined model for different degraded versions of the
test set by applying blurring, adding salt-and-pepper noise, and applying gamma
correction to obtain darker and brighter images. The kernels values for blurring
the images are given by 2 × i + 1 for i from 1 to 9; the probability for adding
the salt-and-pepper noise is given by i/100 for i from 1 to 9; the gamma values
to obtain darker images are given by 1 − i/10 for i from 1 to 9; and the gamma
values to obtain brighter images are given by i+ 1 for i from 1 to 9.

Finally, we studied how the model performed when the quality of the images
was degraded. To this aim, we altered the images of our testing set by applying
4 transformations; namely, by blurring the images with increasing kernel sizes,
adding salt and pepper noise with increasing probability, applying gamma correc-
tion with gamma values lower than 1 (the smaller the gamma values the darker
the images), and applying gamma correction with gamma values higher than 1
(the higher the gamma values the brighter the images). The precision, recall, and
F1-score achieved by the combined model for the degraded version of the test set is
presented in Figure 4.2. As expected, the performance of the model decays when
the quality of the images is considerably reduced by applying either blurring with
big kernels or when excessive noise is added; however, it is robust to a reasonable
amount of noise and changes in brightness and contrast.

Hence, the model trained with the combined dataset works well for images of
stomata acquired using different magnification levels (namely, 4×, 10× and 20×)
and from the three species employed for training the model — an example of the
output images produced by the model is provided in Figure 4.3. However, the
question remains whether the model can be used to analyse images of epidermal
prints from other species that were not employed to train the model. This question
is studied in the following section.

4.1.4 Generalising to multiple species

To test whether our YOLO model can be applied to analyse epidermal images
of families that were not used for training purposes, we employed images from 64
families of plants obtained from the dataset presented in [134]. This is a challenging
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Figure 4.3: Output images produced by the combined model. Top-Left. Im-
age from the Common bean dataset. Top-Right. Image from the Soybean
dataset. Bottom-Left. Image from the Barley dataset acquired at 4× magnifica-
tion. Bottom-Right. Image from the Barley dataset acquired at 10× magnification.
The detected stomata are enclosed with blue boxes, whereas the non-detected and
mis-detected stomata are enclosed with green and yellow boxes, respectively

dataset due to the variety of stomata sizes and shapes; and also the diversity of
texture and quality of the images. Due to this considerable variability that was
not present in the training set, our YOLO model only achieved a mean F1-score
of 0.47, and for none of the families the F1-score was over 0.9, see Figure 4.4,
this is a common problem in Deep Learning known as domain shift [151]. In this
context, we approach this problem by applying two techniques based on ensembles:
test-time augmentation (TTA) [152] and progressive resizing [153].

TTA is a technique previously explained in Chapter 2. In this context, we
applied TTA using vertical flips, horizontal flips, and colour transformations to
deal with the variability of stomata shapes, and the different textures and qualities
of the images. In addition, in order to handle the variability of stomata sizes,
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Figure 4.4: F1-score obtained by our YOLO model for 64 different families using
the plain model (red circles), and combining the model with test-time augmenta-
tion and progressive resizing (blue circles).

we employed progressive resizing (PR); a technique usually applied at training
time that can also be used at test time as follows. Namely, in order to obtain
the predictions for an image, we resized such an image to three different sizes
(416 × 416, 832 × 832, and 1248 × 1248), detected stomata in the three images
using our YOLO model, and combined the results. This procedure allowed us to
detect stomata of different sizes. The combination of TTA and progressive resizing
with our YOLO model achieved a mean F1-score of 0.9 for the whole dataset, and
a mean improvement of 43% for each family of the dataset, see Figure 4.4. It
is worth underlying that using this method, the model is not retrained, and the
achieved F1-score for the 64 families is similar to the one obtained for the species
of our training set.

Finally, we conducted an ablation study to determine the importance of each
technique in the final result, see Table 4.5. The first point to notice is the benefit
of applying TTA, independently of the image size — an improvement of, up to a,
18% can be achieved with this method. However, the main boost for our model
(more than a 20% improvement) was obtained thanks to the progressive resiz-
ing method. Finally, the combination of test time augmentation and progressive
resizing improved the F1-score another 7%.

The results presented in this section show how our YOLO model can be em-
ployed to deal with a dataset of images with a huge variability among the stomata.
However, in most scenarios, researchers work with a particular type of images, and
it is simpler to adjust the model to work with those images as we show in the next
section.
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Technique Precision Recall F1-score

416 0.96 (0.18) 0.47 (0.22) 0.60 (0.23)
832 0,91 (0.20) 0.50 (0.24) 0.62 (0.23)
1248 0.86 (0.24) 0.36 (0.22) 0.47 (0.24)

416 TTA 0.98 (0.07) 0.62 (0.24) 0.73 (0.22)
832 TTA 0.90 (0.17) 0.69 (0.25) 0.76 (0.22)
1248 TTA 0.88 (0.16) 0.56 (0.25) 0.65 (0.22)

PR (416–832) 0.96 (0.12) 0.72 (0.21) 0.80 (0.18)
PR (416–832–1248) 0.94 (0.13) 0.77 (0.22) 0.83 (0.19)

PR (416–832) + TTA 0.96 (0.04) 0.86 (0.17) 0.89 (0.14)
PR (416–832–1248) + TTA 0.93 (0.06) 0.90 (0.16) 0.90 (0.13)

Table 4.5: Mean (standard deviation) precision, recall and F1-score for the families
of the dataset from [134]. The three first rows provide the results using different
image sizes (416×416, 832×832, and 1248×1248); the following three rows show
the results applying test-time augmentation (TTA); the next two, the results of
applying progressive resizing (PR); and the last two, the results for the combination
of PR and TTA.

4.1.5 Retraining the model for a particular species

Figure 4.5: Examples from the grapevines dataset.

In order to illustrate how our YOLO model can be adjusted to work with a species
that was not used during training time, we employed images of stomata from
grapevines which are contained in the dataset presented in [130]. Specifically, the



4.1 Measuring Stomatal Density 63

dataset consists of 866 images for training and 57 for testing, two images from this
dataset are show in Figure 4.5.

Three experiments were conducted with these images. First, the YOLO model
created in Section 4.1.3 was run with the grapevines dataset. Second, we used
5 images from the training set of the grapevines dataset to train a new model
pretrained with our model. Finally, we applied the data distillation technique
presented in the previous chapter to the grapevines dataset. The results of these
three experiments are presented in Table 4.6.

Dataset Precision Recall Accuracy F1-score

Template matching [130] 0.56 0.65 0.44 0.60
MSER [130] 0.53 0.37 0.28 0.44
COD [130] 0.91 0.79 0.74 0.85

Without retraining 0.88 0.81 0.73 0.85
Retrain with 5 images 0.90 0.91 0.83 0.91
Data distillation 0.90 0.92 0.84 0.92

Table 4.6: Results for the grapevines dataset presented in [130]. Best results are
shown in bold face. This table is divided into two blocks, the former contains the
results presented in [130], and the latter corresponds to the results obtained using
our model.

Using our model trained on the combined dataset, we obtained similar results
(lower precision and accuracy but equal F1-score and higher recall) to those pre-
sented in [130] as shown in Table 4.6. This demonstrates the robustness of our
approach. Not surprisingly, the results were worse than those obtained for the
images of our dataset. This issue was solved by retraining our model with just 5
annotated images from the grapevines dataset — we chose 5 images to ilustrate
that our approach works with a small number of images. The model was retrained
for 6000 steps and using the default parameters in YOLO. This yielded a 6% im-
provement in terms of F1-score, 9% in terms of accuracy, and 12% in terms or recall
over the original model. Moreover, the F1-score was similar to the one obtained
for our datasets. This shows that, with a small annotation effort, good models
can be obtained using the model developed in this work as a basis. Finally, we
applied the data distillation technique to automatically annotate 177 images from
the training set of the grapevines dataset. Using those automatically images and
retraining the model for 6000 steps, we obtained an improvement of 7% in terms
of F1-score, 10% in terms of accuracy, and 13% in terms of recall with respect to
the original model. Data distillation avoids the task of annotating images since
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those annotations are automatically generated; but, it is more computationally
consuming than the process of annotating a few images.

As a conclusion of these 4 sections, the model trained with the 3 original
datasets not only performed well for images of the species employed for training
it, but it also succeeded with images from other species. Furthermore, the model
can be retrained using a few annotated images, or even using images without
annotation, to improve a model for a particular species. However, the process of
using the model to detect stomata, and retraining this model might be difficult
for users without a machine learning background. Therefore, we have developed
LabelStoma a graphical tool that simplifies these tasks.

4.1.6 LabelStoma

LabelStoma is a graphical tool implemented in Python, and developed using La-
belDetection as a basis. LabelStoma aims to facilitate the use and creation of
stomata detection models. Towards this aim, the functionality of LabelDetection
has been restricted to the model presented in the previous sections. In this section,
we present the main features of LabelStoma and how it has been designed.

The first set of features included in LabelStoma, see Figure 4.6, are devoted
to measure stomatal density in images. To this aim, LabelStoma employs the
YOLO model presented in Section 4.1.3, and, subsequently measures the stomatal
density by computing the mean number of stomata per image. The model has
been integrated in LabelStoma as an IPredictor object — this allows us to easily
replace the model with new versions.

Moreover, LabelStoma provides the necessary functionality to modify those de-
tections by adding and/or removing stomata to/from those detected by the model.
Additionally, the box associated with each stoma can be adjusted. Neither Deep-
Stoma [131], StomataCounter [134] or Stomata Detector [138], the other publicly
available tools for stomata detection, offer this functionality. Moreover, Label-
Stoma not only provides the detections obtained for each image, but it also can
generate a summary of the results in the form of an Excel file. The Excel file
includes the stomatal density per image, and, other statistics like the mean width
and height of the detected stomata, see Figure 4.7. It is worth noting that neither
test-time augmentation or progressive resizing methods, presented in Section 4.1.4,
are applied for detecting stomata — the interested reader can find how to apply
these techniques in the project webpage.

The second set of features provided by LabelStoma are devoted to train new
stomata detection models using transfer learning. As we have shown in the previ-
ous section, the model underpinning LabelStoma generalises quite well to images
from species of plants that were not used to train the model; but, the accuracy
from new species can be improved by retraining the base model with minimal ef-
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Figure 4.6: LabelStoma interface.

fort. LabelStoma simplifies that process thanks to an ITrainer object that allows
users to apply transfer learning using our model as a basis.

Just to recall the process to fine-tune a stomata detection model, it consists
of six steps: annotate a dataset of images, split the dataset into a training and
test sets, apply data augmentation, slice the images, train the model, and evaluate
the trained model. In addition training a model requires the user to configure the
training environment, generate the configuration files for training the algorithm,
and launch the training process. Thanks to LabelStoma, the user only has to
manually annotate a few images (as shown in Section 4.1.5, annotation of five im-
ages is sufficient to retrain the base model to improve the model performance for
images from a new species), and the other steps to train the model are conducted
automatically by LabelStoma. LabelStoma automatises the last 5 steps and the
user is only in charge of annotating a few images (we have shown in the previous
section that it is enough with 5 images). To this aim, and using the functionality
provided by LabelDetection, LabelStoma generates a zip file (that contains the
dataset annotated with the structure required by the YOLO algorithm and also
the necessary configuration files) and a Jupyter notebook that configures the en-
vironment, installs the necessary libraries, trains a YOLO model with the training
set, and finally evaluates the model against the testing set. The Jupyter notebooks
generated by LabelStoma can be run either locally, provided the user has a GPU,
or using cloud services like Google Colaboratory — note that this equipment is
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Figure 4.7: Statistics provided by LabelStoma to summarise stomatal density.

only required if the users want to adjust the underlying model of LabelStoma;
otherwise, there are not any special hardware requirements to run LabelStoma for
inference. Moreover, LabelStoma can also apply the data distillation procedure
presented previously to improve the accuracy of the generated model by using an
ITrainer object. Finally, new models trained with the explained functionality
can be included in LabelStoma and used for detection in new images.

As a conclusion, LabelStoma is a graphical tool that aims to facilitate the
detection of stomata, and the creation and use of stomata detection models. Due
to the results obtained with LabelStoma for stomatal measurement, we applied
the same approach to the problem of measuring bladder cells.

