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Aśı mismo dar las gracias al proyecto del Ministerio de Ciencia e Inno-

vación “Computación con Palabras y Percepciones en Entornos Inteligentes”

TIN2008-06890-C02-01 CICYT del que he formado parte, y a la Universidad

de León, en concreto al departamento de Ingenieŕıa Eléctrica y de Sistemas
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Resumen

El trabajo es una contribución al desarrollo de los modelos de Conjeturas,

Hipótesis y Consecuencias (Modelos CHC), como encargados de formalizar

el razonamiento ordinario o de sentido común.

La mayor aportación de este trabajo es la introducción de la posibilidad

de manejar la imprecisión t́ıpica del lenguaje de los Modelos CHC. Aunque

el trabajo es de tipo matemático, todo se plantea bajo un número mı́nimo de

hipótesis para no introducir condiciones que puedan restringir su aplicación.

El primer art́ıculo recogido en este trabajo trata con el problema del sig-

nificado de las palabras, por lo que puede ser enmarcado en el emergente cam-

po de la Computación con Palabras. Fundamentalmente, trata de analizar

qué propiedad intŕınseca a un predicado P o al colectivo originado por él, se

requiere para obtener una representación matemática a través de una fun-

ción definida sobre el universo de discurso, donde se aplica el predicado, con

imagen en una escala conveniente. Esto permite definir el grado en que un

objeto del universo de discurso, x, es P en el lenguaje. El art́ıculo se centra

en el estudio de distintas escalas, explicando la aparición de los conjuntos

fuzzy, conjuntos evaluados sobre intervalos, conjuntos intuicionistas, y los

conjuntos fuzzy de tipo 2.

Continuando con el problema del significado, se analiza una nueva in-

terpretación de los principios aristotélicos de No-Contradicción y Tercero-

Exclúıdo basándose en el concepto de auto-contradicción. El propósito fun-

damental del segundo art́ıculo recogido en este trabajo, es la caracterización
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de la verificación de estos principios en el intervalo unidad. Esto permite

extender el estudio al caso de los conjuntos fuzzy dotados de álgebras fun-

cionalmente expresables muy generales.

En el tercer art́ıculo, se definen los Modelos CHC sobre un conjunto preor-

denado. Por lo tanto, el modelo puede aplicarse al caso de los conjuntos fuzzy

dotados del orden puntual, permitiéndo el estudio del razonamiento conjetu-

ral sobre información tanto precisa, como imprecisa. En este caso, el modelo

parte de una estructura de consecuencias dada por un operador de conse-

cuencias en sentido de Tarski y una familia de subconjuntos que permiten

controlar de distintas formas la consistencia de las premisas y las consecuen-

cias, no admitiendo ninguna premisa falsa, o ninguna auto-contradictoria, o

ningún par de premisas contradictorias,... A partir de dicha estructura de

consecuencias se definen las conjeturas, hipótesis, especulaciones y refuta-

ciones.

Finalmente, en el útimo art́ıculo englobado en este trabajo, se buscan

Modelos CHC no definidos a partir de una estructura de consecuencias. Se

contruye el conjunto de conjeturas dependiendo de las distintas interpreta-

ciones de no ser inconsistente con la información aportada por el conjunto

de premisas. Dentro del conjunto de conjeturas, se distinguen también las

consecuncias, hipótesis y especulaciones.

Debe notarse que mientras las hipótesis y conjeturas son anti-monótonas,

las especulaciones son propiamente no-monótonas, al no ser ni monótonas,

ni anti-monótonas. Por ello, estos modelos abren una nueva posibilidad para

el estudio del razonamiento no-monótono.



Abstract

This work is a contribution to enlarge the Conjectures, Hypotheses and

Consequences (CHC) models, which try to formalize commonsense reason-

ing. Its main contribution is to introduce in these models the possibility to

use the imprecision typical of language.Although the paper is of a mathe-

matical character, everything is done under a minimum of hypotheses for

not introducing conditions that could restrict its applicability.

The first paper collected in this work deals with the problem of the mean-

ing of words, that can be framed in the basic problems in the new field of

Computing with Words. It mainly tries to analyze, which intrinsic properties

of a predicate P and the collectives originated by it, are required for obtaining

a mathematical representation of it through a function defined in the uni-

verse of discourse, where the predicate is stated, to a convenient scale at each

case. This allows to compute the extent up to which x is P in the language,

for all x in the universe of discourse. The paper focusses on the design of the

scale, and considers the case of the Zadeh’s fuzzy sets, the interval-valued,

the intuitionistic, and the type-2 fuzzy sets.

Continuing with the problem of meaning, it is analyzed a new interpreta-

tion of the Aristotelian principles of non-contradiction and excluded-middle

based on the concept of self-contradiction, by translating the Aristotelian

term ‘imposible’ by ‘self-contradictory’. This is the aim of the second paper

collected in the current work. It deals with these ’principles’ verification in

the case of the unit interval of the real line. Such verification is done in the

unit interval for three different preorders, being the first one the restriction
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of the usual order of the real line to the unit interval. This allows to extend

such study to characterize the ‘principles’ in the case of fuzzy sets endowed

with very general functionally expressible algebras.

In the third paper of this work, the CHC models are defined in a pre-

ordered set. So, the results obtained can be applied to the case of fuzzy sets

endowed with the usual pointwise ordering, and a way to study conjectural

reasoning with both precise and imprecise information is open. The model

departs from a structure of consequence given by an operator in the sense of

Tarski defined in a family of subsets allowing to control the consistency of

the premises and the consequences depending on different interpretations of

non-inconsistency (not admitting any false premise, or self-contradictory, or

any pair of contradictory premises,...). From them, the corresponding sets of

conjectures, hypotheses, speculations and refutations are considered.

Finally, the last contribution of this work searches for CHC models not

coming from a consequence operator. The set of conjectures is built depend-

ing on different interpretations of being not-inconsistent with the information

conveyed by the set of premises, and then consequences, hypotheses and spec-

ulations are also obtained. It should be noticed that if hypotheses, and con-

jectures at large, are anti-monotonic, speculations are non-monotonic since

they are neither monotonic, nor ant-monotonic. With all that, the structural

study of non-monotonic reasoning is open to be undertaken.



Esquema general del trabajo

La memoria ’Contribución al estudio del razonamiento ordinario y la com-

putación con palabras’, presentada para aspirar al grado de doctor por la

Universidad de León, está organizada en tres partes además del ’Resumen

General’ que las antecede.

En la Parte Primera, se incluyen la ‘Introducción’ a la tesis, el ‘Resumen

de los cuatro art́ıculos’, y las ‘Conclusiones y trabajo futuro’.

En la Parte Segunda, se incluyen las copias de los cuatro art́ıculos en

los que se basa la tesis.

En la Parte Tercera, además de la lista de publicaciones de la candi-

data y como información complementaria, se añaden como anexo otras

cuatro publicaciones que aún no formando parte del cuerpo de la tesis,

están en relación directa con los art́ıculos de la segunda parte.
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Caṕıtulo 1

Introducción

Háblame para que te vea.

Séneca (4 a.C.-65 d.C.)

El razonamiento ordinario o de sentido común, es aquél que realiza el

ser humano de distintas formas: procesando la información que maneja, sea

formalmente, sea siguiendo esquemas preestablecidos y de forma meditada,

o casi de forma automática sin deparar en los procesos mentales que realiza.

Por otro lado, con la lógica se objetiva el razonamiento deductivo a través de

sus esquemas formales. ¿Es posible objetivar el razonamiento ordinario? Ésta

es la cuestión principal que se aborda en este trabajo, en el que se intenta

estudiar modelos formales de razonamiento ordinario.

El razonamiento ordinario rompe la frontera del razonamiento

matemático el cual se articula sobre la deducción y puede modelarse

por operadores de consecuencias monótonos. Es decir, si a partir de un

conjunto de premisas se obtienen ciertas consecuencias, y se incrementa el

número de premisas no disminuirá el número de consecuencias. Esto no

ocurre con razonamientos sencillos cotidianos, en los que es t́ıpico que nueva

información destruya viejas conclusiones. Por ejemplo, si un animal es un

pájaro, entonces puede deducirse que volará, pero si añadimos la información

de que en concreto es un avestruz, el hecho de volar no se mantendrá como

consecuencia. No obstante, si añadimos a la premisa de ser pájaro que es
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además un jilguero, se puede seguir deduciendo que el animal puede volar.

Éste es un razonamiento no monótono, esto es que no es ni monótono, ni

anti-monótono, no sigue ninguna ley de monotońıa. Es decir, si se añaden

más premisas no se sabe si se pueden obtener más o menos conclusiones.

Por tanto, no podrá modelarse a través de la deducción que sigue la ley de

monotońıa. De hecho, según John Sowa, sólo el 25 % de los razonamientos

ordinarios son deductivos [Sow04].

Dentro del campo de la Inteligencia Artificial es conocido el interés en la

ampliación de los sistemas deductivos para la obtención de conclusiones a

partir de un cuerpo de conocimiento que deje de preservar la monotońıa.

En el razonamiento ordinario distinguimos cuatro tipos básicos de

razonamiento: deductivo, abductivo, especulativo y por semejanza. En este

trabajo no se estudiará el razonamiento por analoǵıa o semenjanza, aunque

es una forma bastante común e importante del razonamiento ordinario,

ya que el ser humano basa su razonamiento en experiencias vividas y por

similaridad a lo ocurrido en el pasado, intenta obtener conclusiones a partir

de la información actual que maneja.

Los razonamientos deductivo, abductivo y especulativo se englobarán

dentro del llamado razonamiento conjetural. ¿Qué incita a millones de

españoles a comprar loteŕıa de Navidad? Evidentemente, no la compran

porque se pueda deducir que ganarán el primer premio de la loteŕıa, sino

porque el hecho de comprarla no es inconsistente con ganar el premio;

ganarlo es contingente, pero no es seguro. Esto es un ejemplo de razona-

miento conjetural, y dependiendo de las distintas formas de entender la no

inconsistencia, surgen distintos operadores de Conjeturas [TGH10].

En aras de modelizar el razonamiento ordinario el trabajo tendrá dos

aspectos, el semántico y el sintáctico, ya que el razonamiento de sentido
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común se articula lingǘısticamente. Aśı pues, se abordan tanto el problema

del significado, como el de obtener modelos formales que traspasen la barrera

de la deducción.

Entenderemos por significado la definición de Wittgenstein, “el significa-

do de una palabra es su uso en el lenguaje” [Wit81]. En el uso de la palabra

intervienen el contexto y el propósito. Por lo tanto, el significado de cada

palabra está lleno de matices e imprecisiones y dada la capacidad de los con-

juntos fuzzy [Zad65] de recoger la imprecisión serán candidatos a considerar

para la representación de los términos lingǘısticos. Aún teniendo en cuenta la

imprecisión de cada palabra, se presupone la existencia de una semejanza o

parecido de familia entre todas las interpretaciones de los significados de una

palabra. La idea del parecido de familia aparece recogida en los ‘juegos del

lenguaje’ en [Wit81], y se formalizará para conjuntos fuzzy, relacionándola

con el dinamismo del lenguaje. El carácter impreciso del lenguaje natural

impulsa a su estudio bajo los conjuntos fuzzy. Como lo hace el lingüista

George Lakoff [Lak73], quien, mediante la lógica fuzzy, aborda problemas

de semántica del lenguaje natural. Aśı mismo, el emergente campo de la

Computación con Palabras [Zad96], cuyo creador fue L. A. Zadeh, no deja de

ser una evolución de la lógica fuzzy, que trata con el problema del significado.

En este trabajo se recoge un modelo para el significado de los predicados

y los colectivos asociados a ellos, bajo el estudio del orden introducido en

el universo de discurso en el que se aplican y la traslación de este órden a

una escala (L,≤), que sea un conjunto parcialmente ordenado. En el caso

particular de que dicha escala sea el intervalo unidad con la restricción del

orden usual de la recta real, aparecen los conjuntos fuzzy de Zadeh.

Respecto al aspecto sintáctico de los modelos de razonamiento, se muestra

en [TGHP10] la construcción del modelo a partir de una estructura de conjun-

to preordenado, debilitando la estructura de ortorret́ıculo donde se defińıan

estos modelos anteriormente [ET00] [TCC01] [Qiu07] [TP06] [TPÁ09], lo que
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permite considerar el modelo cuando se manejen informaciones imprecisas

representadas por conjuntos fuzzy. También se formaliza la construcción del

modelo partiendo de un operador de consecuencias en el sentido de Tarski

[CT89], y se introducen los conjuntos de conjeturas, hipótesis y especula-

ciones.

Estos modelos podŕıan llegar a ser una herramienta que permitiese al ser

humano verificar la consistencia de sus razonamientos a partir de la informa-

ción de la que disponen, sin tener en cuenta motivaciones emocionales que

pueden llevarle a tener una visión sesgada y realizar razonamientos erróneos.

De hecho, como aplicación de estos modelos puede construirse un programa

que permita, dados los śıntomas del paciente, a través de un razonamiento

abductivo, diagnosticar la enfermedad capaz de causarlos, de esta forma se

podŕıa llegar antes a enfermedades poco comunes que en muchos casos no

se tienen presentes. Realmente, la obtención de algoritmos que permiten

obtener hipótesis y especulaciones a partir de un conjunto de premisas es

un trabajo que está en curso de realización. Algo que está en el sueño del

‘¡Calculen!’ de Leibniz.

Los aspectos semántico y sintáctico del modelo se unen cuando se

construye el modelo a partir del significado que se requiera del término no

inconsistente para cada problema concreto. Dependiendo de las interpreta-

ciones se obtienen distintos modelos del razonamiento conjetural.

Del mismo modo, bajo el estudio de distintas interpretaciones del

término imposible surge una nueva interpretación de los principios de No

Contradicción y Tercero Excluido. Aristóteles enuncia el principio de no

contradicción como “no es posible que un objeto sea a la vez blanco y

no blanco”. Esta información se traduce en lógica clásica como que la

intersección de todo elemento con su negado es falso (cero), y se entienden

los principios como axiomas. No obstante, en [Tri09], se recoge una nueva

representación de aquel término; se entiende ‘imposible’ como que la
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intersección de un elemento y su negado es auto-contradictoria, consiguiendo

aśı que estructuras como las álgebras estándar de conjuntos fuzzy o las

álgebras de De Morgan verifiquen ambos principios.

Tanto los modelos lingǘısticos (la representación de los predicados y

colectivos), como los de razonamiento (la elección de la interpretación

de la no consistencia) requieren un proceso de diseño [TG10]. La mayor

flexibilidad que proporciona el uso de la lógica fuzzy, obliga también a

prestar atención al uso que queramos hacer de ella y no dar por sentadas

todas las propiedades de la lógica clásica.

A lo largo de todo el trabajo se hace notar la relación de la lógica fuzzy

con el diseño de todos los elementos involucrados en los razonamientos: la

representación de las informaciones que se manejen, su consistencia y los

distintos tipos de deducción o distintas formas de conjeturar que pueden

requerirse dependiendo de los operadores de consecuencias o conjeturas que

utilicemos.

Lo expuesto anteriormente se mostrará a través de los siguientes cuatro

art́ıculos cuyo principal contenido se resumirá en el siguiente apartado.

1. I. Garćıa-Honrado, E. Trillas, An Essay on the Linguistic Roots of Fuzzy

Sets, Information Sciences 181 4061-4074 (2011).

2. I. Garćıa-Honrado, E. Trillas, Characterizing the Principles of Non

Contradiction and Excluded Middle in [0, 1], Internat. J. Uncertainty

Fuzz. Knowledge-Based Syst. 2 113-122 (2010).

3. E. Trillas, I. Garćıa-Honrado, A. Pradera, Consequences and Con-

jectures in Preordered Sets, Information Sciences 180 (19) 3573-3588

(2010).
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4. I. Garćıa-Honrado, E. Trillas, On an Attempt to Formalize Guessing,

Tech. Rep. FSC-2010-11, European Centre for Soft Computing, acep-

tado en el libro ‘Soft Computing in Humanities and Social Sciences’

(Eds. R. Seising and V. Sanz) Springer-Verlag Berĺın (2011).



Caṕıtulo 2

Resumen global de los art́ıculos

Lo maravilloso de aprender algo,

es que nadie puede arrebatárnoslo.

B. B. King (1925- )

En los cuatro art́ıculos que siguen, principalmente se presta atención a los

tres problemas teóricos siguientes:

El del ‘significado’ y , en consecuencia, qué significa cada función de

pertenencia de un conjunto fuzzy desde un punto de vista estructural

y en relación con el significado contextual del término lingǘıstico que

representa.

La validez de los llamados ‘principios’ de Tercero Excluido y No Con-

tradicción en las álgebras de conjuntos fuzzy, desde un punto de vista

distinto, aunque más general y también cercano al de Aristóteles que

el usual. Unos principios históricamente considerados básicos para un

correcto razonamiento, y cuyo fallo hab́ıa permitido la introducción de

dudas epistemológicas en la lógica fuzzy.

El estudio estructural del razonamiento ordinario no-analógico, a partir

de representaciones en estructuras lo más débiles posibles.

9
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2.1. Un ensayo sobre las raices lingǘısticas de

los conjuntos fuzzy

El art́ıculo 1 aborda el problema de estudiar la ‘representación’ del

significado de los predicados y los colectivos a ellos asociados. El concepto

de ‘colectivo’, que no parece actualmente definible, es sensitivo al contexto

(context-sensitive) y se intenta representar a través de los L−fuzzy sets.

En el estudio del significado es relevante la importancia del contexto y

propósito. Aśı pues la notación CX(P ; c, up) para representar un colectivo

asociado a un predicado P , en el universo de discurso X, el contexto c y

el propósito de su uso up, hace constar la importancia del propósito y el

contexto a la hora del diseño del grado y por tanto de la elección de la

correspondiente ‘escala’ de valores.

Al aplicar un predicado P , a un universo de discurso X, se introduce

una relación emṕırica de comparación ≤P , y se trabaja bajo la hipótesis de

que esa relación sea un preorden; es decir, una relación reflexiva y transitiva,

a la que se llama el ‘significado primario’ del predicado. Se deja de lado el

caso en que ≤P no sea un preorden a causa de ciertas dificultades técnicas

que se explicitan en el art́ıculo. Como el significado no es invariante, sino

que tiene una componente ‘social’, puede ser que para un grupo de m

personas se encuentren distintas percepciones del anteriormente mencionado

preorden, en cuyo caso se tomará como ‘significado primario’ para el grupo

la intersección de los m preórdenes. El significado primario traduce la

intuición de que con su uso los predicados introducen algún orden en el

universo de discurso.

El grado del predicado P se define sobre un conjunto parcialmente orde-

1“An essay on the linguistic roots of fuzzy sets”, por I. Garćıa-Honrado y E. Tril-
las, se publicará próximamente en ‘Information Sciences’. Se encuentra on line en
http://www.sciencedirect.com/science/article/pii/S0020025511002738 .
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nado (L,≤) o escala. Por lo tanto, aunque en la escala se añade la propiedad

anti-simétrica, en el caso de existir algunos elementos no comparables

bajo el preorden introducido por el predicado, pueden continuar siendo no

comparables una vez calculado el grado de verificación de ese predicado que

traduce otra componente del uso elemental de P en X.

El grado es un modelo matemático que traslada a una escala el significado

primario que el predicado define en el universo de discurso, ya que es una

función µP : X → L, que debe verificar, siempre que sean x, y en X tales

que si x ≤P y, entonces µP (x) ≤ µP (y). Dicho de otra forma, ≤P⊂≤µP ,

siendo x ≤µP y si y sólo si µP (x) ≤ µP (y), con x, y en X. El grado no es

sino una (L,≤)−medida de la verificación de los enunciados elementales ‘x

es P ’, y sólo cuando es ≤P=≤µP se dice que refleja perfectamente a ≤P , o

que refleja perfectamente el significado del predicado P .

Figura 2.1:

Con la terna (X,≤P , µP ) se identifica el ‘significado’ de P en X y debe

notarse que esta no es una definición absoluta, sino dependiente de L. No

obstante, y si ≤P es un preorden, se prueba que siempre existe una escala

que recoge el significado primario (Teorema 9.1), con un preorden que refleja
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perfectamente el significado del predicado.

De todos modos, la elección de la escala (L,≤) más conveniente para el

problema, no es trivial y en los problemas tecnológicos, suele ser una escala

numérica. En este art́ıculo se muestran y analizan posibles elecciones de los

conjuntos parcialmente ordenados (L,≤).

Si es L = [0, 1], con el orden usual de la recta real, tenemos un orden

total que nos permite comparar todos los elementos de X. El grado

seŕıa un fuzzy set [Zad65].

Si es L = {[a, b] ⊂ [0, 1]; a ≤ b}, el grado estará representado por

un intervalo [DK03] [Zad75]. Surgen los interval-valued fuzzy sets que

recogen con precisión la posible imprecisión numérica a la hora de cal-

cular el grado. Y en este caso distinguimos dos órdenes parciales

• [a1, b1] ≤ [a2, b2]⇔ a1 ≤ a2 y b1 ≤ b2,

• [a1, b1] ≤∗ [a2, b2]⇔ a2 ≤ a1 y b1 ≤ b2.

Si es L = [0, 1]X , el grado estará representado por un conjunto fuzzy de

tipo 2 [Men07]. Esta definición recoge la imprecisión a la hora de calcu-

lar el grado con imprecisión y un caso particular importante acontece

si L es el conjunto de los Fuzzy Numbers [MJ02], que permite recoger

imprecisión numérica evaluada imprecisamente. La definición de orden

parcial, a cualesquiera números fuzzy, está recogida en el art́ıculo.

Si es L = {(x, y) ∈ [0, 1]× [0, 1];x+ y ≤ 1}, surgen los conjuntos fuzzy

intuicionistas o de Atanasov, con el orden (x1, y1) ≤A (x2, y2) ⇔ x1 ≤
x2 y y2 ≤ y1, isomorfos al subconjunto de los intervalos cuyos extremos,

a, b verifiquen a + b ≤ 1, con la relación de contenido. Este conjunto

parcialmente ordenado permite representar el grado del predicado P ,

µP , y el de su negación µno P , ya que bajo una operación reversible

e involutiva, N , L se puede escribir como {(x, y) ∈ [0, 1] × [0, 1]; y ≤
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N(x)}. No obstante el término noP , no es un término lingǘıstico, y śı lo

es un antónimo de P , aP cuyo grado verifica µaP ≤ N(µP ) = µno P .

Como ejemplo de modelización del significado, se analiza el significado

del predicado probable utilizando como orden parcial en el que se define

el grado, el intervalo [0, 1] con el orden usual de la recta real, y aplicando

el predicado en tres universos de discurso con estructuras diferentes: un

álgebra de Boole, un ret́ıculo ortomodular y el conjunto de los conjuntos

fuzzy ([TNGH10]).

Tras mostrar posibles formas de representar el significado, se presta

atención al importante aspecto del dinamismo del lenguaje. Esto se lleva

a cabo con el estudio del “parecido de familia entre los predicados”. El

parecido de familia, family resemblance en inglés, proviene de Wittgenstein

[Wit81], iniciador de la conocida filosof́ıa del lenguaje. Se puede estudiar ese

dinamismo por medio del nuevo concepto de las migraciones de predicados

[GHTG10] a otros universos de discurso. Aunque un predicado migre,

mantiene unas constantes que permiten reconocerlo aún siendo utilizado en

otro universo de discurso. En el intento de caracterizar estas constantes surge

la formalización matemática del parecido de familia entre dos predicados

[TMS09] y se comprueba que un predicado y su migrado mantienen tal

parecido. Hay que observar, sin embargo y naturalmente, que un predicado

y su antónimo o predicados contradictorios [TAJ99] no verifican la definición

de parecido de familia.

En lógica borrosa, el diseño de todos los elementos involucrados en sus

problemas [TG10] es un tema de crucial importancia, ya que los errores de

diseño llevan a soluciones no aceptables en muchos casos. Englobando el

art́ıculo en la idea del proceso de diseño y mostradas las distintas formas en

las que se puede representar un predicado, permite encuadrar el art́ıculo en

el campo de la Computación con Palabras, razón por la cual art́ıculos refe-

rentes a tales cuestiones son publicados en la revista ‘Information Sciences’.
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También sirve para el propósito de definir diferentes estructuras sobre las

que se pueden obtener modelos de razonamiento ordinario, dependiendo

de cómo se represente la información disponible de cada razonamiento

concreto, que mayoritariamente, será dada a través del lenguaje con toda la

imprecisión que éste conlleva.

2.2. Caracterización de los principios de No

Contradicción y Tercero Excluido en [0, 1]

El art́ıculo 2 se basa en una nueva interpretación de los conceptos de

No Contradicción y Tercero Excluido introducida en [Tri09], a partir del

enunciado de los mismos hecho por Aristóteles, quien enunció el principio

de No Contradicción como que la coexistencia de ‘A y no A es imposi-

ble’ para cualquier enunciado afirmativo A. Clásicamente se tradujo ese

‘imposible’ por la falsedad de ‘A y no A’, es decir, representando y por

· y la negación por ′, el enunciado se compacta en la fórmula a·a′ = 0,

con cada representación a de A. La verificación de esta fórmula forma

parte de la axiomática de estructuras como las álgebras de Boole o de

forma más general, de los ortorret́ıculos, aunque no de las álgebras de De

Morgan. Pero en el caso del conjunto de los conjuntos fuzzy denotado por

[0, 1]X = {µ;µ : X → [0, 1]}, la estructura más fuerte en la que se pueden

enmarcar es ([0, 1]X ,mı́n,máx, 1 − id), un álgebra de De Morgan, donde

no se verifican los principios de No Contradicción, ni de Tercero Excluido

según su definición clásica de a·a′ = 0 y (a·a′)′ = 1. El caso más general, con

esta interpretación, fue resuelto previamente probándose la existencia de

álgebras de conjuntos fuzzy que no verifican ninguno de los dos principios,

que verifican uno u otro y álgebras que verifican los dos [TAP02].

2“Characterizing the principles of non contradiction and excluded middle in [0,1]”, por
I. Garćıa-Honrado, E. Trillas en Internat. J. Uncertainty Fuzz. Knowledge-Based Syst.,
volumen 2, páginas 113-122. Año 2010.
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En la nueva interpretación, se traduce ‘imposible’ por ‘auto-

contradictorio’. Siendo |=, la representación simbólica de la implicación, un

elemento A es auto-contradictorio si ‘Si A entonces no A’, y aśı el principio

de No Contradicción se entiende como

a·a′ |= (a·a′)′ (2.1)

y el de Tercero Excluido como ((a·a′)′)′ |= (((a·a′)′)′)′, para cada repre-

sentación a del enunciado A. O, suponiendo que + es la operación dual de ·,
a+ b = (a′·b′)′, como

(a+ a′)′ |= ((a+ a′)′)′. (2.2)

Bajo este nuevo punto de vista, se prueba la existencia de relaciones

|= que verifican 2.1 y 2.2 (teoremas 1 y 2). Por lo tanto, se tiene una

relación bajo la cual los fuzzy sets verifican estos principios en su nueva

interpretación, no entrando en contradicción las estructuras matemáticas

en las que se engloban los conjuntos fuzzy con el postulado de Aristóteles.

No obstante, se estudia detenidamente cómo se puede entender esta nueva

interpretación de los principios en el intervalo unidad y por ende en los

conjuntos fuzzy, bajo las siguientes concreciones de la relación |=.

En el caso usual de traducir |= por ≤, donde µ ≤ σ con µ, σ ∈ [0, 1]X

si y sólo si µ(x) ≤ σ(x), para todo x ∈ X.

En el caso de traducir |= por el orden ϕ-sharpened �ϕ, definido por

µ �ϕ σ ⇔
{

0 ≤ µ(x) ≤ σ(x) ≤ ϕ−1(1/2)

ϕ−1(1/2) ≤ σ(x) ≤ µ(x) ≤ 1
, para todo x en X.

En el caso de traducir |= por el preorden `, definido como µ ` σ ⇔
|µ(x)− 0,5| ≤ |σ(x)− 0,5|, para todo x en X.

Con respecto al primer caso, se obtienen teoremas de caracterización

para ambos principios, traduciendo la intersección funcionalmente por una
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función F , la unión por otra función G (ambas sin tener ninguna propiedad

especial) y la negación por una negación fuerte Nϕ = ϕ−1(1 − ϕ(x)) (con

ϕ : [0, 1]→ [0, 1], estrictamente monótona y verificando ϕ(0) = 0 y ϕ(1) = 1).

Los teoremas son los 6,7,9 y 10 del art́ıculo:

([0, 1], Nϕ, F ) verifica ≤-NC si y sólo si F (a,Nϕ(a)) ≤ ϕ−1(1/2) para

todo a ∈ [0, 1].

([0, 1], Nϕ, G) verifica ≤-EM si y sólo si ϕ−1(1/2) ≤ G(a,Nϕ(a)) para

todo a ∈ [0, 1].

([0, 1], 1 − id, F ) satisface ≤-NC, si y sólo si la restricción F ∗ de F al

conjunto {(a, 1− a); a ∈ [0, 1]}, verifica F ∗ ≤ Sum/2

([0, 1], 1 − id,G) satisface ≤-EM, si y sólo si la restricción G∗ de G al

conjunto {(a, 1− a); a ∈ [0, 1]}, verifica Sum/2 ≤ G∗

Por lo tanto, para las álgebras estándar de fuzzy sets en las que F es una

t-norma continua y G una t-conorma continua, los principios se verifican

siempre.

En el caso del orden sharpened se obtienen también teoremas de carac-

terización, los Teoremas 12 y 13:

([0, 1], Nϕ, F ) satisface �ϕ-NC, si y sólo si F (µ(x), µ′(x)) = ϕ−1(1/2).

([0, 1], Nϕ, G) satisface �ϕ-EM, si y sólo si G(µ(x), µ′(x)) = ϕ−1(1/2).

Análogamente, en el caso del tercer preorden introducido, se obtienen los

Teoremas 14 y 15:

La terna ([0, 1]X ,`, 1− id, F ) verifica NC para toda función F .

La terna ([0, 1]X ,`, 1− id,G) verifica EM para toda función G.
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Aśı pues, con la nueva interpretación los principios aristotélicos se

mantienen en el caso concreto de las álgebras estándar de fuzzy sets, llegando

en este art́ıculo a caracterizaciones para la verificación de estos principios en

el intervalo unidad utilizando diferentes relaciones |=. El art́ıculo cierra la

polémica sobre la verificación de los principios en las álgebras estándar de

conjuntos fuzzy.

2.3. Modelos de razonamiento ordinario

A continuación se resumirán las principales contribuciones a los modelos

de Conjeturas, Hipótesis y Consecuencias (CHC Models) llevados a cabo en

los art́ıculos

1. E. Trillas, I. Garćıa-Honrado, A. Pradera, Consequences and conjec-

tures in preordered sets, Information Sciences 180 (19) (2010) 3573-

3588.

2. I. Garćıa-Honrado, E. Trillas, On an attempt to formalize guessing,

Tech. Rep. FSC-2010-11, European Centre for Soft Computing, acep-

tado en Soft Computing in Humanities and Social Sciences (Eds. R.

Seising and V. Sanz) Springer-Verlag (2011).

Estos modelos aparecen en el año 2000 en el art́ıculo [ET00], donde se

definen sobre reticulos orto-complementados, y por lo tanto no se pueden

trasladar a ninguna estructura de conjuntos fuzzy. En el art́ıculo [TGHP10]

se estudiarán los modelos CHC sobre preordenes con negación, estructuras

más débiles que permiten incluir álgebras de conjuntos fuzzy.

En el art́ıculo [TGH10], se ampĺıan los Modelos CHC construyéndolos de

acuerdo a diversas interpretaciones del concepto de consistencia y no única-

mente a partir de un operador de consecuencias [CT89], como en [ET09].
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2.3.1. Consecuencias y conjeturas en conjuntos preor-

denados

Los modelos de conjeturas tratan de formalizar los procesos que realiza

el ser humano en sus razonamientos. Se equipara conjeturar con razonar

a partir de la información de la que se dispone. Por ello, en este art́ıculo

se estudia cómo a partir de la deducción, traducida por operadores de

consecuencias en el sentido de Tarski, se construye un modelo general

para el razonamiento ordinario, que incluye tanto la dedución como la

abdución, modelada bajo el conjunto de hipótesis, aśı como el razonamiento

especulativo, modelado con el conjunto de especulaciones.

El primer punto en el que hay que detenerse a la hora de la construcción

de estos modelos es la información disponible y en dos vertientes:

El tipo de proposiciones que se tratan y la estructura en la que pueden

modelarse; por ejemplo, si se manejan proposiciones precisas en la que

se tiene la incompatibilidad de un elemento y su opuesto (se puede

construir el modelo sobre álgebras de Boole o estructuras más débiles

como los ret́ıculos orto-complementados), o si se manejan proposiciones

imprecisas en las que puedan coexistir un elemento y su negado (en este

caso se debeŕıa construir un modelo sobre álgebras de De Morgan, o de

conjuntos fuzzy).

Dentro de la estructura anterior, debe considerarse que información se

tiene; es decir, por similitud a la lógica clásica, el conjunto de premisas,

P , sobre el que se desarrolle el modelo de conjeturas, supuesta su con-

sistencia.

La contribución de este art́ıculo a estos dos aspectos, es el desarrollo

de estos modelos en estructuras que sean simplemente un conjunto con un

preorden (L,≤) y, en los casos que se requiera, añadirle una operación que

traduzca la intersección, ı́nfimo (Inf), y una negación (′). La definición de
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operador de consecuencias en el sentido de Tarski, se efectúa en diferentes

espacios F, que controlarán la consistencia del conjunto de premisas, y con-

cretando aśı la definición de lo que usualmente se considera una estructura

de consecuencias, o sistema deductivo.

Definición 2.3.1. Sea L un conjunto cualquiera, y F ⊂ P(L), se dice que

(L,F, C) es una estructura de consecuencias, o sistema deductivo siempre

que C : F→ F verifique,

1. P ⊂ C(P ), para todo P ∈ F (C es extensivo)

2. Si P ⊂ Q, entonces C(P ) ⊂ C(Q), para todo P,Q ∈ F (C es

monótono)

3. C(C(P )) = C(P ), ó C2 = C, para todo P ∈ F (C es cerrado)

y se dice que C es un operador de consecuencias (en el sentido de Tarski)

para F en L.

En el art́ıculo se consideran los siguientes espacios F:

1. F = P(L)

2. F = P0(L), siempre que L sea inf-completo, esto es, para todo P ∈
P0(L), existe InfP = p∧ ∈ L, y además se pedirá que p∧ 6= 0.

3. F = PSC(L) = {P ∈ P(L); para ningún p ∈ P : p ≤ p′}

4. F = PNC(L) = {P ∈ P(L); para ningún par p1, p2 ∈ P : p1 ≤ p′2}

5. F = PiC(L) = {P ∈ P(L); para ningún par de subconjuntos finitos {p1, ..., pr},
{p∗1, ..., p∗n} ⊂ P : p∗1·... · p∗n ≤ (p1·... · pr)′}, siempre que · sea una

operación ı́nfimo en (L,≤).