4.2 Measuring Epidermal Bladder Cells

Salinity presents one of the major problems for agricultural production, and tremen-
dous efforts are made to provide salt tolerance to crops [154, 155]. One of the
mechanisms involved in the response of halophyte plants to high saline soils are
the epidermal bladder cells (EBC), which are specialized structures that accu-
mulate salt and other metabolites [156]. EBC are present only in Aizoaceae and
Amaranthaceae [157] and are thought to be involved in salinity tolerance [158, 159],
as well as in UV-B protection, drought and other stresses tolerance [160, 161].
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Recent interest has grown to understand the functioning of EBC and the molec-
ular mechanisms of EBC formation and salt accumulation. However, the role of
the EBC size, density or volume remains to be confirmed [162], as few studies
have addressed the relevance of these traits, since these measurements are mostly
manual using computer programs like ImageJ that have little to no automatisa-
tion [160, 162, 163, 161]. Those measurements are repeated over multiple images
from different plant species, organs and growth conditions. Therefore, this is a te-
dious, error-prone, time-consuming and, in some cases, subjective task due to the
large number of EBC in each image. We have tackled this problem by employing
the object detection techniques presented in the previous chapters and following
the same approach presented for LabelStoma. Namely, the main contributions of
this part of the memoir are:

• We compare different models for the detection of EBC, and check their ro-
bustness using different parameters.

• We train a YOLO model to detect EBC in plant leaves using the techniques
previously explained to train models with microscope images.

• We develop LabelGlandula2, an open-source and easy-to-use graphical tool
for measuring EBC density.

In the rest of the section, we explain how LabelGlandula has been designed and
implemented. We first explain the methods used to capture EBC images, and to
train the models. Subsequently, we analyse and compare different Deep Learning
models for EBC detection. Finally, we introduce the architecture and design of
LabelGlandula, and apply it to a case study.

4.2.1 Materials and methods

In this section, we present both the biological and computational materials and
methods employed for building EBC detection models.

4.2.1.1 Biological methods

Images of leaf EBC from one quinoa variety (Marisma) grown under different
salinity, elevated CO2 and elevated temperature conditions were used. Besides,
the density of EBC decreased as leaves become older, therefore, leaves of different
age were used.

EBC can be easily removed when the plants are manipulated so the leaves were
cut carefully from the plant and were hold with a tweezer. In order to obtain EBC

2https://github.com/ancasag/labelGlandula

https://github.com/ancasag/labelGlandula
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images from both adaxial and abaxial surfaces, a cross cut was made, obtaining
two leaf pieces, one for the analysis of each leaf side. Carefully and maintaining
the EBC intact, from the central part of each leaf side, two leaf discs of 0.6 cm in
diameter were cut in order to have a flat surface and, therefore, an image focused
on the EBC.

Leaf EBC were observed using a Nikon SM645 Stereo Microscope 0.8× - 5×
(Nikon Corporation, Japan) with a zoom range of 2X. Images were captured with
an Optikam ®Microscopy Digital USB Camera 4083.B3 (OPTIKA Microscopes,
Italy) and Optika View 7.1 program (OPTIKA Microscopes, Italy). A total of 178
images of size 2048× 1536 were acquired using this procedure and manually anno-
tated using the LabelDetection, see Figure 4.8 for some samples of the captured
images.

Figure 4.8: Images of leaf EBC.

4.2.1.2 Computational methods

Using the EBC dataset, we trained several models using different Deep Learning ar-
chitectures for object detection. Namely, we used the two-phase algorithms Faster
R-CNN [25] and EfficientDet [106], and the one-phase algorithms FCOS [108],
CSResnet [164], FSAF [107], YOLOv3 [85] and YOLOv4 [164]. All the models
were trained using the by-default parameters, and using a GPU GeForce RTX
2080 Ti. The necessary files to train those models were generated using LabelDe-
tection (that is, LabelDetection was used to generate the configuration files for
each library and the notebooks with the instructions for creating the models).

As in the case of the construction of stomata models, during the training pro-
cess, we faced the images size challenge that arises when working with microscopic
images. In order to deal with this problem, the images of the dataset were split
into patches of size 600 × 600, and used for training (in this case, a bigger image
size than in the stomata case was used due to the smaller number of experiments
that were conducted).



4.2 Measuring Epidermal Bladder Cells 69

4.2.1.3 Experimental study

In order to validate the aforementioned detection models, a 5-fold cross validation
approach was employed. To evaluate the performance of the detection models, we
measured their precision, recall, F1-score and mAP. In our statistical study the
results were taken as the mean and standard desviation of the different metrics for
the 5 folds.

In order to determine whether the results obtained were statistically signif-
icant, several null hypothesis tests were performed using the methodology pre-
sented in [165, 166]. We summarise the steps of this methodology as follows. In
order to choose between a parametric or a non-parametric test to compare the
models, we check three conditions: independence, normality and heteroscedastic-
ity — the use of a parametric test is only appropriate when the three conditions
are satisfied [165].

The independence condition is fulfilled in our study since we performed 5 dif-
ferent runs with independent folds. We use the Shapiro-Wilk test [167] to check
normality — with the null hypothesis being that the data followed a normal dis-
tribution — and, a Levene test [168] to check heteroscedasticity — with the null
hypothesis being that the results were heteroscedastic.

Since we are going to compare more than two models, an ANOVA test [166]
is employed if the parametric conditions are fulfilled, and a Friedman test [166]
otherwise. In both cases, the null hypothesis is that all the models haved the
same performance. Once the test for checking whether a model is statistically
better than the others is conducted, a post-hoc procedure is employed to address
the multiple hypothesis testing among the different models. A Holm post-hoc
procedure [169], in the non-parametric case, or a Bonferroni-Dunn post-hoc proce-
dure [166], in the parametric case, is used for detecting significance of the multiple
comparisons [165, 166] and the p values should be corrected and adjusted. We
perform our experimental analysis with a level of confidence equal to 0.05. In
addition, the size effect is measured using Cohen’s d [170] and Eta Squared [171].

4.2.2 Results

In this section, we present the results of our study of object detection algorithms
for EBC. In Table 4.7, we have summarised the mean and standard deviation of
the 5 folds for each detection algorithm. The model trained with the YOLOv4
algorithm achieved the best results in terms of recall, F1-score and mAP. The
YOLOv3 and FasterRCNN algorithms produced models with a better precision
than YOLOv4, but their performance in the other metrics was considerably worse
than YOLOv4.

For our statistical study, we focused on the F1-score metric, that provides a
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Precision Recall F1-score mAP

YOLOv3 0.94(1.4) 0.75(10.2) 0.83(6.8) 0.84(1.5)
YOLOv4 0.92(0.4) 0.90(0.4) 0.91(0.4) 0.89(0.1)
FCOS 0.86(1.1) 0.80(2.4) 0.83(1.3) 0.70(3.3)
CSResnet 0.92(0.4) 0.83(2.0) 0.87(1.0) 0.84(0.8)
FSAF 0.86(5.0) 0.79(1.9) 0.83(0.8) 0.70(3.1)
EfficientDet 0.92(1.2) 0.78(2.4) 0.84(1.1) 0.72(3.2)
FasterRCNN 0.94(0.7) 0.81(1.4) 0.87(0.8) 0.78(0.4)

Table 4.7: Mean (and standard deviation) of detection models for EBC. In bold
face the best result for each metric and dataset.

trade-off between precision and recall — the F1-score of the models is summarised
in Figure 4.9. In order to compare the trained detectors, the non-parametric Fried-
man’s test was employed since the normality condition was not fulfilled (Shapiro-
Wilk’s test W = 0.855043; p = 0.000301). The Friedman’s test performed a
ranking of the models compared (see Table 4.8), assuming as null hypothesis that
all the models had the same performance. We obtained significant differences
(F = 14.85; p < 4.89× 10−7), with a large size effect eta squared = 0.53.

Figure 4.9: Results from 5 independent runs in F1-score for selected object detec-
tion algorithms.

Technique F1-score Friedman’s test average ranking

YOLOv4 0.91 (0.40) 7
CSResnet 0.87 (1.01) 5.4

FasterRCNN 0.87 (0.80) 5.2
YOLOv3 0.83 (6.8) 3.5

EfficientDet 0.84 (1.16) 3
FSAF 0.83 (0.80) 2
FCOS 0.83 (1.35) 1.9

Table 4.8: Friedman’s test for the F1-score of the object detection models.
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The Holm algorithm was employed to compare the control model (winner) with
all the other models adjusting the p value, results are shown in Table 4.9. As it
can be observed in Table 4.9, there are three object detection algorithms with no
significant differences as we failed to reject the null hypothesis. The size effect
is also taken into account using Cohen’s d, and as it is shown in Table 4.9, it is
medium or large when we compare the winning model with the rest of the models.

Technique Z value p value adjusted p value Cohen’s d

CSResnet 1.17108 0.241567 0.375366 4.84
FasterRCNN 1.31747 0.187683 0.375366 5.93
YOLOv3 2.56174 0.010415 0.031245 1.55

EfficientDet 2.9277 0.00341479 0.0136592 7.18
FSAF 3.65963 0.000252584 0.00126292 11.59
FCOS 3.73282 0.00018935 0.0011361 7.51

Table 4.9: Adjusted p-values with Holm, and Cohen’s d. Control technique:
YOLOv4.

As it can be seen in the results presented in this section, the algorithm that
produces the best model is obtained with YOLOv4. However, using this model
might be challenging for non-expert users since it requires experience working with
deep learning libraries. We have addressed this issue by developing a user-friendly
application, called LabelGlandula, that particularises LabelDetection to work only
in the context of EBC.

4.2.3 LabelGlandula

LabelGlandula, is a graphical tool implemented in Python to detect and measure
EBC based on LabelDetection. Like the functionality provided by LabelStoma,
the first set of features included in LabelGlandula, see Figure 4.10, are devoted
to measure the amount of EBC in a set of images. Given a folder with images,
LabelGlandula detects the EBC in each image using the YOLOv4 model. In
addition, LabelGlandula provides the necessary features to modify the detections
by adding and/or removing EBC from those detected by the model. Moreover, the
box associated with each EBC can be adjusted. Finally, LabelGlandula not only
provides the detections obtained for each image, but can also generate a summary
of the results in the form of an Excel file. Such an Excel file includes the number
of EBC in each image and other statistics such as average area of EBC, folial area
or covered folial area.

As in the case of LabelStoma, other features provided by LabelGlandula are
devoted to retrain new EBC detection models with minimal effort. LabelGlandula
simplifies that process thanks to an ITrainer object that allows users to apply
transfer learning using our model as a basis.
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Figure 4.10: LabelGlandula interface.

In order to illustrate the feasibility of using LabelGlandula for counting and
measuring EBC from different images to those used for training the underlying
detection model, a case study is presented in the following section.

4.2.4 Case study

In this case study, we analyse how LabelGlandula behaves with images from three
experiments that were grown under different conditions and whose images were
not used for training the original model. To this aim, we used 11 datasets that
are summarised in Table 4.10 some samples from those datasets are provided in
Figure 4.11.

From the same experiment used to train the original model, we selected EBC
images not used for training, or evaluating the precision of the model. Besides, in
order to validate the model for conditions not explored in the training set, we used
images of the same variety; but taken from the stems. For stem analysis, in the
main stem section where the petiole of the youngest fully expanded leaf joins the
stem, one thin slice of the epidermis containing EBC was cut longitudinally with a
scalpel. The slice was carefully put on a slide avoiding the removal of the EBC. The
stem slices were observed in the same way as the leaf pieces. In addition, we used
images from another quinoa variety, concretely, Pasancalla. Pasancalla was char-
acterized by having white and purple coloured EBC while Marisma showed only
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white coloured EBC. Pasancalla images were taken in the same way as explained
in Section 4.2.1. All these factors affect EBC features, so the images between
datasets are different among them.

Name Variety Conditions Leaf/Stem Leaf side Concentration ] images

MALB0 Marisma Actual Leaf Abaxial 0 mM 8
MALD0 Marisma Actual Leaf Adaxial 0 mM 8
MALB125 Marisma Actual Leaf Abaxial 125 mM 8
MALD125 Marisma Actual Leaf Adaxial 125 mM 8
MAS0 Marisma Actual Stem - 0 mM 8

MAS500 Marisma Actual Stem - 500 mM 8
MCLB0 Marisma Climate Change Leaf Abaxial 0 mM 8
MCLD0 Marisma Climate Change Leaf Adaxial 0 mM 8

MCLD500 Marisma Climate Change Leaf Adaxial 500 mM 8
PALB0 Pasancalla Actual Leaf Abaxial 0 mM 8
PALD0 Pasancalla Actual Leaf Adaxial 0 mM 6

Table 4.10: Features of the testing datasets.

In order to evaluate the usage of LabelGlandula in those datasets, we inves-
tigated a pipeline where the YOLO model was used for detecting the EBC, and
a user edits, by means of LabelGlandula, those detections to add missing EBC
and remove those that were not correct. For our experiments, we evaluated, see
Table 4.11, the YOLOv4 model using the same metrics presented in Section 4.2.2,
and we have also included the number of True Positive (TP), False Positive (FP),
and False Negative (FN) EBC.

Dataset Precision Recall F1-score mAP TP FP FN

MALB0 0.99 0.97 0.98 0.90 942 8 24
MALD0 0.98 0.93 0.95 0.90 603 9 42
MALB125 0.99 0.92 0.95 0.90 3656 17 316
MALD125 0.99 0.96 0.97 0.90 1803 5 72
MAS0 0.99 0.86 0.92 0.81 780 6 118

MAS500 0.97 0.80 0.88 0.79 2301 62 544
MCLB0 0.99 0.96 0.98 0.90 2178 4 72
MCLD0 0.99 0.93 0.96 0.90 1187 3 89

MCLD500 0.99 0.95 0.97 0.90 2327 10 100
PALB0 0.99 0.90 0.95 0.90 4676 14 465
PALD0 0.97 0.80 0.88 0.80 2793 76 659

Table 4.11: Results for the case study.

From those results, we can draw two main conclusions. First of all, the preci-
sion of the model is over 97% for all datasets, this indicates that most detections
produced by the model are correct, and the user only needs to remove a few of
them (in the worst case, a 2.64% of the detected EBC). The second conclusion is
related to the number of EBC that must be added by the users; that is the recall.
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Figure 4.11: Samples from the testing datasets and predictions produced by La-
belGlandula. Top-Left. Image from the MAS500 dataset. Top-Right. Image from
the PALB0 dataset. Bottom-Left. Image from the MALD0 dataset. Bottom-Right.
Image from the MCLD500 dataset.

For this metric, the model achieved a value over 90% for all the datasets but 3 of
them. The value for those datasets is over 80%; however, this means that almost
a 20% of the EBC must be manually added. This happens because images taken
with the conditions of those 3 datasets where not included in the training dataset.
This issue is known as domain shift, and it is an open problem for Deep Learning
models [172]. In our context, the problem is mitigated thanks to LabelGlandula
that allows the user to easily add EBC; however, further research is needed in this
context, for instance by retraining the model or applying semi-supervised learning
techniques. In contrast with LabelStoma, and in spite of the fact that it would
be straightforward to apply those techniques thanks to the functionality of La-
belGlandula, they have not been studied yet because biologist considered these
results obtained by the model acceptable, and the principal investigator from the
biological side got sick and the collaboration is currently on pause.
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4.3 Conclusions
In this part of the memoir, we have seen how the techniques and tools presented
in the previous chapters can be applied to deal with two actual problems in plant
physiology: stomata detection and EBC measurement. As a result, we have devel-
oped LabelStoma and LabelGlandula, two open-source tools that are not only used
by the researchers from Auburn University and University of the Basque Country,
but also by other teams in, for instance, French Guyane and Italy.

Thanks to the development of LabelStoma, the analysis of plant stomata among
species will be more reliable. Furthermore, it will help to the better understanding
of CO2 and H2O dynamics in plants related processes, such as photosynthesis and
transpiration, and in the atmosphere, to predict future carbon and water cycles.
Likewise, LabelGlandula will make the analysis of EBC more reliable and will allow
plant biologists to advance their understanding of the role of the EBC size, density
and volume in salinity, drought and other stress tolerance. Namely, LabelGlandula
will help to understand the functioning of EBC and the molecular mechanisms of
EBC formation and salt accumulation, and to transfer this knowledge to crops one
day [157, 160].





Chapter 5

Applications to Precision
Agriculture

In the previous chapter, we have seen how the methods and tools developed for
object detection in the first chapters of this memoir can be applied to concrete
problems in plant physiology. As we showed in Chapter 3, those methods and
tools can be generalised to other Computer Vision tasks such as semantic segmen-
tation. In this chapter, we focus on such a generalisation for a particular task:
precision agriculture. Namely, we address the problem of segmenting in-field raw
images data (natural images) in viticulture. The results presented in this chapter
come from a collaboration with the group of the Institute of Intelligent Indus-
trial Technologies and Systems for Advanced Manufacturing, from the National
Research Council of Italy.

In order to present how we have addressed the segmentation of viticulture
images, we divide this chapter into three sections. First, we explain how we have
trained and compared various deep architectures for segmenting different elements
in a vineyard, and approached the problem of having a limited number of annotated
images by applying semi-supervised learning methods. Subsequently, we show
that our segmentation models generalise properly on a highly variable dataset.
Finally, we present how depth information can be used to improve the results
of the semantic segmentation models. The three sections are organised following
the same scheme: first, we provide an introduction where we put the problem in
context; subsequently, we present the dataset, architectures and metrics that have
been used; finally, we end each section with the results, a discussion and some
conclusions.

All datasets and models developed in this part of the memoir are available in
the project webpage1.

1https://github.com/ancasag/PrecisionAgricultureApp
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5.1 Semi-Supervised Learning for Semantic Seg-
mentation in Viticulture

Sustainability is a crucial goal that involves ecological, economic and social con-
cerns to impact the health of present and future societies. Scientific progress has
developed new automatic tools to assist the human workforce by integrating artifi-
cial intelligence and robotics to meet such high-level needs. These efforts affect all
production fields but, significantly, agriculture, whose improvement needs to face
sustainability-related topics, such as finite resource management, yield optimiza-
tion and pest control. In general, every sustainable goal can require actual crop
monitoring by implementing low-cost technologies (cameras) and reliable method-
ologies (machine and deep learning techniques) in engineered solutions [173]. These
requirements translate into the need for developing image acquisition and process-
ing systems for extracting helpful information for the farmer. At a low level,
systems must identify specific targets by applying semantic inference mechanisms,
including image classification or segmentation.

In general, crop monitoring without physical contact of the targets can be clus-
tered in remote and proximal sensing, depending on the sensor-plant distance and,
thus, the level of details of the achievable information. Remote sensing typically
refers to aerial imaging from satellites, unmanned aerial vehicles (UAVs) or air-
planes. UAVs are equipped with imaging sensors, such as hyperspectral, LIDAR
and RGB cameras [174, 175], to compute vegetation indicators, e.g. the normal-
ized difference vegetation index (NDVI) or canopy size and volume [176] or to
create semantic maps of the fields [177, 178, 179, 180, 181]. In proximal sensing,
acquisitions are taken from the ground, close to the target, and with more details.
Typical sensors include color, hyperspectral and infrared (IR) thermal cameras
and LIDAR [182, 183], targeted to object segmentation, fruit counting, phenotype
analysis, plant classification and disease monitoring [184, 185, 186]. In proximal
sensing, data can be collected in structured and well-controlled environmental
contexts, such as greenhouses [187, 188], or under excellent acquisition conditions,
typically manual, with high-resolution sensors [189]. Referring to extensive crops,
the practical implementation of proximal sensing is achievable through agricultural
robots working in-field. However, any approach to extensive monitoring must face
the actual problems of natural images, such as low resolution, motion blurring,
occlusions and uncontrolled lighting conditions.

The processing of natural images captured from ground robotic platforms, and
more specifically the semantic segmentation of images, has been proposed mainly
for weed detection [190, 191, 192, 193], even sharing the same input dataset [194]
and a common processing background, centered on Deep Learning [21]. More
specifically, input images, which are often reported in terms of NDVI, are pro-
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cessed by convolutional neural networks (CNNs) for pixel or area classification,
trained from scratch or by applying transfer learning [40]. Deep learning is often
used to segment objects of interest, such as fruits, leaves, infrastructures (wires
and poles) and single branches [195, 196]. In horticulture, several methodologies
have been presented for monitoring fruit orchards through flower classification for
thinning [197], fruit classification for automatic harvesting [198] and segmentation
of supporting infrastructures, such as wires [199].

Automatic procedures for object segmentation are even more attractive in
those areas of horticulture of high added value, such as viticulture [200]. Here,
monitoring at the plant scale allows vine-growers to understand possible spatial
variabilities and find fine-tuned solutions. For instance, a ResNet deep residual
network and a region-based convolutional neural network to detect green shoots in
grapevine canopies and precisely segment the trajectories of cordons for thinning
purposes was presented in [201]. Grape cluster and canopy segmentation using
an artificial neural network and a genetic algorithm on images of a publicly avail-
able dataset [202] were proposed by [203], whereas a comparison of three neural
networks for segmentation of grape clusters tested on the Embrapa Wine Grape
Instance Segmentation Dataset was presented in [204].

In any of the above cases, all sensors were standard RGB cameras, which pro-
vide a flat 2D representation of the targets. In contrast, RGB-D cameras, able
to produce three-dimensional (3D) colored models of the crops, can give more in-
formation, helpful for fruit monitoring and counting [205]. Several technologies,
including complex setups of dedicated 3D cameras [206, 207] or integrated low-
cost consumer-grade cameras, such as the Microsoft Kinect v1 and v2 cameras
(Redmond, WA, USA) [208, 209, 210, 211, 212], have been used for plant phe-
notyping, fruit counting and automatic robotic harvesting. Even low-cost stereo
cameras, such as those of the Intel Realsense family (R200 and D4xx, Santa Clara,
CA, USA), have gained attention in fruit detection and plant phenotyping [213]
since they can effectively model the outdoors without suffering from illumination
variability due to sunlight [214]. Several works processing color images acquired
by the Intel RealSense R200 and D435 for object segmentation have been pre-
sented [215, 216, 217]. Although RGB-D cameras help yield monitoring, output
color images are often of low quality and resolution due to the actual scope of
such low-cost cameras, which are mainly designed for robot navigation, mapping
and manipulation. Natural image segmentation from color data is still an open
problem since its effective solution enables the effective use of the depth channel.

In this scenario, this work extends previous work by [218] for the exact seg-
mentation of plant leaves and wooden structures (trunks, branches, canes, etc.),
artificial infrastructures (poles, ropes, cables, etc.) and fruits. Here, multiple net-
work architectures have been compared to find the best solution for natural image
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segmentation. Even a refined ground truth was considered to further improve the
quality of segmentation. Moreover, we have studied three semi-supervised learning
approaches to deal with the small size of an annotated dataset by taking advantage
of unlabeled images.

5.1.1 Materials and methods

In this section, we present both the viticulture and computational materials and
methods employed for building the semantic segmentation models.

5.1.1.1 Input datasets

In our experiments, we tackled the problem of segmenting natural images captured
in-field by the low-cost consumer-grade Intel Realsense R200 camera (Santa Clara,
CA, USA).

Our datasets consist of 405 color images acquired by the Intel Realsense R200
in a vineyard in Switzerland (Räuschling, (N47º 14’ 27.6", E8º 48’ 25.2")). The
camera was mounted on a moving agricultural tractor (Niko Caterpillar, Büh-
l/Baden, Germany) and acquired lateral views of the line of the grape plants at
a distance between 0.8 and 1 m. Under those conditions, every image covered a
horizontal field of view between 0.9 and 1.2 m to completely frame every plant in
a single image. The tractor moved within lines at an average speed of 1.5 m/s.
Image frame rate was then tuned according to the robot speed and the horizontal
field of view of the camera to frame the same plant in at least three consecutive
captures. A camera frame rate of 5 Hz was enough to produce image overlaps,
corresponding to about 0.3 m. The image resolution was limited to 640×480 pixels
to match the maximum resolution of the depth data stream. It is worth noticing
that, although video sequences were produced to create overlaps, the proposed
implementations did not take advantage of object tracking strategies, like the one
of [204]. All methodological approaches considered images individually, without
managing multiple detections of the same elements. A sample image of the dataset
is shown in Figure 5.1.