Cuando estas familias existen, se tiene la cadena de inclusiones:

PiC(L) ⊂ PNC(L) ⊂ PSC(L) ⊂ P(L).
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Estos espacios surgen de las distintas formas de representar la consistencia

del conjunto de premisas con el que se trabaje. De la misma forma que

se consegúıa una nueva interpretación de los principios aristotélicos de No

Contradicción y Tercero Excluido, y la misma que nos permitirá obtener

modelos de conjeturas sin partir de un operador de consecuencias.

Se estudia la propiedad de consistencia de los operadores de consecuen-

cias, es decir que si q ∈ C(P ), entonces q′ /∈ C(P ), para los siguientes opera-

dores de consecuencias,

C≤(P ) = {q ∈ L;∃p ∈ P : p ≤ q}, para todo P ∈ F.

C•(P ) = {q ∈ L;∃{p1, ..., pn} ∈ P : p1·... · pn ≤ q}, para cualquier

P ∈ F.

C∧(P ) = {q ∈ L; ı́nf P ≤ q}, para cualquier P ∈ F.

En cada uno los distintos espacios F anteriormente mencionados. Este

estudio da lugar a los Teoremas 3.13, 3.20 y 3.25 del art́ıculo, quedando

esquemáticamente recogido en la tabla 1 que aparece en el mismo.

Se introduce el operador C≤ que permite calcular las consecuencias sin

tener definida la operación de ı́nfimo, cumpliendo la propiedad especial de

que C≤(P ) = ∪
p∈P

C≤(p).

A partir de las estructuras de consecuencias (L,F, C), se calculan los

conjuntos de conjeturas, bajo la fórmula

ConjC(P ) = {q ∈ L, q ∈ C(P ) ó q′ /∈ C(P )},

simplificada bajo la consistencia de (L,F, C) a ConjC(P ) = {q ∈ L, q′ /∈
C(P )}.

Dentro del conjunto de las conjeturas se define el conjunto de hipótesis,

HypC(P ) = {q ∈ L; {q} ∈ F y P ⊂ C({q})}
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y el de las especulaciones,

SpC(P ) = ConjC(P )− (HypC(P ) ∩ C(P )),

obteniéndose aśı una partición del conjuntos de las conjeturas. Para

cerrar el modelo, se llamarán refutaciones a aquellos elementos de L que no

sean conjeturas.

Se estudia también las estructuras de consecuencias isomorfas y cómo

pueden calcularse por medio del isomorfismo los conjuntos de conjeturas,

hipótesis y especulaciones (Remarks 3.3 y 4.10).

Gracias al estudio de los modelos sobre conjuntos preordenados, es posible

su generalización a estructuras de conjuntos fuzzy dotadas del órden puntual

(µ ≤ σ si y sólo si µ(x) ≤ σ(x) para todo x en X), la negación fuerte

(a′ = 1 − a, para todo a ∈ [0, 1]) y la operación ı́nfimo, que aqúı es (mı́n).

En el contexto ([0, 1]X ,≤,mı́n,′ ), y a lo largo de la sección 5 del art́ıculo, se

estudia el comportamiento del operador C≤ en los siguientes espacios F:

1. PSC([0, 1]X) = {P ⊆ [0, 1]X ;∀µ ∈ P, ∃x ∈ X : µ(x) > 0,5}

2. PNC([0, 1]X) = {P ⊆ [0, 1]X ; ∀µ, σ ∈ P, ∃x ∈ X : µ(x) + σ(x) > 1}

3. PiC([0, 1]X) = {P ⊆ [0, 1]X ;∀{µ1, . . . , µr}, {σ1, . . . , σn} ∈ P, ∃x ∈ X :

mı́n(µ1(x), . . . , µr(x)) + mı́n(σ1(x), . . . , σn(x)) > 1}

4. P0([0, 1]X) = {P ⊆ [0, 1]X ;∃x ∈ X : (InfP )(x) 6= 0}

5. Pn([0, 1]X) = {P ⊆ [0, 1]X ;∀µ ∈ P, µ es normalizado}
= {P ⊆ [0, 1]X ;∀µ ∈ P, ∃x ∈ X,µ(x) = 1}

Se calculan los conjuntos de conjeturas, hipótesis y especulaciones a partir

del operador de consecuencias C≤. Se iniciará con ello la construcción de un

modelo de razonamiento ordinario que permite tratar con la imprecisión que

trasladan los conjuntos fuzzy.
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2.3.2. Un intento de formalizar el proceso de conjetu-

rar

En este art́ıculo se estudia de forma general el proceso de razonamiento

ordinario a través de la búsqueda de conjeturas, para lo que se contesta a

cuatro cuestiones fundamentales

En qué conjunto, L estará la información disponible, y se buscarán las

conjeturas.

Con qué estructura algebraica está dotado L.

Cómo representar la información disponible P , en el conjunto L.

Cómo definir el conjunto de las conjeturas, bajo las distintas interpreta-

ciones de no ser inconsistente con las premisas.

Respecto al primer punto es destacable la elección del conjunto L,

pudiendo ser un conjunto de conjuntos fuzzy o de elementos precisos,

dependiendo del contexto y caracteŕısticas de cada problema concreto para

el que se quiera construir el modelo de conjeturas.

Contribuyendo al segundo punto se presentan las Álgebras Básicas

Flexibles, estructuras algebraicas que no requieren verificar un gran número

de propiedades. Éstas se construyen bajo un conjunto parcialmente ordenado

en el que se define una operación representando la intersección y otra la

unión, que son monótonas y tienen elementos neutro y absorbente. También

se define una operación que intercambia el ı́nfimo y el supremo del ret́ıculo,

es anti-monótona y representa la negación. Además, se pide que esta

estructura contenga una subestructura que sea un álgebra de Boole, para

que en el caso que se utilice esta estructura sobre los conjuntos fuzzy puedan

quedar recogidos los conjuntos clásicos como degeneración de los fuzzy.

Como anexo, en este art́ıculo se comentan los principios de No Contradicción

y Tercero Excluido en el contexto de las Álgebras Básicas Flexibles.
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La información disponible o conjunto de premisas P se representa den-

tro de los espacios F que aparecen en el art́ıculo anterior. Pero, además se

dan ciertas pautas para conseguir compactar la información de P , bajo un

resumen (résumé) de P , (r(P )). Se muestran tres ejemplos para r(P ),

r(P ) = p∧ = p1·... · pn ∈ L,

r(P ) = p∨ = p1 + ...+ pn ∈ L, y

r(P ) = [p∧, p∨] = {x ∈ L; p∧ ≤ p ≤ p∨}, con r(P ) ∈ P(L).

Se prueba que si r(P ) ≤ p∧, el operador Cr(P ) = {q ∈ L; r(P ) ≤ q}, es

un operador de consecuencias.

Las conjeturas son aquellos elementos que no son inconsistentes con el

conjunto de premisas. Por tanto, cabe definirlas a partir de tres interpreta-

ciones del concepto de no inconsistente: r(P )·q 6= 0, r(P )·q � (r(P )·q)′, y

r(P ) � q′, dando lugar a las siguientes definiciones del conjunto de conje-

turas:

ConjC(P ) = {q ∈ L; q′ /∈ C(P )}, siempre que C(P ) 6= L.

Conj1(P ) = {q ∈ L; r(P )·q 6= 0}

Conj2(P ) = {q ∈ L; r(P )·q � (r(P )·q)′}

Conj3(P ) = {q ∈ L; r(P ) � q′}

Con esta visión se da identidad por śı mismo al conjunto de las conjeturas,

analizando las propiedades que cumple sin necesidad de su estudio a partir

de una estructura de consecuencias. De hecho, se prueba que los operadores

de conjeturas ConjC1 y ConjC2 no se pueden obtener a través de un operador

de consecuencias. Las propiedades generales que verifican los operadores de

conjeturas considerados son:

Conj(P ) 6= ∅
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0 /∈ Conj(P )

P ⊂ Conj(P )

C(P ) ⊂ Conj(P )

Anti-monotońıa:‘si P ⊂ Q, entonces Conj(Q) ⊂ Conj(P )’.

En la sección 6 se prueba que para todo i = 1, 2, 3, se tiene que C∧ ⊂
Conji. Por lo tanto dentro del conjunto de conjeturas Conji(P ) distinguimos,

Consecuencias, C∧(P )

Hipótesis Hypi(P ) = {q ∈ Conji(P ); q < p∧}

Especulaciones Spi(P ) = {q ∈ Conji(P ); q NC p∧}

Obteniéndose la partición del conjunto de las conjeturas

Conji(P ) = C∧(P ) ∪Hypi(P ) ∪ Spi(P ),

y la partición del conjunto L gracias al conjunto de Refutaciones,

Refi(P ) = L− Conji(P ).

Se muestra otra partición del conjunto L, distinguiendo los elementos

decidibles de los no decidibles (en inglés C−undecidables) que se definen

como UC(P ) = {q ∈ L; q /∈ C(P )&q′ /∈ C(P )}, que a su vez pueden ser

divididos en especulaciones e hipótesis UC(P ) = Spi(P ) ∪Hypi(P ).

En el art́ıculo se recoge un modelo para la falsación de hipótesis,

concepto introducido por Popper [Pop63], basándose en que si h es

hipótesis para el conjunto de premisas P , se tiene la siguiente cadena:

C(P ) ⊂ C({h}) ⊂ ConjC(P ) y las hipótesis que se falsarán serán aquellas

para las que se encuentre un elemento que se siga de P , pero no de {h}, o

un elemento que se siga de {h} pero no sea conjeturable a partir de P .
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Se hace constar la importancia de las especulaciones en el modelo de

razonamiento ordinario , ya que es el único operador de todos los que aparecen

que es no-monótono, es decir que no sigue ninguna ley de monotońıa, no es

ni monótono, ni anti-monótono, aśı que su estudio se hace más complejo.

Además, en los ret́ıculos ortomodulares se verifica que Hyp3(P ) = p∧ ·Sp3(P )

y C∧(P ) = p∧ + Sp3(P ).

El art́ıculo muestra dos ejemplos modelados por conjeturas:

La conjetura de Goldbach. Basándose en los cinco axiomas de Peano

como conjunto de premisas, decir que todo número par mayor que dos

es suma de dos primos, no es incompatible con los axiomas de Peano,

ya que no se ha encontrado ningún número par mayor que dos que no

pueda escribirse como la suma de números primos, por lo tanto es pro-

visionalmente una conjetura matemática. De hallarse una demostración

para este hecho, pasará a ser una consecuencia de los axiomas de Peano,

ya que se habrá deducido de los axiomas de los números naturales.

Otro ejemplo es el construido a partir de los sucesos que pueden acon-

tecer al lanzar un dado. En este caso todos los posibles resultados son

conjeturables, obtener cualquier resultado no entra en contradicción

con la naturaleza del dado, y para más precisión son hipótesis, no hay

ni especulaciones, ni consecuencias distintas a la premisa (‘que salga

un de las seis caras’), ya que ningún suceso distinto al total, es seguro

sino contingente.
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Caṕıtulo 3

Conclusiones y trabajo futuro

Toda la imagineŕıa

que no ha brotado del ŕıo,

barata bisuteŕıa.

Antonio Machado (1875-1939)

3.1. Relacionado con los oŕıgenes lingǘısticos

de los conjuntos fuzzy

La investigación llevada a cabo en este trabajo pretende ser una contribu-

ción al estudio del significado, el llamado ‘nudo gordiano’ de la Inteligencia

Artificial.

En primer lugar, se muestran formas de modelizar la actuación de un

predicado en un universo de discurso. Es decir, el uso primario de un

predicado en un universo, o à la Wittgenstein, cual es su significado. Se

modela el significado elemental o uso primario, a través de una relación

que traslada cuantitativamente, y a veces de forma perceptiva, la forma de

actuar del predicado en el universo de discurso.

27
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En segundo lugar, se muestra el concepto de grado, es decir, hasta

dónde un objeto verifica la propiedad nombrada por el predicado; de alguna

manera, el modo cuantitativo de medir esa magnitud. Se formaliza el grado,

tras conocer la relación modelada por el uso primario del predicado. De esta

forma se clarifica cual es la propiedad intŕınseca de una función en LX para

considerarla una representación del predicado y, aśı representar el colectivo

por él definido.

En tercer y último lugar, se atiende al problema práctico de la elección

de la escala en la cual vaŕıa el grado. Mostrándose, para el caso concreto

de un predicado gradual las posibles representaciones a través de conjun-

tos fuzzy, conjuntos fuzzy de tipo 2, o conjuntos fuzzy evaluados en intervalos.

El art́ıculo se enmarca dentro de la revisión de la actual artilleŕıa

disponible de la Lógica fuzzy, por lo que se puede considerar útil en el campo

más amplio de la Computación con Palabras.

Como futuro trabajo dentro de este campo enumeramos:

El análisis emṕırico de la relación ≤P , para comprobar cuando es un

preorden, aśı como qué hacer cuando no lo es.

Propiedades generales que una operación (·) debeŕıa verificar para

obtener µP&Q = µP ·µQ, bien sobre el mismo universo de discurso, o

bien sobre universos distintos.

Propiedades generales que una operación (+) debeŕıa verificar para

obtener µP or Q = µP + µQ, bien sobre el mismo universo de discurso,

o bien sobre universos distintos.

Propiedades generales que la relación fuzzy R debeŕıa verificar para

obtener µSi P entonces Q = R ◦ (µP × µQ), bien sobre el mismo uni-

verso de discurso, o bien sobre universos distintos.
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Generalizar el concepto de migración lingǘıstica de predicados, a la

migración de oraciones complejas que involucren conectivos o condi-

cionales.

Analizar el concepto de ‘significado grupal’, relacionándolo con el pare-

cido de familia o migración, para intentar capturar la noción de ‘sig-

nificado social’.

3.2. Relacionado con los principios aristotéli-

cos

Para Aristóteles la ley de No-Contradicción era un principio del pen-

samiento. Lo enunciaba como que la oración ‘A y no A es imposible’ es

válida universalmente y no necesita ser probada, es decir, la enunciaba co-

mo un axioma. Pero la flexibilidad de los conjuntos fuzzy permite que un

elemento pueda ser A con cierto grado y no A con otro grado.

Si la ley se traduce por ‘A y no A es falso’, su validez depende de las in-

terpretaciones del término falso, y cómo se representen en un marco formal.

Si la ley se entiende como ‘A y no A es auto-contradictorio’, su validez tam-

bién depende de las interpretaciones del término auto-contradictorio, y como

se representen en un marco formal. Obviamente, en ambos casos también

influyen las caracteŕısticas del marco formal elegido.

¿Qué interpretación de imposible es preferible? ¿En qué marco formal es

más adecuada cada una de ellas? Estas cuestiones no tienen una respuesta

inmediata. Por ejemplo, en el marco de los ortorret́ıculos los términos falso

y auto-contradictorio, son equivalentes siempre que falso se represente por

el primer elemento del ret́ıculo, 0, y siempre que un elemento x es auto-

contradictorio se represente por x ≤ x′. De todos modos, en otros marcos

como las álgebras de De Morgan o las álgebras estándar de conjuntos fuzzy,

existen muchos elementos no nulos que son autocontradictorios. Por lo tanto,

en el art́ıculo se estudia la desigualdad, a·a′ ≤ (a·a′)′, sabiendo que en los



30

ortorret́ıculos es equivalente a a · a′ = 0.

Respecto al principio de Tercero-Excluido, partiendo de la forma de enun-

ciarlo de Aristóteles como ‘A o no A es verdadero’, se traduce algebraica-

mente por (a + a′)′ ≤ ((a·a′)′)′ = 0, y en términos de auto-contradicción,

por ((a·a′)′)′ ≤ (((a·a′)′)′)′, que coincide con la ley de No-Contradicción si la

operación ′ es involutiva (a′′ = a).

La mayor contribución del art́ıculo es que se garantiza la verificación de los

principios de No-Contradicción y Tercero-Excluido, bajo pocas condiciones

sobre los conectivos y, o, siempre que sean funcionalmente expresables y que

el complemento se traduzca por una negación involutiva. En el campo de la

filosof́ıa de la ciencia, esto permite que los conjuntos fuzzy se asienten sobre

una base sólida.

Como futuro trabajo señalaremos

El estudio de los principios en distintas BFA.

Bajo qué sistemas deductivos podŕıa deducirse a + a′ a partir de a y

a′?

Bajo qué sistemas deductivos podŕıa considerarse que a ·a′ es decidible

a partir de a y a′?

3.3. Relacionado con el tema de los modelos

de conjeturas

La capacidad cerebral de conjeturar es crucial en la evolución de la

especie Homo. Sin ella, unida a la capacidad del lenguaje, posiblemente

el Homo no habŕıa destacado respecto a otros animales, ni constituido

las organizaciones sociales, económicas e incluso religiosas propias del ser

humano. Uno de los hechos distintivos de la especie Homo Sapiens es el arte

de guiar sus conjeturas hacia una meta. Incluso la investigación cient́ıfica y

tecnológica no deja de ser una actividad humana que se basa en una gestión
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altamente articulada de conjeturas. En palabras de Jenófanes de Colofón

“Todo no es sino un tejido de conjeturas” [Pop63].

Aunque las consecuencias y las hipótesis, aśı como varios tipos de razo-

namiento no-monótono, se consideran como un tema de elevada importancia

entre lógicos, filósofos, informáticos y probabilistas, ningún acercamiento a

la formalización del concepto de conjetura hab́ıa aparecido anteriormente.

En el marco de los ortorret́ıculos, las conjeturas se definen como elementos

no inconsistentes con un conjunto de premisas (no inconsistente), que refle-

je la información disponible. Es decir, las conjeturas son los elementos del

ortorret́ıculo que son posibles una vez conocido un résumé del conjunto de

premisas. Como casos particulares de conjeturas, distinguimos: consecuencias

(conjeturas seguras o necesarias), hipótesis (conjeturas contingentes explicati-

vas) y especulaciones(conjeturas contingentes elucubrativas o especulativas).

Hay que destacar que ni las especulaciones, ni las hipótesis, pueden

tratarse como cuerpos de información. El proceso de obtener consecuencias

se enmarca dentro de la deducción. El de obtener hipótesis en la abducción

y el de obtener especulaciones en el razonamiento especulativo, y todos ellos

bajo el término ‘razonamiento’. Obviamente, en las ciencias formales y en el

contexto de las demostraciones el rey de los razonamientos es el deductivo.

3.3.1. Consecuencias y Conjeturas en conjuntos preor-

denados

Álgebras como las de De Morgan no verifican las hipótesis de trabajo

hechas en ([ET00]) y ([ET09]), ya que en ellas no se cumplen las leyes de

No-Contradicción y Tercero-Excluido como en los ortorret́ıculos. Esta falta

se solventa en este art́ıculo ya que como hipótesis de trabajo se manejan

conjuntos preordenados dotados con una negación y en los que en caso de

ser necesaria se les dota de una operación ı́nfimo. Aśı pues, en este art́ıculo

se estudian propiedades de los modelos CHC construidos sobre conjuntos
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preordenados, que son estructuras más débiles que aquellas en las que se

defińıan los modelos anteriormente. Para mantener algunas propiedades de

los modelos, el art́ıculo considera operadores consistentes de consecuencias.

Se estudian en detalle tres operadores de consecuencias definidos sobre

distintas familias de subconjuntos de premisas útiles para garantizar la con-

sistencia de las premisas:

C≤, que permite obtener como consecuencia todo elemento que se sigue

de alguna premisa.

C•, que permite obtener como consecuencia todo elemento que se sigue

de algún número finito de premisas.

C∧, que permite obtener como consecuencia todo elemento que se sigue

de todas las premisas.

Las conclusiones más relevantes que se obtienen son:

La formalización del modelo sobre estructuras débiles en cuanto al

número de propiedades que han de verificar.

El conseguir poder tratar informaciones imprecisas, abriendo una puer-

ta a la lógica fuzzy.

Abrir una nueva puerta para el estudio del razonamiento no-monótono,

ya que se prueba la anti-monotońıa de las conjeturas e hipótesis y

se muestra que las especulaciones son no-monótonas, es decir que no

siguen ninguna ley de monotońıa.

Se formaliza el concepto de falsación de hipótesis propuesto por Popper

[Pop63].
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3.3.2. Un ensayo de la formalización del razonamiento

conjetural

Previamente se definen los operadores de conjeturas a partir de opera-

dores de consecuencias consistentes, por lo tanto se sitúa previamente al de

conjeturar, el proceso de deducción, y conjeturar se puede entender como una

extensión de deducir. Después de la publicación de varios art́ıculos ([ET00],

[ET02], [ET09], [TPÁ09], [TCC01], [TGHP10], [AFP01]) bajo esta idea, per-

manećıa la duda de la existencia de operadores de conjeturas independientes

de operadores de consecuencias. Este art́ıculo despeja tal duda; mostrando

las propiedades t́ıpicas de los operadores de conjeturas, se consideran la anti-

monotońıa y la propiedad de contener tanto al conjunto de premisas como a

uno de consecuencias, y se definen tres diferentes operadores de conjeturas a

partir de diferentes interpretaciones de la no-inconsistencia. Solamente en uno

de estos tres casos se puede considerar que las conjeturas se obtienen a través

de un operador de consecuencias en el sentido de Tarski. De todos modos, en

el contexto de las álgebras de Boole estas interpretaciones son equivalentes,

ya que los tres operadores de conjeturas se reducen exclusivamente a uno.

Adicionalmente, se prueba que los tres operadores de conjeturas extienden

el conjunto de las consecuencias para el operador C∧.

3.3.3. Trabajo futuro

Entre las cuestiones que requieren un estudio futuro en este campo, desta-

camos:

El cómo representar la información que aportan las premisas, para cla-

rificar el concepto de résumé de la información.

Establecer definitivamente la definición de operador de conjeturas de

forma axiomática como se hace en el caso de los operadores de conse-

cuencias de Tarski.
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Conectar los Modelos CHC con el Razonamiento Analógico, o al menos,

con el Razonamiento basado en casos y dado por un ı́ndice de seme-

janza.

Clarificar cómo proceder cuando aparece nueva información de distinto

tipo. Por ejemplo, lo que se hace en [GHRdST11], cuando se añade una

premisa imprecisa a un conjunto de premisas precisas.

Estudiar bajo qué mı́nimas condiciones, se puede enunciar, como ocurre

en los ret́ıculos ortomodulares, que todas las hipótesis son reducibles

[TPÁ09].

Introducir algún tipo de medida en el modelo que permita comparar las

conjeturas y conocer aśı cual es la conjetura mejor, o al menos cuales

son las menos ‘malas’.

Avanzar más allá en el estudio del razonamiento conjetural con

conocimiento impreciso, es decir, cuando el mismo sea representable

en álgebras de conjuntos fuzzy. Más en general, plantearlo en un marco

de BFA.



Caṕıtulo 4

Conclusions and Future Work

Uncertainty is an uncomfortable position, but

certainty is an absurd position.

Voltaire (1694-1778)

4.1. Related to the topic “Linguistic Roots of

Fuzzy Sets”

The research, that is a small contribution to the so-called problem of

meaning, the ‘Gordian’ knot of Artificial Intelligence, had a triple goal.

First, to show that there are actually mathematical ways of modeling the

action of a predicate on universes of discourse that are sets. That is, how the

predicate is primarily used in the universe, or, and à la Wittgenstein, which

is its ‘meaning’. Elementary meaning is here modeled through a relation

translating a ‘qualitative’, and sometimes perceptive-based form of how the

predicate works in the universe of discourse.

Second, to show that the concept of ‘degree’, the ‘extent’ up to which

an object satisfies the property named by the predicate, in some form, a

35
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way towards ‘quantitatively’ measuring such extent, is formalizable once

known the relation modeling the primary use of the predicate. In this way,

it is clarified which is the intrinsic property a function in LX should verify

to represent a L−set on X. If collectives are generated by predicates but

cannot be well defined, L-sets are well defined by particular representations

of predicates.

Third, to reflect on the practical problem of choosing at each case the

scale in which the degrees can vary. In the particular case the predicate

is numerically measurable, some special types of fuzzy sets, like Zadeh’s,

type-2, or interval-valued fuzzy sets, do appear.

The Thesis tries to contribute to the revision of the current armamentar-

ium of Fuzzy Logic that seems necessary to go through the new Computing

with Words proposed by Zadeh.

Among the questions that deserve future study, let us cite the following:

To analyze the case in which the empirical relation≤P is not a preorder.

Which are the general properties an operation (·) should have to allow

µP&Q = µP ·µQ, either in the same or different universes of discourse?

Which are the general properties an operation (+) should have to al-

low µP or Q = µP + µQ, either in the same or different universes of

discourse?

Which are the general properties a relation R should have to allow

µIf P then Q
= R◦ (µP ×µQ), either in the same or different universes

of discourse?

To go further with the new concept of the linguistic predicate migration

and, even more, with the migration of complex statements involving

either connectives, or conditionals.
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Analyze the concept of ‘group meaning’ at the light of either family

resemblance, or the particular case of migration, to be able to capture

a notion of ‘social’ meaning.

4.2. Related to the topic of the Aristotelian

Principles

For Aristotle the law of non-contradiction was, actually, a ‘principle’ of

thought. Although he stated that the statement ‘A and not A is impossible’,

is universally valid and non susceptible to proof, within Fuzzy Logic either

it is a theorem, or it is proven false.

For instance, if the law of non contradiction is read in the form ‘A and

not A is false’, its validity will depend on the interpretation of the term

‘false’, and on how it is represented in a given formal framework. If such

law is posed by ‘A and not A is self-contradictory’, its validity will depend

on the interpretation of ‘self-contradictory’, and on how it is represented in

a formal framework. Of course, in both cases the validity of principles also

will depend on the characteristics of the chosen formal framework.

Which one of these two interpretations of the Aristotelian term ‘im-

possible’ is preferable? In which formal framework each one is preferable?

These questions do not have an immediate answer. For example, within

the framework of ortholattices there is equivalence between ‘false’ and ‘self-

contradictory’, provided the first term is represented by the first element

0 of the lattice, and the second by the definition x ≤ x′. Notwithstanding,

within the framework of DeMorgan algebras, and also in that of the standard

algebras of fuzzy sets, there are many non-null self-contradictory elements.

The Thesis studies the validity of a·a′ ≤ (a·a′)′ that, in ortholattices, is

equivalent to a·a′ = 0.
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Concerning the principle of Excluded Middle, after Aristotle usually

taken in the form ‘A or not A is true’, the paper adopts the algebraic inter-

pretation (a+a′)′ = ((a·a′)′)′ = 0, from which, in terms of self-contradiction,

follows ((a·a′)′)′ ≤ (((a·a′)′)′)′, coincidental with that of Non-Contradiction

if the operation not, denoted by ′, is involutive (a′′ = a).

The most important conclusion of the paper, is that the two principles

of Non-Contradiction and Excluded-Middle are guaranteed under very few

conditions on the connectives and, or, once functionally expressed, and

provided the complement is given by a strong negation function. For most

philosophers of Science, this result places Fuzzy Sets on non-trembling

grounds.

As future aspects to be studied, the following three are paramount

In which BFA the principles hold?

Under which deductive systems follows a+ a′ from a and a′?

Under which deductive systems is a·a′ decidable form a and a′?

4.3. Related to the topic of Conjectures

In the course of millennia the brain’s capability of conjecturing resulted

extremely important for the evolution of the species Homo. Without artic-

ulate language and partially articulate guessing, possibly Homo would have

neither prevailed over the rest of animals, nor constituted the social, religious

and economic organizations typical of humankind. And one of the most dis-

tinguishing features of Homo Sapiens is the act, and especially the art, of

reasoning, or goal-oriented managing conjectures. Even more, scientific and

technological research is a human activity that manages guessing in a highly

articulated way. In words of Xenophanes of Colophon ‘All is but a woven of

guesses’ [Pop63].
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Although consequences and hypotheses, as well as several types of

non- monotonic reasoning, deserved a good deal of attention by logicians,

philosophers, computer scientists, and probabilists, no attempt at formal-

izing the concept of conjecture appeared before [ET00] was published. In

the framework of an ortholattice, conjectures were defined there as those

elements non-inconsistent with a given set of (non-inconsistent) premises

reflecting the available information. That is, conjectures are those elements

in the ortholattice that are “possible”, once a résumé of the information

given by the premises is known. This is the basic definition of which

consequences (or safe, necessary conjectures), hypotheses (or explicative

contingent conjectures), and speculations (or lucubrative, speculative

contingent conjectures) are particular cases, in agreement with W. Whewell

words ‘Deduction is a necessary part of Induction’.

It should also be pointed out that neither the set of hypotheses, nor

that of speculations, can be taken as bodies of information. Processes to

obtain consequences perform deductive reasoning, or deduction. Those to

obtain hypotheses perform abductive reasoning, or abduction, and those

to obtain speculations perform speculative reasoning, a term that is also

more generally applied to obtaining either hypotheses or speculations,

and then results close to the term “reasoning”. Of course, in Formal Sci-

ences and in the context of proof, the king of reasoning processes is deduction.

4.3.1. Consequences and Conjectures in Preordered

Sets

Algebras as the De Morgan ones do not fit in the working hypotheses made

in ([ET00]) and ([ET09]), since they do not verify the Non-Contradiction

and Excluded-Middle laws. This lack is overcome in this Thesis: now the

only necessary underlaying structure is a preordered set endowed with a
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negation, that can be enriched with an inf-operation or upgraded to an

inf-∗-complete poset. So, this paper studies some properties of CHC models

built on preordered sets that are weaker structures than the others where

CHC models had been studied before. Furthermore, in order to keep some

properties that hold in stronger structures, this Thesis considers consistent

operators of consequences.

In addition, three different consequence operators have been analyzed in

detail, defining them on different families of subsets useful to control the

consistency of the premises:

C≤, which only provides as consequences those elements ‘following’ from

some premise;

C•, which provides as consequences those elements ‘following’ from the

conjunction of any finite number of premises ;

C∧, which considers the elements ‘following’ from the conjunction of all

the premises.

The operators C≤ and C• actually define partial consequences of the set

of premises.

Among the most relevant conclusions of this Thesis, the following can be

cited:

Conjectures are formalized in very week algebraic structures.

Such formalization opens the door to work with Fuzzy Logic.

Conjectures at large are proven to be anti-monotonic, hypotheses

to be also anti-monotonic, but speculations are without any law of

monotonicity. This opens the door to a new way of considering Non-

monotonic Reasoning.
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The Popper’s well know process of ‘falsification of hypotheses’ is for-

malized in the new framework.

4.3.2. On an Attempt to Formalize Guessing

Defining the operators of conjectures only by means of consistent conse-

quence ones has the drawback of placing deduction before guessing, when it

can be supposed that guessing is more common and general than deduction.

After the publication of some papers ([ET00], [ET02], [ET09], [TPÁ09],

[TCC01], [TGHP10], [AFP01]) on the subject, it yet remained the doubt

on the existence of operators of conjectures obtained without operators of

consequences, and this Thesis liberates from such doubt by showing that to

keep some properties that seem to be typical of the concept of conjecture,

it suffices to only consider operators that are extensive and monotonic,

but without enjoying the closure property. It is reached three operators of

conjectures by considering (like it was done in [ET02]), three different ways

of defining non-inconsistency by means of non-self-contradiction. Of these

three ways, only one of them conducts to reach conjectures directly through

logical consequences. Of course, in the framework of Boolean algebra the

three operator collapse into a single one.

What results important is that, notwithstanding, also those operators for

conjectures that do not come from consequence ones, do contain a subset of

consequences given by the known operator C∧ .

4.3.3. Future work

Among the questions deserving future study, let us cite the following:

A deep study of how to represent the information conveyed by the

premises, that is , to reach a clear concept of what can be called a

résumé of information.
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To definitively establish the kind of ‘abstract’ operators that, like it

happens with those of consequences and those shown in 4.3.2, allow

to define the concept of conjecture. That is, to obtain a structural

definition of conjecture, like that obtained by Tarski with respect to a

deductive system.

To link CHC Models with Analogical Reasoning or, at least, with Case-

Based Reasoning given by a similarity index.

To clarify how to proceed when new information of a different type

appears. For instance, like it is done in [GHRdST11], when an imprecise

premise should be add to the set of precise premises.

Which are the minimum conditions on which it can be stated, as it

happens in orthomodular lattices, that all the hypotheses are reducible

[TPÁ09]?

Introduce some kind of measure that allows to compare conjectures,

and allows to take a decision of which is the best or which are the best

conjectures.

Go further in the analysis of conjectural reasoning with imprecise

knowledge, that is, with knowledge representable in algebras of fuzzy

sets.
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Caṕıtulo 5

An Essay on the Linguistic

Roots of Fuzzy Sets

A menudo he dicho que todo poema resuelve algo

para mı́ en la vida. Voy tan lejos como para decir

que cada poema es una fugaz aportación en contra

de la confusión del mundo ... Capaces de transfor-

mar a orden el desorden. Y los poemas que hago

son pequeños fragmentos de orden.

John F. Sowa (1940-)

I. Garćıa-Honrado, E. Trillas, An Essay on the Linguistic Roots of Fuzzy

Sets, Information Sciences 181 4061-4074 (2011).
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a b s t r a c t

This paper mainly tries to show that the membership function of a fuzzy set labeled P does

show some intrinsic property related with how P is actually managed in the universe of

discourse. Its final goal is to analyze an answer to the question, which intrinsic but simple

property allows a function to represent a fuzzy set labeled P? The presented property

exhibits that the membership function just ‘measures’ in some scale the extent up to which

x is P in language, for all x in the universe of discourse.

Such study is done in a form allowing to consider how to represent the ‘collective’ orig-

inated by a predicate reflecting a collective noun. As particular cases of what is presented,

and when the degrees can be some kinds of numerical subsets, the Zadeh’s fuzzy sets, the

interval-valued, the intuitionistic, and the type-2 fuzzy sets, appear as particular cases and

to some extent are discussed. A ‘unification’ of all different kinds of fuzzy sets based on a

linguistic origin is achieved.

Ó 2011 Elsevier Inc. All rights reserved.

1. Introduction

The evolution of fuzzy logic towards Natural Language computing, or Computing with Words in Zadeh’s terminology

[37,39], requires an intensive theoretic focusing in the admissible representations of the meaning conveyed by linguistic

expressions. This is, in itself, a very complex problem that neither in computer science, nor in linguistics, nor in philosophy,

is yet even sufficiently well posed and, less again, solved. It is a situational problem that strongly depends on the context in

which the linguistic expressions are uttered or written, as well as on the current purpose for which its composing words,

connectives, modifiers, etc., are jointly used. From all that, it easily follows the necessity of a careful design [27,24] of the

representation in fuzzy terms of those systems or reasonings described in linguistic terms and not only in mathematical

ones.