As shown in Figure 5.1, the resulting images are poor in detail and clearness.
Due to the effect of the movement of the tractor, and also the low quality of
both camera sensor and optics, images suffer from blurring, soft hue and weak
contrast. Moreover, JPEG compression applied to images further decreased the
quality of the acquisition. For example, the inset of Figure 5.1 shows how similar
the appearance of the foreground grape bunches and the background small leaves
are.
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Figure 5.1: (a) A sample color image acquired by the Intel Realsense R200. (b)
and (c) are magnifications of the area enclosed by the yellow and cyan boxes,
respectively.

The automatic segmentation of natural images is achieved by representing them
in more descriptive and discriminative feature spaces, learned from actual images,
where pixels having similar semantic attributes can be grouped and labeled in
different classes. A set of annotated images is thus required to train the model
and then evaluate the segmentation results on ground truth.

Manual annotation is a complex, time-demanding and tedious task. For this
reason, annotation is typically limited to a small subset of all the images acquired
in-field. However, unlabeled images were captured under the same experimental
conditions and could give further information to tune the training of the networks
using semi-supervised approaches.

The whole dataset of 405 natural color images from the Intel Realsense R200
camera was thus split into two sets of 85 manually annotated images and 320
unlabelled images. The 20–80 proportion was chosen to give more evidence to the
improvement of results due to the semi-supervised approaches. Within these lines,
images were processed to segment five classes of interest:

• Bunch: bunches of white grapes;

• Pole: supporting infrastructure made of concrete or metal poles;

• Wood: canes, cordons and trunks of the plant;



82 Chapter 5 Applications to Precision Agriculture

• Leaves: canopy leaves of the grape; and,

• Background: the remaining objects framed by the camera, such as the
ground, the sky and far grape lines.

Manual annotation was performed twice on the same images to produce two
sets of labels:

• Bunch/leaves-detection-oriented (BLDO) labels: BLDO labels were the same
as in [216, 219, 213] and were mainly focused on the bunch and leaves seg-
mentation. The corresponding ground truth was obtained for each image,
giving different priority levels to each class. First, bunches were annotated
as closed objects, even if their appearance slightly differed from what was
expected as the effect of a crossing object or image artifacts. Then, plant
leaves, poles and wooden structures were annotated with the same strategy
but with decreasing priority levels. The background was the last labeled
class, enclosing the remaining pixels; and,

• Object-segmentation-oriented (OSO) labels: OSO labels were created for
an object segmentation task, as typically referred to in the corresponding
literature. Annotation gave equal priority to every class to label objects as
they appeared in the image.

An insight into the difference between the two kinds of labels is shown in
Figure 5.2. Specifically, all wooden structures or supporting infrastructures, i.e.
poles, have more weight and are better detailed since they are no longer included
in the leaves class. In the following lines, all analyses were run on BLDO labels
for enabling the comparison with previous results in [216, 219]. Then, further
experiments on the best models, trained by OSO labels, are presented to discuss
the importance of manual labeling for accurate segmentation results.

Once the datasets and their annotations have been presented, the following
subsections detail the network architectures and the semi-supervised algorithms
employed in this work.

5.1.1.2 Semantic segmentation models

As stated in the previous section, the 85 labeled images, split into training and
test sets, were used to set up and evaluate several deep segmentation architectures.
The training set was used to fine-tune several deep-learning segmentation archi-
tectures [220] to produce inference on natural images in the form of output masks.
With more details, 13 architectures, summarised in Table 5.1, were trained. All the
selected architectures were based on either fully convolutional networks (FCN) [31]
or encoder-decoder networks [32].
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(a) (b)

Figure 5.2: Annotations of the image in Figure 5.1: (a) bunch/leaves-detection-
oriented labels (BLDO); (b) object-segmentation-oriented labels, resulting in a fine
refinement of the BLDO labels in (a).

FCN architectures extract features from a given image using a backbone of con-
volutional layers and generate an initial coarse classification map. The classifica-
tion map is a spatially reduced version of the original image. Then, deconvolutional
layers restore the original resolution of the classification map to output the final
segmentation mask. The main two drawbacks of this architecture are the loss of
information when working with high-resolution images and its speed. For tackling
the high-resolution problem, in the HRNet architecture [221], high-resolution rep-
resentations were maintained by connecting high-to-low resolution convolutions in
parallel and repeatedly conducting multi-scale fusions across parallel convolutions.
Atrous convolutions were instead used in the DenseApp architecture [222] to face
the same resolution issue. For tackling the problem of the high time requirements,
the ContextNet architecture [223] used factorized convolution, network compres-
sion and pyramid representation, while the CGNet architecture [224] employed a
context-guided block.

In the encoder-decoder architectures, the encoder is usually made of several
convolutional and pooling layers responsible for extracting the features and gen-
erating an initial coarse prediction map. In these architectures, the encoder is
known as the backbone. The decoder, commonly composed of convolution, decon-
volution and/or unpooling layers, is responsible for further processing the initial
prediction map, increasing its spatial resolution gradually and generating the fi-
nal prediction. The Unet architecture [32] was the first network to propose an
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Type Segmentation architecture Backbones
FCN CGNet CGNet
FCN ContextNet ContextNet
FCN DenseApp DenseApp
FCN HRNet W30
Encoder-decoder Bisenet Resnet18, Resnet34
Encoder-decoder DeepLabV3+ EfficientNet-B3, Resnet50, Resnext50
Encoder-decoder FPENet FPENet
Encoder-decoder LedNet Resnet50
Encoder-decoder PAN EfficientNet-B3, Resnet50
Encoder-decoder Unet EfficientNet-B3, Resnest50, Resnet50
Encoder-decoder Unet++ EfficientNet-B3, Resnest50, Resnet50
Attention Manet EfficientNet-B3, Resnest50, Resnet50
Attention OCNet Resnet50

Table 5.1: Segmentation architectures and the backbones employed in this work.

encoder-decoder architecture to perform semantic segmentation in medical con-
texts. From that seminal work, several variants have been proposed to address
the two main limitations of the Unet architecture that are the same as previously
mentioned for the FPN architecture: the loss of information when working with
high-resolution images and its speed. Regarding the issues related to the use of
images of high-resolution:

• The DeepLabV3+ [225] architecture introduces the notion of atrous convo-
lutions to extract features at an arbitrary resolution.

• The PAN architecture [226] adopted a global attention upsample module to
squeeze high-level context and embedded it into low-level features as guid-
ance.

• The FPENet architecture [227] defines a MEU module that used attention
maps to embed semantic concepts and spatial details to low-level and high-
level features.

• The Unet++ architecture [228] redesigns the connection between the encoder
and the decoder components of the architecture.

Referring to the speed issue:

• The Bisenet architecture [229] proposed a fast downsampling strategy to
obtain a sufficient receptive field.

• The LedNet architecture [230] employed an attention pyramid network in
the decoder.
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All the aforementioned architectures are based on convolutional operations. In
addition, two architectures based on the attention mechanism, namely OCNet [231]
and Manet [232], were considered.

All the architectures with their respective backbones presented in Table 5.1
were trained using the PyTorch [233] and FastAI [153] libraries on an Nvidia
RTX 2080 Ti GPU. The procedure presented in [153] was employed to set the
learning rate for the different architectures (this procedure trains the model for a
few epochs while gradually increasing the learning rate and monitoring the loss at
each step. After training, it is possible to determine the learning rate where the
loss is decreasing rapidly and exhibits stability). Also, early stopping was applied
in all the architectures to avoid overfitting. The code employed to train these
models can be generated with the functionality of the framework presented at the
end of Chapter 3.

After training, all the models were then evaluated on the test set of 25 anno-
tated images using the mean segmentation accuracy of the c-th class (MSAc):

MSAc = mean

(
TPc
nobs,c

,∀ images ∈ dataset
)
.

where TPc is the number of true positives, i.e. correct pixel labels over the entire
population of the c-th class (nobs,c) [216].

5.1.1.3 Semi-supervised learning methods

As stated previously, the dataset contains 320 additional unlabeled images. In this
case, semi-supervised learning approaches can help the training phase by adding
more information from unlabeled images as we have seen in Chapter 2. For this
reason, three semi-supervised learning approaches were employed: PseudoLabel-
ing [109], Distillation [234] and Model Distillation [68] — all these methods are
available in the framework developed in Chapter 3. Figure 5.3 presents a sketch of
each of these semi-supervised learning methods. These methods are generalisation
of those presented for object detection in Chapter 2; so, we just provide a brief
overview of them here.

The PseudoLabeling approach consists of two steps: given a deep learning ar-
chitecture, a first model is trained using that architecture on a manually labeled
dataset to make predictions in an unlabeled dataset; secondly, the manually and
automatically-labeled datasets are combined to train a new model using the same
previous architecture. This PseudoLabeling approach was applied to all the archi-
tectures presented in the last section (Table 5.1).

The Distillation approach is similar to PseudoLabeling, but in the second step,
the trained model might have a different underlying architecture than the model
trained on the first step. In this case, all the models of Table 5.1 were trained
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Figure 5.3: Schemes of the semi-supervised approaches presented in this analysis:
(a) PseudoLabeling, (b) Distillation and (c) Model Distillation. Yellow, blue and
green arrows refer to the processes of dataset union between manual and auto-
matically labeled datasets, model training on the corresponding training set, and
prediction of the input images with the model crossed by the arrow, respectively.
The models enumerated from 1 to N represent the architectures and backbones of
Table 5.1.
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using the training procedure presented in the previous section, but only the best
model was used for generating the automatically labeled dataset. Then, both sets
(manually and automatically labeled) were combined to re-train all the architec-
tures from Table 5.1.

Finally, Model Distillation differs from the Distillation approach in the pro-
duction of the automatically labeled dataset. Instead of using a single model for
making predictions in an unlabeled dataset, predictions are generated from an
ensemble of models. In this approach, the five models with the best total MSA
produced the predictions on the unlabeled dataset, which were then combined to
create single images. Finally, as in the previous approaches, the manually and
automatically-labeled datasets were used to train all the architectures presented
in the last section.

In addition to searching for the best-performing model, a statistical study
was conducted to determine whether the results obtained with the different semi-
supervised learning approaches were statistically significant. To this aim, several
null hypothesis tests were performed using the methodology presented by [165,
166], and already explained in the previous chapter.

5.1.2 Results and discussion

The performance of the trained networks (both by applying and without applying
the semi-supervised learning methods) was evaluated considering an independent
test set of 25 images. Performance was first assessed using the BLDO labels to com-
pare the results with those in [216], where several classification networks (namely,
AlexNet, GoogleNet, VGG16 and VGG19) were implemented to construct prob-
ability maps from image patches generated using a sliding window. Then, the
best models were trained and tested using the OSO labels to show the influence
of manual annotation on the segmentation results. Finally, the inference time of
the different architectures was analysed.

5.1.2.1 Evaluation of the semi-supervised learning methods

All but two deep segmentation networks trained without semi-supervised learning
methods, see Table 5.2, outperformed the approach presented in [216].

Namely, the total MSA (average of the five MSAc values) of the best segmen-
tation model improved by more than 15%, and the bunch MSA more than 5%.
It is worth mentioning that the approach presented in [216] was aimed to help
only the segmentation of the bunch class. For this reason, the improvement in the
segmentation of the bunch class was lower than the one of the other classes, which
was much more considerable.
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Network Background Leaves Pole Bunch Wood Total

AlexNet 0.7691 0.7432 0.5486 0.7480 0.6677 0.6952
GoogleNet 0.6961 0.7280 0.5155 0.7441 0.5909 0.6549
VGG16 0.7671 0.7482 0.7646 0.7373 0.4713 0.6977
VGG19 0.8053 0.6899 0.7605 0.8058 0.3697 0.6863

Bisenet-ResNet18 0.8626 0.7327 0.8243 0.8199 0.8275 0.8160
Bisenet-ResNet34 0.8346 0.7755 0.8380 0.8354 0.8401 0.8293
CgNet 0.8480 0.7346 0.8203 0.8210 0.8234 0.8133
ContextNet 0.8118 0.7585 0.8248 0.8221 0.8260 0.8142
DeepLabV3+-EfficientnetB3 0.8292 0.7904 0.8415 0.8375 0.8446 0.8331
DeepLabV3+-ResNext50 0.8523 0.8067 0.8531 0.8509 0.8585 0.8478
DeepLabV3+-ResNet50 0.7959 0.6830 0.7825 0.7802 0.7854 0.7713
DenseApp 0.8721 0.6729 0.7919 0.7884 0.7972 0.7859
FPENet 0.1505 0.3910 0.2887 0.2828 0.2863 0.2849
HRNet 0.9042 0.7393 0.8337 0.8324 0.8393 0.8308
LedNet 0.8289 0.6993 0.8035 0.8013 0.8028 0.7920
Manet-EfficientnetB3 0.8463 0.8019 0.8536 0.8569 0.8545 0.8469
Manet-Resnest50 0.8448 0.7974 0.8501 0.8467 0.8602 0.8442
Manet-Resnet50 0.8107 0.7898 0.8485 0.8451 0.8517 0.8363
OCNet 0.8267 0.7669 0.8265 0.8259 0.8345 0.8206
Pan-EfficientnetB3 0.8133 0.7645 0.8228 0.8211 0.8251 0.8144
Pan-Resnet50 0.7995 0.8209 0.8445 0.8404 0.8472 0.8358
Unet-EfficientnetB3 0.8494 0.7093 0.8227 0.8204 0.8262 0.8109
Unet-Resnest50 0.8693 0.6602 0.8018 0.8004 0.8064 0.7915
Unet-Resnet50 0.8791 0.7320 0.8268 0.8229 0.8376 0.8220
Unet++-EfficientnetB3 0.8718 0.7672 0.8383 0.8385 0.8459 0.8349
Unet++-ResNest50 0.2076 0.7158 0.5068 0.5061 0.5085 0.5003
Unet++-ResNet50 0.8540 0.7892 0.8557 0.8460 0.8522 0.8435

Table 5.2: Mean segmentation accuracy (percentage) computed on test images of
the deep learning models trained by the manually labeled dataset. In bold face
the best result for each class and dataset.

If we compare the segmentation networks, there were four networks (Deep
LabV3+-ResNext50, Manet-EfficientnetB3, Manet-Resnest50 and Unet++-Res
Net50) with a total MSA of over 84%. Among them, the DeepLabV3+-ResNext50
showed better segmentation accuracy than the other networks. With the focus
on the bunch class, the DeepLabV3+-ResNext50 and the Manet-EfficientnetB3
networks shined before the others achieving an MSA over 85% for that class.
The Pan-Resnet50 model produced the best segmentation of the leaves, while
the Unet++-ResNet50 model outperformed the others for the pole class and the
Manet-Resnest50 model for the wood class. This illustrates the importance of
testing different architectures since they focus on various aspects of the images.
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Input
Image

Ground
Truth

Pan-
Resnet50
(Leaves)

Unet++-
ResNet50
(Pole)

Manet-
EfficientnetB3
(Bunch)

Manet-
Resnest50
(Wood)

Table 5.3: Example of the segmentation results using the best model for each class.

Therefore, different models can be employed with different aims. For instance,
if the final objective is measuring the production of grape bunches, DeepLabV3+-
ResNext50 or Manet-EfficientnetB3 models should be used since they provided
the best accuracy for the bunch class. In contrast, if this segmentation aims at
trimming, Manet-Resnest50 model should be used since it offered the best accuracy
for the wood class.

In addition to the raw numbers, several conclusions can be drawn by observing
the segmentations of the best model for each class in Table 5.3. For the same image,
even if all the models achieved a mean bunch segmentation accuracy of over 80%,
only the Manet-EfficientnetB3 model could detect three of the four grape bunches.
In addition, some leaves partially occluded the last bunch, making segmentation
difficult since that region was segmented as either background or leaves by all the
models.

The impact of the different semi-supervised learning methods for the studied
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networks is provided in Table 5.4. At the same time, Table 5.5 shows the effects of
applying these approaches on the segmentation mask output of the DeepLabV3+-
ResNext50 model, which produced the best total MSA with plain training. From
Table 5.5, it can be noticed that the segmentations made by using the semi-
supervised learning methods were more precise than those produced by the original
models. This happens because the semi-supervised methods helped to smooth the
predictions. It is also worth mentioning that training using semi-supervised learn-
ing methods could help detect objects, like grape bunches in the pseudolabeling
approach of Table 5.5, that were not previously seen by the models trained only
with the manually annotated data.

Model Plain training PseudoLabeling Distillation Model Distillation

Bisnet-ResNet18 0.8160 0.8391 0.8400 0.8160
Bisnet-ResNet34 0.8293 0.8410 0.8378 0.8363
CgNet 0.8133 0.8290 0.8354 0.8314
ContextNet 0.8142 0.7859 0.8344 0.8324
DeepLabV3+-EfficientnetB3 0.8331 0.8482 0.8496 0.8482
DeepLabV3+-ResNext50 0.8478 0.8545 0.8545 0.8586
DeepLabV3+-ResNet50 0.7713 0.8554 0.8549 0.8549
DenseApp 0.7859 0.8364 0.8347 0.8289
FPENet 0.2849 0.8352 0.8368 0.8328
HRNet 0.8308 0.8489 0.8507 0.8519
LedNet 0.7920 0.8370 0.8472 0.8465
Manet-EfficientnetB3 0.8469 0.8554 0.8554 0.8554
Manet-Resnest50 0.8442 0.8375 0.8457 0.8375
Manet-Resnet50 0.8363 0.8343 0.8285 0.8343
OCNet 0.8206 0.8305 0.8246 0.8243
Pan-EfficientnetB3 0.8358 0.8539 0.8339 0.8342
Pan-Resnet50 0.8144 0.8197 0.8357 0.8362
UNet-EfficientnetB3 0.8109 0.8369 0.8487 0.8369
UNet-Resnest50 0.7915 0.8537 0.8537 0.8537
UNet-Resnet50 0.8220 0.8506 0.8506 0.8506
Unet++-EfficientnetB3 0.8349 0.8212 0.8445 0.8445
Unet++-ResNest50 0.5003 0.8526 0.8526 0.8526
Unet++-ResNet50 0.8435 0.8566 0.8537 0.8566

Table 5.4: Total mean segmentation accuracy (percentage) from applying the dif-
ferent semi-supervised learning procedures to label the testing images. In bold
face the best result for each metric and dataset.

With more details, the PseudoLabeling approach produced a mean improve-
ment of 5.62% (with a standard deviation of 13.04%). Only four networks got
worse results using this training approach while, in some cases, namely for the
FPENet model in Table 5.6, the improvement was over 55%. In Table 5.6, grape
bunches and other objects that were not segmented with the initial FPENet model
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were correctly detected using the FPENet version trained with the PseudoLabel-
ing approach. Similarly, the distillation method produced a mean improvement of
6.01% (with a standard deviation of 12.91%), with only two networks having worse
results. Finally, the model distillation method also considerably improved the per-
formance of the models (a mean of 5.80% with a standard deviation of 12.90%).
However, this improvement was slightly lower than the distillation approach.

Input
Image

Ground
Truth

Plain Pseudo
Label-
ing

Distillation Model
Distilla-
tion

Table 5.5: Example of the segmentation results using DeepLabV3+-ResNext50
with the four training strategies.

As stated before, a statistical analysis was performed to determine significant
differences among the training procedures. Since the normality condition was
not fulfilled (Shapiro–Wilk’s test W = 0.313172; p = 0.000000), Friedman’s non-
parametric test was employed to compare the training procedures. Friedman’s test
performed a ranking of the training procedures under comparison (see Table 5.7),
assuming as null hypothesis that all the models have the same performance. In this



92 Chapter 5 Applications to Precision Agriculture

Input
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Ground
Truth

FPENet
Plain

FPENet
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ing

Table 5.6: Example of the segmentation results using DeepLabV3+-ResNext50
with the four training strategies.

case, significant differences arised (F = 15.66; p < 8.4-8e) with a large size effect
eta squared 0.13. The distillation method produced the best models. Moreover,
looking at the standard deviation values of Table 5.7, the performance variability
produced by the distillation approach is considerably reduced compared with plain
training. Consequently, models can be trained more efficiently but can lead to poor
results if only manually annotated data is used.

Training Technique Mean Total MSA (std) Friedman’s Test Avg. Ranking

Plain training 0.7837 (0.1263) 1.2246
PseudoLabelling 0.8397 (0.0158) 2.7518
Distillation 0.8436 (0.0091) 3.2808
Model Distillation 0.8415 (0.0114) 2.7427

Table 5.7: Friedman’s test for the mean Total MSA of the training methods.

Table 5.8 shows the results of the application of the Holm algorithm to compare
the control training procedure (winner, based on distillation) with all the other
training approaches, adjusting the p-value. Results proved significant differences
between the semi-supervised learning procedures and the plain training approach,
while all the semi-supervised learning methods produced the same outcomes. The
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size effect was also taken into account using Cohen’s d, and, as shown in Table 5.8,
it is medium or large when the winning approach was compared with the rest of
the models.

Training Technique Z Value p-value Adjusted p-value Cohen’s d

PseudoLabelling 0.992945 0.320737 0.625041 0.2966
Model Distillation 1.00995 0.312521 0.625041 0.2011
Plain training 3.85956 0.000113 0.000340 0.6570

Table 5.8: Adjusted p-values with Holm and Cohen’s d. Control technique: Dis-
tillation.

In summary, semi-supervised learning methods provided a considerable boost
to all segmentation models without requiring the annotation of additional im-
ages. Providing precise annotations was a time-consuming task, and, therefore,
reducing the annotation load could help the adoption of deep learning methods.
However, deep learning models can only learn what is provided in the annotations.
For segmentation tasks in agriculture, several small objects that are far from the
objective are annotated as background, making unfeasible their automatic segmen-
tation, even applying semi-supervised learning methods. This could be solved by a
more fine-grained annotation, implementing object-segmentation-oriented (OSO)
labels, as show in the next section.

5.1.2.2 Evaluations with OSO labels

As described in Section 5.1.1.1, a different annotation scheme was followed to pro-
duce more refined labels suitable for object segmentation models (OSO labels).
These labels were used to train the same segmentation models of Table 5.1, fol-
lowing the plain training approach. The new results of the different architectures
trained with the OSO labels are shown in Table 5.9.

Several models achieved a total MSA of over 85%, including DeepLabV3+-
ResNet50, Pan-Resnet50, HRNet and all the versions of the Unet and Unet++
architectures. The best overall model was HRNet, with a total MSA of 85.91%.
This model also obtained the best accuracy for the leaves, pole and bunch classes.
In contrast, the best models for segmenting wood and the background were based
on the Unet++ architecture. The outstanding results of the HRNet model were
due to the design of its architecture, which aggregated the output representations
at four different resolutions, thus allowing models to provide a precise segmentation
of objects with different scales.

Segmentation maps in Table 5.10 help draw additional conclusions about the
models trained with the BLDO and OSO labels. For the same image, the best over-
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all model trained with the BLDO labels (DeepLabV3+-ResNext50 using Model
Distillation) and the best model trained with the OSO labels (HRNet using plain
training) could both segment grape bunches and leaves. However, the segmenta-
tion of smaller objects, such as small wooden fragments, was much better when
models were trained with OSO labels. In contrast, BLDO labels were not accurate
enough to train a model able to recognise of such small objects, even using any
semi-supervised learning approach.