In this line, the clarification of the links between the meaning of unary and binary imprecise predicates and L-fuzzy sets,

fuzzy relations, connectives, and linguistic modifiers, seems to be of a paramount importance for the representation of sys-

tems that, once described its behavior in Natural Language expressions, are not simpler than those currently considered in

fuzzy control. Of no less importance is the representation of complex ordinary reasonings purposed and presented in Natural

Language.

This paper, that continues those in references [21–23], is a kind of essay that tries to shed some light on those links by

means of mathematical representations in algebraic frameworks as simple as possible and, hence, sufficiently general to al-

low the study of a wide spectrum of dynamical systems and reasonings expressed in Natural Language. With respect to this

paper, it can be said that ‘In the beginning was the word’ (in the first verse in the Gospel of John, 1:1–5).
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2. Basic concepts

2.1

Correctlymanaging a language at least implies to knowwhat its expressionsmean, that is, how to use themproperly at each

situation. In particular, ‘I learned how andwhere to correctly use predicate P’ implies ‘I know themeaning of P’. Following Lud-

wigWittgenstein [31], ‘themeaningof aword is its use in the language’ and, of course, thefirst problem for capturing themean-

ingof apredicate lies inhowtodescribe and represent its use.Without ‘representation’ there is neither roomfor a scientific type

of study, nor the possibility of establishing a useful ‘Computing with Words’ like that advocated by Zadeh ([37]).

A predicate P means nothing by itself, it only can mean something when acting on some universe of objects, X, the uni-

verse of discourse, of which it will be here supposed is a set (in the mathematically naïve sense of Halmos [11]). Such action

is made though the elemental statements ‘x is P’, and to know this action implies to know, at least, some of the basic rules by

which the statements ‘x is P’, ‘y is P’,. . . are related.

It will be considered that a predicate P is a name given to a property p eventually verified, up to some extent, by the ob-

jects in X. In general, the notions of property and object are inextricable woven together since an object instantiates prop-

erties, and properties are what objects have or instantiate [15].

This paper only deals with those predicates reflecting ‘collective nouns’, that is, generating collectives in the universe they

act in, or work, or are used. Actually, collectives are in the language, in the same way in which, for instance, in a big horses

farm, P = ‘short’ allows to talk of the short horses in the farm.

Once some elemental treats of the use of P on X are described, a way for representing the meaning of P in X is introduced

and the concept of the degree up to which x is P, is tentatively defined. This is done in a formmaking clear that several values

places, or scales, for the degrees are possible. Depending on the scales for the degree, fuzzy sets, interval-valued fuzzy sets,

intuitionistic fuzzy sets, etc., do appear respectively (see [21–23]). A kind of ‘unification’ of Zadeh’s, interval-valued, Attana-

sov’s and type-2 fuzzy sets, when based on linguistic genesis is achieved. A someway antecedent of what is here presented

can be found in the nice and interesting paper [5].

2.2

It should be noticed that predicates appearing in the language were usually introduced by naming a property exhibited by

some elements in a ‘universe of discourse’. After this, it is frequently the case that the considered predicatemigrates to another

universe of discourse, and that its use results in some form distorted, but showing ‘family resemblance’ with its former use.

Hence, the use we analyze of a predicate is with reference to a given universe of discourse. The resemblance of uses is also

taken into account, yet an initial study of them can be found in [8,29].

This paper does not deal with the processes going from a collective towards a predicate naming it, but from a predicate on

a universe towards the ‘representation’ in mathematical terms of the collective it can originate. Most of the predicates orig-

inating collectives are such that these collectives are not sets by lacking sharp boundaries. This reflects what is commonly

stated as ‘the greys’ their uses show, that is, the graduation under which the elements in the universe of discourse do verify

the property named by the predicate. In this sense, the intuitive idea the word ‘collective’ tries to express is not representable

with the same kind of uniqueness than that expressed by the word ‘set’, although evidently ‘sets’ are particular cases of

‘collectives’. The L-sets introduced in next Section 6 are, at its turn, a mathematical way of representing the collectives orig-

inated by predicates that are ‘gradable’ in some way. The word ‘collective’ reflects an abstract concept, and the corresponding

L-sets are representational concretions or precisiations of it.

2.3

Words are for describing some reality, be it perceived in the real, or in an intellectualworld, be it invented in a fictitious one,

in a static or dynamicway, partially or totaly, andusually such reality is presented in the formof some ‘information’. Those real-

ities are never isolated ones, but placed in a context that can produce either restrictions, or softenings, in theword’s use. Hence,

the meaning or use of the words depends on the corresponding purpose for which they are used in a given context.

Theuseofwordsdependson the reality to bedescribedwith them, on the context inwhich it is inscribed, andon thepurpose

formanaging it. This is a relevant part of howwordswork. For instance, in the context of an experiment inwhich a parameter or

variable takes its values between 0 and 10 units of something, it can be good enough to either use the word ‘small’ in a loose

sense, or to use it in a very specific one like ‘less or equal than 4’, that can be viewed as a restriction of ‘small’.

3. Primary or elemental meaning of P in X

3.1

If someone states ‘I do manage P on X’, she/he should recognize when (for x,y 2 X) it is ‘x is equally P than y’, or it is not. It

seems also obvious that he/she should at least recognize when ‘y is less P than x’ or when ‘x ismore P than y’, similarly to how

in the Montessori’s learning method [18], children learn the concept of length by ordering several sticks of different sizes.
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By taking the two (sometimes, perception-based) relations (a) x is equally P than y, (b) x is less P than y, the corresponding

algebraic relations in X are obtained.

1. =P, for (a), with =P � X � X

2. 6P, for (b), with 6P � X � X,

and y6ÿ1
P x ð () x6PyÞ can be identified with ‘y is more P than x’. Of course, if x = y, it can be accepted that x = Py, but not

reciprocally in general.

3.2

Considering the working hypotheses

3. ¼P ¼ 6P \6
ÿ1
P

4. 6P is a preorder (a reflexive and transitive relation),it is =P an equivalence relation giving the quotient-set X/ = P, with clas-

ses ½x� ¼ fy 2 X; x¼Pyg ¼ fy 2 X; x6Py & x6ÿ1
P yg. Under hypothesis (3), the only relation to be taken into account is 6P.

It should be remarked that what follows could be done without supposing (4), but then some technical troubles do ap-

pear. For this reason such case is not yet considered (see [21,23]). Provided the transitivity of 6P is not acceptable, it yet re-

mains the possibility of alternatively considering some other relation weaker than transitivity.

Definition 3.1. 6P is the primary, or elemental, meaning of P in X, and P is meaningless in X if 6P = ;.

Of course, if P is meaningless in X, it is also 6ÿ1
P ¼ ; and =P = ;: There is no way of ‘organizing’ the universe of discourse X.

Remarks 3.2.

1. If S = small, and X = [0,10], S is usually acting on X under the rule ‘x 6S y, y 6 x in the linear order of R’. Hence, 6ÿ1
S ¼6,

and ‘x = Py, x = y’.

2. When X is a non-numerical, or a non-structured set, it is not so easy to obtain 6P. For instance,

� If X is a collection of paintings, and Q = beautiful, a way for establishing 6Q is by means of a group of experts that fix a

set of attributes a1, . . . ,an of the paintings, and by defining

x 6Q y () ðx; yÞ 2 a1; . . . ; ðx; yÞ 2 an;

where (x,y) 2 ai means that painting y shows (in the view of the experts) attribute ai more than painting x shows it. Of

course,

x 6ÿ1
Q y () ðy; xÞ 2 a1; . . . ; ðy; xÞ 2 an;

and x = Qy, (x,y) 2 a1, (y,x) 2 a1, . . . , (x,y) 2 an, (y,x) 2 an.

Notice that 6Q is a preorder if, for all x 2 X, it is (x,x) 2 ai, 1 6 i 6 n, and if (x,y) 2 ai and (y,z) 2 ai, then (x,z) 2 ai,

1 6 i 6 n.

� If X is the set of inhabitants in a very big city, and P = short, it is usually stated

x6Py () Height of y 6 Height of x;

and x = Py, Height of x = Height of y, once the heights are measured with a given accuracy. Obviously, 6P is a

preorder.

3. In X ¼ N, the predicate P = ‘transparent’ is meaningless (6P = ;), unless if it is possible to define ‘n is transparent’ by either

a necessary and sufficient condition, or giving a relation like,

n is less transparent than m:

4. Only when X is endowed with some specific structure, it is possible to precisely define how P acts in X by means, for

example, of some precise rules for its use. This is the case, for instance, of P = even in the set X ¼ N of the natural numbers,

where ‘n is even’ () n ¼ _2. Defining

n6Pm () n ¼ 2p & m ¼ 2q & p 6 q;

from which it follows n = Pm, p = q, n =m.

5. It can be said that some predicates are compatible with some structure in X, when it exists. For instance, if P = probable

acts on a r-algebra a of events, before introducing any probability in a, mathematicians would say ‘A is less probable than

B’ if and only if A � B. Hence, ‘probable’ is compatible with the poset ða;�Þ and, of course, the empty set ; is ‘less probable’

than any A 2 a that, at its turn, is less probable’ than the maximum element in a. Anyway, even if it could be easily

accepted that � is included in 6probable, the identification of both relations is not clear enough. In cases like this, the
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identification of 6P with the order of the structure in X can be an artificial reduction of the ‘meaning’ of P. Anyway, pred-

icates act on any kind of universe X, be it previously structured or not. In addition and intuitively, the action of P intro-

duces some organization, structure, or order, in the universe of discourse X: that given by the binary relation 6P, be it a

preorder or not. Rationality, expressed by a discourse, introduces some structure in the world in which the discourse is

based.

6. By freely defining 6P it is opened the possibility of ‘creating’ new predicates P. For example, in X = {1,2,3,4,5,6} with the

preorder given by the graph, or equivalently the matrix, with which ‘n 6P m, n 6m and something else’, it results that P

is a restriction of S = small in X, that is, it exists a binary relation B � X � X such that 6P = 6S \ B. Of course, ¼P ¼ 6P \6
ÿ1
P

is nothing else than the equality of the numbers in X. Predicate P can be named either by a new word like P = kakanboo, or

by an old one in reason of some similarity of the corresponding meanings, for instance, P = cutted-small.

1

5

3

6

4

2

½6P � ¼

1 1 1 1 1 1

0 1 0 1 0 1

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 1

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

:

4. The concept of degree

4.1

Once the structure (X,6P) is established, an important question lies in how to measure, and where, up to which extent x is

P (for all x in X). Provided a partially ordered set L ¼ ðL;6Þ can be, in some form, associated to (X,6P), a function lP : X? L is

an L–degree for P in X, if

x 6P y ) lPðxÞ 6 lPðyÞ:

Obviously, if x = Py it follows lP(x) 6 lP(y) and lP(y) 6 lP(x), that is, lP(x) = lP(y) (see [21,23,22,25]). The set LX can be viewed

as a repository of potential degrees for predicates, and the poset L as a scale for the degrees.

Theorem 4.1. Provided 6P is a preorder, there exist a poset L ¼ ðL;6Þ and an L–degree lP, naturally linked with (X,6P).

Proof. Take the quotient set X/ = P, and translate 6P to its classes by

½x� 6�
P ½y� () x 6P y:

This definition does not depend on the chosen representatives of the classes and is a partial order. Hence, LP ¼ ðX=¼P ;6
�
PÞ is a

poset naturally linked to (X,6P).

Take any poset (L,6) isomorphic to LP , and define lP : X? L by lP(x) = r, with r the element in L that corresponds to the

class [x] by the isomorphism with ðX=¼P;6
�
PÞ. Obviously,

x 6P y () ½x� 6�
P ½y� ) lPðxÞ 6 lPðyÞ:

Hence, lP is an L–degree for P in X. h

Thus, the concept of degree is not an empty one.

For example, if X = [0,6], and P = close to four, it can be stated

x 6P y () x 6 y; if x; y 2 ½0;4� and y 6 x if x; y 2 ½4;6�;

and any L–degree lP for P = close to four, will be a non-decreasing function between 0 and 4, and decreasing between 4 and 6.

4.2

Once an L–degree lP is defined in (X,6P), it can be considered the new relation 6lP
� X � X, defined by

x 6lP
y () lPðxÞ 6 lPðyÞ:

Obviously: x6Py ) x6lP
y, or 6P � 6lP

, that is, the relation 6lP
is larger than the relation 6P. When 6P ¼ 6lP

it can be said that

lP perfectly reflects the primary meaning, or use, of P in X. When 6Pˆ6lP
; lP only reflects partially the primary use of P.
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The pair ð6P;6lP
Þ could be called the meaning, or use, of P in X. It should be noticed that the meaning, as defined in this

way, is not of an absolute character but relative to the scale L in which the degree lP takes its values.

Remarks 4.2.

1. It is x 6lP
x since lP(x) = lP(x), and if x 6lP

y and y6lP
z, from lP(x) 6 lP(y), and lP(y) 6 lP(z), follows lP(x) 6 lP(z) or

x6lP
z. That is, 6lP

is also a preorder. Obviously, 6lP
is not always antisymmetric.

2. Zadeh’s degrees do appear when L = [0,1] and 6 is the usual order of R ([32,38]). In this case what often is first established

is a [0,1]-degree lP, and hence, what is known is 6lP
, but not 6P.

3. With ¼P ¼ 6P \6
ÿ1
P , it results lPðxÞ ¼ lPðyÞ () x¼lP

y. Obviously, x ¼ y ) x¼Py ) lPðxÞ ¼ lPðyÞ () x¼lP
y. What is

obtained is the chain of inclusions: ¼� ¼P � ¼lP
.

4. Any constant function lr : X? L, lr(x) = r 2 L for all x 2 X, ‘can be taken’ as a degree for any structure (X,6P), since

x 6 Py) r 6 r. Anyway, these functions are only admisible as L–degrees for the predicates Pr = constantly r, in which case

6Pr ¼ 6
ÿ1
Pr

¼ ¼Pr , since x6Pry () lPðxÞ ¼ lPðyÞ ¼ r, for all x, y in X. Constant predicates are not meaningless, since

6Pr ¼ ¼Pr ¼ X � X–;.

If the poset L has a minimum element a 2 L, and a maximum element x 2 L, then there are the two degrees la(x) = a,
lx(x) =x, for all x 2 X, corresponding to the constant predicates Pa = constantly a, and Px = constantly x, respectively.

5. For any poset (L,6), it exists a totally ordered set (toset) (L⁄,6⁄), and an injection u : L? L⁄ (see [34]) such that

a 6 b ) uðaÞ6�uðbÞ:

That is, any poset (L,6) can be embedded in a toset (L⁄,6⁄). In this abstract sense, any L–degree could be defined as a de-

gree taking its values in a totally ordered set.

6. If (L,6) is a toset, given x, y in X, it is either lP(x) 6 lP(y), or lP(y) 6 lP(x), that is x6lP
y, or y6lP

x. In this case, the preorder

6lP
is a total preorder.

5. A comment on group meaning

The meaning of words is not fixed for all people and all context. For example, in a dinner with three commensals the deli-

ciousness of a dessert plate could easily result in three different orderings of such plate. Since language is a social phenom-

enon, also meaning is such, and it is possible to tentatively say something on the meaning of predicates for a group of people

in, of course, a given context.

For a group of people G = {p1, . . . ,pm}, a predicate P on X can show m primary meanings 6P, i, 1 6 i 6m. Since

\

m

i¼1

6P;i

 !

¼ 6P;G

is not empty (all 6P,i are reflexive), it can be taken

Primary meaning of P on X for the group G ¼ 6P;G:

Notice that ¼P;G ¼
Tm

i¼1¼P;i

ÿ �

is an equivalence, and provided all 6P,i are preorders, 6P,G is also a preorder.

Since
Tm

i¼16P;i

ÿ �ÿ1
¼
Tm

i¼16
ÿ1
P;i , provided ð¼P;iÞ ¼ 6P;i \6

ÿ1
P;i for all 1 6 i 6m, then

ð¼P;GÞ ¼ 6P;G \6ÿ1
P;G ¼

\

m

i¼1

6P;i \6
ÿ1
P;i

� �

¼
\

m

i¼1

¼P;i:

If m L ÿ degrees lðiÞ
P are known for each primary meaning 6P,i, since

� x = P,Gy, x = P,1y&. . .&x = P,my,

� x 6 P,Gy, x 6 P,1y&. . .&x 6 P,my,

for each function U : Lm? L, non-decreasing in each place i between 1 and m (for example, if a 6 b then

U(a,x2, . . . ,xm) 6U(b,x2, . . . ,xm)), or Aggregation Function, it results

� x6P;Gy ) U lð1Þ
P ðxÞ; . . . ;lðmÞ

P ðxÞ
� �

6 U lð1Þ
P ðyÞ; . . . ;lðmÞ

P ðyÞ
� �

,

that allows to take

lG
P ðXÞ ¼ U lð1Þ

P ðxÞ; . . . ;lðmÞ
P ðxÞ

� �

; for all x 2 X;

as an L ÿ degree of P on X for the group G. The meaning for the group G results from aggregating its people’s meanings. For

something closely related with this idea, see [10,2].

I. García-Honrado, E. Trillas / Information Sciences 181 (2011) 4061–4074 4065

54



Author's personal copy

6. L-sets

6.1

Given a triplet ðX;6P ;6lp
Þ, and in a more general way than in [9], it is possible to represent the ‘collective’ that P generates

in X.

Such representation, allows to translate into mathematical terms the ‘collective of the Ps in X’, or L-set (by following [9]),

noted by P, and defined by the change of notation:

1. x 2r P (read: x belongs to P with degree r 2 L), lP(x) = r.

2. P ¼ Q () lPðxÞ ¼ lQ ðxÞ, for all x 2 X.

It is obvious that P is equivalent to lP. Hence, the L-set concept is relative to the poset (L,6) and the chosen L–degree,

lP 2 LX. There is not, in general, a unique L-set in X defined by P.

If P is meaningless in X, from6P = ; it follows that for no L a degree does exist:meaningless predicates P do not define any L-

set P in the universe of discourse.

It should be distinguished the before mentioned predicate Pa, with degree la, that gives the L-set Pa characterized by

x 2a Pa for all x 2 X, and the predicate Px whose corresponding L-set Px is characterized by x 2 wX, for all x 2 X. For all

the constant predicates, the corresponding L-sets Pr are unique, and Pa;Px, are their limiting cases.

The definition:

3. P � Q (L-set P is included in L-set Q) , lP(x) 6 lQ(x), for all x 2 X, obviously gives a reflexive, antisymmetric and tran-

sitive relation. That is, � is a partial order, under which

Pa � P � Px;

for all L-set P. Obviously, it is Pr � Ps if and only if r 6 s. Consequently, the L-set Pa can be identified with the empty L-set,

and the set Px with the total set, that is, with the classical sets ; and X, respectively. The set LX can be identified as that of all

‘potential’ L-sets in X.

6.2

In the case the poset L has the elements a, x, the set L0 = {a,x} � L gives the poset L0 ¼ ðL0;6Þ, and the functions l 2 LX0
are those for which either l(x) = a, or l(x) =x, for any x 2 X.

The mapping u : LX0 ! PðXÞ; uðlÞ ¼ lÿ1ðxÞ � X is bijective, since:

1. u(l) = u(r), lÿ1(x) = rÿ1(x), l = r

2. If A 2 PðXÞ, with lAðxÞ ¼
x if x 2 A
a if x R A

�

, is lA 2 LX0 and u(lA) = A.

Of course, it is A = B , lA = lB, and A � B, lA(x) 6 lB(x), for all x 2 X. It is also u(la) = ;, u(lx) = X. Hence, it can be said

that in the set LX of the L-sets in X, it is included the classical power set PðXÞ of X.

If P is a predicate on X such that lP 2 LX0 , it is said that P is precise, crisp, or rigid. The corresponding (classical) L-sets are

obviously unique.

6.3

In the classical case of crisp sets (L-sets in {0,1}X, or {a,x}X), that the set {0,1}X contains all potential classical sub-

sets of X, is expressed by the so-called specification axiom ([11]): For each binary predicate P, it exists a single subset

P � X whose elements are all the x 2 X verifying the property denoted by P. For non-binary predicates P, it should be

previously determined which is the more suitable poset L in which the degree can vary and, if possible, verifying

6P ¼ 6lP
.

After what has been said in Sections 4 and 6, it seems to be clarified that a function l 2 LX only can represent a predicate P

on X (namely, a particular use of P on X) provided l verifies the intrinsic property of being an L–degree for P. This is the sense of

considering LX as the set of all ‘potential’ L-sets in X, like {0,1}X is the set of all potential crisp sets in X. Any function l 2 LX

only ‘defines’ an L-set whenever it exists a predicate P such that l = lP.

Remark 6.1. From a pure mathematics point of view, the form in which the L-sets are here introduced, is just a ‘naïve’ form

that cannot be considered an ‘axiomatic’ one, whose existence is actually an open problem.
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7. A remark on the concept of collective

A predicate P acting on a universe of discourse X under a given context (c) and a purpose for its use (up), generates a col-

lective CXðP; c;upÞ that does not have a unique representation by a L-set but, in principle, many that depend on the poset

taking for the degrees. L-sets are precisiations of the linguistic concept CXðP; c; upÞ in the sense of Zadeh [35].

For instance, if X= Inhabitants of the European Union, P = tall, c1 = High School, up1 = Selection of players for an EU contest

of Basketball, c2 = EU’s Basketball teams up2 = Selection of players for an EU’s Basketball team to play in a world’s champions

league, it is

CXðP; c1;up1Þ–CXðP; c2;up2Þ:

Concerning a direct scientific study of collectives, the following comments are in order:

1. L-sets are nothing else than ‘crisp’ concepts (functions) reflecting with the highest possible precisition made at each case,

the use of imprecise predicates. With the difference that the Earth’s atmosphere is not a classical set, collectives in X are

like clouds in the atmosphere, but not always classical subsets in X (see [19]). Under this metaphor, collectives are ‘vague

entities’ submitted to both internal and external dynamisms making very difficult their characterization in formal terms.

2. Without a definition for the identity of collectives, CXðP; c1;up1Þ ¼ CYðQ ; c2;up2Þ, it is difficult (if not impossible) to directly

manage the collective’s concept in a formal way.

3. L-sets, for which identity there is a clear definition, facilitate an indirect way to begin with the study of collectives.

8. Particular types of L-sets

8.1

When L = [0,1], and6 is the total order of R, with the poset ([0,1],6) the obtained L-sets are the well known Zadeh’s fuzzy

sets [32]. Since [0,1] is totally ordered, fuzzy sets show the special feature that the preorder 6lP
is ‘total’, since for any x, y in

X it is either x6lP
y, or y6lP

x. Hence, the degrees up to which x is P and y is P, are always comparable. This property, obviously

not always fulfilled by any predicate P in any universe of discourse X, makes difficult that lP does perfectly reflect the pri-

mary use of P on X, that is, to have 6P ¼ 6lP
.

8.2

There are, of course, other ways of partially ordering the elements in [0,1]. For instance, by means of the so-called ‘sharp-

ened’ order, introduced in [14],

a 6S b ()
a 6 b 6 0:5;

0:5 6 b 6 a;

�

a partial order with maximum 0.5 and the two minimal elements 0 and 1. The poset ([0,1],6S) could serve to obtain L-sets

allowing to represent the predicate F = fuzzy in X = [0,1], provided it can be defined

a 6F b () a 6S b;

with degree given by any function lF : [0,1]? [0,1], such that: If a 6 Sb, then lF(a) 6 lF(b), and lF(0) = lF(1) = 0, lF(0.5) = 1,

since 0.5 is the maximum, and 0 and 1 are the minimals in ([0,1],6S). From this can follow the so-called ‘fuzzy entropies’

defined in [0,1]X, a set to which the order 6S can be easily extended (see [11]). Notice that substituting 0.5 by any

n 2 (0,1), the relation

a 6� b ()
a 6 b 6 n;

n 6 b 6 a

�

;

is also a partial order with maximum n, and the minimals 0 and 1.

By taking La = [0,1] [ {a}, adding a new element a such that a 6 Sx for all x 2 [0,1], it is also (La,6S) a partially ordered set,

but with the minimum a. Hence, the corresponding L-sets in {a,0.5}X can be taken as the crisp sets.

8.3

The set L = {(x,y) 2 [0,1] � [0,1] ; x + y 6 1}, endowed with the Atanassov’s relation ([1]):

ðx1; y1Þ 6A ðx2; y2Þ () x1 6 x2 and y2 6 y1
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(implying (x1,y1) = A(x2,y2), x1 = x2 and y1 = y2), is a poset with minimum (0,1), and maximum (1,0). Hence, L-sets in

{(0,1), (1,0)}X can be identified with the crisp sets, and the L-sets l : X? L, l(x) = (l1(x),l2(x)) with l1(x) 6 1 ÿ l2(x), do

coincide with the so (wrongly) called ‘intuitionistic’ fuzzy sets [1]. In this case, is

x 6l y () lðxÞ 6 lðyÞ () l1ðxÞ 6 l1ðyÞ and l2ðyÞ 6 l2ðxÞ;

with x = ly, l1(x) = l1(y) and l2(x) = l2(y).

Remark 8.1. To well manage a predicate P in X, it is necessary to also manage at least one of its antonyms. It should be

recalled that there are predicates for which no antonym is known (non-regular terms), in this case it is usually taken the

negation of the predicate as its antonym (see [28]).

Intuitionistic fuzzy sets (see 8.3) correspond to the interpretation lP(x) = (aP(x),bP(x)), with aP(x) + bP(x) 6 1, or

bP(x) 6 1 ÿ aP(x) = anotP(x), with not P defined by the particular strong negation 1 ÿ id. Thus, bP can be interpreted as the

degree of an antonym, or opposite, of P, and lP does correspond with a degree for the pair or predicates (P, antonymP)

necessary to linguistically manage P.

Actually, it could perhaps be more suitable to think in the simultaneous linguistic management of the triplet (P, not P,

antonym P) to correctly use P. In this sense, it is possible to think on the set L of triplets (x1,x2,x3) 2 [0,1]3 such that x2 6 x3,

endowed with the binary relation

ðx1; x2; x3Þ 6 ðy1; y2; y3Þ () x1 6 y1; y2 6 x2; y3 6 x3;

obviously reflexive, antisymmetric, and transitive. That is, (L,6) is a poset with minimum (0,1,1) and maximum (1,0,0), that

can serve to define L-sets by functions

lP : X ! L; lPðxÞ ¼ ðaPðxÞ; bPðxÞ; cPðxÞÞ; with aPðxÞ 6 bPðxÞ; for all x 2 X:

Such L-sets could be called ‘linguistic-fuzzy sets’, and are yet more general than intuitionistic fuzzy sets.

8.4

The set of intervals L = {[a,b] � [0,1] ; a 6 b}, endowed with the relation 6 defined by

½a1; b1� 6 ½a2; b2� () a1 6 a2 and b1 6 b2;

gives the poset (L,6), whose maximum element is [1,1] = {1}, and whose minimum is [0,0] = {0}.

The corresponding L-sets, defined by l : X? L, l(x) = [a(x),b(x)], with a(x) and b(x) in [0,1], and such that a(x) 6 b(x), for

all x 2 X, can be identified with the so-called interval-valued fuzzy sets ([35,6]). At its turn, Zadeh’s fuzzy sets can be identified

with those interval-valued l 2 LX, such that l(x) = [a(x),a(x)] = {a(x)}, and crisp subsets do appear when a(x) 2 {0,1}.

Remark 8.2. There are, of course, other ways of partially ordering the set L of intervals. For instance,

½a1; b1� 6
� ½a2; b2� () a2 6 a1 and b1 6 b2;

also giving a poset (L,6⁄), with the maximum element [0,1]. Nevertheless, it is obvious that (L,6⁄) has neither minimum, nor

minimals. Anyway, adding the empty set ; to L, L⁄ = L [ {;}, and with the assumption ; 6 ⁄[a,b], for all [a,b] 2 L, the new poset

(L⁄,6⁄) does have maximum ([0,1]), and minimum (;).

8.5

Once known that lP can vary in [0,1], it is not always clear enough if the degree will actually be measurable by numbers

or intervals in [0,1]. The uncertainty in the knowledge of the values lP(x), that is, the uncertainty associated with their deter-

mination, could result in the reasonable kind of statements that, for instance, ‘lP(x) is around a(x)’, for some a(x) 2 [0,1], con-

ducting to take as L the set of ‘fuzzy numbers’ in [0,1] ([16]).

Fuzzy numbers ([13,39]) are Zadeh’s fuzzy sets defined by function l(s) : [0,1]? [0,1] such that

lðsÞðxÞ ¼

1; if x ¼ s

LðxÞ; if x 2 ½sÿ e; sÞ

RðxÞ; if x 2 ðs; sþ dÞ

0; otherwise;

8

>

>

>

<

>

>

>

:

with e, d > 0, and where L (left side of l(s)) is a non-decreasing function L : [s ÿ e,s]? [0,1], and R (right side of l(s)) is a

decreasing function R: (s,s + d]? [0,1].
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If FN is the set of these fuzzy numbers, there is the problem of how to obtain a poset (FN,6) extending the order of the real

numbers. A possible definition for such 6 is:

lðrÞ 6 lðsÞ () r 6 s; and arðaÞ � asðaÞ; r; s in R;

with at(a) = {x 2 [0,1] ; a 6 lt(x)}, the a-cuts of lt (a 2 [0,1]).

With the poset (FN,6), the L-sets defined by degrees l : X? FN can be identified with a particular case of the so-called

type-2 fuzzy sets ([16,6,7]).

The fuzzy numbers lr with L(X) = R(X) = 0 for all x, that is

lrðxÞ ¼
1; if x ¼ r

0; if x – r

�

;

can be identified with the numbers r 2 [0,1], and Zadeh’s fuzzy sets result to be a particular case of type-2 fuzzy sets. In the

same way, the set {0,1} can be viewed as a part of FN, and also crisp subsets of X can be viewed as type-2 fuzzy sets.

Remark 8.3. It is obvious that any partial ordering between intervals in [0,1] can be employed to define a partial ordering in

FN. This is the case, for example, of the order 6⁄ defined in 8.4, allowing to define

lr6
�ls () r 6 s; and arðaÞ6

�asðaÞ:

8.6

The degree is a Kolmogorov–Kappos probability (see [12]) in the very special case in which (L,6) is the unit interval with

the linear order of the real line, (X,6P) with P = Probable, is not only a preordered set but one strongly structured as a boolean

algebra with intersection P, union +P, complement 0
P, minimum 0P, maximum 1P, and there is a function lP : X? [0,1] such

that.

� lP(1P) = 1.

� If x�P y = 0P, then lP(x + P y) = lP(x) + lP(y),

from which, as it is well known ([12]), follows

x 6P y ) lPðxÞ 6 lPðyÞ:

Hence, the ‘probability’ lP is a degree. In this case, it can be said that ‘x is P’ has the probability lP(x). Actually, the same can

be said if (X,6P) is weakly structured in the form of an orthomodular lattice ([3]), by substituting x�P y = 0P by x6Py
0P .

In both science and technology, the linguistic predicate ‘probable’ [20] is applied to the elements in a boolean algebra

a � PðXÞ in relation with the poset ([0,1],6) and, as it was said in Remark 3.2(5), provided

A 6probable B () A � B; with A;Bin a:

In such case, the degree to measure up-to-which value ‘A is probable’, is taken as a probability lprobable : a ! ½0; 1�, and it can

be said that ‘A is probable’ with degree, or probability, lprobable(x).

Although no subset of [0,1]X different from {0,1}X is a boolean algebra (not even an ortholattice [26]), if the predicate

‘probable’ is applied to some fuzzy sets in X, its extent can be sometimes measured by a degree with the properties of a prob-

ability. For instance, if X � R, and ½0;1�X� is the set of all l 2 [0,1]X that are Lebesgue integrable, the function

lprobable : ½0;1�
X
� ! ½0;1�, defined by:

lprobableðlÞ ¼
Z

X

ldk;

(see [36]) verifies all the Kolmogorov’s properties of a probability, included: l 6 r, l(x) 6 r(x), for all x 2 X)

lprobable(l) 6 lprobable(r), and it can be said that ‘l is probable’ up to the probability-degree lprobable(l). Hence, it can be said

that there are also probabilities for fuzzy events. What is not yet clarified enough is the concept of ‘fuzzy probabilities’, that

is, functions assigning to some fuzzy sets a fuzzy number in [0,1][0,1] satisfying the properties of a probability (see [33]). The

mathematical study of fuzzy probabilities of fuzzy events is actually an important open theoretical problem [30].

9. On the practical election of the poset and the degree

After what has been said, it remains the important open practical problem of determining in each case which is the most

suitable scale L ¼ ðL;6Þ, as well as the associate degree lP 2 LX, to represent the use of P on X, that is, to obtain a meaning

(6P,lP) of P on X. Of course, the best case is reached when lP perfectly reflects 6P, and at this respect next theorem is

relevant:
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Theorem 9.1. If (X,6P) is a preordered set, its natural degree perfectly reflects 6P.

Proof. The natural degree comes from the natural poset (X/ = P,6
⁄) presented in Section 4.1, defining lP:X? X, by lP(x) = [x].

Hence,

x 6lP
y () ½x�6�½y� () x6Py;

that is, 6lP
¼ 6P . h

Thus, a way of obtaining an L-degree perfectly reflecting6P is by means of a poset (L,6) isomorphic to (X/ = P,6
⁄), like it is done

in theorem 4.1.

Notwithstanding, since to completely know the perceptive/empirical relation6P is not always easy, it is not usual to com-

pletely know the quotient (X/ = P,6
⁄), and this makes difficult to know a good poset. Hence, to have a good enough poset L

where defining a degree, it is relevant to know as much as possible about:

1. The use of P on X, and how P is managed on X.

2. The purpose for which P is used on X, why P is handled on X.

3. The context surrounding (1) and (2).

From the actual extent of this knowledge, and from the way of establishing the degrees, it could be induced if it is possible

to numerically measure the extent up to which x is P, and, for instance, if L can be either the unit interval, the Atanassov’s

pairs of numbers in [0,1], or a poset of fuzzy numbers. The last two cases could be selected when the uncertainty involved in

determining each value lP(x) is such that, for instance, it only can be safely said that lP(x) varies between 0.3 and 0.5, or that

lP(x) is ‘around 0.4’, that is lP(x) 2 [0.3,0.5], or lP(x) = a fuzzy number ‘around 0.4’. Of course, in the case in which lP(x) is a

fuzzy number, its shape should be adequately designed.

With respect to determining L and lP, the complexity of the context plays a central role, as well as how are acquired the

data for approaching the degrees that could come, for instance, from how the degree’s estimation is done (by asking expert

people, by subjective estimation, by comparison with some prototypes, etc.). In short, L-sets should be obtained by a careful

process of design.