Network Background Leaves Pole Bunch Wood Total

Bisenet-ResNet18 0.7445 0.7124 0.7937 0.7947 0.8192 0.7832
Bisenet-ResNet34 0.8201 0.7827 0.8372 0.8366 0.8611 0.8333
CgNet 0.8301 0.7746 0.8376 0.8387 0.8547 0.8326
ContextNet 0.7805 0.7855 0.8297 0.8320 0.8521 0.8238
DeepLabV3+-EfficientnetB3 0.8735 0.7743 0.8452 0.8448 0.8585 0.8421
DeepLabV3+-ResNext50 0.8411 0.8110 0.8525 0.8513 0.8665 0.8485
DeepLabV3+-ResNet50 0.8666 0.7947 0.8531 0.8531 0.8665 0.8502
DenseApp 0.8153 0.7547 0.8205 0.8223 0.8439 0.8170
FPENet 0.6656 0.6972 0.7427 0.7434 0.7655 0.7329
HRNet 0.8541 0.8256 0.8621 0.8631 0.8725 0.8591
LedNet 0.7847 0.7684 0.8289 0.8255 0.8502 0.8197
Manet-EfficientnetB3 0.8463 0.8019 0.8536 0.8569 0.8545 0.8469
Manet-Resnest50 0.8033 0.5519 0.7154 0.7107 0.7288 0.7059
Manet-Resnet50 0.8294 0.7684 0.8403 0.8391 0.8595 0.8335
OCNet 0.8296 0.7312 0.8149 0.8155 0.8402 0.8115
Pan-EfficientnetB3 0.8221 0.8140 0.8503 0.8512 0.8630 0.8453
Pan-Resnet50 0.8602 0.7973 0.8539 0.8556 0.8682 0.8509
Unet-EfficientnetB3 0.8689 0.7938 0.8539 0.8551 0.8678 0.8512
Unet-Resnest50 0.8806 0.7972 0.8575 0.8582 0.8714 0.8556
Unet-Resnet50 0.8690 0.8031 0.8557 0.8567 0.8678 0.8535
Unet++-EfficientnetB3 0.8729 0.7960 0.8571 0.8581 0.8730 0.8549
Unet++-ResNest50 0.8828 0.7999 0.8603 0.8603 0.8725 0.8578
Unet++-ResNet50 0.8727 0.8088 0.8584 0.8581 0.8673 0.8556

Table 5.9: Mean segmentation accuracy (percentage) computed on test images of
the deep learning models trained on the improved version of the OSO dataset. In
bold face the best result for each metric and dataset.

Therefore, whether it is better to produce a dataset with a coarse annotation
that is later combined with semi-supervised learning methods, or a dataset with
a fine-grained annotation depend on the final aim of the trained models. Pro-
duction monitoring or vegetation indices estimation require the segmentation of
the main objects of the images (bunches and leaves), achievable even with coarse
datasets carrying information about their appearance. However, tasks like trim-
ming or robot harvesting require more precise segmentation to interact with the
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Original Im-
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Table 5.10: Comparison of the results obtained with the best model trained with
the BLDO labels (DeepLabV3+-ResNext50 using Model Distillation) and the best
model (HRNet) trained with refined OSO labels.

environment appropriately. Here, it was mandatory to invest more time and effort
in producing a fine-grained annotation of the images.

5.1.2.3 Time inference performance

This comparative study ends with the analysis of the inference time of the models
since producing segmentation in a reasonable time is as crucial as obtaining precise
results. This will enable their actual implementation for accurate yield monitoring
and robot harvesting in almost real-time. The inference times of each model using
an Nvidia RTX 2080 Ti GPU and an Intel(R) Core(TM) i7-4790 CPU @ 3.60
GHz are shown in Figure 5.4. It is worth noticing that the inference time was
independent of the training method or the dataset used to construct the models as
it only depends on the selected architecture. The DeepLabV3+-ResNext50 model,
which obtained the best accuracy with BLDO labels, could process 100 images
in 26.1 ms using a GPU and 315 with a CPU; whereas the HRNet model, which
obtained the best accuracy with the OSO labels, processed 100 images in 26.3 ms
using a GPU and 118 ms with a CPU. The best model at inference time was the
ContextNet model, which segmented 100 images in 11.6 ms using a GPU and 68.9
ms using a CPU. This model also provided the best trade-off between accuracy
and inference time. Therefore, ContextNet would be the preferred model to be
implemented in-field for real-time processing.
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Figure 5.4: Inference time (in milliseconds) for 100 images of each segmentation
model using both a CPU and a GPU.

As a conclusion, we have shown that the application of semi-supervised learning
methods produce more accurate models than models only trained with manually
labelled images. Moreover, we have proven that coarse labels can be efficiently
used to model objects of large sizes and more detailed labels can be used to create
fine-grained segmentation models. In the next section, we will prove that our
approach generalises when applied to different datasets.

5.2 Generalization of the deep learning models

As we have seen in the previous section, the exact inference of productivity traits
needs proper software solutions falling in semantic segmentation. One of the main
problems in the related literature is the lack of generalisation of the segmentation
models to new scenarios. Typical approaches consider single datasets for both
training and testing the methodologies. This clearly induces a positive bias to the
performance. Moreover, datasets often focus on specific maturation degrees, for
instance, collected before pruning or harvesting [235, 236].

This part of the chapter tackles these two problems to demonstrate the that
generalises to new scenarios the approach proposed in the previous section with
the best performing models.
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5.2.1 Materials and methods

In this section, we present both the viticulture and computational materials and
methods employed for building semantic segmentation models and test their gen-
eralisation.

5.2.1.1 Dataset

The proposed experiments considered three datasets of natural images captured
in different vineyards.

(a) (b) (c)

Figure 5.5: Sample images and corresponding ground truth. Images were taken in
(a) July 2021, (b) September 2021, and (c) October 2021. In the ground truths,
black, green and white segments refer to background, leaves and grape bunches,
respectively.

A low-cost RGB-D sensor, the Intel RealSense D435 (Santa Clara, CA, USA),
mounted onboard a moving vehicle, acquired the first DRS dataset. The experi-
mental field was in San Donaci (Italy), and the grape variety was Vitis vinifera,
cultivar “Negroamaro” (red grape variety). The camera was tilted by 90° to have
data in portrait mode. The plants were acquired frontally, at a distance between
0.8 and 1 m, as the vehicle flowed through the rows of vines. The DRS dataset con-
sisted of three sets of images, captured at three stages of the seasonal grapevine
phenological development, i.e., at fruit set (July 16th, 2021), before harvesting
(September 10th, 2021), and at the beginning of leaf fall (October 22nd, 2021).
This choice guarantees good variability among the images of the dataset of both
grape color and shape (from July to September) and leaves color (from Septem-
ber to October). The total amount of color images (1280 × 720 pixel resolution)
equals to 29464. Since manual annotation is time demanding and labor intensive,
only 265 images were manually labeled (98 in July, 98 in September, and 69 in
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October), specifically, the datasets consists of 212 images for training and 54 for
testing.

Figure 5.6: Color images of the DAK dataset. Acquisitions were taken on Top-Left.
May 16th, Top-Right. June 23rd, Bottom-Left. August 2nd, and Bottom-Right.
October 3rd, 2022.

Manual annotation was performed to create a segmentation ground truth of
three classes: the canopy (high vegetation other than the trunk), the grapes (grape
bunches), and background (the remaining pixels). Three image samples taken at
different times are shown in Figure 5.5. It is worth noting that the RGB-D camera
returned more data, including infrared images and depth maps. However, only
color information was used at this moment.

The Microsoft Azure Kinect (Redmond, WA, USA) camera captured the im-
ages of the second dataset considered (DAK). In this case, images were acquired
in a commercial field in Andria (Italy), devoted to a red wine grape variety (Vitis
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vinifera, cultivar “Nero di Troia”). The camera was manually handled and acqui-
sitions were captured holding still the setup on a tripod. In this case, the images
were taken frontally to the plants between 0.8 and 1.2 m, keeping the camera
horizontal. Six experimental campaigns were repeated between May 2022 and
October 2022, producing 92 color images of 2048 × 1536 pixel resolution. These
images captured 210 grape bunches (an average of 2.28 grape bunches per image).

(a) (b)

Figure 5.7: Color images from the dataset DSPh. (a) Bombino red grave variety
and (b) Nero di Troia red grape variety.

Four sample images taken in May, June, August, and October 2022 are shown in
Figure 5.6.

The third dataset, DSPh, is made of images captured by a Xiaomi Redmi Note 9
Pro smartphone (Beijing, China) in two commercial fields sited in Ruvo di Puglia
(Italy) with vine plantations of two red grape varieties (Vitis vinifera, cultivars
“Bombino” and “Nero di Troia”). The smartphone was handheld to capture images
in portrait mode at a distance between 0.8 and 1.2 m from the plants, with a
resolution of 3472 × 4640 pixels. The dataset includes 32 photos of the Bombino
red grape variety and 15 photos of the Nero di Troia red grape variety. Both sets
of acquisitions were performed in September 2021, before harvesting. 114 grape
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bunches were captured in the DSPh dataset, corresponding to 2.43 bunches per
image on average. Figure 5.7 shows two sample images of the dataset DSPh of the
two varieties of red wine grapes.

5.2.1.2 Computational methods

A comparison of models trained on a subset of 212 images of DRS was proposed
to determine which one outperforms the others, and to generalise its applica-
tion to DAK and DSPh. The following encoder-decoder networks were consid-
ered (these are the four networks that got the best results in the previous sec-
tion): UNet++ [228] with ResNet50 backbone, DeepLabv3+ [225] with ResNext50
backbone and two Multi-Attention Networks (MANet) with EfficientNetB3 and
ResNest50 backbones. The architectures with their respective backbones were
trained using the same approach presented in the previous section.

The performance of the four presented models was compared in a test phase.
After training, the developed networks were used to make predictions on the 54
test images, which were not used during training, even if acquired under the same
experimental conditions. For each c−th class of the three target classes, segmen-
tation accuracy (SAc) was computed by exploiting the annotated ground truths:

SAc =
TPc
nobs,c

,∀ images ∈ DRS

where TPc is the number of correct pixel labels of the c−th class and nobs,c is its
population. The arithmetical mean was then used to obtain the mean segmentation
accuracy (MSA) [216]. The results of the application of the trained model to
the other two datasets (DAK and DSPh) were not discussed in terms of MSA
since images were not annotated. On the contrary, the correct detection of grape
bunches was assessed through recall, precision and F1-score.

5.2.2 Results and Discussion

As discussed above, the four considered models have been trained and tested on the
color images of the DRS annotated dataset. The results on the test are provided
in Table 5.11, which shows the SA of the three target classes and the global MSA
of the four trained models.
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Network SABackground SACanopy SAGrapes MSA

Unet++ - ResNet50 0.9548 0.7998 0.9446 0.9364
DeepLabv3+ - ResNext50 0.9766 0.7857 0.9510 0.9472
Manet - EfficientNetB3 0.9772 0.7645 0.9501 0.9450
Manet - ResNest50 0.9358 0.7846 0.9315 0.9205

Table 5.11: SA of the three classes of the dataset DRS and global MSA computed
on test set. In bold face the best result for each metric and dataset.

The performance analysis in Table 5.11 revealed that all four network architec-
tures could accurately segment the three classes of interest. In general, the canopy
class showed lower values of SA, since the high temporal variability within the
dataset DRS induced significant differences in the canopy appearance. However,
this problem did not affect the grape class, which was always detected with ac-
curacy values higher than 93%, even if the grape appearance varied in both sizes
and colors.

The comparison of the four trained models also showed that the DeepLabv3+
architecture with ResNext50 backbone showed the best MSA and SAGrapes, with
94.72% and 95.10%, respectively. Since model generalization is aimed at grape
bunch segmentation, the tests on the other two datasets (DAK and DSPh) were
made with the best model working on the labeled dataset DRS, i.e. with the
DeepLabv3+–ResNext50 model.

The DeepLabv3+ architecture with the ResNext50 backbone trained with the
DRS dataset was then applied to the 92 color images of the DAK dataset. Before
processing, the 92 images were cropped to match the portrait proportion (9:16)
of the images in DRS. Starting from the predicted bunch segments in the images
of the DAK dataset, the model generalisation capability was assessed in terms of
grape bunch detection. Within these lines, a detection is correct (true positive,
TP) if the intersection of the predicted and expected bunch segment is not void.
Misdetections (false negatives, FN) and wrong detections (false positives, FP) were
then used to compute test metrics. As a result, the DeepLabv3+-ResNext50 scored
72.86%, 66.52% and 69.55% in recall, precision and F1 scores, experts consider
these results to be either sufficiently good for the information they need.

Four examples of prediction on images acquired at different ripeness levels and
light conditions are shown in Figure 5.8. Specifically, Figure 5.8(a) and (b) prove
an excellent recall in segmenting white and red grapes, i.e. regardless of their
ripeness level. On the other hand, Figure 5.8(c) and (d) show the source of errors
that down the final scores. Concerning Figure 5.8(c), leaves turning brown became
false positive predictions of grape bunches, which decreased the precision value.
Moreover, challenging light conditions, such as the one in Figure 5.8(d), did not
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allow the detection of dark grapes, with a consequent decrease in the recall.

(a) (b) (c) (d)

Figure 5.8: Predictions on images taken at (a) grapevine development, (b) before
harvesting, (c) at leaf fall and (d) with opposite light. Images have a superimposed
semi-transparent mask: light green segments refer to the leaves and light red
segments correspond to detected grape bunches.

The same DeepLabv3+-ResNext50 model was finally tested on the 47 images
of the DSPh dataset for grape bunch detection. In this case, the network scored
66.67%, 89.41% and 94.41% in recall, precision and F1-scores, respectively. Three
sample predictions made on images of the two different grape varieties (Bombino
and Nero di Troia) are shown in Figure 5.9. The recall in grape bunch detection
was lower than that achieved in the DAK dataset since the camera was handheld
and its point-of-view had a large variability. This effect is evident in Figure 5.9(c),
where grape bunches were not detected and included in the leaf class. On the
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contrary, the precision in grape detection was higher than its counterpart of the
DAK dataset since images of DSPh were taken at the same seasonal phenological
development, before harvesting. For this reason, false positives were limited to 9
over 76 true positive predictions of grape bunches. It is worth underlining that
the different grape varieties of DSPh did not affect the final scores.

(a) (b) (c)

Figure 5.9: Sample predictions on images of the DSPh dataset framing (a) the
Bombino and (b) the Nero di Troia red grape variety. Subplot (c) shows an example
of misdetection due to the altered camera point-of-view. Images have a semi-
transparent mask where light green and light red refer to leaf and grape segments.

We have shown in this section that the approach followed to create segmen-
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tation models generalises when applied to unseen conditions during training. In
the next section, we will take advantage of additional information provided by the
RGB-D cameras to further improve the performance of the models.

5.3 Taking Advantage of Depth Information

As we have explained previously, our datasets were captured with a RGB-D cam-
era, but depth information was not initially considered.

In general, convolutional neural models can automatically segment crop ele-
ments based on their colour and texture attributes from RGB images [237], and
depth information can reduce the uncertainty of the segmentation of objects having
similar appearance information [238]. However, it is not clear what is the optimal
way of fusing RGB and depth information. Several works suggest [239] that depth
information can help the segmentation of classes of close depth, appearance and
location. On the contrary, it is better to use only RGB information to recognize
object classes containing high variability of their depth values [240].

In this part of the work, depth information has been incorporated into deep
learning models to obtain more accurate segmentations in viticulture. In particu-
lar, using a dataset of images taken with an Intel Realsense D435 stereo camera,
RGB-D images have been used to train four segmentation architectures (Unet++-
ResNet50, DeepLabV3-ResNext, Manet-Efficient, and Manet-ResNeSt) and com-
pared against models trained with only RGB images. The main drawback of
RGB-D models is the necessity of using images captured with cameras able to ac-
quire depth information, and such cameras are usually more expensive than RGB
cameras. In order to deal with this issue, we have employed a Dense Prediction
Transformer model [241] to generate the depth channel from RGB images. This
allows the usage of RGB-D models with RGB images captured, for instance, with
a mobile phone.

5.3.1 Materials and methods

In this section, we present both the dataset and computational materials and
methods employed to take advantage of depth information.

5.3.1.1 Dataset

For this work, the employed dataset is the DRS dataset that we have introduced
in the previous section. The main difference is that we have also used the depth
information of each image provided by the Intel Realsense D435 camera.
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The dataset consists of 265 colour images in PNG format, see Figure 5.10(a).
In addition, the Intel Realsense D435 camera provides the depth of each image in
the RAW format, see Figure 5.10(b). Finally, the images were manually annotated
to produce the masks with the regions corresponding to the grape bunches and
canopy, see Figure 5.10(c). The dataset was divided into two subsets: the training
set (212 images) and the test set (54 images).

(a) (b) (c)

Figure 5.10: (a) A sample colour image acquired by the Intel Realsense D435
camera; (b) The corresponding depth image; (c) The annotation of the image.
Black pixels correspond with the background, yellow pixels with the regions of the
grape bunches, and green pixels with the canopy regions.

There are three versions of the dataset: RGB, RGB-D, and RGB-D-generated.
In the RGB version of the dataset, the images of both the training and test set
are RGB images – that is, the depth information was discharged. In the RGB-D
version, the information from RGB channels and depth channel of the images of
both the training and test set was combined as follows. The RAW images captured
with the Intel Realsense D435 camera provide information about the depth of
objects that are located up to 65 metres away (see Figure 5.11(a)); however, plants
are located less than 3 metres away; hence, the depth information related to objects
farther than 3 metres away is removed from the image (see Figure 5.11(b)). Finally,
such an image is combined with the RGB image obtaining an RGB-A image with
four channels where one of them is the alpha channel, see Figure 5.11(c).
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(a) (b) (c)

Figure 5.11: RGB-D transformation process of the image from Figure 2(a). (a)
Depth image with information up to 65 metres; (b) Depth image with information
up to 3 metres; (c) RGB-A image produced by combining the image from Figure
2(a) and the image from Figure 3(b).

Finally, in the third version of the dataset (called RGB-D-generated), the im-
ages of the training set were generated by using the aforementioned procedure.
However, the images of the test set were generated as follows. From the RGB
images of the test set, their depth information was computed by means of the
Dense Prediction Transformer presented in [241]. Then, the RGB images and the
automatically generated depth images were combined to obtain RGB-A images —
as far we are a ware, this is the first time that this procedure has been applied
in the agricultural settings. In Figure 5.12 an example of the images generated
following this process is presented.

5.3.1.2 Computational methods

As in the previous section the Unet++ architecture with a ResNext50 back-
bone [228], the DeepLabV3 architecture with a ResNext50 backbone [225], and
the Manet architecture with an EfficientNetB3 and a ResNest50 backbone have
been employed to construct segmentation models with the 3 versions of the dataset
(note that the models built with the RGB-D version of the dataset are the same
than the models built with the RGB-D-generated version of the dataset). These
architectures were chosen since they obtained the best results in the study pre-
sented in Section 6.1. The architectures with their respective backbones were
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(a) (b) (c)

Figure 5.12: Generation of images of the test set from the RGB-D-generated
dataset. (a) original image, (b) generated depth image obtained by using the
transformer model, (c) RGB-A image obtained by combining images (a) and (b).

implemented and trained using the same procedure presented previously. In order
to feed RGB-A images to these architectures, they were converted to RGB images
using the Pillow library [242].

After training, all the models were then evaluated using the mean segmentation
accuracy that we explained in the previous section.

5.3.2 Results and Discussion

The performance of the trained networks was first evaluated using the RGB ver-
sion of the dataset, these results were presented in Table 5.12. If the segmentation
networks are compared, DeepLabV3+-ResNext50 showed better overall segmen-
tation accuracy than the other networks. The Unet+-ResNet50 model produced
the best results for canopy segmentation with an accuracy of 79%, whereas the
DeepLabV3+-ResNext50 model, with an accuracy of 94%, outperformed the oth-
ers for segmenting objects of the grape class.

The results for the RGB-D version of the dataset are presented in Table 5.13.
The RBG-D models improved between 2% and 4% the overall mean segmentation
accuracy of their RGB counterparts. For this version of the dataset, the best model
was built using the architecture Unet++ with a ResNet50 backbone; this model
achieved a segmentation accuracy for the canopy of 82%, for grape bunches of 95%,
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Network SABackground SACanopy SAGrapes MSA

Unet++-ResNet50 0.9548 0.7998 0.9446 0.9364
DeepLabV3+-ResNext50 0.9766 0.7857 0.9510 0.9472
Manet-EfficientnetB3 0.9772 0.7645 0.9501 0.9450
Manet-ResNest50 0.9358 0.7846 0.9315 0.9205

Table 5.12: Mean segmentation accuracy (percentage) computed on test images of
the RGB dataset. In bold the best results.

and an overall mean segmentation accuracy of 95%. This shows the positive effect
of adding the depth information to the RGB image, since adding such information
allows the models to focus on the objects of interest, and also discard elements of
the background that can be wrongly classified as either leaves or grape bunches.

Network SABackground SACanopy SAGrapes MSA
Unet++-ResNet50 0.9791 0.8191 0.9583 0.9547
Deeplab-ResNext 0.9704 0.8115 0.9533 0.9482
Manet-Efficientnet 0.9553 0.6770 0.9550 0.9296
Manet-ResNest 0.9752 0.8151 0.9552 0.9512

Table 5.13: Mean segmentation accuracy (percentage) computed on test images of
the RGB-D dataset. In bold the best results.

Finally, the results obtained with the models for the RGB-D-generated dataset
are presented in Table 5.14. As previously mentioned, these results are obtained
with the models trained on the RGB-D dataset but evaluated with images where
depth information was automatically generated. Using this approach, the overall
mean segmentation of all the models improved up to 0.47%. Again, the best
results were achieved with the model built using the architecture Unet++ with
a ResNet50 backbone. Such a model obtained a segmentation accuracy of 96%
for grape bunches (an improvement of 0.26% regarding the best previous model),
and 86% for canopy (an improvement of 4.6% regarding the best previous model).
This improvement is due to the fact that depth images automatically generated
provide a higher level of detail at close distances than depth images captured with
the camera, see Figure 5.11(b) and Figure 5.12(b). Hence, in addition to removing
regions that are not relevant to the models (as in the case of the images from
the RGB-D dataset), images from the RGB-D-generated dataset preserve some
information that was discarded in the RGB-D images.
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Network SABackground SACanopy SAGrapes MSA
Unet++-ResNet50 0.9754 0.8654 0.9609 0.9580
Deeplab-ResNext 0.9681 0.8612 0.9574 0.9529
Manet-Efficientnet 0.9513 0.7234 0.9592 0.9331
Manet-ResNest 0.9729 0.8541 0.9585 0.9546

Table 5.14: Mean segmentation accuracy (percentage) computed on test images of
the RGB-D-generated dataset. In bold the best results.

(a) (b) (c) (d) (e)

Figure 5.13: (a) Original Image; (b) Mask; (c) Prediction Unet++-ResNet50;
(d) Prediction U++ ResNet50 with RGB-D; (e) Prediction U++ ResNet50 with
RGB-D Generate.

In addition to the raw numbers, several conclusions can be draw from the
segmentation of the best models for each class in Figure 5.13. As we can be
seen in Figure 5.13(c), the best RGB segmentation model finds where the leaves
are but misses many of them. For the grapes, such a model is not able to find
them and gets confused with the pole. On the contrary, the RGB-D model, see
Figure 5.13(d), knows where the grapes are and can differentiate the pole, but
mixes the leaves with the background. Finally, when applied the RGB-D model
to an image where depth is automatically generated, see Figure 5.13(e), the model
is perfectly capable of detecting where are the leaves and grapes. As we have
explained before, this happens because the generated depth image allows us to
preserve some information that is removed when the depth from the camera is
used.

As a conclusion of this section, we have shown the benefit of working with
RGB-D images instead of only using RGB images. Moreover, we have seen that
once models are trained, we can apply the models to RGB images by automatically
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generating depth information using a deep learning model.

5.4 Conclusions
In this part of the memoir, we have developed models for the segmentation of
different elements in a vineyard. Moreover, we have seen how the performance
of those models can be improved thanks to the application of semi-supervised
learning methods, and also using depth information both captured with a RGB-D
camera and automatically generated using deep learning models. Furthermore, we
have proven that those models generalise to unseen conditions.

The work presented in this chapter is a first step towards improving automatic
monitoring of performance and production in vineyards. Thanks to our contribu-
tions it it possible to create accurate segmentation models that work with low-cost
cameras and can be applied in-field to help farmers.



Conclusions and Further work

In this work, we have developed several methods and tools that facilitate the con-
struction and usage of object detection models and improve their performance.
Moreover, we have given the first steps towards generalising our methods to other
Computer Vision tasks such as image classification or semantic segmentation. Fi-
nally, we have proven the benefits provided by our methods in actual problems
coming from plant physiology and precision agriculture. From our point of view,
the main contributions accomplished in this work are the following ones.