10. Additional remarks

10.1

There is a point deserving some comment. That concerning the truth of statements, of which it should be recalled is

nothing else than a degree-up-to-which statements can be considered to be true, and that is relative to the poset in which

they can take their values. In this sense, to describe the degrees of true for an statement can be done accordingly with the

purpose of reflecting how true is it, indeed up to which degree it agrees with a reality perceived in some way. That is, by

the meaning of the predicate ‘true’ applied to the involved statements.

Although Truth is a concept not properly belonging to Science, in the scientific language the term ‘truth’ is often used.

Usually it refers to some compatibility with the available information on a given reality, and this is the sense in which ‘true’

is here interpreted.

In particular, statements ‘x is P’ are only true of false, that is, either totally according with reality, or not according at all

with it, if 6P is such that the quotient set X/ = P only has at most two classes. That is, if the poset ðX=¼P;6
�
PÞ is isomorphic

with a part of (L0,6), where it is L0 = {a,x} and 6 is given by a 6 a, x 6x, a <x. This corresponds to the classical-bival-

uate case in which only true statements (x = 1), and false statements (a = 0), are accepted. Of course, the bivaluate case

can be only accepted if there is a total confidence in the reality and a perfect, or clear-cut, perception or description of

it. In general this is not always the situation, and more than the two degrees a, x are necessary for the degree of true,

but it is also necessary to agree to which poset (L,6) belongs the degrees of true. For instance, if truth is multiple-valued,

interval-valued, of fuzzy valued, something that, in principle, could be forced by the context in which the statements are

used.

10.2

Sometimes a imprecise predicate P on a universe X is approached by another P1 with a bivaluate use. For instance, the

predicate P = small with the multiple-valued use given by lP(x) = 1 ÿ x on X = [0,1], can be approached by P1 = less than 3,

with the bivaluate use given by lP1
equal to 1 in [0,3], and 0 in (3,10], that could be considered as a ‘restricted’ represen-

tation of P. Sometimes a predicate P in X ‘moves’ to a different universe Y where it is designated by Q, but keeping some sim-

ilarity with P. For instance, Q= short in Y = [0,10] can be viewed as a movement or linguistic migration of P = small in X = [0,1],

with lP(x) = 1 ÿ x, in which case it could be accepted that lQ(y) = lP(y/10) = 1 ÿ y/10.

These ideas can be related with the Wittgenstein’s concept of family resemblance [31].
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11. Family resemblance with L-sets

In the path towards searching for models for Natural Language, it is needed to capture the linguistic relationships be-

tween the linguistic terms in the best possible way than possible. The Wittgenstein’s concept of family resemblance could

allow to know if there exists some similarity between L-sets representing a particular predicate, but in different contexts,

and with different purposes.

The concept of family resemblance [31] reflects the family’s air between the uses of some words, but in fuzzy logic and up

to now, it was only considered for some gradable predicates represented by Zadeh’s fuzzy sets [8,29]. In this paper, the def-

initions given there will be enlarged for pairs of L-sets, defined on different universes of discourse. The new definition,

although it is only valid when the universes are totally ordered, allows to approach the concept of migration of a predicate

[8] as a particular case of family resemblance that is important for the evolution of the use of words. Notice that by the lan-

guage’s own dynamism it is frequent to apply a word to a new universe of discourse once it is first introduced in another

universe.

Let lP : X? L1 be a representation of the use of a predicate P, or L-set, P, and let lQ : Y? L2 be a representation of a use of

the predicate Q, or L-set, Q. Both L-sets can be easily compared, if the universes X and Y are totally ‘ordered’ and there exists

an isomorphism f : Y? X, allowing to check, in the universe of discourse X, if both predicates show some kind of

‘resemblance’.

First of all, let us introduce some instrumental definitions.

Definition 11.1

� Let (X,6X) and (Y,6Y) be two posets. A non-decreasing function in A � X, f:X? Y, is a mapping verifying that if x 6 Xy, then

f(x) 6 Yf(y), for all x, y 2 A. In addition, if f is onto and one-to-one, it is an isomorphism.

� Let X be a set and (L,6) be a poset with a maximum 1. For any mapping l : X? L, it is S(l) = {x 2 X ; l(x) = 1}. If the poset

(L,6) is with a minimum 0, it is Z(l) = {x 2 X ; l(x) = 0}.

Now, with these concepts it can be introduced the following definitions,

Definition 11.2. Let X, Y be two universes of discourse endowed, respectively, with total orders 6X and 6Y, and f:Y? X an

isomorphism. Let ðL1;6L1 Þ and ðL2;6L2 Þ be two posets with minimum and maximum. l 2 LX1 and r 2 LY2 are said to be in the

relation of family resemblance, denoted by (l,r) 2 fr, whenever:

1. Z(l) \ f(Z(r))– ;, S(l) \ f(S(r))– ;

2. r is non-decreasing in A � X iff l�f is non-decreasing in A.

3. r is decreasing in A � X iff l�f is decreasing in A.

This definition generalizes the following one given in [29,8] which only deals with fuzzy sets in the same universe of dis-

course, and is actually a particular case of Wittgenstein’s idea [31].

Definition 11.3. With X � R, the relation of family resemblance, fr � [0,1]X � [0,1]X, is defined by (l,r) 2 fr if and only if,

1. Z(l) \ Z(r) = {x 2 X;l(x) = 0} \ {x 2 X;r(x) = 0}– ;, S(l) \ S(r) = {x 2 X;l(x) = 1} \ {x 2 X;r(x) = 1}– ;.

2. l is non-decreasing in A � X iff r is non-decreasing in A.

3. l is decreasing in A � X iff r is decreasing in A.

From this definition follows:

� For no negation l0 = N�l (see [23]), is (l,l0) 2 fr. Because the pair (l,l0) does not verify the points 2 and 3 in definition

11.2. So, two contradictory fuzzy sets do not verify the relation of family resemblance.

� For no opposite
0

l = l�a (see [23]), is (l,
0

l) 2 fr. A predicate P represented by l and its antonym built as l�a, with a a

symmetry (i.e. a:X? X, such that a� a = id and a(1X) = 0X), does not verify the relation of family resemblance since if

the pair (l,
0

l) verifies properties 2 and 3 of definition 11.2, then
0

l introduces the same order in the universe of discourse,

and this is contradictory with the concept of antonym.

The relation fr of family resemblance is reflexive, (l,l) 2 fr, for all l 2 LX1 . It is also symmetric, since (l,r) 2 fr implies,

1. Z(l) \ f(Z(r))– ;, S(l) \ f(S(r))– ;

2. r is non-decreasing in A � Y iff l� f is non-decreasing in A.

3. r is decreasing in A � Y iff l�f is decreasing in A.
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which is equivalent to

1. fÿ1(Z(l)) \ Z(r)– ;, fÿ1(S(l)) \ S(r)– ;

2. r�fÿ1 is non-decreasing in A � X iff l is non-decreasing in A.

3. r�fÿ1 is decreasing in A � X iff l is decreasing in A.

So, (r,l) 2 fr.

Notwithstanding, fr is not transitive, since there are l, r, d such that (l,r) 2 fr, (r,d) 2 fr, but (l,d) R fr. For example, in

the Fig. 1, it is S(l) \ S(d)– ;. The lack of transitivity seems in agreement with the people family’s air translated by fr.

A particular case of L-sets in family resemblance is given by the next concept.

Definition 11.4. Let X, Y be two universes of discourse endowed respectively with total orders 6X and 6Y. Let (L1,61) and

(L2,62) be two posets with minimum and maximum. r 2 LY2 is said to be a migration of l 2 LX1 , whenever:

� There exists an isomorphism f:Y? X, such that f(Z(r)) \ Z(l)– ;, and f(S(r)) \ S(l)– ;.

� There exists a non-decreasing function F:L1? L2, that verifies the boundary conditions F(01) = 02, and F(11) = 12.

� It is r = F�l�f.

Hence, if r = F�l�f is a migration of l, it is immediate that it is (l,r) 2 fr.

A second step in the study of family resemblance is to capture the degree of family resemblance between L-sets. Up to

now only some of these degrees are defined in the case of Zadeh’s fuzzy sets (see [8,29]), but, the general problem of grad-

uating the relation of family resemblance is an open one.

Remarks 11.5

� Provided is X � R, if P on (X,c1,up1), and Q on (X,c2,up2) (see Section 7), can be taken as synonyms with lQ = F� lP�u, it can

be supposed that CX(P;c1, up1) = CX(Q ; c2,up2), but the reciprocal is, at least dubious.

� If P and Q show some family resemblance, it seems reasonable that the corresponding collectives do show some kind of

similarity relationship. Anyway, and right now, only something can be said for L-sets.

12. Conclusion

12.1

This paper, presenting a kind of linguistic and semantic genesis of fuzzy sets, has a triple goal. First, to show that there are

actually ways of modeling the action of a predicate on universes of discourse that is a set. That is, how the predicate is pri-

marily used in the universe, or which is its ‘meaning’. To such an end, it is introduced a binary relation representing when an

object verifies the property named by the predicate less than another object verifies it. Such relation just corresponds to a

‘qualitative’, and sometimes perceptive’s based form of how the predicate works in the universe of discourse.

Second, to show that the concept of ‘degree’ (the extent up to which an object satisfies the property), in some form a way

towards ‘quantitatively’ measuring such extent, is formalizable once known the relation modeling the primary use of a pred-

icate. If this relation is a preorder, it always exists a poset and an associate degree perfectly reflecting the primary use, and

naturally linked to it. It is also shown how a simple change in the way of speaking can represent as an L-set the collective, the

predicate generates in the universe of discourse. Such L-set is not an absolute concept, but one relative to the scale where the

degree can take its values. In addition, some light is shed on which is the intrinsic property a function in LXshould verify to

represent an L-set on X. If collectives are generated by predicates, L-sets are defined by a particular representation of

collectives.

Fig. 1. Non transitivity.
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Third, to reflect on the practical problem of choosing at each case the scale in which the degrees can vary. In the particular

case the predicate is numerically measurable, it can appear some special types of fuzzy sets, like type-2 or interval-valued

fuzzy sets. In particular, and from a linguistic point of view, the so-called ‘intuitionistic’ fuzzy sets could come from simul-

taneously considering the given predicate and one of its antonyms, as well as from the supposition that the negation of the

predicate is modeled by the strong negation 1 ÿ id. At this respect, and since a good linguistic management of a predicate

entails simultaneously that of its negation and one its antonyms, a new, model for numerically measurable predicates is

introduced by triplets of numbers in the unit interval, representing the corresponding degrees of P, not P and an antonym

of P.

12.2

It is to be remarked that since all systems described by means of linguistic expressions involving imprecise terms (like

rules in fuzzy control), should be carefully designed ([27]), before starting with the design’s process, the designers should

decide by which kind of L-sets the predicates in the linguistic expressions can be represented. This is a crucial decision upon

which connectives, opposites, conditionals, etc., will be represented in one or in another form, a decision that conditionates

the final design of the system in, let us say, ‘formal’ terms. At this point, it should be noticed that in all those cases in which

6P is not known but a degree lP such that, 6P � 6lP
is accepted, the designers are actually considering an ‘excessive’ mean-

ing for P.

Anyway, simplicity is of an upmost value in both science and technology, and Occam’s Razor should be always taken into

account, (Don’t introduce more entities than those strictly necessary), although with Menger’s addition, ‘but not reduced to the

point of inadequacy’ [17]. In that sense, and in the authors view, Zadeh’s fuzzy sets are, in general, the most simple election

with which, for instance, also the degree of not satisfying the predicate, and the degree of an opposite to it, can be perfectly

taken into account. Usually, it makes unnecessary the system’s modelling by intuitionistic fuzzy sets. Even more, since as it is

proven in [7], intuitionistic fuzzy sets are isomorphic to interval-valued fuzzy sets.

Nevertheless, like with almost all numerical functions, there is a problem that can conduct to the modelling by means of

either type-2 fuzzy sets, or interval valued fuzzy sets. This problem arises from the contextual uncertainty coming form

imprecision that, when there is no reasonable way of reducing it for what concerns to fix a concrete value for the degree

up to which ‘x is P’, could allow to take such degree as an interval, or a fuzzy number. Anyway, the context in which the

problem is inscribed could make this uncertainty not totally avoidable. For instance, with interval-valued fuzzy sets there

remains the uncertainty related to determine the limiting points of the intervals, and with type-2 fuzzy sets that of fixing

the parameters of the fuzzy numbers.

The uncertainty in the determination of the values of a function lP 2 [0,1]X representing the use of P, is not only an impor-

tant practical problem, but also a theoretical one. It could happen, for instance, that a first approximate design l�
P of the use

of P results to be contradictory with a second one l��
P ðl��

P 6 l�0
P Þ, conducting to think that l�

P , or l
��
P , or both, are not a good

approximation for the degree of P. Hence, at least when the degree of P is in [0,1], the uncertainty coming from the imprecise

use of P deserves to be studied. The uncertainty coming from imprecision is a relevant and open subject of research.

At least from a practical point of view, it can be more suitable to devote more time to approach the degree by a single

number in [0,1] (for instance, by means of some kind of aggregation function), and using Zadeh’s fuzzy sets in the benefit

of simplicity, even if it is not to be forgotten the respective meanings of the terms ‘simplicity’ and ‘simplification’.

In general there are not algorithmic processes allowing to obtain the values lP(x). It suffices to remember that in the case

of the rigid predicate P = ‘transcendental’ on X ¼ R, to know if lP(x) is either 0, or 1, is a very difficult mathematical problem

[4].

Nevertheless, there are cases in which the representation of P by some kind of either type-2, or interval-valued fuzzy sets,

is the more suitable. For instance, if X is a continuous domain but it is not possible to define with precision enough the values

in [0,1] of a 6P-degree, provided it is clear that P is numerically measurable, a degree lP with values in either the set of fuzzy

numbers or in that of intervals, could be suitable. Specially if it is 6P ¼ 6lP
, that is, if lP perfectly reflects the primary use of P

on X, in which case the corresponding poset where lP takes its values is isomorphic to that in X/ = P naturally linked to the

use of P on X.
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Caṕıtulo 6

Characterizing the Principles of

Non Contradiction and

Excluded Middle in [0,1]

A pesar de que la creencia en la ley de contradi-

cción es un pensamiento, la ley de contradicción

en śı misma no es un pensamiento, sino un hecho.

Bertrand Russell (1872-1970)

I. Garćıa-Honrado, E. Trillas, Characterizing the Principles of Non

Contradiction and Excluded Middle in [0, 1], Internat. J. Uncertainty
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ITZIAR GARCÍA-HONRADO† and ENRIC TRILLAS‡

European Centre for Soft Computing, Edificio Cient́ıfico-Tecnológico,
Mieres (Asturias), 33600, Spain
†itziar.garcia@softcomputing.es
‡enric.trillas@softcomputing.es

Received 24 November 2009
Revised 9 February 2010

Under an interpretation of the principles of non-contradiction and excluded-middle based
on the concept of self-contradiction, this paper mainly deals with the principles’ verifi-
cation in the case of the unit interval of the real line. Such verification is done in the
three following cases: (1) The unit interval is totally ordered by the restriction to it of
the usual order of the real line, (2) the unit interval is partially ordered by the sharp-
ened order, and (3) the unit interval is under a new particular preorder. The first case
is immediately extended to characterize the case of fuzzy sets.

Keywords: Non-contradiction; excluded middle; fuzzy sets; self-contradiction; unit
interval.

1. Introduction

In the field of Philosophy there is a big amount of papers dealing with the so-

called ‘principles’ of Non-contradiction (NC) and Excluded-Middle (EM) that were

introduced by Aristotle. Nevertheless, in the fields of Logic, Mathematics, and Com-

puter Science, these principles did not deserve too much attention. In such fields,

the principles are either laws of the corresponding structure, or are checked to fail.

For example, in ortholattices (L, ·,+,′ ; 0, 1) (and hence in orthomodular lattices

and boolean algebras), the principles are embodied as axioms in the forms a·a′ = 0

(NC), and a + a′ = 1 (EM), and because of the laws 0′ = 1, a′′ = a, and a·b =

(a′ + b′)′, one of them is equivalen to the other. In the case of De Morgan algebras

they simply fail, like it happens in the case of the unit interval [0, 1] with · = min,

+ = max, and ′ = 1 − id.

∗Characterizing the ‘principles’ NC and EM in [0, 1].
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114 I. Garćıa-Honrado & E. Trillas

In the standard algebras of fuzzy sets ([0, 1]X , T, S,N), intersections are repre-

sented by continuous t-norms, T , unions by continuous t-conorms, S, and negations

by strong negations, N .3 The formulas µ·µ′ = µ0 (NC) (with µ0(x) = 0, ∀x ∈ X),

µ + µ′ = µ1 (EM) (with µ1(x) = 1, ∀x ∈ X), can be translated into the func-

tional equations T (µ(x), N(µ)(x)) = 0, and S(µ(x), N(µ)(x)) = 1, for all x, which

respective solutions are4:

NC: T = Wϕ, where Wϕ(a, b) = ϕ−1 max(0, ϕ(a) + ϕ(b) − 1) is a t-norm in the

family of  Lukasiewicz (So, ϕ : [0, 1] → [0, 1] is an order automorphism, that

is, it is continuous and strictly increasing function verifying ϕ(0) = 0 and

ϕ(1) = 1), and Nϕ ≤ N .

EM: S = W ∗
ψ , where W ∗

ψ(a, b) = ψ−1 min(1, ψ(a) + ψ(b)) is a t-conorm in the

family of  Lukasiewicz (with ψ an order automorphism), and N ≤ Nψ.

Hence, the two principles only hold in the cases in which T = Wϕ, S = W ∗
ψ,

Nϕ ≤ N ≤ Nψ.

The principle NC was stated by Aristotle as ‘A and not A is imposible’,1 and

in the above cases the term ‘imposible’ is translated into the term ‘false’. The

principle EM was finally translated by ‘It is always A or not A’, and the term

‘always’ furtherly translated into ‘true’.

This paper is based on translating ‘imposible’ by self-contradictory,5 the term

‘always’ by the self-contradiction of the corresponding ‘not’, and all that without

presupposing any particular property for the connectives ‘and’, ‘or’, and ‘not’.8

That is,

NC: ‘A and not A is self-contradictory’

EM: ‘not (A and not A) is self-contradictory’

2. Posing the General Problem

Let it L be a non-empty set, ′ : L→ L a mapping, ∗ : L×L→ L an operation, and

consider the triplet (L, ′, ∗). Eventually, elements a in L do represent statements

A, mapping ′ does represent ‘not’, and the operation ∗ does represent either the

conjunction ‘and’ (in which case ∗ is written ·), or the disjunction ‘or ’ (in which

case ∗ is written +). For example,

• a′·b, does represent an statement ‘not A and B’

• a′ + b′, does represent an statement ‘not A or not B’

• (a′)′ = a′′ does represent an statement ‘not (not A)’, etc.

Consider a relation |=⊂ L × L, eventually representing If/then. Elements a, b in

L are |=-contradictory if a |= b′ (If A, then not B). An element a ∈ L is |=-self-

contradictory if a |= a′ (If A, then not A).
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Definition 1. A triplet (L, ′, ·) is |=-non contradictory ( |= NC, for short) if all

its elements of the form a·a′ are |=-self contradictory. That is, if

a·a′ |= (a·a′)′, ∀a ∈ L.

Theorem 1. For any triplet (L, ′, ·) there is at least a relation for which the triplet

is |= NC.

Proof. Such relation is, obviously, the one given by the set of pairs in L × L,

{a·a′, (a·a′)′; a ∈ L} =|=NC . �

Theorem 2. (L, ′, ·) is |= NC, if and only if |=NC⊂|=.

Proof. Obvious. �

Hence, (L, ′, ·) is not |= NC if and only if |=NC*|=.

Definition 2. A triplet (L, ′,+) is |=-excluded middle ( |= EM , for short) if all

its elements of the form (a+ a′)′ are |=-self contradictory. That is, if

(a+ a′)′ |= ((a+ a′)′)′, ∀a ∈ L.

Theorem 3. For any triplet (L, ′,+) there is at least a relation for which the

triplet is |= EM .

Proof. Such relation is, obviously, the one given by the set of pairs in L × L,

{(a+ a′)′, ((a+ a′)′)′; a ∈ L} =|=EM . �

Theorem 4. (L,′ ,+) is |= EM , if and only if |=EM ⊂ |=.

Proof. Obvious. �

Hence, (L,′ ,+) is not |=EM if and only if |=EM * |=.

Remarks 5.

(1) If (L,′ , ·) is not |= NC, it can not be |=∗ NC, with |=∗ ⊂ |=. Since if |=∗ NC,

it is |=NC ⊂ |=∗, and follows the absurd |=NC ⊂ |=.

(2) If (L,′ ,+) is not |= EM , it can not be |=∗ EM , with |=∗ ⊂ |=. Since if |=∗ EM ,

it is |=EM ⊂ |=∗, and follows the absurd |=EM ⊂ |=.

(3) Hence, if (L,′ , ·) is not |= EM , but it is |=∗ EM , either |= ⊂ |=∗, or both |=
and |=∗ are not comparable under set’s inclusion. Analogously, if (L,′ , ·) is not

|= NC, but it is |=∗ NC, either |= ⊂ |=∗, or |= and |=∗ are non-comparable

under set’s inclusion.

(4) If |= ⊂ |=∗, and |=NC ⊂ |=∗, the triplet is (|=NC ∪ |=)NC.

(5) If |= ⊂ |=∗, and |=EM ⊂ |=∗, the triplet is (|=EM ∪ |=)EM .
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Provided the semantic relation of entailment between statements ‘If A, then B’,

can be represented by means of an operation →: L × L → L (implication), and a

relation |=→ NC is defined by something like

a |=→ b⇔ a→ b is ‘such and such’,

the interesting semantic problem on NC and EM lies in the verification of |=→ NC,

and |=→ EM .

For example, if (L, ·,+,′ ) is a boolean algebra, where a→ b = a′ + b, it is

a |=→ b⇔ a→ b = 1 ⇔ a ≤ b, with a ≤ b⇔ a·b = a,

and since a·a′ = 0, (a·a′)′ = 1, (a + a′)′ = 1′ = 0, and (a + a′)′′ = 0′ = 1, it

is obviously follows a·a′ ≤ (a·a′)′ and (a + a′)′ ≤ (a + a′)′′. That is, any boolean

algebra verifies ≤ NC, and ≤ EM . Notice that, in this case (and in that of any

ortholattice) is

|=EM = |=NC ⊂ ≤ .

If L = [0, 1], a′ = 1 − a, · = min, + = max, and a→ b = a′ + b = max(1 − a, b),

since a→ b = 1 ⇔ a = 0 or b = 1, it is |=→= {(a, 1); a ∈ [0, 1]} ∪ {(0, b); b ∈ [0, 1]}.

In this case, |=NC= {(min(a, 1 − a),max(a, 1 − a)); a ∈ [0, 1]}, since (a·a′)′ =

1 − min(a, 1 − a) = max(a, 1 − a).

From, min(a, 1 − a) ≤ max(a, 1 − a), follows |=NC⊂≤, that is, (L,′ , ·) verifies

≤ NC.

Nevertheless, it is not |=NC ⊂ |=→: (min(0.3, 0.7),max(0.3, 0.7)) = (0.3, 0.7) ∈
|=NC , but (0.3, 07) /∈|=→, hence (L,′ , ·) does not verify |=→ NC. With the semantics

given by a→ b = a′ + b, NC is not verified: |=→ NC does not hold.

Since max(a, b) = 1−min(a, 1−a), it is (a+a′)′ = 1−max(a, b) = min(a, 1−a) =

a·a′, and from a′′ = 1−(1−a) = a, follows a′′ = 1−(1−a) = a, follows ((a+a′)′)′ =

(a·a′)′: |=EM = |=NC = {(a, 1 − a); a ∈ [0, 0.5]} ∪ {(a− 1, a); a ∈ [0.5, 1]} ⊂≤.

Hence, (L,′ ,+) verifies ≤ EM , but does not verify |=→ EM because of |=EM

* |=→. The semantic problem has a negative solution.

With the semantics given by any R-implication JT (a, b) = Sup{z ∈ [0, 1];

T (a, z) ≤ b}, with a continuous t-norm T , from JT (a, b) = 1 ⇔ a ≤ b, results

|=→=≤, and, in this case, (L,′ ,min,max) is |=→ NC and |=→ EM : the semantic

problem has a positive solution.

Remark 1. For the case of the validity of the principles NC and EM in the case

of three-valued logics and related with the implication →, see Ref. 6.

3. The Case of the Ordered Unit Interval Endowed with a Strong

Negation

Let L = [0, 1], |= = ≤, and ′ given by an strong negation N (a′ = N(a)). As it

is well known, it always exists7 an order automorphism ϕ of ([0, 1],≤), such that
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N(a) = Nϕ(a) = ϕ−1(1 − ϕ(a)), for all a ∈ [0, 1]. For which operations · = F ,

+ = G, ≤ NC and ≤ EM do hold?

Theorem 6. ([0, 1], Nϕ, F ) verifies ≤ NC if and only if F (a,Nϕ(a)) ≤ ϕ−1(1/2)

for all a ∈ [0, 1].

Proof. Follows from the chain of equivalences:

F (a,Nϕ(a)) ≤ Nϕ(F (a,Nϕ(a))) ⇔ ϕ(F (a,Nϕ(a))) ≤ 1 − ϕ((F (a,Nϕ(a)))) ⇔
2ϕ(F (a,Nϕ(a))) ≤ 1 ⇔ F (a,Nϕ(a)) ≤ ϕ−1(1). �

Theorem 7. ([0, 1], Nϕ, G) verifies ≤ EM if and only if ϕ−1(1/2) ≤ G(a,Nϕ(a))

for all a ∈ [0, 1].

Proof. Follows from the chain of equivalences:

Nϕ(F (a,Nϕ(a))) ≤ F (a,Nϕ(a)) ⇔ 1 − ϕ((G(a,Nϕ(a)))) ≤ ϕ(G(a,Nϕ(a))) ⇔ 1 ≤
2ϕ(G(a,Nϕ(a))) ⇔ ϕ−1(1) ≤ G(a,Nϕ(a)). �

Remarks 8.

(1) t-norms T are among functions F in Theorem 6: It follows from T ≤ min ≤
max ≤ S, for any t-conorm S, and by taking S = N ◦ T ◦ (N × N), in which

case

T (a,N(a)) ≤ N(T (N(a), N(N(a)))) = N(T (N(a), a)),

and T (a,N(a)) ≤ ϕ−1(1/2), if N = Nϕ.

(2) t-conorms S are among functions G in Theorem 7. It follows from T ≤ S, for

any t-norm T , and by taking T = N ◦ S ◦ (N ×N), in which case

N(S(N(a), a)) ≤ S(a,N(a)),

and ϕ−1(1/2) ≤ S(a,N(a)) if N = Nϕ.

(3) In the cases in which |=→ = ≤, and · = F verifies Theorem 6, it should hold

|=→ NC.

(4) In the cases in which |=→ = ≤, and + = G verifies Theorem 7, it should hold

|=→ EM .

Theorem 9. ([0, 1], 1− id, F ) satisfies ≤ NC, if only if the restriction F ∗ of F to

the set {(a, 1 − a); a ∈ [0, 1]}, verifies F ∗ ≤ Sum/2.

Proof. Since N = 1− id is the strong negation for ϕ = id, it is Sum
2 (a, 1− a) = 1

2 ,

and F (a, 1 − a) ≤ 1
2 = Sum

2 (a, 1 − a) �

Theorem 10. ([0, 1], 1 − id,G) satisfies ≤ EM , if and only if the restriction G∗

of G to the set {(a, 1 − a); a ∈ [0, 1]}, verifies Sum/2 ≤ G∗.

Proof. Since Sum
2 (a, 1 − a) = 1

2 ≤ G(a, 1 − a). �
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Remark 2.

(1) If F ≤ Sum
2 , it holds the Theorem 9, and then it follows ≤ NC. For instance,

for all t-norm T is T ≤ min ≤ Sum
2 .

(2) If Sum
2 ≤ G, it holds the Theorem 10, and then it is ≤ EM . For instance, for

all t-conorm S is Sum
2 ≤ max ≤ S.

4. The Case of Fuzzy Sets

Let [0, 1]X be endowed with functionally expressible operations,

µ·σ(x) = F (µ(x), σ(x))

µ+ σ(x) = G(µ(x), σ(x))

µ′(x) = N(µ(x))

for all x ∈ X , and F : [0, 1]×[0, 1] → [0, 1],G : [0, 1]×[0, 1] → [0, 1],N : [0, 1] → [0, 1]

(strong negation).

For the case [0, 1]X is with the partial pointwise ordering

µ ≤ σ ⇔ µ(x) ≤ σ(x), ∀x ∈ X,

the results in Sec. 3 are immediately applicable.

Let us suppose that (µ → σ)(x, y) = J(µ(x), σ(y)) with a T-conditional such

that,

a ≤ b⇔ J(a, b) = 1,

and define µ |=→ σ ⇔ µ ≤ σ.

Theorem 11. The algebras of fuzzy sets ([0, 1]X , F,G,N) do verify ≤ NC and

≤ EM , if and only if

F (a,N(a)) ≤ ϕ−1(1/2) ≤ G(a,N(a)),

for all a ∈ [0, 1], and provided N = Nϕ.

Proof. Immediate after Theorems 6 and 7. �

Obviously, all standard algebras of fuzzy sets do verify Theorem 11, since in

such case F is a continuous t-norm, and G is a continuous t-conorm. What remain

an open problem is the case in which either ·, or +, are not functionally expressible.

Apart from the partial pointwise order for fuzzy sets in [0, 1]X , it can be defined

the ϕ-sharpened order,

µ �ϕ σ ⇔
{

0 ≤ µ(x) ≤ σ(x) ≤ ϕ−1(1/2)

ϕ−1(1/2) ≤ σ(x) ≤ µ(x) ≤ 1

The greatest fuzzy set is µϕ−1(1/2), the function constantly equal to ϕ−1(1/2) the

fix point of the strong negation Nϕ. The order �ϕ is not a total order, since there
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are elements that are non comparable, for example µ and σ if µ ≤ µϕ−1(1/2) and

σ ≥ µϕ−1(1/2).

Theorem 12. ([0, 1], Nϕ, F ) satisfies �ϕ NC, if and only if F (µ(x), µ′(x)) =

ϕ−1(1/2).

Proof. F (µ,Nϕ(µ)) �ϕ Nϕ(F (µ,Nϕ(µ))) ⇔
{

0 ≤ F (µ,Nϕ(µ)) ≤ Nϕ(F (µ,Nϕ(µ))) ≤ ϕ−1(1/2)

ϕ−1(1/2) ≤ Nϕ(F (µ,Nϕ(µ))) ≤ F (µ,Nϕ(µ)) ≤ 1.

From F (µ,Nϕ(µ)) ≤ Nϕ(F (µ,Nϕ(µ))) ≤ ϕ−1(1/2), we have

F (µ,Nϕ(µ)) ≤ ϕ−1(1/2), (1)

and

Nϕ(F (µ,Nϕ(µ))) ≤ ϕ−1(1/2), (2)

since, applying the strong negation Nϕ to equation (1) we have Nϕ(ϕ−1(1/2)) =

ϕ−1(1/2) ≤ Nϕ(F (µ,Nϕ(µ))), and from equation (2) and the antisymmetric prop-

erty, it is Nϕ(F (µ,Nϕ(µ))) = ϕ−1(1/2), or equivalently F (µ,Nϕ(µ)) = ϕ−1(1/2).

The reciprocal is obvious, since F (µ,Nϕ(µ)) = ϕ−1(1/2) is self-contradictory.

�

Theorem 13. ([0, 1], Nϕ, G) satisfies �ϕ EM , if and only if G(µ(x), µ′(x)) =

ϕ−1(1/2).

Proof. Nϕ ◦G(µ,Nϕ(µ)) �ϕ Nϕ ◦Nϕ ◦G(µ,Nϕ(µ)) = G(µ,Nϕ(µ)) ⇔
{

0 ≤ Nϕ ◦G(µ,Nϕ(µ)) ≤ G(µ,Nϕ(µ)) ≤ ϕ−1(1/2)

ϕ−1(1/2) ≤ G(µ,Nϕ(µ)) ≤ Nϕ ◦G(µ,Nϕ(µ)) ≤ 1.

From Nϕ ◦G(µ,Nϕ(µ)) ≤ G(µ,Nϕ(µ)) ≤ ϕ−1(1/2), we have

G(µ,Nϕ(µ)) ≤ ϕ−1(1/2), (3)

and

Nϕ ◦G(µ,Nϕ(µ)) ≤ ϕ−1(1/2), (4)

since, applying the strong negation Nϕ to the equation (3) we haveNϕ(ϕ−1(1/2)) =

ϕ−1(1/2) ≤ Nϕ(G(µ,Nϕ(µ))), and from equation (4) and the antisymmetric prop-

erty, it is Nϕ(G(µ,Nϕ(µ))) = ϕ−1(1/2), or equivalently G(µ,Nϕ(µ)) = ϕ−1(1/2).

The reciprocal is obvious, since G(µ,Nϕ(µ)) = ϕ−1(1/2) is self-contradictory.

�
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There are many functions F satisfying the condition F (a,N(a)) = ϕ−1(1/2).

They can be characterized as follows: the image of the pairs {(a,N(a)); a ∈ [0, 1]}
is fixed and equals to ϕ−1(1/2), but the function’s values can be taken arbitrarily

for the other pairs of points in [0, 1] × [0, 1].

With the strong negation N = 1 − id, and F (µ,N(µ)) = G(µ,N(µ)) =

Sum(µ,N(µ))/2, the two principles of Non Contradiction and Excluded Middle

do hold.

Taking ϕ = id, we get ϕ−1(1/2) = 1/2 and the order id−sharpened is the

classical sharpened order. This order is related with the concept of fuzzy entropy,

introduced by DeLuca and Termini in Ref. 2.

5. The Case of the Unit Interval Endowed with Other Orderings

5.1. ϕ-sharpened order

The ϕ-sharpened order can be translated into the unit interval [0, 1], for all a, b ∈
[0, 1],

a �ϕ b⇔
{

0 ≤ a ≤ b ≤ ϕ−1(1/2)

ϕ−1(1/2) ≤ b ≤ a ≤ 1 .

The only functions F that verify NC and EM will be those such that

F (a,Nϕ(a)) = ϕ−1(1/2).

For fuzzy sets with the pointwise order (µ ≤ σ ⇔ µ(x) ≤ σ(x), for all

x ∈ X), the only functions F that verify NC and EM will be those such that

F (µ(x), Nϕ(µ(x))) = ϕ−1(1/2), for all x ∈ X .