In Chapter 2, we presented a generic ensemble algorithm for object detection
models that can be applied independently of the algorithm and library used for
training those models. Our ensemble algorithm can be used not only to combine
the output of several object detection models but also to apply test-time aug-
mentation. Thanks to these methods it is possible to considerably improve the
performance of object detection models. Moreover, our ensemble algorithm can
be employed to reduce the burden of annotating datasets since it was the basis to
define two new semi-supervised learning algorithms (called data-distillation and
model distillation). Finally, all the methods presented in the Chapter 2 have been
implemented in an open-source library called EnsembleObjectDetection.

The methods presented in Chapter 2 require object detection models that have
been previously trained; however, this task is not straightforward for many users.
Therefore, in Chapter 3, we designed and implemented a graphical application,
called LabelDetection, that aims to facilitate the construction and use of object
detection models, and also simplifies the application of advanced techniques such
as data distillation or test time augmentation to users without programming ex-
perience. LabelDetection is designed to be used with multiple libraries and frame-
works, and it can be easily extended to others. Specifically, LabelDetection allows
for annotations to be made and modified. It also generates the necessary files for
training models and enables the application of semi-supervised learning techniques,
eliminating the need for a large annotated dataset. Finally, LabelDetection can
use different pre-trained object detection models for making predictions, and user
can modify those predictions.

The methods presented in the first two chapters of the memoir were focused on
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object detection tasks; however, they can be generalised to tackle other Computer
Vision problems such as image classification or semantic segmentation. A step
towards such a generalisation was presented at the end of Chapter 3 where we
designed four modules. The first module was devoted to simplify the use of deep
learning models independently of the underlying library using models, the second
module facilitates the training process, the third module serves to improve models
by applying ensemble methods, and finally, the last modules reduce the burden of
annotating images by applying semi-supervised learning techniques.

Our techniques and methods have been not only tested with standard aca-
demic datasets but also they have been applied to solve actual problems. Namely,
in Chapter 4, the techniques and tools discussed in previous chapters have been
employed to address two specific problems in plant physiology: stomata detection
and Epidermal Bladder Cells (EBC) measurement. As a result, we have devel-
oped two open-source tools called LabelStoma and LabelGlandula. These tools
have been utilized by researchers from Auburn University and the University of
the Basque Country (coauthors of the tools) but also by teams in other regions
such as French Guyane and Italy. LabelStoma has significantly improved the re-
liability of plant stomata analysis across different species and serves biologist to
understand CO2 and H2O dynamics in plant-related processes like photosynthesis
and transpiration. In the case of LabelGlandula, it enhances the accuracy of EBC
analysis and enables plant biologists to advance their knowledge of the role played
by EBC size, density, and volume in stress tolerance, such as salinity and drought.
Moreover, it facilitates the exploration of EBC functionality and the molecular
mechanisms behind EBC formation and salt accumulation.

Finally, in Chapter 5, we have developed Deep Learning models specifically
tailored for the segmentation of different elements in a vineyard to this aim, the
generalisation of the developed methods for object detection has played a key
role. Namely, we have demonstrated how the performance of these models can
be enhanced through the usage of semi-supervised learning methods and the in-
corporation of depth information. Furthermore, we have shown that these models
can successfully generalise to previously unseen conditions. This study is a step
towards improving the management of finite resources, performance optimization,
and pest control; and, in general, sustainable agriculture.

As further work, we envision three main research lines. First of all, there are
several technical improvements that can be incorporated into our libraries and
tools. In the case of the EnsembleObjectDetection library, we would like to test
whether techniques like Soft-NMS [58], NMW [59], fusion [60] or WBF [61] pro-
duce better results than the NMS algorithm currently employed by our ensemble
algorithm. For LabelDetection, we plan to expand it with new algorithms and
object detection libraries. Moreover, we want to fully develop the general library
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presented at the end of Chapter 3, and thoroughly test it.
The second research line is devoted to facilitate the construction and use of

Deep Learning models for different Computer Vision task. It is especially relevant
to reduce the resources, both in terms of data and computation, that are required
to train Deep Learning models. Among the existing approaches, techniques such as
continual or active learning are promising pathways but they are usually focused
on image classification tasks, and therefore, it is necessary to generalise those
methods to other Computer Vision tasks. Moreover, foundational models such
as Segment Anything [243] can be instrumental for our aim but they have to be
easily adaptable to be usable in actual problems. Lastly, new techniques must be
developed to deal with the domain shift problem.

Finally, the third research line that we envision is focused on tackling actual
problems that can have a real impact on people’s lives. Deep Learning methods
have the potential to improve processes that require tedious and time consuming
tasks in areas such as biology, agriculture or medicine. So, guided by specialists of
those fields, we will tackle problems by means of the methods that we will develop
and, in this way, we will help specialists in their daily lives.





Conclusiones y Trabajo Futuro

En este trabajo, hemos desarrollado varios métodos y herramientas que facilitan la
construcción y el uso de modelos de detección de objetos y mejoran su rendimiento.
Además, hemos dado los primeros pasos hacia la generalización de nuestros méto-
dos a otras tareas de visión por computador, como la clasificación de imágenes o
la segmentación semántica. Por último, hemos demostrado los beneficios propor-
cionados por nuestros métodos en problemas reales relacionados con la fisiología
de las plantas y la agricultura de precisión. Desde nuestro punto de vista, las
principales contribuciones logradas en este trabajo son las siguientes.

En el Capítulo 2, presentamos un algoritmo de ensemble genérico para modelos
de detección de objetos que se puede aplicar independientemente del algoritmo y
la biblioteca utilizados para entrenar esos modelos. Nuestro algoritmo de ensemble
se puede utilizar no solo para combinar la salida de varios modelos de detección
de objetos, sino también para aplicar aumento en tiempo de test. Gracias a estos
métodos, es posible mejorar el rendimiento de los modelos de detección de objetos.
Además, nuestro algoritmo de conjunto se puede utilizar para reducir la carga de
anotar conjuntos de datos, ya que fue la base para definir dos nuevos algoritmos de
aprendizaje semisupervisado (llamados destilación de datos y destilación de mod-
elos). Por último, todos los métodos presentados en el Capítulo 2 se han imple-
mentado en una biblioteca de código abierto llamada EnsembleObjectDetection.

Los métodos presentados en el Capítulo 2 requieren modelos de detección de
objetos que hayan sido previamente entrenados; sin embargo, esta tarea no es sen-
cilla para muchos usuarios. Por lo tanto, en el Capítulo 3, diseñamos e implemen-
tamos una aplicación gráfica llamada LabelDetection, que tiene como objetivo
facilitar la construcción y el uso de modelos de detección de objetos, y también
simplificar la aplicación de técnicas avanzadas como la destilación de datos o el
aumento en tiempo de test a usuarios sin experiencia en programación. LabelDe-
tection está diseñado para ser utilizado con múltiples bibliotecas y marcos de
trabajo, y se puede ampliar fácilmente a otros. Específicamente, LabelDetection
permite realizar y modificar anotaciones. También genera los archivos necesarios
para entrenar modelos y permite la aplicación de técnicas de aprendizaje semisu-
pervisado, eliminando la necesidad de un gran conjunto de datos anotados. Por
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último, LabelDetection puede utilizar diferentes modelos de detección de objetos
preentrenados para hacer predicciones, y el usuario puede modificarlos.

Los métodos presentados en los dos primeros capítulos de la memoria se cen-
traron en tareas de detección de objetos; sin embargo, se pueden generalizar para
abordar otros problemas de visión por computador, como la clasificación de imá-
genes o la segmentación semántica. Se dio un paso hacia esa generalización al final
del Capítulo 3, donde diseñamos cuatro módulos. El primer módulo se dedicó a
simplificar el uso de modelos de aprendizaje profundo independientemente de la
biblioteca subyacente que se utilice para los modelos, el segundo módulo facilita
el proceso de entrenamiento, el tercer módulo sirve para mejorar los modelos me-
diante la aplicación de métodos de conjunto y, finalmente, los últimos módulos
reducen la carga de anotar imágenes mediante la aplicación de técnicas de apren-
dizaje semisupervisado.

Nuestras técnicas y métodos no solo se han probado con conjuntos de datos
académicos estándar, sino que también se han aplicado para resolver problemas
reales. En el Capítulo 4, se emplearon las técnicas y herramientas discutidas en los
capítulos anteriores para abordar dos problemas específicos en fisiología de las plan-
tas: la detección de estomas y la medición de las Células de Vesícula Epidérmica
(EBC). Como resultado, hemos desarrollado dos herramientas de código abierto
llamadas LabelStoma y LabelGlandula. Estas herramientas han sido utilizadas
por investigadores de la Universidad de Auburn y la Universidad del País Vasco
(coautores de las herramientas), pero también por equipos en otras regiones como
la Guayana Francesa e Italia. LabelStoma ha mejorado significativamente la con-
fiabilidad del análisis de estomas en diferentes especies vegetales y ayuda a los
biólogos a comprender la dinámica del CO2 y H2O en procesos relacionados con
las plantas, como la fotosíntesis y la transpiración. En el caso de LabelGlandula,
mejora la precisión del análisis de EBC y permite a los biólogos vegetales avanzar
en su conocimiento del papel que desempeñan el tamaño, la densidad y el volumen
de las EVC en la tolerancia al estrés, como la salinidad y la sequía. Además, fa-
cilita la exploración de la funcionalidad de las EBC y los mecanismos moleculares
detrás de la formación de EBC y la acumulación de sal.

Finalmente, en el Capítulo 5, hemos desarrollado modelos de Aprendizaje Pro-
fundo específicamente diseñados para la segmentación de diferentes elementos en
un viñedo. En este sentido, la generalización de los métodos desarrollados para
la detección de objetos ha desempeñado un papel clave. Específicamente, hemos
demostrado cómo se puede mejorar el rendimiento de estos modelos mediante el
uso de métodos de aprendizaje semisupervisado y la incorporación de información
de profundidad. Además, hemos demostrado con éxito que estos modelos pueden
generalizarse bien a condiciones previamente no vistas. Este estudio ha dado lugar
a una mejora en la gestión de recursos limitados, la optimización del rendimiento
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y el control de plagas.
Como trabajo futuro, tenemos tres líneas principales de investigación en mente.

En primer lugar, hay varias técnicas que se pueden incorporar a nuestras bibliote-
cas y herramientas. En el caso de la biblioteca EnsembleObjectDetection, nos
gustaría probar si técnicas como Soft-NMS [58], NMW [59], fusion [60] o WBF [61]
producen mejores resultados que el algoritmo NMS usado por nuestro método de
ensemble. Para LabelDetection, planeamos ampliarlo con nuevos algoritmos y bib-
liotecas de detección de objetos. Además, queremos desarrollar completamente la
biblioteca general presentada al final del Capítulo 3 y probarla a fondo.

La segunda línea de investigación está dedicada a facilitar la construcción y
el uso de modelos de Aprendizaje Profundo para diferentes tareas de Visión por
Computadora. Es especialmente relevante reducir los recursos, tanto en términos
de datos como de cálculo, que se requieren para entrenar modelos de Aprendizaje
Profundo. Entre los enfoques existentes, técnicas como el aprendizaje continuo
o activo son caminos prometedores, pero generalmente se centran en tareas de
clasificación de imágenes, por lo que es necesario generalizar esos métodos a otras
tareas de Visión por Computador. Además, modelos fundamentales como Seg-
ment Anything [243] pueden ser necesarios para nuestro objetivo, pero deben ser
fácilmente adaptables para ser utilizados en problemas reales. Por último, deben
desarrollarse nuevas técnicas para hacer frente al problema del cambio de dominio.

Finalmente, la tercera línea de investigación que tenemos en mente se cen-
tra en abordar problemas reales que puedan tener un impacto real en la vida de
las personas. Los métodos de Aprendizaje Profundo tienen el potencial de mejo-
rar los procesos que requieren tareas tediosas y que consumen mucho tiempo en
áreas como la biología, la agricultura o la medicina. Por lo tanto, guiados por
especialistas en esos campos, abordaremos problemas mediante los métodos que
desarrollaremos y de esta manera, ayudaremos a los expertos en su vida diaria.
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