5.2. A preorder, `
The relation,

x ` y ⇔ |x− 0.5| ≤ |y − 0.5|, ∀x, y ∈ [0, 1],

is a preorder, since ` is reflexive and transitive, but it is not an order since it is not

antisymmetric:

0.2 ` 0.8, because |0.2 − 0.5| = 0.3 ≤ |0.8 − 0.5| = 0.3, and

0.8 ` 0.2, because |0.8 − 0.5| = 0.3 ≤ |0.2 − 0.5| = 0.3

but, 0.2 6= 0.8.

Theorem 14. The triplet ([0, 1]X ,`, 1 − id, F ) verifies NC for all function F .

Proof. F (a, 1 − a) ` 1 − F (a, 1 − a) ⇔ |F (a, 1 − a) − 0.5| ≤ |1 − F (a, 1 −
a) − 0.5| ⇔ |F (a, 1 − a) − 0.5| ≤ |0.5 − F (a, 1 − a)|, what is always verified since

|F (a, 1 − a) − 0.5| = |0.5 − F (a, 1 − a)|. �

Theorem 15. The triplet ([0, 1]X ,`, 1 − id,G) verifies EM for all function G.
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Proof. 1 − G(a, 1 − a) ` 1 − (1 − G(a, 1 − a)) ⇔ |1 − G(a, 1 − a) − 0.5| ≤
|1− (1−G(a, 1−a))−0.5| ⇔ |0.5−G(a, 1−a)| ≤ |G(a, 1−a)−0.5|, what is always

verified since |G(a, 1 − a) − 0.5| = |0.5 −G(a, 1 − a)|. �

In the case of fuzzy sets [0, 1]X , the preorder is translated as follows, for any

µ, σ ∈ [0, 1]X ,

µ ` σ ⇔ |µ(x) − 0.5| ≤ |σ(x) − 0.5|, ∀x ∈ X.

With this definition, and as a corollary of Theorems 14 and 15, any quartet

([0, 1]X ,`, 1 − id, F ) verifies NC and EM.

6. Conclusion

Aristotle stated that the statement ‘A and not A is impossible’, is universally valid

and non susceptible to proof. For Aristotle the law of non-contradiction is, actually,

a ‘principle’ of thought.

It is not this the place to comment on the meaning and role of this kind of

very general principles. We limit ourselves to note that we can fruitfully interpret

them in a more narrow form. For instance, if the law of non contradiction is read

in the form ‘A and not A is false’, its validity will depend on the interpretation

of the term ‘false’, and on how it is represented in a given formal framework. If

such law is posed by ‘A and not A is self-contradictory’, its validity will depend on

the interpretation of ‘self-contradictory’, and on how it is represented in a formal

framework. Of course, in both cases the principles’ validity also will depend on the

characteristics of the chosen formal framework.

Which one of these two interpretations of the aristotelian term ‘impossible’ is

preferable? In which formal framework each one is preferable? These questions do

not have an immediate answer. For example, within the framework of ortholattices

there is equivalence between ‘false’ and ‘self-contradictory’, provided the first term

is represented by the first lattice’s element 0, and the second by the definition

x ≤ x′. Notwithstanding, within the framework of DeMorgan algebras, and also

in that of the standard algebras of fuzzy sets, there are non-null self-contradictory

elements.

Hence, those that are at least partially aristotelian, could prefer the interpreta-

tion conducting to the law’s validity in more and less restrictive frameworks, and

for what has been proven in this paper and in,5,6 and,8 this new interpretation

could be preferable to the first. For those that are completely non-aristotelian, the

first could be preferable to the second.
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E. Trillas, I. Garćıa-Honrado, A. Pradera, Consequences and Con-

jectures in Preordered Sets, Information Sciences 180 (19) 3573-3588

(2010).
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a b s t r a c t

In a preordered set, or preset, consequence operators in the sense of Tarski, defined on fam-
ilies of subsets, are introduced. From them, the corresponding sets of conjectures, hypoth-
eses, speculations and refutations are considered, studying the relationships between these
sets and those previously defined on ortholattices. All the concepts introduced are illus-
trated with three particular consequence operators, whose behavior is studied in detail.
The results obtained are applied to the case of fuzzy sets endowed with the usual pointwise
ordering.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

One of the most distinguishing features of human beings is the act, and especially the art, of reasoning or goal-oriented
managing conjectures. Reasoning and conjecturing are joint brain activities, very difficult to separate one from the other.
Good-guesswork and rationality might even be synonyms, and, actually, scientific and technological research is an activity
that manages guessing in a highly articulated way.

Traditionally, logic dealt with deductive reasoning, that is, with ways of obtaining safe, necessary, conclusions from a set
of premises translating some previous information. Even more, sometimes a logic is defined as a pair (L,C), where L is set of
statements, and C an operator of consequences, allowing to pass from some subsets of L to the corresponding sets of safe
conclusions, or logical consequences. Anyway, Artificial Intelligence did show the interest of obtaining not so safe conclu-
sions from a given body of knowledge. Processes to obtain consequences perform deductive reasoning, or deduction. Those
to obtain hypotheses perform abductive reasoning, or abduction, and those to obtain speculations perform inductive reason-
ing, or induction. These three processes can be embodied in the term ‘‘conjecturing”, that results close to the term
‘‘reasoning”.

The so-called CHC models (shortening ‘Consequences, Hypotheses and Conjectures’, see [9]), were introduced in [12] with
the aim of providing a formal framework allowing to study how to conjecture from a given set of premises. The seminal
paper [12] was followed by papers [4,11,5,10,9,14], where different aspects of the models were investigated in depth.

CHC models are defined within the framework of ortholattices, and both the set of conjectures (which is partitioned into
three different subsets, made of consequences, hypotheses and speculations), and the set of refutations, are described by
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means of the lattice natural order. Recently, the paper [13] has proposed a generalization where conjectures are defined
starting from an abstract operator of consequences (in the sense of Tarski) rather than using the lattice order. Despite this
improvement, the model still presents some major drawbacks. The most important one is that it is still only valid for ortho-
lattices, thus excluding other important structures such as De Morgan algebras, used for example when dealing with fuzzy
sets. On the other hand, the only operator of consequences that, till now, has been studied in depth, denoted as C^, presents
the problem that it allows to derive consequences and conjectures from something (the infimum of the premises) that is not
necessarily a premise.

In addition, Qiu [9] compared some basic properties of consequence and conjecture operators in orthocomplemented lat-
tices, orthomodular lattices, residuated lattices, and boolean algebras. These comparisons show that some results holding in
an algebraic structure may not hold in another one, and as shown in [7,8] some properties of classical finite automata hold if
and only if the truth-value lattices underlying the logic satisfy different distributive laws in which one distributivity implies
another one but the contrary implication may not hold.

What follows tries to (partially) avoid the above mentioned troubles by proposing a further generalization and simplifi-
cation of the model that presents three main characteristics. First, the framework is enlarged from ortholattices to the more
general structures of preordered sets endowed with a negation. Second, consequence operators are allowed to be defined on
different families of subsets rather than exclusively on one of them. Finally, new consequence operators are proposed, study-
ing in detail their behavior as well as the one of the associated sets of conjectures.

The paper is organized as follows. After a review of the basic concepts that are used in the paper (Section 2), Section 3
proposes a new definition of consequence operators within preordered sets, and studies the behavior of three particular
operators. Next, Section 4 generalizes the concepts of conjectures and refutations to preordered sets, starting from the ab-
stract consequence operators introduced in the previous section. Finally, Section 5 analyzes the case of fuzzy sets, and Sec-
tion 6 ends with some conclusions and pointers to future work.

2. Basic concepts

In the following some basic notions regarding preordered sets are briefly recalled (see e.g. [1]):

Definition 2.1 (Preorder). Given a set L, a binary relation 6 # L � L is a preorder on L provided the two following conditions
hold:

1. a 6 a, for all a 2 L (reflexivity).
2. If a 6 b and b 6 c, then a 6 c, for all a,b,c 2 L (transitivity).

The pair (L,6) is said to be a preordered set or a preset.

Definition 2.2. Let (L,6) be a preset. Then:

� If 6 is antisymmetric, i.e., for any a,b 2 L it is a = b whenever a 6 b and b 6 a, then the pair (L,6) is said to be a partially
ordered set or a poset. A poset satisfying the condition [a 6 b or b 6 a] for all a,b 2 L is a totally ordered set.
� An element 0 in L is said to be a first element of the preset if 0 6 a for all a 2 L.
� An element 1 in L is said to be a last element of the preset if a 6 1 for all a 2 L.
� Given a subset S # L, it is said that a 2 L is an infimum (respectively a supremum) of S if

1. a 6 x (x 6 a) for all x 2 S.
2. If c 2 L is such that c 6 x (x 6 c) for all x 2 S, then c 6 a (a 6 c).

� L is said to be inf-*-complete (respectively sup-*-complete) if every non-empty subset S of L has an infimum (supremum).
It is said that L is complete when it is both inf-*-complete and sup-*-complete.
� A binary operation *: L � L ? L is said to be an inf-operation (respectively a sup-operation) if for all a,b 2 L, a*b is an inf-

imum (supremum) of {a,b}.
� A lattice is a poset endowed with both an inf-operation (usually denoted as �) and a sup-operation (usually denoted as +).

If the lattice has first and last element, then it is a bounded lattice.
� A unary operation 0: L ? L is said to be a negation if it verifies the two following conditions:

1. If a 6 b, then b0 6 a0 for all a,b 2 L.
2. If the preset has a unique first element 0 and a unique last element 1, then 00 = 1 and 10 = 0.

� A bounded lattice (L, �, +;0,1) is an ortholattice (L, �, +, 0;0,1) once it is endowed with a negation
0
verifying the non-contra-

diction law, a � a0 = 0 for any a 2 L, and the involutive law, (a0)0 = a for any a 2 L. Recall that ortholattices verify other well-
known properties, such as the excluded-middle law, a + a0 = 1 for any a 2 L, or the De Morgan laws, (a � b)0 = a0 + b0 and
(a + b)0 = a0 � b0 for any a,b 2 L. An orthomodular lattice is an ortholattice verifying the so-called orthomodular law: for all
a,b 2 L, if a 6 b, b = a + a0 � b, or, equivalently, a = b � (a + b0).
� A Boolean algebra is a distributive ortholattice, i.e., an ortholattice verifying the distributive laws a � (b + c) = (a � b) + (a � c)

and a + (b � c) = (a + b) � (a + c) for all a,b,c 2 L. A De Morgan algebra is a bounded distributive lattice endowed with a nega-
tion verifying the involutive law and the De Morgan laws.
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Remark 2.3

� Recall that if (L,6) is a poset, then the infimum and the supremum of any subset S # L, if they exist, are unique. They are
denoted, respectively, as Inf S and Sup S. Note in addition that antisymmetry is not only sufficient but also necessary in
order to guarantee that each subset has at most one infimum (supremum). Indeed, if the antisymmetry property is not
fulfilled, then there exist two different elements a,b 2 L such that a 6 b and b 6 a, and this means that there exists at least
a subset S = {a,b} of L, with two infimum, a and b (and two supremum, again a and b).
� In Definition 2.2, the concept of inf-*-complete and sup-*-complete are not the usual ones (see [1]). Hence, along this

paper it is not supposed, for instance, the existence in L of Inf ;.

3. Consequences in presets

Consequence operators in the sense of Tarski constitute a well-known mechanism for deriving conclusions from a given set
of premises (see e.g. [3] or [13] for the basic notions and further references). In this section we propose a generalization of the
standard definition, allowing to define these operators on a family F # PðLÞ, and we illustrate it with some particular examples.

3.1. Definitions and main properties

Definition 3.1 (Structure of consequences). Let L be a set and let F # PðLÞ. It is said that ðL;F;CÞ is a structure of consequences,
or, alternatively, that C is an operator of consequences (in the sense of Tarski) for F in L, provided C : F! F verifies the three
following properties:

1. P # C(P), for all P 2 F (C is extensive).
2. If P # Q, then C(P) # C(Q), for all P;Q 2 F (C is monotonic).
3. C(C(P)) = C(P) for all P 2 F, or C2 = C (C is a clausure).

Sometimes, and because consequences are usually only reached from finite sets of premises, the so-called axiom of
compacity,

4. For all P 2 F, there exists a finite set {p1,p2, . . . ,pn} # P, such that fp1; p2; . . . ; png 2 F and C(P) = C({p1,p2, . . . ,pn}),

is also added, although it does not always hold.
Obviously, if L is finite, any consequence operator is compact. Note also that C(P) # C(C(P)) follows from 1 and 2, implying

that property 3 can be reduced to C(C(P)) # C(P) for all P 2 F. The definition of operator of consequences proposed in [13] is
recovered by just considering that L is a complete ortholattice and choosing F ¼ P0ðLÞ ¼ fP 2 PðLÞ; InfP–0g.

In the case of singleton sets of premises P = {p}, for simplicity reasons the notation C(p) will sometimes be used to refer to
C({p}).

Example 3.2. In [12] L was a complete ortholattice (L, �, +, 0;0,1), F was taken as P0ðLÞ ¼ fP 2 PðLÞ; InfP–0g, and the
consequence operator C^(P) = {q 2 L;Inf P 6 q} was defined. Notice that, in general, axiom 4 does not hold in this structure of
consequences.

Remark 3.3. Two structures ðL;F;CÞ, and ðL�;F�;C�Þ are isomorphic when there exists a bijective mapping f : L! L�, such
that

1. If P 2 F, then feðPÞ 2 F�, with fe the extension of f to PðLÞ, that is, feðPÞ ¼ ffðpÞ 2 L�; p 2 Pg# PðL�Þ.
2. It is fe � C ¼ C� � fe, that is, feðCðPÞÞ ¼ C�ðfeðPÞÞ, for all P 2 F. Equivalently, C� ¼ fe � C � f�1

e .

Consequence operators can be compared in the following way: given two operators C and C*, it is said that C # C* if for all
P 2 F it is C(P) # C*(P). In this sense, the smallest operator of consequences is C0ðPÞ ¼ IdFðPÞ ¼ P, that is, C0 # C for any con-
sequence operator C in ðL;FÞ. If L 2 F, C1(P) = L for all P 2 F is the greatest operator of consequences since, obviously, for any
consequence operator C it is C # C1. If L R F, the greatest operator of consequences is C1ðPÞ ¼ [Q2FQ for all P 2 F, provided
[Q2FQ 2 F. In these cases it is C0 # C # C1 for any consequence operator C.

When L is a preset endowed with a negation 0, the following important property of consequence operators may be
established:

Definition 3.4 (Consistency). Let (L,6, 0) be a preset endowed with a negation 0 and let F # PðLÞ. A consequence operator
C : F! F is consistent for P 2 F when for any q 2 C(P) it is q0 R C(P). It is said that C is consistent in F when it is consistent for
all P 2 F.

Consistency for a given P states that if q ‘‘follows deductively” from P (q 2 C(P)), then it will not be the case that also
q0 = not q ‘‘follows deductively” from P (q0 R C(P)).
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Example 3.5. The consequence operator cited in Example 3.2 is clearly consistent in P0ðLÞ, since q,q0 2 C^(P) would entail Inf
P 6 q � q0 = 0 and hence Inf P = 0, which is contradictory with the fact P 2 P0ðLÞ.

Remark 3.6. Note that if ðL;F1;CÞ and ðL;F2;CÞ are two structures of consequences such that F1 # F2, then if C is consistent
in F2, it is also consistent in F1. Equivalently, C can not be consistent in F2 if it is not consistent in F1.

The concept of �-compatibility, introduced in [3] for consequence operators, can be generalized to the case of consequence
structures in the following way:

Definition 3.7 (Compatibility). Let ðL;F;CÞ be a structure of consequences and let �: L � L ? L be a binary operation on L. The
operator C is �-compatible in F if the two following conditions hold for any a,b 2 L:

1. For any P 2 F, a 2 C(P) and b 2 C(P) imply a � b 2 C(P).
2. If fa � bg 2 F, then {a,b} # C(a � b).

When the operation � is commutative and associative (as it happens, for example, for any inf-operation), it appears that
the consequences obtained with a �-compatible operator from a finite set of premises are the same as the ones obtained after
applying the operation � to the premises:

Theorem 3.8. Let ðL;F;CÞ be a structure of consequences and let �: L � L ? L be an associative and commutative binary operation.
If C is �-compatible in F, then for any p1, . . . , pn 2 L such that fp1; . . . ; png; fp1 � p2 � � � png 2 F, C({p1,p2, . . . , pn}) = C(p1 � p2 � � � pn).

Proof. Since C is a consequence operator, {p1,p2, . . . , pn} # C({p1,p2, . . . ,pn}), and this, by property 1 in Definition 3.7, implies
p1 � p2 � � � pn 2 C({p1,p2, . . . ,pn}), and hence C(p1 � p2 � � � pn) # C2({p1,p2, . . . ,pn}) = C({p1,p2, . . . ,pn}). By 2 in Definition 3.7,
{p1, ,p2, . . . ,pn} # C(p1 � p2 � � � pn), and hence C({p1,p2, . . . ,pn}) # C2(p1 � p2 � � � pn) = C(p1 � p2 � � � pn). h

We end this section recalling the concept of filter [1]:

Definition 3.9 (Filter). Let (L,6, �) be a preset endowed with an inf-operation. A filter is a set F # Lverifying the two following
properties for any x,y 2 L:

� x,y 2 F) x � y 2 F
� x 2 F & x 6 y) y 2 F

Given an element p 2 L, the set {q 2 L;p 6 q} is a filter, called the principal filter generated by p. Note also that when dealing
with sets of consequences, the first requirement in the above definition is equivalent to the first condition for �-compatibility
(Definition 3.7). In the following section we will see that there are some consequence sets C(P) which are filters, but that this
is not necessarily the case.

3.2. Some particular consequence operators

In the sequel we will consider a preset endowed with a negation, (L,6, 0), and, in order to define consequence structures,
we will deal with the following families F # PðLÞ:

1. F ¼ PðLÞ
2. F ¼ PSCðLÞ ¼ fP 2 PðLÞ; forno p 2 P : p 6 p0g
3. F ¼ PNCðLÞ ¼ fP 2 PðLÞ; fornop1; p2 2 P : p1 6 p02g
4. Provided � is an inf-operation in (L,6), F ¼ PiCðLÞ ¼ fP 2 PðLÞ; fornofinitesubsets fp1; . . . ; prg; fp�1; . . . ; p�ng# P : p�1 � � � p�n 6
ðp1 � � � prÞ

0g.
5. Provided L is an inf-*-complete poset and 0 = Inf L, F ¼ P0ðLÞ ¼ fP 2 PðLÞ; InfP–0g.

Remark 3.10

� The set P0ðLÞ can only be defined within inf-*-complete posets, where the existence and uniqueness of the infimum is
guaranteed (see Remark 2.3).
� When all these sets do exist (i.e., when L is an inf-*-complete poset), the following subsethood chain is obviously verified:

PiCðLÞ# PNCðLÞ# PSCðLÞ# PðLÞ:

� If L is a finite poset equipped with an inf-operation, L is clearly inf-*-complete and PiCðLÞ# P0ðLÞ.
� If L is an inf-*-complete poset and verifies the non-contradiction law (x � x0 = 0 for all x 2 L), then P0ðLÞ# PiCðLÞ. This is the

case, in particular, of complete ortholattices.
� As a consequence of the two previous considerations, it appears that for finite ortholattices it is P0ðLÞ ¼ PiCðLÞ.
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Remark 3.11. Let F # PðLÞ and let C : F! F. If

1. C� : PðLÞ ! PðLÞ is such that C�ðAÞ# CðAÞ8A 2 F;
2. F verifies that for any P, Q such that P 2 F and Q # P it is Q 2 F;

then C�ðPÞ 2 F whenever P 2 F, that is, C� : F! F is well defined. Note also that all the families F defined above fulfill the
second condition.

In what follows we analyze the behavior of three operators, denoted as C6, C� and C^, with respect to the above families of
subsets F # PðLÞ. We exclude the case of PðLÞ, since obviously any operator C is well defined in PðLÞ, and, if C : PðLÞ ! PðLÞ is
an operator of consequences, it is clearly not consistent in PðLÞ, since L 2 PðLÞ and C(L) = L contains all the contradictory pairs
(x,x0) for any x 2 L.

3.2.1. The consequence operator C6
Let (L,6) be a preset. Then (see [3]) it is possible to define the operator C6 : PðLÞ ! PðLÞ, given by C6(P) = {q 2 L;$p 2 P:

p 6 q}.

Theorem 3.12. Let (L,6) be a preset and let F # PðLÞ be such that C6ðPÞ 2 F for all P 2 F. Then C6 : F! F is an operator of
consequences for F in L.

Proof. Since for all p 2 P it is p 6 p, then clearly P # C6(P). Now take P;Q 2 F such that P # Q. If q 2 C6(P), there exists p 2 P
such that p 6 q, but since it is also p 2 Q, it follows q 2 C6(Q). Hence C6(P) # C6(Q). Finally, if q 2 C2

6
ðPÞ, there is p1 2 C6(P)

such that p1 6 q. But then there is some p 2 P such that p 6 p1. Hence, p 6 q, or q 2 C6(P), that is, C2
6
ðPÞ# C6ðPÞ. h

Theorem 3.12 proves that C6 is a consequence operator for any F satisfying C6ðPÞ 2 F whenever P 2 F. The next result
establishes which families F verify this latter property and analyzes the consistency of the resulting operators.

Theorem 3.13. Let (L,6, 0) be a preset endowed with a negation. Then:

1. ðL;PSCðLÞ;C6Þ is a structure of consequences, and C6 is consistent in PSCðLÞ if and only if for no a,b 2 L it is [a 6 b, a i a0 and
b0 i (b0)0].

2. ðL;PNCðLÞ;C6Þ is a structure of consequences and C6 is consistent in PNCðLÞ.
3. If � is an inf-operation in (L,6), then ðL;PiCðLÞ;C6Þ is a structure of consequences and C6 is consistent in PiCðLÞ.
4. If (L,6) is an inf-*-complete poset, then ðL;P0ðLÞ;C6Þ is a structure of consequences, and C6 is consistent in P0ðLÞ if and only if L

verifies the non-contradiction law.

Proof

1. If C6ðPÞ R PSCðLÞ for some P 2 PSCðLÞ, it implies that exists q 2 C6(P) such that q 6 q0 and there exists p 2 P such that p 6 q,
or q0 6 p0. So, it would be p 6 q 6 q0 6 p0, which is contradictory with P R PSCðLÞ. Therefore ðL;PSCðLÞ;C6Þ is a structure of
consequences. To prove the consistency characterization, let us suppose first that there exist a,b 2 L verifying [a 6 b,
a i a0 and b0 i (b0)0]. Then choosing P = {a,b0}, it is P 2 PSCðLÞ and b, b0 2 C6(P), so, C6 is not consistent in PSCðLÞ. Let us
now suppose that C6 is not consistent in PSCðLÞ, so, there exist P 2 PSCðLÞ and q 2 L such that q,q0 2 C6(P) and p1,p2 2 P
such that p1 6 q and p2 6 q0. Then, we have a couple of elements p1,q 2 L verifying p1 6 q, p1ip01 (since p1 2 P and
P 2 PSCðLÞ) and q0 i (q0)0 (because q0 6 (q0)0 implies p2 6 p02, which is contradictory with p2 2 P and P 2 PSCðLÞ).

2. If it was C6ðPÞ R PNCðLÞ for some P 2 PNCðLÞ, there would be q1,q2 2 C6(P) such that q1 6 q02, with p1 6 q1,p2 6 q2, for some
p1,p2 2 P. Then, since q02 6 p02, it would follow p1 6 q1 6 q02 6 p02, which is contradictory with P 2 PNCðLÞ. Therefore,
ðL;PNCðLÞ;C6Þ is a structure of consequences.
To prove the consistency of C6 is consistent in PNCðLÞ, let us now suppose that there exist q0,q 2 C6(P). Then there would exist
p*,p 2 P such that p* 6 q0 and p 6 q or q0 6 p0. So, by the transitivity of 6, p* 6 p0, which is contradictory with P 2 PNCðLÞ.

3. ðL;PiCðLÞ;C6Þ is a structure of consequences (see Remark 3.11). The consistency of C6in PiCðLÞ easily follows from its con-
sistency in PNCðLÞ and the inclusion PiCðLÞ# PNCðLÞ (see Remark 3.6).

4. ðL;P0ðLÞ;C6Þ is a structure of consequences (see Remark 3.11). Consistency is verified whenever L is an inf-*-complete
poset where the law x � x0 = 0 holds where it is P0ðLÞ# PiCðLÞ, and by then Remark 3.6 and the consistency of C6 in
PiCðLÞ, it follows the consistency of C6 in P0ðLÞ. Consistency is impossible in the absence of the non-contradiction law,
if a 2 L such that a � a0 – 0. It can be a � a0 = a (or a � a0 = a), then a 6 a0 (or a0 6 a), and this means that P = {a} (or
P = {a0}) verifies P 2 P0ðLÞ and a,a0 2 C6(P), so C6 is not consistent in P0ðLÞ. If a � a0 = b, with b R {0,a,a0}, it is [b 6 a0 and
b 6 a], which entails [b 6 a0 and a0 6 b0], and hence, by transitivity, b 6 b0. Then it is P ¼ fbg 2 P0ðLÞ and b,b0 2 C6(P), so,
C6 is not consistent in P0ðLÞ. h

Corollary 3.14. C6 is never consistent in PSCðLÞ when L is a non-trivial ortholattice.
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Proof. Indeed, if L is a non-trivial ortholattice, it suffices to choose a = b = x, with x 2 L � {0,1}, in order to fulfill the charac-
terization given in the first item of the above theorem. h

Example 3.15. As an illustration of the characterization given in the first item of Theorem 3.13, choose P = {b,e0} in the poset
of Fig. 1 (it is b,b0 2 C6(P)), or P = {c,g0} in the ortholattice on the right of the same figure (where it is g,g0 2 C6(P)). An example
of a preset where C6 is consistent in PSCðLÞ is the totally ordered set x 6 y 6 y0 6 x0.

Note also that if fpg 2 F for all p 2 P, C6(P) is always ‘‘resoluble” by means of the consequences of all the premises in P:

Theorem 3.16. Provided fpg 2 F for all p 2 P 2 F, C6ðPÞ ¼ [p2PC6ðpÞ.

Proof. Obviously, if p 2 P, C6(p) # C6(P), and then [p2PC6ðpÞ# C6ðPÞ. Reciprocally, if q 2 C6(P), since there is p 2 P such that
p 6 q, it results q 2 C6(p), and also q 2 [p2PC6ðpÞ, or C6ðPÞ#[p2PC6ðpÞ. h

Recall as well that consequence operators provide new preorders [3]:

Theorem 3.17. Let ðL;F; CÞ be a structure of consequences. The binary relation 6C, defined in LF ¼ fp 2 L; fpg 2 Fg, by

p6Cq() q 2 CðpÞ; where CðpÞ ¼ CðfpgÞ;

verifies,

� 6C is a preorder in LF.
� It is C6C # CjF� , with CjF� the restriction of C to F�# F.
� 6C6C

¼ 6C .

Proof. Obvious. h

This last result does obviously hold, for example, if F ¼ PðLÞ, in which case it is LF ¼ L and F� ¼ F.
Regarding the concept of �-compatibility introduced in Definition 3.7, and considering structures of consequences

ðL;F;C6Þ where the preset L is endowed with an inf-operation �, it appears that, in general, C6 is not �-compatible. For exam-
ple, choosing P ¼ fe; fg 2 PNCðLÞ in the ortholattice of Fig. 1, it is e � f = b, but neither e 6 b, nor f 6 b, that is, e � f R C6({e,f}).
Note that this implies that the sets C6(P) are not necessarily filters (see Definition 3.9 and comment below). However, since
C6(P) can be written as C6ðPÞ ¼ [p2PC6ðpÞ (Theorem 3.16), it results that C6(P) is the union of the principal filters generated
by the individual premises.

3.2.2. The consequence operator C�
Let (L,6, �) be a preset endowed with an inf-operation. Then (see [3]) it is possible to define the operator C� : PðLÞ ! PðLÞ,

given by

C�ðPÞ ¼ fq 2 L; 9fp1;p2; . . . ;png# P : p1 � p2 � � �pn 6 qg:

  a 

b d

g’ e’
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Fig. 1. Examples of a poset (left) and an ortholattice (right).
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Remark 3.18

1. C6 # C�, i.e., C6(P) # C�(P) for any P 2 PðLÞ.
2. C�({p1, . . . ,pn}) = C6(p1 � � � pn) for any p1, . . . ,pn 2 L.
3. If P is totally ordered, then C�(P) = C6(P).

Similarly to C6, the operator C� may be used to build structures of consequences:

Theorem 3.19. Let (L,6, �) be a preset endowed with an inf-operation and let F # PðLÞ be such that C�ðPÞ 2 F for all P 2 F. Then
C� : F! F is an operator of consequences for F in L.

Proof. If p 2 P, it is p 6 p, so p 2 C�(P). Hence, P # C�(P). If P # Q, it is obvious that C�(P) # C�(Q). Finally, if q 2 C2
� ðPÞ, there exist

p1,p2, . . . ,pn 2 C�(P) such that p1 � p2 � � � pn 6 q. Now, since pi 2 C�(P) for 1 6 i 6 n, there exist pi1 ; pi2 ; . . . ; piki
2 P such that pi1 �

pi2 � � � piki
6 pi. Hence ðp11

� p12
� � � p1k1

Þ � � � ðpn1
� pn2
� � � pnkn

Þ 6 p1 � � � pn 6 q, and then q 2 C�(P). That is, C2
� ðPÞ# C�ðPÞ, and

C2
� ðPÞ ¼ C�ðPÞ. h

Therefore, C� is a consequence operator for any F verifying C�ðPÞ 2 F whenever P 2 F. The next result establishes which
families F verify this property and analyzes the consistency of the resulting operators.

Theorem 3.20. Let (L,6, �, 0) be a preset endowed with an inf-operation and a negation. Then:

1. ðL;PSCðLÞ;C�Þ is a structure of consequences if and only if there does not exist l1, . . . , lk 2 L verifying ½8i 2 f1; . . . ; kg; liil0i� and
l1 � � � lk 6 (l1 � � � lk)0. Whenever ðL;PSCðLÞ;C�Þ is a structure of consequences, then C� is consistent in PSCðLÞ.

2. ðL;PNCðLÞ;C�Þ is a structures of consequences if and only if there does not exist l1,. . . , lk 2 L verifying ½8i; j 2 f1; . . . ; kg; liil0j� and
l1 � � � lk 6 ðl�1 � � � l

�
mÞ
0 for some fl�1; . . . ; l�mg# fl1; . . . ; lkg. Whenever ðL;PNCðLÞ;C�Þ is a structure of consequences, then C� is consis-

tent in PNCðLÞ.
3. ðL;PiCðLÞ;C�Þ is a structure of consequences and C� is consistent in PiCðLÞ.
4. If (L,6) is an inf-*-complete poset, then ðL;P0ðLÞ;C�Þ is a structure of consequences, and C� is consistent in P0ðLÞ if and only if L

verifies the non-contradiction law.

Proof

1. Let us first suppose that there exist l1, . . . , lk 2 L verifying the stated properties. Then P = {l1, . . . , lk} is such that P 2 PSCðLÞ
and l1 � � � lk 2 C�(P), and then l1 � � � lk 6 (l1 � � � lk)0 means that C�ðPÞ R PSCðLÞ, proving that C� is not a structure of conse-
quences in PSCðLÞ. Now, if C� is not a structure of consequences in PSCðLÞ, it implies that for some P 2 PSCðLÞ, it exists
q 2 C�(P), such that q 6 q0. So, there exists {p1, . . . ,pn} # P such that p1 � � � pn 6 q, or q0 6 (p1 � � � pn)0, as q 6 q0, it is
p1 � � � pn 6 (p1 . . . pn)0. Since pi 2 P and P 2 PSCðLÞ, it is piip0i for all i 2 {1, . . . ,n}.
Let us finally prove that C� is consistent in PSCðLÞ, let us suppose that there exists q,q0 2 C�(P), so, there exist p1, . . . ,pr 2 P
such that p1 � � � pr 6 q, or q0 6 (p1 � � � pr)0. Similarly, there exist p�1; . . . ; p�n 2 P such that p�1 � � � p�n 6 q0. Then, by the transitiv-
ity of 6, it would be p�1 � � � p�n 6 ðp1 � � � prÞ

0 and hence p1 � � � pr � p�1 � � � p�n 6 ðp1 � � � pr � p�1 � � � p�nÞ
0. The contradiction cames from

p1 � � � pr � p�1 � � � p�n 2 C�ðPÞ, what implies C�ðPÞ R PSCðLÞ.
2. If l1, . . . , lk 2 L verify the two stated properties, then P = {l1, . . . , lk} is such that P 2 PNCðLÞ and l1 � � � lk; l

�
1 � � � l

�
m 2 C�ðPÞ, and

then l1 � � � lk 6 ðl�1 � � � l
�
mÞ
0 entails that C�ðPÞ R PNCðLÞ. Reciprocally, if there exists P 2 PNCðLÞ such that C�ðPÞ R PNCðLÞ, then

there exist q,q* 2 C�(P) such that q 6 (q*)0. But the fact q,q* 2 C�(P) implies the existence of p1; . . . ; pr; p
�
1; . . . ; p�s 2 P such

that p1 � � � pr 6 q and p�1 � � � p�s 6 q�, or ðq�Þ0 6 ðp�1 � . . . � p�s Þ
0, and by transitivity, it is p1 � . . . � pr 6 ðp�1 � . . . � p�s Þ

0. Then the set
fp1; . . . ; pr ; p

�
1; . . . ; p�sg# L verifies the two conditions given in the characterization.

Finally, the fact that C� is consistent in PNCðLÞ has already been proved in the first item, since C�ðPÞ R PSCðLÞ implies
C�ðPÞ R PNCðLÞ.

3. If C�ðPÞ R PiCðLÞ, it means that there exists fq1; q2; . . . ; qrg; fq�1; q�2; . . . ; q�ng 2 C�ðPÞ such that q�1 � q�2 � � � q�n 6 ðq1 � q2 � � � qrÞ
0.

Since qi; q
�
j 2 C�ðPÞ, there exist pi;1; . . . ; pi;ki

2 P such that pi;1 � � � pi;ki
6 qi for all i 2 {1, . . ., r}, and there exist

p�j;1; . . . ; p�j;kj
2 P such that p�j;1 � � � p�j;kj

6 q�j for all j 2 {1, . . . ,n}. So, p1;1 � � � p1;k1
� � � pr;1 � � � pr;kr

6 q1 � � � qr , and then, because
0

is a negation, it is ðq1 � � � qrÞ
0
6 ðp1;1 � � � p1;k1

� � � pr;1 � � � pr;kr
Þ0. It is also p�1;1 � � � p�1;k1

� � � p�n;1 � � � p�n;kn
6 q�1 � � � q�n, so

p�1;1 � � � p�1;k1
� � � p�n;1 � � � p�n;kn

6 q�1 � � � q�n 6 ðq1 � � � qrÞ
0
6 ðp1;1 � � � p1;k1

� � � pr;1 � � � pr;kr
Þ0, which is absurd since P 2 PiCðLÞ.

Finally, the consistency of C� in PiCðLÞ follows from its consistency in PNCðLÞ, since PiCðLÞ# PNCðLÞ.
4. P 2 P0ðLÞ implies C�ðPÞ 2 P0ðLÞ (this easily follows from the fact that ðL;P0ðLÞ;C^Þ is a structure of consequences and

C� # C^; both things are proved in Section 3.2.3).
Consistency is fulfilled whenever L is an inf-*-complete poset verifying the law x � x0 = 0 it is P0ðLÞ# PiCðLÞ, and as the con-
sistency of C� in PiCðLÞ has just been proved, the Remark 3.6 shows the consistency of C� in P0ðLÞ. To prove that C� is not
consistent in the absence of the non-contradiction law, it is equals to the proof of the last item of Theorem 3.13, since
C�(p) = C6(p) for any p 2 L. h
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Corollary 3.21. ðL;PSCðLÞ;C�Þ is never a structure of consequences when L is a non-trivial ortholattice. ðL;PSCðLÞ;C�Þ and
ðL;PNCðLÞ;C�Þ are always consistent structures of consequences when L is a totally ordered set.

Proof. If L is a non-trivial ortholattice, choosing P = {a,a0} for any a 2 L � {0,1} provides P 2 PSCðLÞ and C�ðPÞ ¼ L R PSCðLÞ. If L
is a totally ordered set, it is not possible to find elements l1, . . . , lk 2 L simultaneously verifying the two conditions given in
either item 1 or item 2 of Theorem 3.20, since it is clearly l1 � � � lj = li for some i 2 {1, . . . , j}. h

Example 3.22. Examples of the characterizations given in the two first points of Theorem 3.20 may be found in the presets of
Fig. 1, choosing P = {b,c} in the left-hand side poset or P = {a,b} in the ortholattice depicted on the right.

Contrarily to C6, the operator C� is always �-compatible (Definition 3.7):

Theorem 3.23. Let (L,6, �) be a preset endowed with an inf-operation and let ðL;F;C�Þ be a structure of consequences. Then C� is �-
compatible in F.

Proof. If {q1,q2} # C�(P), it is p1 � p2 � � � pn 6 q1, and p�1 � p�2 � � � p�m 6 q2, that imply p1 � p2 � � � pn � p�1 � p�2 � � � p�m 6 q1 � q2, or
q1 � q2 2 C�(P). Since p1 � p2 6 p1,p1 � p2 6 p2, it is {p1,p2} 2 C�(p1 � p2). h

Thanks to Theorem 3.8, the above result implies that C�({p1,p2, . . . ,pn}) = C�(p1 � p2 � � � pn) for any p1, . . . ,pn such that
fp1; . . . ; png; fp1 � p2 � � � png 2 F.

Note finally that the sets C�(P) are clearly filters (see Definition 3.9).

3.2.3. The consequence operator C^
Let (L,6, �) be a poset endowed with an inf-operation which is inf-*-complete. Then it is possible to define the operator

C^ : PðLÞ ! PðLÞ, given by

C^ðPÞ ¼ fq 2 L; InfP 6 qg:
It is easy to verify that C^(P) coincides with C�(P) whenever P is finite, and that, otherwise, it is C�(P) # C^(P) for any P 2 PðLÞ.
Also, clearly C^(P) = C^(Inf P).

Similarly to C6 and C�, the operator C^ is a consequence operator for any F # PðLÞ where it is well defined:

Theorem 3.24. Let (L,6, �) be a poset endowed with an inf-operation which is inf-*-complete, and let F # PðLÞ be such that
C^ðPÞ 2 F for all P 2 F. Then C^ : F! F is an operator of consequences for F in L.

Proof. If p 2 P, it is clearly Inf P 6 p, so p 2 C^(P) and hence P # C^(P). If P # Q, it is obvious that C^(P) # C^(Q) since Inf
Q 6 Inf P. Finally, if q 2 C2

^ðPÞ, it is Inf(C^(P)) 6 q, but Inf(C^(P)) = Inf P, so q 2 C^(P). h

The next Theorem establishes the conditions under which C^ is well defined and consistent. Of course, when L is finite the
characterizations appear to be equivalent to those given in Theorem 3.20:

Theorem 3.25. Let (L,6, �, 0) be a poset endowed with an inf-operation � which is inf-*-complete, and with a negation
0
. Then:

1. ðL;PSCðLÞ;C^Þ is a structure of consequences if and only if there does not exist P # L such that ["p 2 P,p i p0] and Inf P 6
(InfP)0. Whenever ðL;PSCðLÞ;C^Þ is a structure of consequences, then C^ is consistent in PSCðLÞ.

2. ðL;PNCðLÞ;C^Þ is a structure of consequences if and only if there does not exist P # L such that ½8p1; p2 2 P; p1ip02� and Inf
P 6 (Inf Q)0 for some Q # P. Whenever ðL;PNCðLÞ;C^Þ is a structure of consequences, then C^ is consistent in PNCðLÞ.

3. ðL;PiCðLÞ;C^Þ is a structure of consequences if and only if there does not exist P # L such that ½8fp1; . . . ; prg;
fp�1; . . . ; p�ng# P; p�1 � . . . � p�niðp1 � . . . � prÞ

0� and Inf P 6 (Inf Q)0 for some Q # P. Whenever ðL;PiCðLÞ;C^Þ is a structure of con-
sequences, then C^ is consistent in PiCðLÞ.

4. ðL;P0ðLÞ;C^Þ is a structure of consequences, and C^ is consistent in P0ðLÞ if and only if L verifies the non-contradiction law.

Proof

1. If there exists P # L verifying the stated conditions, then it is clearly P 2 PSCðLÞ and C^ðPÞ R PSCðLÞ, and hence ðL;PSCðLÞ;C^Þ
is not a structure of consequences. Reciprocally, if there exists P # L such that P 2 PSCðLÞ and C^ðPÞ R PSCðLÞ, it implies the
existence of q 2 C^(P) such that q 6 q0, but then Inf P 6 q, or q0 6 (Inf P)0, so, Inf P 6 (Inf P)0.
Finally, let us suppose that q,q0 2 C^(P) for some P 2 PSCðLÞ such that C^ðPÞ 2 PSCðLÞ. Then it would be Inf P 6 (Inf P)0, and
since Inf P 2 C^(P), we would have C^ðPÞ R PSCðLÞ, which is contradictory with the hypothesis.

2. If there exists P # L verifying the stated conditions, then it is clearly P 2 PNCðLÞ and Inf P, Inf Q 2 C^(P), so C^ðPÞ R PNCðLÞ,
and hence ðL;PNCðLÞ;C^Þ is not a structure of consequences. Now, if there exists P # L such that P 2 PNCðLÞ and
C^ðPÞ R PNCðLÞ, then there exist q,q* 2 C^(P) such that q 6 (q*)0. But q,q* 2 C^(P) provides Inf P 6 q and Inf P 6 q* or (q*)0 6 Inf
P, that along with q 6 (q*)0 entail Inf P 6 (Inf P)0, so it suffices to choose P = Q in order to get the characterization expected.
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Note finally that C^ is clearly consistent in PNCðLÞ since PNCðLÞ# PSCðLÞ and it has just been proved that C^ is consistent in
PSCðLÞ.

3. The proof is analogous to the one given in the previous item. Evidently, if L is finite ðL;PiCðLÞ;C^Þ is a structure of conse-
quences, since it is impossible to find any P # L satisfying the given conditions.

4. To prove that C^ðPÞ 2 P0ðLÞ whenever P 2 P0ðLÞ, it suffices to notice that Inf (C^(P)) 6 Inf P and Inf P 6 Inf(C^(P)), and then
the antisymmetry yields Inf(C^(P)) = Inf P which entails Inf(C^(P)) – 0. To prove the consistency of C^ when L verifies the
non-contradiction law, it suffices to take P 2 P0ðLÞ and note that q,q0 2 C^(P) would entail Inf P 6 q � q0 = 0, i.e., Inf P = 0,
which is contradictory with P 2 P0ðLÞ. h

Remark 3.26

� ðL;PSCðLÞ;C^Þ is never a structure of consequences when L is a non-trivial ortholattice (this is a corollary of the previous
theorem, or a trivial consequence of Corollary 3.21).
� The last item in the above Theorem includes the case of the complete ortholattice introduced in [12]. In addition to C^,

[12] introduced, also in P0ðLÞ, the operator C^_(P) = {q 2 L; p^ 6 q 6 p_}, with p^ = Inf P and p_ = Sup P. C^_ is also a consis-
tent consequence operator in P0ðLÞ and obviously it is C^_(P) # C^(P).
� If L is a Boolean algebra and F ¼ P0ðLÞ, C^ is the greatest operator of consequences (see [4]).
� Considering InfP–0, as it is done in P0ðLÞ, is interesting in order to avoid contradictions in P, i.e., to avoid the existence of

incompatible subsets {p1,p2, . . . ,pn} # P such that p1 � p2 � � � pn = 0, that would entail C^(P) = L.

Example 3.27. The same examples as the ones given for C� are valid here, since when L is finite it is C^ = C�, and all the sets
considered for C� were finite posets. An example of a poset L (necessarily infinite) such that ðL;PiCðLÞ;C^Þ is not a structure of
consequences is given by L = [0,1], choosing x0 = 1 � x and P = (0.5,1], which verifies P 2 PiCðLÞ and C^ðPÞ ¼ ½0:5;1� R PiCðLÞ,
since 0.5 6 (0.5)0. Note that the same example illustrates that neither ðL;PNCðLÞ;C^Þ nor ðL;PSCðLÞ;C^Þ are structures of con-
sequences, since clearly C^ðPÞ R PSCðLÞ.

Similarly to the case of C�, it is easy to prove that C^ is �-compatible (according to the compatibility concept given in Def-
inition 3.7), it is clear that if (L,6, �) is a poset endowed with an inf-operation which is inf-*-complete, and ðL;F;C^Þ is a struc-
ture of consequences, then C^ is � -compatible in F.

Then, following Theorem 3.8, it is C^ðfp1; p2; . . . ; pngÞ ¼ C^ðp1 � p2 � � � pnÞ for any p1, . . . ,pn such that fp1; . . . ; png; fp1�
p2 � � � png 2 F. Note also that, as it happens with C�(P), the set C^ðPÞ is always a filter. In addition, it coincides with the prin-
cipal filter generated by InfP (recall that for any P it is C^ðPÞ ¼ C^ðInfPÞ).

Table 1 summarizes the main results obtained in this section regarding the definition of the operators C6 # C� # C^ in the
different families F # PðLÞ, as well as their consistency.

Let us finish this section briefly analyzing what happens when dealing with singleton premises:

� Obviously, if fpg 2 F , C^(p) = C6(p) = C�(p) and C^_(p) = {p}.
� The above equalities imply [p2PC�ðpÞ ¼ [p2PC^ðpÞ ¼ [p2PC6ðpÞ, and since it is [p2PC6ðpÞ ¼ C6ðPÞ (Theorem 3.16) and

C6 # C� # C^, it results [p2PC�ðpÞ# C�ðPÞ and [p2PC^ðpÞ# C^ðPÞ. Nevertheless, contrary to what happens with C6, it is
not necessarily [p2PC�ðpÞ ¼ C�ðPÞ or [p2PC^ðpÞ ¼ C^ðPÞ, i.e., neither C�(P) nor C^(P) are, in general, reducible to the union
of the consequences of the elements in P. Indeed, consider the ortholattice to the right of Fig. 1 and take P = {d,e}. It is
C�(d) = {d, f,g,1}, C�(e) = {e,g,1} and C�(P) = C�(d) [ C�(e) [ {b}. Exactly the same example proves that C^(P) is not always
reducible.
� Regarding the relation 6C defined in Theorem 3.17, it is clear that 6C6 ¼ 6C� ¼ 6C^ ¼6.

4. Conjectures and refutations in presets

The algebraic models proposed in [12,13] within the framework of ortholattices dealt not only with consequences but
also with a broader set, the set of conjectures, made of, in addition to consequences, hypotheses and speculations (or specu-
lative conjectures as they were called in [12]). In [14] the model was enlarged with the so-called refutations, defined as the
set made of all elements which are not conjectures.

Table 1
Definition and consistency of C6, C� and C^.

P0ðLÞ PiCðLÞ PNC ðLÞ PSCðLÞ PðLÞ

C6 ø U U 	 

C� ø U � � 

C^ ø � � � 


�: C is not necessarily a consequence operator in F; U: consistent; ø : consistent in inf-*-complete posets verifying x � x0 = 0; 	: not necessarily consistent
and 
: not consistent.
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Provided the information available on something is given by a set P of non-contradiction statements, the conjectures from
P are understood as the statements that can not deductively refute P, that is, those whose negation can not follow from P.
Since deduction is modeled by operators of consequence (C), let’s state that q refutes P (q 2 Ref(P)) when its negation q0 is
in C(P), and that conjectures are in the set {q 2 L;q0 2 C(P)}c = Ref(P)c = {q 2 L;q0 R C(P)}. Notwithstanding, this idea does not
always guarantee that consequences are conjectures, for instance, in the case C is not consistent in P. Then, the definition:

ConjCðPÞ ¼ CðPÞ [ fq 2 L; q0 R CðPÞg

allows to have C(P) � ConjC(P). Hence, in the set ConjC(P) � C(P) is possible to identify the elements from which the premises
in P can be deduced (hypotheses), and those (speculations) that are neither consequences, nor hypotheses. In this way, con-
sequences appear as safe or necessary conjectures, hypotheses and speculations as unsafe or contingent ones, and if C is con-
sistent in P is ConjC(P) = {q 2 L;q0 R C(P)}.

In the following we propose a generalization of all these concepts to the case of presets, starting from an abstract conse-
quence operator.

4.1. Definitions and main properties

In this section (L,6, 0) will be a preset endowed with a negation and ðL;F;CÞ will be a structure of consequences.

Definition 4.1 (Conjectures). Given P 2 F, the set of C-conjectures of P, denoted by ConjC(P), is defined as

ConjCðPÞ ¼ fq 2 L; q 2 CðPÞ or q0 R CðPÞg:
Obviously, C(P) # ConjC(P), and since P # C(P), it results P # C(P) # ConjC(P).

Remark 4.2. In [13] L was taken as a complete ortholattice, F was taken as P0ðLÞ, and the set of conjectures associated to a
consequence operator C : P0ðLÞ ! P0ðLÞ was defined as ConjC(P) = {q 2 L; q0 R C(P)}. Definition 4.1 coincides with the latter
when dealing with complete ortholattices and F ¼ P0ðLÞ. Indeed, in such cases it is always C(P) # {q 2 L;q0 R C(P)}, because if
it was q 2 C(P) such that q0 2 C(P), it would be Inf C(P) = 0 (since q � q0 = 0 is true in any ortholattice), and this would be
contradictory with CðPÞ 2 P0ðLÞ.

If C is a consistent consequence operator (Definition 3.4), the set ConjC(P) clearly reduces to ConjC(P) = {q 2 L;q0 R C(P)}.
Note also that consistency ensures anti-monotonicity of conjectures, as the two following results show:

Theorem 4.3. Let ðL;F; CÞ be a structure of consequences where C is consistent.

� Then for any P;Q 2 F such that P # Q it is ConjC(Q) # ConjC(P). That is, the operator ConjC is anti-monotonic.
� Let ðL;F;C�Þ be another structure of consequences where C* is consistent and verifying C # C*. Then ConjC� # ConjC.

Proof. Obvious. h

Corollary 4.4. ConjC^ ðPÞ# ConjC� ðPÞ# ConjC6 ðPÞ# ConjC0
ðPÞ, provided the consequence operators are consistent for P.

Proof. Follows from the chain C0 # C6 # C� # C^. h

Within the set ConjC(P), and apart from the consequences C(P), the set of C-hypotheses of P can be defined in the following
way:

Definition 4.5 (Hypotheses). Given P 2 F, the set of C-hypotheses of P, denoted by HypC(P), is defined as

HypCðPÞ ¼ fq 2 ConjCðPÞ � CðPÞ; fqg 2 F and P # CðqÞg;

with C(q) = C({q}).

Remark 4.6. In [13], choosing L as a complete ortholattice and taking F ¼ P0ðLÞ, the set of hypotheses associated to a con-
sequence operator C : P0ðLÞ ! P0ðLÞ was defined as Hyp�CðPÞ ¼ fq 2 L� ðf0g [ P [ fInfPgÞ; P # CðqÞg. It is also seen from [13]
that Hyp�CðPÞ# ConjCðPÞ and Hyp�CðPÞ \ CðPÞ ¼ ;, so the set Hyp�CðPÞ could have equivalently been defined as
Hyp�CðPÞ ¼ fq 2 ConjCðPÞ � ðf0g [ CðPÞÞ; P # CðqÞg. Since in addition it is clearly fqg 2 P0ðLÞ if and only if q – 0, it appears that
Definition 4.5 coincides with the one given in [13] when dealing with complete ortholattices and F ¼ P0ðLÞ.

Obviously, it results HypC(P) \ C(P) = ;, and C(P) # C2(q) = C(q), that is, the consequences of P are also consequences of all
q 2 HypC(P). Since in addition it is HypC(P) # ConjC(P), the hypotheses are those conjectures whose consequences contain all
the consequences of P, that is, those from which all the consequences of P deductively ‘follow’. In this sense, the hypotheses
are conjectures ‘explaining’ both P and what ‘follows’ from P (the available information on something).
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Similarly to what happens with conjectures, the operator HypC is anti-monotonic, but this is obviously true even in the
absence of consistency, since for any P;Q 2 F such that P # Q it is HypC(Q) # HypC(P). That is, the operator HypC is anti-
monotonic.

Let us now define the so-called speculations, which are those conjectures that are neither consequences nor hypotheses
[12,13]:

Definition 4.7 (Speculations). Given P 2 F, the set of C-speculations of P, denoted by SpC(P), is defined as

SpCðPÞ ¼ ConjCðPÞ � ½CðPÞ [ HypCðPÞ�
In general, the operator SpC is non-monotonic, that is, it is neither monotonic nor anti-monotonic (see [13] where this is

proved in the ortholattice case).

To summarize, the set ConjC(P) is partitioned in the form

ConjCðPÞ ¼ CðPÞ [ HypCðPÞ [ SpCðPÞ

Remark 4.8. Although any consequence operator is defined such that CðPÞ 2 F whenever P 2 F, this is not always the case
for the sets ConjC(P), HypC(P) or SpC(P), that may not belong to F even if P does. As an example, consider L as the Boolean
algebra ðPðEÞ;\;[; ;; EÞ, where E is a non-empty set, with the set complement acting as a negation. Choose
F ¼ P0ðLÞ ¼ fP 2 PðLÞ; InfP–;g and the consequence operator C^(P) = {q 2 L;Inf P # q}. Now, take P = {p1,p2} from Fig. 2.
Clearly, it is P 2 P0ðLÞ, since Inf P = p1 \ p2 – ;. On the other hand, it is r1,r2 2 HypC(P) and q1,q2 2 SpC(P), but
r1 \ r2 = q1 \ q2 = ; implies Inf HypC(P) = Inf SpC(P) = Inf ConjC(P) = ;, or HypCðPÞ; SpCðPÞ;ConjCðPÞ R P0ðLÞ.

Finally, following what was done in [14] in the context of ortholattices, it is possible to define the set of C-refutations,
made of those elements whose negations ‘‘follow” from P:

Definition 4.9 (Refutations). Given P 2 F, the set of C-refutations of P, denoted by RefC(P), is defined as

RefCðPÞ ¼ fq 2 L; q0 2 CðPÞg
Clearly, for any P 2 F it is

ConjCðPÞ [ RefCðPÞ ¼ L

and

ConjCðPÞ \ RefCðPÞ ¼ fq 2 CðPÞ; q0 2 CðPÞg

If C is a consequence operator which is consistent for P, then it is ConjC(P) \ RefC(P) = ;, and hence L = ConjC(P) [ RefC(P) is a
partition, i.e., it verifies the nice property RefC(P) = ConjC(P)c. Fig. 3 illustrates the classification of the set L when the conse-
quence operator C is not consistent for P (left) and when it is consistent for P (right).

Remark 4.10. As it was pointed out in Remark 3.3, when dealing with isomorphic structures of consequences ðL;F;CÞ and
ðL�;F�;C�Þ, the set of consequences C*(P*) can be calculated from C(P), i.e., if f denotes the isomorphism between L and L* and
fe denotes its extension to PðLÞ, for any P 2 F it is C�ðfeðPÞÞ ¼ feðCðPÞÞ. Furthermore if N is the negation in L, and the negation
in L*, N*, is taken as N� ¼ f � N � f�1, then the sets of conjectures, hypotheses and speculations are also isomorphic. Indeed,
ConjC� ðfeðPÞÞ can be calculated from ConjC(P) as follows:

ConjC� ðfeðPÞÞ ¼ C�ðfeðPÞÞ [ ffðqÞ 2 L�; N�ðfðqÞÞ R C�ðfeðPÞÞg ¼ feðCðPÞÞ [ ffðqÞ 2 L�; fðNðqÞÞ R feðCðPÞÞg
¼ feðCðPÞÞ [ feðfq 2 L; NðqÞ R CðPÞgÞ ¼ feðConjCðPÞÞ

q1 

q2

p1 p2r1 r2

Fig. 2. The family of subsets used in Remark 4.8.
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Hypotheses and speculations follow an analogous behavior: it is

HypC� ðfeðPÞÞ ¼ feðHypCðPÞÞ and SpC� ðfeðPÞÞ ¼ feðSpCðPÞ:

Referring to consistency, if C is consistent in F, C* is also consistent in F�.
Therefore, for isomorphic structures of consequences with isomorphic negations, conjectures, hypotheses and speculations are

also isomorphic.

4.2. Examples

Three different consequence operators, C6, C� and C^, have been introduced in Section 3.2. In the following we calculate the
sets of conjectures, hypotheses, speculations and refutations associated to them, and point out some of their main properties.

4.2.1. Conjectures and refutations associated to C6
The following results are easily obtained by applying to C6 the definitions established in Section 4.1.
Let (L,6, 0) be a preset endowed with a negation and let ðL;F;C6Þ be a structure of consequences. Then, for any P 2 F:

� ConjC6 ðPÞ ¼ fq 2 L; 9p 2 P : p 6 qg [ fq 2 L;8p 2 P : piq0g
� HypC6 ðPÞ ¼ fq 2 L; fqg 2 F;8p 2 P : ðpiq; piq0; q 6 pÞg
� SpC6 ðPÞ ¼ fq 2 L;8p 2 P : ðpiq; piq0Þ; ½fqg R F or 9p 2 P : qip�g
� RefC6 ðPÞ ¼ fq 2 L; 9p 2 P : p 6 q0g

Remark 4.11

� If C6 is consistent for P, then:
– ConjC6 ðPÞ ¼ fq 2 L;8p 2 P : piq0g
– If L is a Boolean algebra, then ConjC6 ðPÞ ¼ fq 2 L;8p 2 P : p � q–0g (recall that in Boolean algebras a 6 b0 and a � b = 0 are

equivalent).
– For all P 2 F, such that if p 2 P, then fpg 2 F, ConjC6 ðPÞ ¼ \p2P ConjC6 ðpÞ.
� If L is a poset, the statement [p i q] is equivalent to [q < p or pNCq], where pNCq indicates that p and q are not compa-

rable. This entails:
– HypC6 ðPÞ ¼ fq 2 L; fqg 2 F;8p 2 P : ðq < p; piq0Þg
– If the poset L has first element 0 and verifies the non-contradiction law, then clearly 0 R HypC6 ðPÞ and [q – 0,q < p]

implies p i q0, so finally

HypC6 ðPÞ ¼ fq 2 L; fqg 2 F;8p 2 P : 0 < q < pg

� If L has first element 0 and last element 1, then 1 2 C6(P) and 0 2 RefC6 ðPÞ.

Example 4.12. Let us consider the totally ordered set ([0,1],6) with 0 = 1 � id[0,1] and P = {0.7,0.9}. It is easy to verify that
P 2 PiCð½0;1�Þ, and then, thanks to Theorem 3.13, we know that C6 is consistent for P.

� C6(P) = [0.7,1] [ [0.9,1] = [0.7,1].
� ConjC6 ðPÞ ¼ ð0:3;1� \ ð0:1;1� ¼ ð0:3;1�. Note that ConjC6ðPÞ R PSCð½0;1�Þ, since 0.4 6 0.40 = 0.6. Then ConjC6 ðPÞ R PiCð½0;1�Þ,

but it belongs to P0ð½0;1�Þ.

SpC(P) 

C(P) 

{q: q’ ∉ C(P)} RefC(P) 

HypC(P) 

SpC(P) 

C(P) 

RefC(P) 

HypC(P) 

P P 

ConjC(P)

{q: q’ ∉ C(P)} 

Fig. 3. Classification of L when the consequence operator C is not consistent for P (left) and when it is (right).
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� HypC6ðPÞ ¼ fq; q 2 ð0:3;1� � ½0:7;1�; 1� q R ½0:7;1�g ¼ ð0:3;0:7Þ. Again, HypC6 ðPÞ R PSCð½0;1�Þ, and hence
HypC6ðPÞ R PiCð½0;1�Þ, but HypC6ðPÞ 2 P0ð½0;1�Þ.
� SpC6ðPÞ ¼ ;.
� RefC6 ðPÞ ¼ ConjC6 ðPÞ

c ¼ ½0;0:3� (since C6 is consistent for P).

4.2.2. Conjectures and Refutations associated to C�
Let (L,6, �, 0) be a preset endowed with a negation and an inf-operation and let ðL;F;C�Þ be a structure of consequences.

Then, for any P 2 F:

� ConjC� ðPÞ ¼ fq 2 L; 9fp1; . . . ; png# P : p1 � � � pn 6 qg [ fq 2 L;8fp1; . . . ; png# P : p1 � � � pniq0g
� HypC� ðPÞ ¼ fq 2 L; fqg 2 F;8fp1; . . . ; png# P : ðp1 � � � pniq0; p1 � � � pniqÞ;8p 2 P : q 6 pg
� SpC� ðPÞ ¼ fq 2 L;8fp1; . . . ; png# P : ðp1 � � � pniq0; p1 � � � pniqÞ; ½fqg 2 F or 9p 2 P : qip�g
� RefC� ðPÞ ¼ fq 2 L; 9fp1; . . . ; png# P : p1 � � � pn 6 q0g

Remark 4.13. If C� is consistent for P, then:

� ConjC� ðPÞ ¼ fq 2 L;8fp1; . . . ; png# P : p1 � . . . � pniq0g
� If L is a Boolean algebra, then ConjC� ðPÞ ¼ fq 2 L;8fp1; . . . ; png# P : p1 � � � pn � q – 0g.

Remark 4.14. All the sets calculated in Example 4.12 for C6 are valid for C�, since the set P = {0.7,0.9} is totally ordered (see
Remark 3.18).

4.2.3. Conjectures and refutations associated to C^
Let (L,6, �, 0) be a poset endowed with an inf-operation which is inf-*-complete and with a negation, and let ðL;F;C^Þ be a

structure of consequences. Then, for any P 2 F:

� ConjC^ ðPÞ ¼ fq 2 L; InfP 6 qg [ fq 2 L; InfPiq0g
� HypC^ ðPÞ ¼ fq 2 L; fqg 2 F; q < InfP; InfPiq0g
� SpC^ ðPÞ ¼ fq 2 L; InfPiq; InfPiq0; ½fqg R F or qiInfP�g
� RefC^ ðPÞ ¼ fq 2 L; InfP 6 q0g

To calculate HypC^ ðPÞ and SpC^ ðPÞ it suffices to take into account that ["p 2 P:q 6 p] is equivalent to q 6 Inf P, or
[$p 2 P:q i p] is equivalent to q i Inf P.

Remark 4.15

� If C^ is consistent for P, then:
– ConjC^ ðPÞ ¼ fq 2 L; InfPiq0g.
– If L is a Boolean algebra, then ConjC^ ðPÞ ¼ fq 2 L; InfP � q–0g.
� If L verifies the non-contradiction law, then:

HypC^ ðPÞ ¼ fq 2 L; fqg 2 F;0 < q < InfPg;

and hence HypC^ ¼ HypC6 .
� If L is a complete ortholattice and F ¼ P0ðLÞ, then all the sets given in Section 4.2.3 coincide with those defined in [12].

Example 4.16. Let us use the results obtained in this Section in order to calculate the conjectures (consequences, hypotheses
and speculations) and the refutations of the set of premises P = {e,f} in the ortholattice (and hence, a poset verifying the non-
contradiction law) at the right of Fig. 1. It is easy to check that P 2 PiCðLÞ, and then, according to Section 3, the three operators
C6,C� and C^ are consistent for P. Also, since L is finite, it is C� = C^, so we only need to deal with one of them. For the con-
sequences operator C6, it is:

� C6(P) = {q 2 L;$p 2 P:p 6 q} = {e, f,g,1}
� ConjC6 ðPÞ ¼ fq 2 L;8p 2 P : piq0g ¼ fq 2 L; 9p 2 P : p 6 q0gc ¼ fg0;0gc ¼ fa; b; c; d; e; f ; g; a0; b0; c0; d0; e0; f 0;1g
� HypC6ðPÞ ¼ fq 2 L; fqg 2 PiCðLÞ;8p 2 P : 0 < q < pg ¼ fbg
� SpC6ðPÞ ¼ ConjC6 ðPÞ � ½C6ðPÞ [ HypC6 ðPÞ� ¼ fa; c; d; a0; b

0
; c0; d0; e0; f 0g

� RefC6 ðPÞ ¼ fq 2 L; 9p 2 P : p 6 q0g ¼ f0; g0g

For the consequences operator C^, it is:

� C^(P) = {q 2 L;b 6 q} = {b,d,e, f,g,1}
� ConjC^ ðPÞ ¼ fq 2 L; biq0g ¼ fa; b; c; d; e; f ; g; a0; b0; c0;1g
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� HypC^ ðPÞ ¼ fq 2 L; fqg 2 PiCðLÞ;0 < q < bg ¼ ;
� SpC^ ðPÞ ¼ ConjC^ ðPÞ � ½C^ðPÞ [ HypC^ ðPÞ� ¼ fa; c; a0; b

0
; c0g

� RefC^ ðPÞ ¼ fq 2 L; b 6 q0g ¼ f0; d0; e0; f 0; g0g

5. The case of fuzzy sets

The simplest algebra of fuzzy sets, the one introduced by Zadeh [15] in 1965, corresponds to the set
L = [0,1]X = {l;l:X ? [0,1]} (where X is the universe of discourse), endowed with the pointwise partial order

l 6 r() lðxÞ 6 rðxÞ 8x 2 X

whose first element is l0 (l0(x) = 0,"x 2 X), or l0 = l;, and whose last element is l1 (l1(x) = 1,"x 2 X), or l1 = lX. The only inf-
operation on the poset ([0,1]X,6) is � = min, defined as

ðl � rÞðxÞ ¼ minðlðxÞ;rðxÞÞ 8x 2 X

The set is inf-*-complete, and among the negations 0 on [0,1]X, the most considered (see e.g. [6]) are those functionally given
by

l0ðxÞ ¼ u�1ð1�uðlðxÞÞÞ 8x 2 X

with u an order-automorphism of the totally ordered unit interval ([0,1],6), that is, a function u:[0,1] ? [0,1], strictly
increasing verifying the boundary conditions u(0) = 0 and u(1) = 1. All these negations, known as strong negations, verify
the involutive property l00 = l, for all l 2 [0,1]X, but none of them verifies the non-contradiction law along with the given
inf-operation. The simplest is the so-called standard negation, defined as l0(x) = 1 � l(x) for all x 2 X, obtained by means
of the identity function u(x) = x. Similarly to min, it is also possible to equip [0,1]X with the sup-operation max, and it appears
that ([0,1]X,min,max, 0) is a De Morgan algebra (see e.g. [6]).

CHC models with fuzzy sets are considered in [2,9], where the case of residuated lattices, (L,_,^,	,?;0,1), is taken into
account and it is proven that in complete residuated lattices, with an involutive negation, consequences for the operator C^ in
F ¼ P0ðLÞ can be written as those elements, q, for which q0 	 infP = 0, which implies the consistency of the consequences
structure ðL;P0ðLÞ;C^Þ.

Focussing on the aim of the present paper, what is relevant is that ([0,1]X,6,min, 0) is an infinite bounded poset which is
inf-*-complete, so the results proposed in this paper provide a framework for conjecturing from fuzzy sets. In the following
we apply the main results of Sections 3 and 4 to ([0,1]X,6,min, 0) where, for simplicity reasons, 0 is taken as the standard
negation (the results obtained can be easily generalized to the case of arbitrary strong negations).

Let us first discuss which families F # Pð½0;1�XÞ may be considered. Since ([0,1]X,6,min, 0) is equipped with an inf-oper-
ation and is inf-*-complete, any of the families F introduced at the beginning of Section 3.2 may be used when dealing with
fuzzy sets. They may be written as follows, taking into account that for any l 2 [0,1]X [l 6 l0] is equivalent to
["x 2 X:l(x) 6 0.5].

1. PSCð½0;1�XÞ ¼ fP # ½0;1�X ;8l 2 P; 9x 2 X : lðxÞ > 0:5g
2. PNCð½0;1�XÞ ¼ fP # ½0;1�X ;8l;r 2 P; 9x 2 X : lðxÞ þ rðxÞ > 1g
3. PiCð½0;1�XÞ ¼ fP # ½0;1�X ;8fl1; . . . ;lrg; fr1; . . . ;rng 2 P; 9x 2 X : minðl1ðxÞ; . . . ;lrðxÞÞ þminðr1ðxÞ; . . . ;rnðxÞÞ > 1g
4. P0ð½0;1�XÞ ¼ fP # ½0;1�X ; 9x 2 X : ðInfPÞðxÞ–0g

It could also be interesting to consider the following important family F of fuzzy sets:

F ¼ Pnð½0;1�XÞ ¼ fP # ½0;1�X ;8l 2 P;l is normalizedg ¼ fP # ½0;1�X ;8l 2 P;9x 2 X;lðxÞ ¼ 1g;

made of those fuzzy sets that are not only non-selfcontradictory for any strong negation (i.e., they verify l i l0 for any
strong negation

0
), but also have at least one prototype in X (the x 2 X such that l(x) = 1). Clearly, Pnð½0;1�XÞ# PSCð½0;1�XÞ

but Pnð½0;1�XÞ� PNCð½0;1�XÞ (and hence Pnð½0;1�XÞ� PiCð½0;1�XÞ).
Regarding the three consequences operators analyzed in Section 3.2, any of them could be used in ([0,1]X,6,min, 0), and

their behavior easily follows from the results obtained for the general case. Let us, as an example, examine in detail the case
of C6, which is defined as follows for any P # [0,1]X:

C6ðPÞ ¼ fr 2 ½0;1�X ;9l 2 P : l 6 rg:

Section 3.2.1, in particular Theorem 3.13, shows that C6 verifies the following properties:

� C6(P) = [0,1]X for any P such that l0 2 P, C6(l1) = {l1}.
� For all P 2 F, l1 2 C6(P).
� Since the pointwise order 6 is a partial order: r 2 C6(l) and l 2 C6ðrÞ () l ¼ r.
� C6ðPÞ ¼ [l2PC6ðlÞ, provided flg 2 F for all l 2 P.
� ð½0;1�X ;PNCð½0;1�XÞ; C6Þ is a structure of consequences and C6 is consistent in PNCð½0;1�XÞ.
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� ð½0;1�X ;PSCð½0;1�XÞ;C6Þ and ð½0;1�X ;Pð½0;1�XÞ;C6Þ are structures of consequences, but C6 is neither consistent in Pð½0;1�XÞ
nor in PSCð½0;1�XÞ (since it is easy to find r1, r2 2 [0,1]X such that r1 6 r2;r1ir01 and r2ir02).
� ð½0;1�X ;PiCð½0;1�XÞ;C6Þ is a structure of consequences and C6 is consistent in PiCð½0;1�XÞ.
� ð½0;1�X ;P0ð½0;1�XÞ;C6Þ is a structure of consequences, but C6 is not consistent in P0ð½0;1�XÞ (since [0,1]X is a poset that does

not verify the non-contradiction law).

Only the following aspect needs to be investigated, because it does not follow from the general results of Section 3.2.1:
whether ð½0;1�X ;Pnð½0;1�XÞ;C6Þ is a (consistent) structure of consequences:

Theorem 5.1. ð½0;1�X ;Pnð½0;1�XÞ; C6Þ is a structure of consequences, but C6is not consistent in Pnð½0;1�XÞ.

Proof. If P 2 Pnð½0;1�XÞ, then C6ðPÞ 2 Pnð½0;1�XÞ. Indeed, if r 2 C6(P), then there exists l 2 P such that l 6 r, but since
P 2 Pnð½0;1�XÞ, there exists x 2 X such that l(x) = 1, so for that x, it is r(x) = 1, and C6ðPÞ 2 Pnð½0;1�XÞ. But
C6 : Pnð½0;1�XÞ ! Pnð½0;1�XÞ is not consistent: for example, taking P = {l1,l2} in Fig. 4, it is r, r0 2 C6(P). h

Let us now use the results of Section 4 in order to calculate the sets of conjectures and refutations associated to C6in [0,1]X:

� ConjC6 ðPÞ ¼ fr 2 ½0; 1�
X ; 9l 2 P : l 6 rg [ fr 2 ½0; 1�X ; 8l 2 P : lir0g ¼ fr 2 ½0; 1�X ; 9l 2 P : l 6 rg [ fr 2 ½0; 1�X ; 8l 2

P : 9x 2 X;lðxÞ þ rðxÞ > 1g. Of course, if C6is consistent for P, then ConjC6 ðPÞ ¼ fr 2 ½0; 1�
X ; 8l 2 P : 9x 2 X;

lðxÞ þ rðxÞ > 1g
� HypC6ðPÞ ¼ fr 2 ½0;1�

X ; frg 2 F;8l 2 P : ðr < l;lir0Þg ¼ fr 2 ½0;1�X ; frg 2 F;8l 2 P : ðr < l; 9x 2 X : lðxÞ þ rðxÞ > 1Þg
� SpC6ðPÞ ¼ fr 2 ½0;1�

X ;8l 2 P : ðlir;lir0Þ; ½frg R F or 9l 2 P : ril�g
� RefC6 ðPÞ ¼ fr 2 ½0;1�

X ; 9l 2 P : l 6 r0g

The following example illustrates all the above results:

Example 5.2. Let X = {a,b}, and denote by li,j those fuzzy sets such that li,j(a) = i, and li,j(b) = j, with i,j 2 [0,1]. Take the set of
premises P ¼ fl0:5;1;l1;0:3g 2 PNCð½0;1�XÞ and the consistent consequence operator C6 defined in F ¼ PNCð½0;1�XÞ. It is:

� C6(P) = {li,j 2 [0,1]X; $l 2 P:l 6 li,j} = {li,1;i P 0.5} [ {l1,j;j P 0.3}
� ConjC6 ðPÞ ¼ fli;j 2 ½0;1�

X ;8l 2 P : lil0i;jg ¼ fli;j 2 ½0;1�
X ; l0:5;1il1�i;1�jg \ fli;j 2 ½0; 1�

X ; l1;0:3il1�i;1�jg ¼ ½0;1�
X � ½fli;0 :

i 6 0:5g [ fl0;j : j 6 0:7g
� HypC6ðPÞ ¼ fli;j; fli;jg 2 PNCð½0;1�XÞ;8l 2 P : ðli;j < l; 9x 2 X : li;jðxÞ þ lðxÞ > 1Þg ¼ ;
� SpC6ðPÞ ¼ ConjC6 ðPÞ � ½C6ðPÞ [ HypC6 ðPÞ� ¼ ½0;1�

X � ½fli;0 : i 6 0:5g [ fl0;j : j 6 0:7g [ fli;1; i P 0:5g [ fl1;j; j P 0:3g�

6. Conclusions

As it was said in the introduction, algebras as the De Morgan ones do not fit in the working hypotheses made in [12,13],
since they do not verify the non-contradiction and excluded-middle laws. This lack is overcome in this paper: now the only
necessary underlaying structure is a preordered set endowed with a negation, that can be enriched with an inf-operation or
upgraded to an inf-*-complete poset. So, this paper studies some properties of CHC models built on preordered sets that are
weaker structures than the others where CHC models had been studied before. Furthermore, in order to keep some proper-
ties that hold in stronger structures, this paper considers consistent operators of consequences. This is the case, for instance,
of the non-contradiction principle that in both ortholattices and residuated lattices, allows that the intersection between the
negation of a consequence and the available joint information is null or empty.

In addition, three different consequence operators have been analyzed in detail, defining them on different families of subsets:

� C6, which only provides as consequences those elements ‘following’ from some premise;
� C�, which provides as consequences those elements ‘following’ from the conjunction of any finite number of premises;
� C^, which considers the elements ‘following’ from the conjunction of all the premises.

µ2

µ1

σ

σ'

Fig. 4. Fuzzy sets in Pnð½0;1�XÞ (proof of Theorem 5.1).
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The operators C6 and C� actually define partial consequences of the set of premises.
Conjectures, which are classified in consequences, hypotheses and speculations, have been defined starting from an ab-

stract consequence operator. Although any operator of consequences C : F! F allows to take the sets C(P) as new sets of
premises, this is not the case with the operators of conjectures, hypotheses, and speculations, that map F to PðLÞ, but not
necessarily to F. Hence, in general, the sets ConjC(P), HypC(P), and SpC(P), cannot be taken as new sets of premises. The sets
F are also useful to control the consistency of the consequence operator.

Note finally that in the world of formal sciences, it is not surprising that the concept of consequence does precede that of
conjecture, or that the formalization of the concepts underlying ‘guessing’ do come from ‘deduction’. Nevertheless, the non-
existence of a formal framework in which the particular concept of consequence does follow from that of conjecture as a
‘safe’ one, is not clear enough. Where and how to define conjectures in such a way that consequences could be derived from
them as a particular case, is an open question. This problem can be shortly stated as follows: what comes first, the idea of
conjecture or that of consequence?
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1

On an Attempt to Formalize Guessing

Itziar García-Honrado and Enric Trillas

Summary. Guessing from a piece of information is what humans do in their reason-
ing processes, and that is why to some extent reasoning and obtaining conjectures
can be considered equivalent. Most of these reasoning processes consist in posing
new questions whose possible answers are non contradictory with the previous in-
formation. This is the idea that allows to introduce different mathematical models
by means of conjecture operators, built up depending on how the concept of non-
contradiction is understood. The relevant contribution of this chapter is to show
that there exist conjecture operators not coming from Traski’s operators of conse-
quences, a new result untying the concept of conjecture, as it is introduced, from a
previous way of deduction. The concept of a conjecture proves to include those of
logical consequences, hypotheses and speculations.

Deduction is a necessary part of Induction
William Whewell [21]

1.1 Introduction

In Science, the method of reasoning is the so called empirical method, based
in experiments and different kind of proofs. It allows to build theories, or
mathematical models, always subjected to test its provisory validity, or to
refuse them. So, this method allows the sequential development of theoreti-
cal models in order to get the one that currently better explains the reality.
The empirical method at least englobes the following tree general types of
reasoning, going from a given body of knowledge to some conclusions,

• Deduction, allowing to go from a general to a particular case, by applying
known laws, models or theories. So, the conclusions can be called logical
consequences, in the sense that they necessarily follow from the available
information.
Therefore, deduction does not allow to get “new" information, but to
clearly deploy the known information. Deduction is typical of formal the-
ories.
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• Abduction, allowing to find contingent explanations for the information.
Is a kind of reasoning in which one chooses the hypothesis that could best
explain the evidence. It is used to look for hypotheses of a given informa-
tion that, then, can be deduced from them.
For instance, in a medical diagnose’s problem in which the available infor-
mation consists in the symptoms: ‘fever’ and ‘sore throat’, our hypothesis
could be ‘anginas’, since some symptoms of having anginas are fever and
sore throat.

• Induction, which takes us beyond our current evidence, or knowledge, to
contingent conclusions about the unknown.
From particular observations, induction allows us to provisionally establish
a ‘law’ that can explain these observations, and that is a (contingent)
conjecture in the sense that it is not contradictory with the observations.
This kind of reasoning is typical of Experimental Science.

Once a single hypothesis is selected as the explanation of some evidence,
following Popper (see [11], [10]), it is only a provisional explanation that
should be submitted to the strongest than possible tests trying to refute it.
Before, Popper it was C.S. Peirce who described (see, for instance, [9]) the
processes of science as a combination of induction, abduction and deduction.

Hence, the real process to built up science’s models consists on working with
conjectures. That is, building up possible explanations (conjectures called hy-
potheses) from observations, that can change with new observations. Then,
after deducing some necessary consequences of the hypothesis, they must be
checked by repeated experiments to test its suitability.

1.1.1

Most of ordinary, everyday, or commonsense reasoning is nothing else than
conjecturing or guessing. Often, human reasoning consists in either conjectur-
ing or refuting hypotheses to explain something, or in conjecturing specula-
tions towards some goal. Adding to guessing the reasoning done by similarity,
or analogical reasoning, a very big part of ordinary reasoning is obtained.

Only a little part of everyday reasoning could be typified as deductive rea-
soning, that is typical of formal sciences in the context of proof, like in the
case of mathematical proof. Can deductive reasoning be seen as a particular
type of conjecturing?

Since human evolution is in debt with the people’s capacity for conjectur-
ing and, even more, scientific and technological research is based on systematic
processes of guessing and of doing analogies, it seems relevant to study what
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is a conjecture. How the concept of a conjecture can be described and where
and how can it be formalized? Is deduction actually a pre-requisite for the
formalization of conjectures?

This paper deals with these questions, and to begin with let us pose a
very simple but typical example of an everyday life decision taken on the
base of conjecturing. Why each year many people decide to buy a ticket of
the Christmas Lottery? Since this lottery counts with more than 90, 000 dif-
ferent numbers, the probability of winning the first award is smaller than
1/90, 000 = 111·10−7. Such actually small probability does not seem what
conducts to the decision of buying a ticket. Instead, it comes from the fact
that what is known on the lottery (the previous information) is not incom-
patible with the statement ‘I can win the first award’. Hence, this statement
is the conjecture on which the decision of buying a ticket is primarily based
and that, as the small probability of winning shows, has a big risk.

Human ordinary reasoning and scientific reasoning can be considered as
a sum of different kinds of reasoning, induction, deduction, abduction, rea-
soning by similarities, and also by some intrinsic characteristics of humans
[21] such as imagination, inspiration,... In order to show how the model of
formalizing guessing can work, it follows an example collected in [5].

Let L be an ortholattice with the elements, m for midday, e for eclipse,
and s for sunny, and its corresponding negations, conjunctions and disjunc-
tions. It is known that it is midday, midday and not sunny, and neither is an
eclipse nor it is sunny.

Representing and by product, ·, or by sum, +, and not by ′, the set of
premises is P = {m,m·s′, (e·s)′}. So, the résumé of this information can be
identified with p∧ = m·m·s′·(e·s)′ = m·m·s′·(s′ + e′) = m·s′.

Among conjectures we can distinguish consequences, hypothesis and spec-
ulations. Then, once understood that a ≤ b means that b is a logical conse-
quence of a (see [4] for the equivalence of this two notions), it follows,

• It is not sunny, s′, is a consequence of P , since p∧ = m·s′ ≤ s′.
• The statements “it is midday and not sunny and there is an eclipse",

m·s′·e, and “there is an eclipse", e, are conjectures of P . Then, since they
are not contradictory with m·s′.
– m·s′·e is a hypothesis of P , since m·s′·e < m·s′. Therefore, if it

is known m·s′·e, it can be deduced all the given information, since:
m·s′·e ≤ m, m·s′·e ≤ m·s′, and m·s′·e ≤ s′ ≤ s′ + e′ = (e·s)′.

– e is a speculation of P , since neither e follows from m·s′ (m·s′ � e),
nor m·s′ follows from e (e � m·s′). However, asserting that there is an
eclipse is non contradictory with the information, P .
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• The statements sunny and not midday are refutations of P , since m·s′ ≤
s′ = (s)′, and m·s′ ≤ m = (m′)′. The elements s and m′, contradictory
with the résumé p∧, refute the information given by P .

So, and of course in a very restricted and closed framework, this could be a
formalization in an ortholattice of a human reasoning.

1.2 Towards the problem: Where can knowledge be
represented?

Without representation it cannot be done any formalization process. Although
the precise classic and quantum reasoning can be formalized through represen-
tations in boolean algebras and orthomodular lattices, respectively, everyday
reasoning is neither totally formalizable in these algebraic structures, nor in
De Morgan algebras. A reason for this is that the big number of properties
they enjoy give a too rigid framework for a type of reasoning in which context,
purpose, time, imprecision, uncertainty, and analogy, often play jointly an im-
portant role. For instance, when interpreting the linguistic connective and by
the operation meet of these lattices, it is needed a big amount of (not always
available) information on the two components of the conjunctive statement
to be sure that and is its infimum. In addition, the meet is commutative but
the Natural Language and is not always so, since, when ‘time’ intervenes this
property is not always preserved. Hence, for representing everyday reasoning,
usually expressed in terms of natural language, more flexible algebraic struc-
tures are needed. Standard algebras of fuzzy sets (see [12], [16]) are a good
instance of such flexible structures, of which the following abstract definition
of a Basic Flexible Algebra seems to be a good enough algebraic structure.

Definition 1. A Basic Flexible Algebra (BFA) is a seven-tuple L = (L,≤
, 0, 1; ·,+,′ ), where L is a non-empty set, and

1. (L,≤) is a poset with minimum 0, and maximum 1.
2. · and + are mappings (binary operations) L× L→ L, such that:

a) a·1 = 1·a = a, a·0 = 0·a = 0, for all a ∈ L
b) a+ 1 = 1 + a = 1, a+ 0 = 0 + a = a, for all a ∈ L
c) If a ≤ b, then a·c ≤ b·c, c·a ≤ c·b, for all a, b, c ∈ L
d) If a ≤ b, then a+ c ≤ b+ c, c+ a ≤ c+ b, for all a, b, c ∈ L

3. ′ : L→ L verifies
a) 0′ = 1, 1′ = 0
b) If a ≤ b, then b′ ≤ a′

4. It exists L0, {0, 1} ⊂ L0  L, such that with the restriction of the order
and the three operations ·,+, and ′ of L, L0 = (L0,≤, 0, 1; ·,+,′ ) is a
boolean algebra
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It is immediate to prove that in any BFA it holds: a·b ≤ a ≤ a + b, and
a·b ≤ b ≤ a+ b,

for all a, b ∈ L. Hence, provided the poset (L,≤) were itself a lattice with
operations min and max, it follows a·b ≤ min(a, b) ≤ max(a, b) ≤ a+ b.

Lattices with negation and, in particular, ortholattices and De Morgan
algebras are instances of BFAs. Also the standard algebras of fuzzy sets
([0, 1]X , T, S,N) are particular BFAs if taking, for µ, σ in [0, 1]X , µ·σ =
T ◦ (µ × σ), µ + σ = S ◦ (µ × σ), µ′ = N ◦ µ, with 0 = µ0, 1 = µ1 (the
functions constantly zero and one, respectively), the partial pointwise order,
µ ≤ σ ⇔ µ(x) ≤ σ(x) for all x ∈ X, T a continuous t-norm, S a continuous
t-conorm, and N a strong negation (see [12], [16], [2]).

Notice that although neither idempotency, nor commutativity, nor associa-
tivity, nor distributivity, nor duality, nor double-negation, etc., are supposed,
ortholattices ([16]) (and in particular orthomodular lattices and boolean alge-
bras), De Morgan algebras, and algebras of fuzzy sets (and in particular the
standard ones), are particular cases of BFA. Nevertheless, it should be newly
recalled that, for what concerns the representation of Natural Language and
Commonsense Reasoning, their too big number of properties imply a too rigid
representation’s framework. Notwithstanding, this paper will only work in the
case the BFA is an ortholattice (see Appendix).

1.3 Towards the concept of a conjecture

The skeleton of the examples in 1.1.1 helps to pose the following definition and
questions, relatively to a given problem on which some information constituted
by a non-empty set, P = {p1, p2, ..., pn} of n premises pi is known.

• Definition: q is a conjecture from P , provided q is not incompatible with
the information on the given problem once it is conveyed throughout all
pi in P .

• Questions
a) Where do the objects (‘represented’ statements) pi and q belong to?

That is, which is L such that P ⊂ L and q ∈ L?
b) With which algebraic structure is endowed L?
c) How can the information on the current problem that is conveyed by

P be translated into L? How to state that P is consistent?
d) How to translate that q is not incompatible with such information?

On the possible answers to these four questions depend the ‘formalization’
of the concept of a conjecture. Of course, the answer to question (a) is in strict
dependence of the context and characteristics of the current problem, for in-
stance would this problem deserve a ‘body of information’ given by imprecise
statements, the set L could be a subset of fuzzy sets in the corresponding
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universe of discourse X, that is, L ⊂ [0, 1]X . Consequently, and once L is
choosen, it will be endowed with an algebraic structure that could respond
to the current problem’s context, purpose and characteristics, for instance,
would the problem concern a probabilistic reasoning, the structure of L will
be either a boolean algebra, or an orthomodular lattice, provided the problem
is a classical or a quantum one, respectively. Although questions (c) and (d)
deserve some discussion, let us previously consider the information’s set P
and its consequences.

Let us point out that with P 6= ∅, the authors adhere to the statement
‘Nothing comes from nothing’, attributed to Parmenides.

1.3.1 Bodies of information

We will always deal with reasonings made from some previous information
given by a finite set of statements, and once they are represented in a BFA L
(suitable for the corresponding problem), by elements p1, ..., pn in L. Each pi
is a premise for the reasoning, and P = {p1, ..., pn} ⊂ L is the set of premises.
In what follows, it will be supposed that P is free of incompatible elements,
that is, for instance, there are not elements pi, pj in P such that pi ≤ p′j ,
or pi·pj = 0. Provided there were pi ≤ p′j , it would be p1·...·pn = 0, and to
avoid that possibility we will suppose that the résumé r(P ) of the information
contained in P is different from zero: r(P ) 6= 0. Analogously, provided this
information is given by what follows deductively from P , and C is an operator
of consequences, we will suppose that C(P ) 6= L.

A set P of premises that is free from incompatibility is a body of infor-
mation, and it will be taken in a concrete family F of subsets in L like, for
example (see [18]),

1. F1 = P(L)
2. F2 = {P ∈ P(L); for no p ∈ P : p ≤ p′}
3. F3 = {P ∈ P(L); for no pi, pj ∈ P : pi ≤ p′j}
4. F4 = {P ∈ P(L); for no finite subsets {p1, ..., pr}, {p∗1, ..., p∗m} ⊆ P :
p∗1·...·p∗m ≤ (p1·...·pr)′}.

5. F5 = {P ∈ P(L); p1·...·pn � (p1·...·pn)′}
6. F6 = P0(L) = {P ∈ P(L); p1·...·pn 6= 0}
Obviously, F4 ⊂ F3 ⊂ F2 ⊂ F1, F5 ⊂ F6 ⊂ F1, and if L is finite F4 ⊂ F6. If
elements in L verify the non contradiction law, it is F6 ⊂ F4. If L is a boolean
algebra, it is F3 = F4 = F5 = F6 ⊂ F1

Once the family F is selected in agreement with the kind of incompatibility
that is the one suitable for the current problem, a consequence’s operator in
the sense of Tarski (see [18]) is a mapping C : F→ F, such that,
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• P ⊂ C(P ), C is extensive
• If P ⊂ Q, then C(P ) ⊂ C(Q), C is monotonic
• C(C(P )) = C(P ), or C2 = C, C is a closure,

for all P,Q in F. In addition, only consistent operators of consequences will
be considered, that is, those verifying

• If q ∈ C(P ), then q′ /∈ C(P ).

Operators of consequences are abstractions of ‘deductive’ processes.

1.4 The discussion

The discussion will be done under the supposition that L is endowed with an
ortholattice structure L = (L, ·,+,′ ; 0, 1).

1.4.1

The information conveyed by the body of information P can be described, at
least, by:

1. The logical consequences that follow from P , each time a consequence
operator C is fixed. By the set C(P ), deploying what is in P .

2. By a suitable résumé of P in some set. Let us call r(P ) such a résumé.

What is in (2) is not clear enough without knowing what is to be understood
by r(P ) or, at least, which properties is r(P ) submitted to verify, as well as
to which set r(P ) does belong to. Three instances for r(P ) are:

• r(P ) = p∧ = p1·...·pn ∈ L
• r(P ) = p∨ = p1 + ...+ pn ∈ L
• r(P ) = [p∧, p∨] = {x ∈ L; p∧ ≤ p ≤ p∨}, with r(P ) ∈ P(L)

Anyway, and to state the consistency of P , in case (2) it is reasonable to
take r(P ) not self-contradictory, for instance r(P ) � r(P )′, (r(P ) * r(P )′),
for what it should be r(P ) 6= 0 (r(P ) 6= ∅), since r(P ) = 0 ≤ 1 = 0′ = r(P )′.
In case (1) the consistency of P can be stated by supposing C(P ) 6= L.

1.4.2

In the case (1), the non incompatibility between the information conveyed by
P and a ‘conjecture’ q is given by q′ /∈ C(P ). In the case (2), and provided
it is r(P ) ∈ L, there are three different forms of expressing such non incom-
patibility: r(P )·q 6= 0, r(P )·q � (r(P )·q)′, and r(P ) � q′ (see [7]). All that
conducts to the following four possible definitions of the set of conjectures
from P :

• ConjC(P ) = {q ∈ L; q′ /∈ C(P )}, provided C(P ) 6= L.
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• Conj1(P ) = {q ∈ L; r(P )·q 6= 0}
• Conj2(P ) = {q ∈ L; r(P )·q � (r(P )·q)′}
• Conj3(P ) = {q ∈ L; r(P ) � q′}

With the last three definitions a problem arises: Are they coming from some
operator of consequences in the form of the definition of ConjC? For instance,
to have Conj3(P ) = {q ∈ L; q′ /∈ Cr(P )}, it is necessary that Cr(P ) = {q ∈
L; r(P ) ≤ q}, and provided r(P ) verifies

r(P ) ≤ p∧, P ⊂ Q implies r(Q) ≤ r(P ), and r(Cr(P )) = r(P ),

Cr is an operator of consequences, since:

• r(P ) ≤ p∧ ≤ pi (1 ≤ i ≤ n), means P ⊂ Cr(P ).
• If P ⊂ Q, if q ∈ Cr(P ), from r(P ) ≤ q and r(Q) ≤ r(P ), follows q ∈ Cr(Q).

Hence, Cr(P ) ⊂ Cr(Q)
• Obviously, Cr(P ) ⊂ Cr(Cr(P )). If q ∈ Cr(Cr(P )), from r(Cr(P )) ≤ q

and r(Cr(P )) = r(P ) follows r(P ) ≤ q, or q ∈ C(P ). Hence, Cr(Cr(P )) =
Cr(P ).

In addition, Cr is consistent since if q ∈ Cr(P ) and q′ ∈ C(P ), from
r(P ) ≤ q and r(P ) ≤ q′, follows r(P ) ≤ q·q′ = 0, or r(P ) = 0, that is absurd.
Hence, q ∈ Cr(P ) ⇒ q′ /∈ Cr(P ). In particular, if r(P ) = p∧, Conj3 comes
from the consistent operator of consequences C∧(P ) = {q ∈ L; p∧ ≤ q}, that
is the greatest one if L is a boolean algebra and F = P0(L) (see [1]).

Remark 1. To have C(P ) ⊂ ConjC(P ), it is sufficient that C is a consistent
operator of consequences, since then q ∈ C(P ) implies q′ /∈ C(P ), and q ∈
ConjC(P ). This condition is also necessary since, if C(P ) ⊂ ConjC(P ),
q ∈ C(P ) implies q ∈ ConjC(P ), or q′ /∈ C(P ). Hence, the consistency of C
is what characterizes the inclusion of C(P ) in ConjC(P ), that consequences
are a particular type of conjectures. For instance, it is C∧(P ) ⊂ Conj3(P ),
and Conj3(P ) = {q ∈ L; q′ /∈ C∧(P )}.

1.4.3

Concerning Conj1(P ) = {q ∈ L; r(P )·q 6= 0}, it is Conj1(P ) = {q ∈ L; q′ /∈
C1(P )} provided C1(P ) = {q ∈ L; r(P )·q′ = 0}. Let us only consider the case
in which r(P ) = p∧ 6= 0.
It is P ⊂ C1(P ), since p∧·p′i = 0 (1 ≤ i ≤ n). If P ⊂ Q, q ∈ C1(P ), or p∧·q′ =
0, with q∧ ≤ p∧ implies q∧·q′ = 0, and q ∈ C1(Q), thus, C1(P ) ⊂ C1(Q).
Nevertheless, C1 can not be always applicable to C1(P ) since it easily can be
r(C1(P )) = 0, due to the fail of the consistency of C1. For instance, if L is
the ortholattice in figure 1.1, with P = {f, e} for which p∧ = b, it is

C1(P ) = {1, a, b, c, d, e, f, g, a′, c′}, and r(C1(P )) = 0.
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Fig. 1.1. Ortholattice

Hence, Conj1 is not coming from an operator of consequences, but only
from the extensive and monotonic one C1, for which the closure property
C1(C1(P )) = C1(P ) has no sense, since C1(P ) can not be taken as a body of
information.

Notice that if L is a boolean algebra, and q ∈ C1(P ), from p∧·q′ = 0
follows p∧ = p∧·q + p∧·q′ = p∧·q 6= 0, that means q ∈ Conj1(P ): C1(P ) ⊂
Conj1(P ). In addition, p∧ = p∧·q is equivalent to p∧ ≤ q, that is, q ∈ C∧(P ) :
C1(P ) ⊂ C∧(P ). Even more, in this case, if q ∈ C∧(P ), or p∧ ≤ q, it follows
p∧·q′ ≤ q·q′ = 0, and q ∈ C1(P ). Thus, if L is a boolean algebra, C∧ = C1,
and Conj1 = ConjC∧ .

1.4.4

Concerning Conj2(P ) = {q ∈ L; p∧·q � (p∧·q)′}, to have Conj2(P ) = {q ∈
L; q′ /∈ C2(P )}, it should be C2(P ) = {q ∈ L; p∧·q′ ≤ (p∧·q′)′}.

Of course, if L is a boolean algebra, it is C2(P ) = {q ∈ L; p∧·q′ = 0} =
{q ∈ L; p∧ ≤ q} = C∧(P ), Conj2(P ) = ConjC∧(P ), and Conj2 comes from
the operator of consequences C∧. In the general case in which L is an ortho-
lattice, it is P ⊂ C2(P ) since p∧·pi = 0 ≤ 0′ = 1. If P ⊂ Q, and q ∈ C2(P ),
or p∧·q′ ≤ (p∧·q′)′, with q∧ ≤ p∧ implies q∧·q′ ≤ p∧q′ and (p∧·q′)′ ≤
(q∧·q′)′, that is, q∧·q′ ≤ q∧·q′ ≤ (p∧·q′)′ ≤ (q∧·q′)′, or q∧·q′ ≤ (q∧·q′)′, and
q ∈ C2(Q). Hence, C2(P ) ⊂ C2(Q), and C2 is expansive and monotonic.
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Notwithstanding, in the ortholattice in figure 1.1, with P = {g} (p∧ = g)
is C2(P ) = {q ∈ L; g·q � (g·q)′} = {a, b, c, d, e, f, g, b′, a′, c′, d′, e′, f ′, g′, 1}
with r(C2(P )) = 0. Hence, C2 is not applicable to C2(P ), since C2(P ) is
not a body of information, and the closure property has no sense (notice that
C2 is not consistent). Thus, unless L is a boolean algebra, Conj2 is not a
conjectures operator coming from a consequences one.

1.4.5

Concerning Conj3(P ) = {q ∈ L; p∧ � q′}, to have Conj3(P ) = {q ∈ L; q′ /∈
C3(P )}, it should be C3(P ) = {q ∈ L; p∧ ≤ q} = C∧(P ), as it is said in
Remark 1.

1.4.6

Let us consider again the operators

• C4(P ) = {q ∈ L; q ≤ p∨}
• C5(P ) = {q ∈ L; p∧ ≤ q ≤ p∨}
As it is easy to check, only the second is an operator of consequences that is
consistent unless p∧ = 0 and p∨ = 1. With it, it is Conj5(P ) = {q ∈ L; q′ /∈
C5(P )} = {q ∈ L; p∧ � q′ or q′ � p∨}.

1.4.7

When it is Conj(P ) = ∅? It is clear that

• ConjC(P ) = {q ∈ L; q′ /∈ C(P )} = ∅, if and only if C(P ) = L
• Conji(P ) = ∅ (1 ≤ i ≤ 3), if r(P ) = 0, in which case C∧(P ) = L, and also

C1(P ) = C2(P ) = L.

Notice that C(P ) = L implies that also C is not consistent. These cases
are limiting ones, and facilitate a reason for supposing that C is consistent
and r(P ) 6= 0. Concerning the operator Conj5, it is empty provided p∧ = 0
and p∨ = 1, that is when C5(P ) is not consistent.

1.4.8

It is easy to check that, if r(P ) 6= 0, it is Conj1(P ) ⊂ Conj2(P ) ⊂ Conj3(P ),
and that if L is a boolean algebra the three operators do coincide.
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1.4.9

What happens if the information conveyed by P can be given by two different
résumés r1(P ) and r2(P )?

Let us denote by Conj
(i)
j (1 ≤ i ≤ 2, 1 ≤ j ≤ 3) the corresponding

operators of conjectures. If r1(P ) ≤ r2(P ), it is easy to check that

Conj
(1)
j ⊂ Conj(2)j , for 1 ≤ j ≤ 3.

Analogously, if C1 ⊂ C2 (that is, C1(P ) ⊂ C2(P ) for all P ∈ F), then
ConjC2

(P ) ⊂ ConjC1
(P ).

Remark 2. In the case in which the information conveyed by P is what can
deductively follow from P , there can be more than one single consistent op-
erator of consequences to reflect such deductive processes. If C is the set of
such operators, it can be defined

ConjC(P ) =
⋂

C∈C
ConjC(P ),

but a possible problem with this operator is that it can easily be a too small
set.

1.4.10 The Goldbach’s conjecture

Let N be the set of positive integers as characterized by the five Peano’s
axioms, namely:

p1. 1 is in N.
p2. If n is in N, also its successor, s(n), is in N.
p3. It is not any n ∈ N such that s(n) = 1.
p4. If s(n) = s(m), then n = m.
p5. If a binary property concerning positive integers holds for 1, and provided

it holds for n it is proven it also holds for n+ 1, then such property holds
for all numbers in N.

The proof of a single ‘not pi’ (1 ≤ i ≤ 5) will mean a refutation of the
Peano’s characterization of N.

The majority of mathematicians believe (supported by the 1936 Gentzen’s
proof on the consistency of P , based on transfinite induction up to some ordi-
nal number), that the set P = {p1, p2, p3, p4, p5} is consistent. The elementary
theory of numbers consist in all that is deductively derivable in finitistic form
from P. Let us represent by C (operator of consequences) such a form of de-
duction.
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Given the statement q: All even number larger than 2 is the sum of two
prime numbers, it can be supposed q ∈ ConjC(P ), since no a single instance of
an even number that is not the sum of two primes (not q) has been found after
an extensive search for it. This statement q is the The Goldbach’s conjecture,
that will be solved once proven q ∈ C(P ).

1.5 The properties of the operators of conjectures

1.5.1

In all the cases in which there is a expansive operator C such that Conj(P ) =
{q ∈ L; q′ /∈ C(P )} and C(P ) ⊂ Conj(P ), since P ⊂ C(P ), it is P ⊂
Conj(P ), and also Conj is an expansive operator. This is what happens al-
ways when Conj is given by one of such operators, as are the cases ConjC ,
Conj3, and also that of Conj4.
In the case of Conj2, it is p∧·pi = p∧ � p′∧, and also P ⊂ Conj2(P ). In the
case of Conj1, it is p∧·pi = p∧ 6= 0, and also P ⊂ Conj1(P ). With Conj5,
provided C5 is consistent, it is also P ⊂ Conj5(P ).

1.5.2

If P ⊂ Q, since C(P ) ⊂ C(Q), provided q ∈ ConjC(Q), or q′ /∈ C(Q), it
is q′ /∈ C(P ), and q ∈ ConjC(P ). Then ConjC(Q) ⊂ ConjC(P ), and the
operators ConjC are anti-monotonic. Hence, Conj3 is also anti-monotonic.

With Conj1, if P ⊂ Q and q ∈ Conj1(Q), or q∧·q � (q∧·q)′, from
q∧ ≤ p∧ follows q∧·q ≤ p∧·q and 0 < p∧·q, or q ∈ Conj1(P ). Thus,
Conj1(Q) ⊂ Conj1(P ), and the operator Conj1 is anti-monotonic.

With Conj2, if P ⊂ Q and q ∈ Conj2(Q), or q∧·q � (q∧·q)′, from q∧ ≤ p∧
follow q∧·q ≤ p∧·q and (p∧·q)′ ≤ (q∧·q)′. Hence, provided p∧·q ≤ (p∧·q)′
(q /∈ Conj2(P )), will follow q∧·q ≤ p∧·q ≤ (p∧·q)′ ≤ (q∧·q)′, that is absurd.
Thus, q ∈ Conj2(P ), or Conj2(Q) ⊂ Conj2(P ), and the operator Conj2 is
anti-monotonic.

1.5.3

For what concerns r(P ), it should be noticed that the idea behind it is to
reach a ‘compactification’ of the information conveyed by the pi in P . Of
course, how to express and represent r(P ) depends on the current problem
that, in some cases, offers no doubts on how to represent r(P ). For instance,
if the problem consists in doing a backwards reasoning with scheme

108



13

If p, then q, and not q: not p,

r(P ) does represent the statement (p → q)·q′, with which it must follow
(p → q)·q′ ≤ p′, to be sure that p′ follows deductively from P = {p → q, q′},
under C∧ and provided r(P ) 6= 0. That is, to have

p′ ∈ C∧({p→ q, q′}) = {x ∈ L; (p→ q)·q′ ≤ x} = [(p→ q)·q′, 1] = [r(P ), 1].

Provided it were r(P ) = 0, it will follow the non-informative conclusion

p′ ∈ {x ∈ L; 0 ≤ x} = L.

1.5.4

After what has been said, it seems that any operator of conjectures does verify
some of the following five properties,

1. Conj(P ) 6= ∅
2. 0 /∈ Conj(P )
3. It exists an operator C such that Conj(P ) = {q ∈ L; q′ /∈ C(P )}
4. Conj is expansive: P ⊂ Conj(P )
5. Conj is anti-monotonic: If P ⊂ Q, then Conj(Q) ⊂ Conj(P )

Let us reflect on properties 3, 4, and 5, in the hypothesis that C is consistent,
that is, it verifies ‘q ∈ C(P )⇒ q′ /∈ C(P )’. Obviously, C(P ) ⊂ Conj(P ).

• If Conj is anti-monotonic, C is monotonic.
Proof. Provided P ⊂ Q, if q ∈ C(P ) follows q′ /∈ Conj(P ) and,
since Conj(Q) ⊂ Conj(P ) it is q′ /∈ Conj(Q), or q ∈ C(Q). Hence,
C(P ) ⊂ C(Q) �

• If C is extensive and monotonic, Conj is extensive and anti-monotonic.
Proof. It is obvious that P ⊂ Conj(P ), since from C(P ) ⊂ Conj(P )
follows P ⊂ C(P ) ⊂ Conj(P ). Provided P ⊂ Q, follows that if q ∈
Conj(Q), or q′ /∈ C(Q), it is also q′ /∈ C(P ), or q ∈ Conj(P ). �
Thus, provided C is consistent, a sufficient condition to have ConjC ex-

pansive and anti-monotonic is that C is expansive and monotonic. In addition
ConjC is anti-monotonic if and only if C is monotonic.

What, if C is also a closure? C2(P ) = C(P ) implies ConjC(P ) =
Conj(C(P )). Thus q ∈ ConjC(P ) ⇔ q′ /∈ C(P ) ⇔ q′ /∈ C(C(P )) ⇔
q ∈ ConjC(C(P )) : ConjC(P ) = ConjC(C(P )). Hence, if C is a consis-
tent consequences operator the associated operator ConjC is extensive, anti-
monotonic, and verifies ConjC ◦ C = ConjC .
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1.6 Kinds of conjectures

1.6.1

It is clear that with Conj3(P ) it is C3(P ) = C∧(P ) ⊂ Conj3(P ), as it was
said before, but what with Conj1(P ) and Conj2(P ) that are not coming from
an operator of consequences? Is there any subset of Conj1(P ) and Conj2(P )
that consists of logical consequences of P? Are always logical consequences a
particular case of conjectures?

Namely, given Conj2(P ) = {q ∈ L; p∧·q � (p∧·q)′}, exists C(P ) ⊂
Conj2(P ) such that C is a Tarski’s operator? Of course, such C is not
C2(P ) = {q ∈ L; p∧·q′ ≤ (p∧·q′)′}, but is there any subset of Conj2(P )
that consists of logical consequence of P? The answer is affirmative, since
q ∈ C∧(P ), or p∧ ≤ q, is equivalent to p∧·q = p∧, and as it cannot be
p∧ ≤ p′∧, it is p∧·q ≤ (p∧·q)′, or q ∈ Conj2(P ). Then, C∧(P ) ⊂ Conj2(P ).
Thus, what can be said on the difference Conj2(P )− C∧(P )?

Concerning Conj1(P ) = {q ∈ L; p∧·q 6= 0}, it is known that C(P ) is not
C1(P ) = {q ∈ L; p∧·q′ = 0}, but it is also C∧(P ) ⊂ C1(P ), that newly allows
to ask on the difference Conj1(P )− C∧(P )?

The idea behind the two former questions is to classify the conjectures in
Conji(P ) − C∧(P ), i = 1, 2, that is, those conjectures that are not ‘safe’ or
‘necessary’ ones, but contingent in the sense that it could be simultaneously
q ∈ Conji(P )− C∧(P ) and q′ ∈ Conji(P )− C∧(P ) . What is clear is that

Conji(P )− C∧(P ) = {q ∈ Conji(P ); q < p∧} ∪ {q ∈ Conji(P ); q NC p∧},

with the sign NC instead of non ‘order comparable’. Let’s call as follows these
two subsets,

• Hypi(P ) = {q ∈ Conji(P ); q < p∧}, and its elements ‘hypotheses for P ’.
• Spi(P ) = {q ∈ Conji(P ); q NC p∧}, and its elements ‘speculations from

P ’.

Notice that since 0 /∈ Conji(P ) (i = 1, 2), it is actually Hypi(P ) = {q ∈
Conji(P ); 0 < q < p∧}. Obviously, the decomposition

Conji(P ) = C∧(P ) ∪Hypi(P ) ∪ Spi(P )

is a partition of Conji(P ), and defining

Refi(P ) = L− Conji(P ), as the set of refutations of P,

the following partition of L is obtained,

L = Refi(P ) ∪ Conji(P ) = Refi(P ) ∪Hypi(P ) ∪ Spi(P ) ∪ C∧(P ).
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1.6.2

If P ⊂ Q, from q∧ ≤ p∧, if 0 < q < q∧, follows 0 < q < p∧, that is
Hypi(Q) ⊂ Hypi(P ). That is, the operators Hypi are, like Conji, anti-
monotonic.

Concerning Spi, some examples (see [6]) show it is neither monotonic, nor
anti-monotonic, that is, if P ⊂ Q there is no any fixed law concerning how can
Spi(P ) and Spi(Q) be compared: they cannot be comparable by set inclusion.
In fact, coming back to figure 1.1, and taking P1 = {f} ⊂ P2 = {e, f}, it is
Sp3(P1) = {a, e, a′, b′c′, d′, e′} and Sp3(P2) = {a, c, a′, b′, c′}, which are non-
comparable. We can say that Spi are purely non-monotonic operators. Notice
that it is

Sp1(P ) = {q ∈ L; p∧·q 6= 0 & p∧NCq}, and
Sp2(P ) = {q ∈ L; p∧·q � (p∧·q)′ & p∧NCq},

that, if L is a boolean algebra, are coincidental, since in such case ‘p∧·q �
(p∧·q)′ ⇔ p∧·q 6= 0.

Remark 3. Provided C is a consistent operator of consequences, and in a sim-
ilar vein to Gödel’s First Incompleteness Theorem, let us call C-decidable
those elements in C(P ), and consider the set

UC(P ) = {q ∈ L; q /∈ C(P )&q′ /∈ C(P )}.

UC(P ) consists in the C-undecidable elements in L given P , those that
neither follow deductively from P (under C), nor their negation follows de-
ductively from P (under C). It is,

UC(P ) = C(P )c ∩ ConjC(P ) = [Sp(P ) ∪Hyp(P ) ∪Ref(P )] ∩ ConjC(P ) =

Sp(P ) ∪Hyp(P )

Thus, given a consistent set of premises (C(P ) 6= L, or p∧ � 0), reasonably
the C-undecidable elements in L are either the speculations or the hypotheses:
C−undecidability coincides with contingency.

If C∗ is a consistent and more powerful operator of consequences than C
(C(P ) ⊂ C∗(P )), it is obvious that it holds UC∗(P ) ⊂ UC(P ), but not that
UC(P ) ⊂ UC∗(P ): What is C-undecidable is not necessarily C∗-undecidable.
It happens analogously if C and C∗ are not comparable, but C(P )∩C∗(P ) 6=
∅. The undecidability under C does not imply the undecidability under a C∗
that is not less powerful than C.
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1.6.3 Explaining the experiment of throwing a dice

Which are the significative results that can be obtained when throwing a
dice? The reasonable questions that can be posed relatively to the results of
the experiment are, for instance,

• Will an even number be obtained?, with answer representable by {2, 4, 6}
• Will an odd number be obtained?, with answer representable by {1, 3, 5}
• Will a six be obtained?, with answer representable by {6}
• Will fail the throw?, with answer representable by ∅
• Will any number be obtained?, with answer representable by {1, 2, 3, 4,

5, 6}, etc.
Thus, the questions can be answered by the subsets of the ‘universe of

discourse’ X = {1, 2, ..., 6}, with which the boolean algebra of events is P(X),
and the body of information for the experiment of throwing a dice is P = {X},
with p∧ = X 6= ∅. Since L = P (X) is a boolean algebra, it can be taken the
consistent operator of consequences C∧(P ) = {Q ∈ P(X);X ⊂ Q} = {X}.
Hence,

ConjC∧(P ) = {Q ∈ P (X);X * Qc} = {Q ∈ P (X);Q 6= ∅}, and

RefC∧(P ) = {∅},
that is, the conjectures on the experiments are all the non-empty subsets of
X. In addition,

Hyp(P ) = {Q ∈ P(X); ∅ ⊂ Q ⊂ X}, and

Sp(P ) = {Q ∈ P(X);Q 6= ∅ & Q NC X} = ∅,
show that ConjC∧ = C∧ ∪Hyp(P ) = {X} ∪ {Q ∈ P(X); ∅ 6= Q 6= X}. That
is, the significative results of the experiment are those Q ⊂ X that are neither
empty, nor coincidental with the ‘sure event’ X: those that are contingent.
In fact, in the case of betting on the result of throwing a dice, nobody will
bet on ‘failing’, and nobody will be allowed to bet on ‘any number’.

Hence, the presented theory of conjectures explains well the experiment,
and the risk of betting for an event can be controlled by means of a probability
p : P(X)→ P(X), defined by p({i}) = pi (1 ≤ i ≤ 6) such that 0 ≤ pi ≤ 1, and∑
i∈{1,...,6}

pi = 1, with the values pi depending on the physical characteristics

of the dice. For instance, the probability of ‘obtaining even’, is

p({2, 4, 6}) = p2 + p4 + p6.
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1.7 On refutation and falsification

Let it be P = {p1, ..., pn}, with p∧ 6= 0, and a conjecture’s operator
ConjC(P ) = {q ∈ L; q′ /∈ C(P )} with C an, at least, expansive and mono-
tonic operator. The corresponding operator of refutations is Ref(P ) =
L − Conj(P ) = {r ∈ L; r′ ∈ C(P )}. When it can be specifically said that
r ∈ L:

1) refutes P?, and 2) refutes q ∈ Conj(P )?

The answer to these two questions depends on the chosen operator C, provided
r ∈ Ref(P ), r′ ∈ C(P ), and that r is incompatible with the totality of the
given information. In particular, and supposed r ∈ Ref(P ):

• For Conj3(P ), C = C∧
1. r refutes P , if r is contradictory will all pi ∈ P , that is, p1 ≤ r′,...,
pn ≤ r′. Notice that this chain of inequalities implies p∧ ≤ r′, or
simply r′ ∈ C∧(P ).

2. r refutes q, if r′ ∈ C∧({q}) and q ≤ r′, that is simply if r′ ∈ C∧({q}).
• For Conj2(P ), C = C2 (C2(P ) = {q ∈ L; p∧·q′ ≤ (p∧q′)′})

1. r refutes P , if all pi·r are self-contradictory, that is, p1·r ≤ (p1·r)′,...,
pn·r ≤ (pn·r)′, implying p∧·r ≤ (pi·r)′, for 1 ≤ i ≤ n. From p∧ ≤ pi,
follows (pi·r)′ ≤ (p∧·r)′, and p∧·r ≤ (p∧·r)′, or simply r′ ∈ C2(P ).

2. r refutes q, if r′ ∈ C2({q}) and q·r ≤ (q·r)′, that is simply if r′ ∈
C2({q}).

• For Conj1(P ), C = C1 (C2(P ) = {q ∈ L; p∧·q′ = 0})
1. r refutes P , if p1·r = 0,..., pn·r = 0, implying p∧·r = 0, that implies
p∧·r = 0, or simply r′ ∈ C1(P ).

2. r refutes q, if r′ ∈ C1({q}) and q·r = 0, that is simply if r′ ∈ C1({q}).
Hence, for these three cases

1. r refutes P , if r′ ∈ C1(P ): r′ follows deductively from P
2. r refutes q, provided r ∈ Ref(P ), and r′ ∈ C({q}): r is a refutation whose

negation follows deductively from {q}.

1.7.1

In the particular case in which h ∈ Hyp(P ) (0 < h < p∧), and in addition
to the former answers in agreement with Popper’s ideas on the falsification
of theories (C(P ) = P ) and hypotheses (see [11] [10]), it can be said what
follows

• If h ∈ HypC(P ), then C(P ) ⊂ C({h}) ⊂ ConjC(P ),
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proven by the following sequences: 1) p∧ ≤ q & h ≤ p∧ ⇒ h < q.
2)h ≤ q & h ≤ q′ ⇒ h = 0. 3)h � q′ & p∧ ≤ q′ & h ≤ p∧ ⇒ h ≤ q′

which is absurd: p∧ � q′.

Hence, in order to ascertain that some h ∈ L is not a hypothesis for P
(falsification of h), it suffices to find q ∈ C(P ) such that q /∈ C({h}), or
r ∈ C({h}) such that r /∈ ConjC(P ). In these cases it is q ∈ Ref(P ), and
r ∈ Ref(P ): both refute h. Thus:

• Something that follows deductively from P , but not from {h}, makes h be
false.

• Something that follows deductively from {h}, but is not conjecturable from
P , makes h be false.

Remark 4. From p∧ ≤ pi and 0 < h < p∧, it follows P ∪{p∧} ⊂ C({h}), hence

P ∪ {p∧} ⊂ C(P ) ⊂ C({h}),

that, although only in part, remembers the statement in [21], ‘Deduction
justifies by calculation what Induction has happily guessed ’.

1.8 The relevance of speculations

It is Sp3(P ) = {q ∈ Conj3; p∧NCq} = {q ∈ L; p∧ � q′ & p∧NCq}, hence, if
q ∈ Spi(P ) (i = 1, 2, 3) it is not p∧·q = p∧ (equivalent to p∧ ≤ q, or q ∈ C∧(P )
).

Thus, if q ∈ Spi(P ), it is 0 < p∧·q·q < p∧, that is p∧·q ∈ Hypi(P ). This
result shows a way of reaching hypotheses from speculations, and in the case
the ortholattice L is an orthomodular one, for any h ∈ Hypi(P ), it exists
q ∈ Sp3(P ) such that h = p∧·q (see [19]), there are no other hypotheses, and
it is

Hyp(P ) = p∧·Sp3(P ).

Of course, this result also holds if L is a boolean algebra.

Analogously, since p∧ ≤ p∧ + q, it is p∧ + q ∈ C∧(P ), that shows a way of
reaching logical consequences from speculations, and if L is an orthomodular
lattice (and a fortiori if it is a boolean algebra), there are not other conse-
quences (see[19]), that is, C∧(P ) = p∧ + Sp3(P ).

Remarks 1
• p∧·Sp3(P ) ⊂ Hyp(P ), could remember a way in which humans search for

how to explain something. Once P and p∧ are known, a q ∈ L such that
p∧ � q′ and p∧NCq, that is, neither incompatible, nor comparable with
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p∧, gives the explanation or hypotheses p∧·q for P , provided p∧·q 6= 0,
and p∧·q 6= p∧. Of course, an interesting question is how to find such
q ∈ Sp3(P ). In some cases, may be q is found by similarity with a former
case in which a more or less similar problem was solved, and plays the role
of a metaphor for the current one.

• Out of orthomodular lattices, there are hypotheses and consequences that
are not reducible, that is, belonging to Hyp(P )−p∧·Sp3(P ), or to C∧(P )−
(p∧ + Sp3(P )) (see [19]).

1.9 Conclusion

This paper represents a conceptual upgrading of a series of papers on the
subject of conjectures, a subject christianized in [13] as ‘CHC Models’.

1.9.1

In the course of millennia the brain’s capability of conjecturing resulted ex-
tremely important for the evolution of the species Homo. Such capability
helped members in Homo to escape from predators, to reach adequate food,
to protect themselves from some natural events, or even catastrophes, as well
as to produce fire, to make artifacts, and to travel through high mountains,
deserts, forests, rivers and seas. Without articulate language and partially
articulate guessing, possibly Homo would have neither prevailed over the rest
of animals, nor constituted the social, religious and economic organizations
typical of humankind. And one of the most distinguishing features of Homo
Sapiens is the act, and especially the art, of reasoning, or goal-oriented man-
aging conjectures. Even more, scientific and technological research is a human
activity that manages guessing in a highly articulated way. Actually, reason-
ing and conjecturing are joint brain activities very difficult to separate one
from the other.

Although consequences and hypotheses, as well as several types of non-
monotonic reasoning, deserved a good deal of attention by logicians, philoso-
phers, computer scientists, and probabilists, no attempt at formalizing the
concept of conjecture appeared before [5] was published. In the framework
of an ortholattice, conjectures were defined in [5] as those elements non-
incompatible with a given set of (non-incompatible) premises reflecting the
available information. That is, conjectures are those elements in the ortholat-
tice that are “possible", once a résumé of the information given by the premises
is known. This is the basic definition of which consequences (or safe, necessary
conjectures), hypotheses (or explicative contingent conjectures), and specula-
tions (or lucubrative, speculative contingent conjectures) are particular cases.
It should also be pointed out that neither the set of hypotheses, nor that
of speculations, can be taken as bodies of information. Processes to obtain
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consequences perform deductive reasoning, or deduction. Those to obtain
hypotheses perform abductive reasoning, or abduction, and those to obtain
speculations perform inductive reasoning, or induction, a term that is also
more generally applied to obtaining either hypotheses or speculations, and
then results close to the term “reasoning". Of course, in Formal Sciences and
in the context of proof, the king of reasoning processes is deduction.

1.9.2

Defining the operators of conjectures only by means of consistent consequences
ones (see [6]) has the drawback of placing deduction before guessing, when it
can be supposed that guessing is more common and general than deduction,
and this is a particular (and safe) type of the former. After the publication
of some papers ([5], [7], [6], [19], [17], [18], [1]) on the subject it yet remained
the doubt on the existence of conjecture’s operators obtained without conse-
quences’ operators, and this paper liberates from such doubt by showing that
to keep some properties that seem to be typical of the concept of conjecture, it
suffices to only consider operators that are extensive and monotonic, but with-
out enjoying the closure property. These operators are reached by considering
(like it was done in [7]), three different ways of defining non-incompatibility
by means of non-self-contradiction. Of these three ways, only one of them
conducts to reach conjectures directly through logical consequences that is
just the one considered in [5]. Of course, the existence of operators of conjec-
tures not coming from extensive and monotonic operators remains an open
problem.

Appendix

Although basic flexible algebras are very general structures, it is desirable
that they verify the principles of Non-contradiction and Excluded-middle, to
ground what is represented in a ‘solid’ basement. For that goal it will be
posed some definitions on the incompatibility concept of contradictory and
self-contradictory elements in a BFA. In the first place, (see [3], [14])

• Two elements a, b in a BFA are said to be contradictory with respect to
the negation ′, if a ≤ b′.

• An element a in a BFA is said to be self-contradictory with respect to the
negation ′, if a ≤ a′.

The classical principles of Non-contradiction (NC) and Excluded-Middle
(EM) can be defined in the way that is typical of modern logic,

• NC: a·a′ = 0
• EM: a+ a′ = 1
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Any lattice with a strong negation (i.e. (a′)′ = a, for all a ∈ L) verify-
ing these last principles, is an ortholattice. So, a Boolean Algebra verifies
these principles. But, if dealing with fuzzy sets, for instance with the stan-
dard algebra of fuzzy sets ([0, 1]X ,min,max, N), that is a De Morgan algebra,
these principles, formulated in the previous way, do not hold. Neverthe-
less, if the Aristotle’s formulation of the first principle: “an element and its
negation is impossible" is translated by “an element and its negation are self-
contradictory", the mathematical representation of these principles changes
in the form,

• NC: a·a′ ≤ (a·a′)′
• EM: (a+ a′)′ ≤ ((a+ a′)′)′

With these new formulation, De Morgan algebras and functionally express-
ible BFA of fuzzy sets also verify those principles (see [8]), if dealing with a
strong negation Nϕ for fuzzy sets, that is, Nϕ(x) = ϕ−1(1−ϕ(x)), with ϕ an
order-automorphism of the unit interval. In fact, it can be used as intersec-
tion any function T that verifies T (a,Nϕ(a)) ≤ ϕ−1( 1

2 ) in order to satisfy the
principle of NC. In the case of EM, it is enough any function S, that satisfies
ϕ−1( 1

2 ) ≤ S(a,Nϕ(a)). Notice that all t-norms are in the condition of T , and
all t-conorms are in the condition of S (see [15]).
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a b s t r a c t

This paper aims to show how, by using a threshold-based approach, a path from imprecise
information to a crisp ‘decision’ can be developed. It deals with the problem of the logical
transformation of a fuzzy set into a crisp set. Such threshold arises from the ideas of con-
tradiction and separation, and allows us to prove that crisp sets can be structurally consid-
ered as classes of discontinuous fuzzy sets. It is also shown that continuous fuzzy sets are
computationally indistinguishable from some kind of discontinuous fuzzy sets.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In several decision processes the final result has to be stated as a precise one, even though it is usually based on imprecise
information [2]. In order to transform an imprecise conclusion into a precise one, we must reduce fuzzy sets to crisp sets, and
sometimes to crisp singletons. For example, in fuzzy control applications, the fuzzy output is usually reduced to the center of
area [4].

In this paper we deal with the concept of contradiction, and how it is related to decision processes in the sense that for
taking a proper decision based on a fuzzy set, we should take into consideration not only the fuzzy set, but also its negation.
For other approaches see [8,10].

2. Previous concepts

2.1. Crisp sets, fuzzy sets and discontinuity

Let us consider the poset ð½0;1�X ;6Þ where X is a set, ½0;1�X ¼ fl;l : X ! ½0;1�g, and 6 is the pointwise partial order, i.e.
r 6 l() rðxÞ 6 lðxÞ for l;r 2 ½0;1�X , and all x 2 X.

It is well known that the set f0;1gX ¼ fl;l : X ! f0;1gg of crisp sets, with the operations (min;max and 1� id) is iso-
morphic to the power set of X;PðXÞ with the operations (\;[ and c).

The crisp sets in the universe X can be viewed as discontinuous bivalent fuzzy (‘classical preservation principle’ [6]). In
addition, by the ‘resolution theorem’ (see [5]), fuzzy sets l 2 ½0;1�X can also be viewed as unions of a special family of ‘in-
dexed’ fuzzy sets,
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lðxÞ ¼ sup
r2½0;1�

frðxÞ; with f rðxÞ ¼ minðr;lðrÞðxÞÞ 8x 2 X;

where lðrÞ 2 f0;1gX is the characteristic function1 of the strong r-cut fx 2 X; r < lðxÞg. Of course, functions fr do represent dis-
continuous fuzzy sets.

These facts reflect a deep presence of discontinuity in the relationship between fuzzy and crisp sets, and in this paper it is
shown how crisp sets can be understood as classes of a particular type of discontinuous fuzzy sets. In the jump from impre-
cision to precision, discontinuity plays – as it is intuitive – an important role.

2.2. Threshold of the contradiction of a fuzzy set

Let us consider the set of functions ½0;1�X endowed with a negation, 0, functionally expressed by means of a strong nega-
tion function N, that is,

l0 ¼ N � l; or l0ðxÞ ¼ NðlðxÞÞ; for all x 2 X:

From the properties of N it follows that there always exists a unique n 2 ð0;1Þ such that NðnÞ ¼ n (n is the so-called fix-point
of N), therefore, the functional equation l ¼ NðlÞ has a unique solution l ¼ ln, with ln being the function constantly equal
to the number n.

As it was proved in [7], any strong negation N can be expressed as NðxÞ ¼ u�1ð1�uðxÞÞ for some order-automorphism u
of the unit interval. Hence, from n ¼ u�1ð1�uðnÞÞ it follows n ¼ u�1 1

2

� �
.

Two functions l and r are contradictory if l 6 r0. If l 6 l0;l is self-contradictory. According to the above paragraph,
l 6 l0 is equivalent to lðxÞ 6 u�1ð12Þ ¼ lnðxÞ for all x 2 X. Therefore, we can say that the threshold of self-contradiction of
fuzzy sets is u�1ð12Þ, provided N is a strong negation given by the order-automorphism u.

3. First results

Let n 2 ð0;1Þ be the fix-point of the strong negation N. Let ½0;1�Xn (see [10]) be the set of all functions in ½0;1�X except those
that take the value n for some x 2 X,

½0;1�Xn ¼ fl; l : X ! ½0;1�; lðxÞ– n 8x 2 Xg:
Of course, this set contains the set of the crisp sets, f0;1gX as a subset and it is l 2 ½0;1�Xn if and only if
l�1ðnÞ ¼ fx 2 X;lðxÞ ¼ ng ¼ ;.

Let us introduce a new mapping a : ½0;1�Xn ! PðXÞ, defined by
aðlÞ ¼ fx 2 X; n < lðxÞg:

This mapping fulfills the following properties:

1. a is non-decreasing: l 6 r) aðlÞ# aðrÞ.
Indeed, x 2 aðlÞ ) n < lðxÞ 6 rðxÞ ) n < rðxÞ ) x 2 aðrÞ.
Thus a is an order-homomorphism between ð½0;1�Xn ;6Þ and ðPðXÞ; # Þ.

2. aðl0Þ ¼ ðaðlÞÞc.
Since N is a strong negation, it is aðl0Þ ¼ fx 2 X; n < l0ðxÞg ¼ fx 2 X; n < NðlðxÞÞg ¼ fx 2 X; NðnÞ > NðNðlðxÞÞg ¼
fx 2 X; n > lðxÞg ¼ ðaðlÞÞc . In consequence, a establishes a partition on X: aðlÞ [ aðl0Þ ¼ aðlÞ [ ðaðlÞÞc ¼ X, and
aðlÞ \ aðl0Þ ¼ aðlÞ \ ðaðlÞÞc ¼ ;.

3. a is surjective: for all A 2 PðXÞ there is lA 2 ½0;1�
X
n and aðlAÞ ¼ A. Indeed, aðlAÞ ¼ fx 2 X; n < lAðxÞg ¼

fx 2 X;lAðxÞ ¼ 1g ¼ l�1
A ð1Þ ¼ A:

Obviously, aðl0Þ ¼ ; and aðl1Þ ¼ X, with l1ðxÞ ¼ 1 and l0ðxÞ ¼ 0 for all x in X.

Remark 1. a is not injective. There is aðlÞ ¼ fx 2 X; n < lðxÞg ¼ ; () lðxÞ < n for all x 2 X.
Therefore, if r < n;aðlrÞ ¼ fx 2 X; n < lrðxÞ ¼ rg ¼ ;, where lr the function constantly equal to r. For r1; r2 < n, with

r1–r2 we have aðlr1
Þ ¼ ; ¼ aðlr2

Þ, but lr1
–lr2

. Analogously, aðlÞ ¼ X () fx 2 X; n < lðxÞg ¼ X () n < lðxÞ for all x 2 X.
Thus if n < r;aðlrÞ ¼ fx 2 X; r ¼ lrðxÞ < ng ¼ X, where lr is the function constantly equal to r. Then for n < r1; r2, with r1–r2,
we have aðlr1

Þ ¼ X ¼ aðlr2
Þ, but lr1

–lr2
.

4. Morphisms

4.1. Epimorphism between the distributive lattices ð½0; 1�Xn ;min;maxÞ and ðPðXÞ;\;[Þ

Let us consider the conjunction (�) and the disjunction ðþÞ operators on ½0;1�Xn functionally expressed by

ðl � rÞðxÞ ¼minflðxÞ;rðxÞg; ðlþ rÞðxÞ ¼maxflðxÞ;rðxÞg for all x 2 X:

1 For any subset A � X, the function defined as lAðxÞ ¼
1 if x 2 A
0 if x R A:

�
is the characteristic function of A.
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Obviously, ð½0;1�X ; �;þÞ is a distributive lattice, and:

� aðl � rÞ ¼ fx 2 X; n < minflðxÞ;rðxÞgg ¼ fx 2 X; n < lðxÞ and n < rðxÞg ¼ aðlÞ \ aðrÞ.
� aðlþ rÞ ¼ fx 2 X; n < maxflðxÞ;rðxÞgg ¼ fx 2 X; n < lðxÞ or n < rðxÞg ¼ aðlÞ [ aðrÞ.

Notice that these results do not hold when � is a continuous t-norm T < min, or þ is a continuous t-conorm S > max (see
[1]).

Consequently, a is an epimorphism (see 3, Section 3) between the distributive lattices ð½0;1�Xn ;min;maxÞ and ðPðXÞ;\;[Þ.

4.2. Isomorphism between ð½0; 1�Xn=a;�;	Þ and ðPðXÞ;\;[Þ

Consider the quotient set, ½0;1�Xn=a, with the classes ½l� ¼ fr 2 ½0;1�Xn ; aðrÞ ¼ aðlÞg for l in ½0;1�Xn .
Let us define the two mappings,

� : ½0;1�Xn=a
 ½0;1�
X
n=a! ½0;1�

X
n=a; ½l� � ½r� ¼ ½l � r�

	 : ½0;1�Xn=a
 ½0;1�
X
n=a! ½0;1�

X
n=a; ½l� 	 ½r� ¼ ½lþ r�

These mappings are operations in ½0;1�Xn=a since they do not depend on the elements representing the classes:

� If ½r1� ¼ ½r2�; ½/1� ¼ ½/2� ) aðr1Þ ¼ aðr2Þ; að/1Þ ¼ að/2Þ
)aðr1 � /1Þ ¼ aðr1Þ \ að/1Þ ¼ aðr2Þ \ að/2Þ ¼ aðr2 � /2Þ
)½r1 � /1� ¼ ½r2 � /2�

� If ½r1� ¼ ½r2�; ½/1� ¼ ½/2� ) aðr1Þ ¼ aðr2Þ; að/1Þ ¼ að/2Þ
)aðr1 þ /1Þ ¼ aðr1Þ [ að/1Þ ¼ aðr2Þ [ að/2Þ ¼ aðr2 þ /2Þ
)½r1 þ /1� ¼ ½r2 þ /2�.

Thus ð½0;1�Xn=a;�;	Þ is a distributive lattice whose minimum and maximum elements are, respectively,
½l0� ¼ fr 2 ½0;1�

X
n ; aðrÞ ¼ ;g; ½l1� ¼ fr 2 ½0;1�

X
n ;aðrÞ ¼ Xg.

Theorem 1. The distributive lattices ð½0;1�Xn=a;�;	Þ and ðPðXÞ;\;[Þ; are isomorphic.

Proof. The mapping, b : ½0;1�Xn=a! PðXÞ, given by bð½l�Þ ¼ aðlÞ, verifies:

1. b is independent of the elements representing the classes:½l� ¼ ½r� ) aðlÞ ¼ aðrÞ ) bð½l�Þ ¼ bð½r�Þ.
2. b is a morphism:bð½l� � ½r�Þ ¼ bð½l � r�Þ ¼ aðl � rÞ ¼ aðlÞ \ aðrÞ ¼ bð½l�Þ \ bð½r�Þ;bð½l� 	 ½r�Þ ¼ bð½lþ r�Þ ¼ aðlþ rÞ ¼

aðlÞ [ aðrÞ ¼ bð½l�Þ [ bð½r�Þ.
3. b is injective: aðlÞ ¼ aðrÞ ) ½l� ¼ ½r�.
4. b is surjective: 8A 2 PðXÞ ) bð½lA�Þ ¼ A.

Hence, b is an isomorphism. �

4.3. Isomorphism between ð½0; 1�Xn=a;�;	; 0Þ and ðPðXÞ;\;[;cÞ

Let us define the unary operation 0 : ½0;1�Xn=a! ½0;1�
X
n=a by

½l�0 ¼ ½l0� ¼ fr;aðrÞ ¼ fx 2 X; n < l0ðxÞgg ¼ fr; aðrÞ ¼ fx 2 X;lðxÞ < ngg;
which satisfies the following properties:

1a. This operation does not depend on the elements representing the classes. Indeed, if ½l� ¼ ½r� ) aðlÞ ¼ aðrÞ )
ðaðlÞÞc ¼ ðaðrÞÞc ) aðl0Þ ¼ aðr0Þ ) ½l0 � ¼ ½r0 �:

2a. ½l� 	 ½l�0 ¼ ½lþ l0� ¼ fr;aðrÞ ¼ fx 2 X; n < maxflðxÞ;N � lðxÞgg ¼ fr;aðrÞ ¼ fx 2 X; n 6 lðxÞ or n < ðN � lÞðxÞg ¼
fr;aðrÞ ¼ fx 2 X; n < lðxÞ or lðxÞ < ng ¼ fr;aðrÞ ¼ Xg ¼ ½l1�.

3a. ð½l� 	 ½l�0Þ0 ¼ ½l1�
0 ¼ ½l01� ¼ ½l0�. Hence, ½l�0 � ½l�00 ¼ ½l�0 � ½l� ¼ ½l� � ½l�0 ¼ ½l0�.

Theorem 2. ð½0;1�Xn=a;�;	; 0Þ is a boolean algebra isomorphic to ðPðXÞ;\;[;cÞ

Proof. Follows from Theorem 1 and properties 2a. and 3a., as well as from bð½l�0Þ ¼ bð½l0�Þ ¼ aðl0Þ ¼ aðlÞc ¼ ðb½l�Þc.

There is, of course, the same number of classes in ½0;1�Xn=a as sets in PðXÞ. Even more, each class ½l� such that
aðlÞ ¼ A 2 PðXÞ, contains one and only one crisp set, namely the set given by the characteristic function of the set A (see
Section 2.1). Hence, we can use the crisp set belonging to each class as the representative of the class.
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In this way we can state that the crisp sets in X are nothing else than classes of some discontinuous fuzzy sets in X, once these
are endowed with the Zadeh’s algebra, given by a triplet ðmin;max;NÞ[12]. h

Remark 2. In the case that instead of ½0;1�Xn the whole set ½0;1�X is taken, then for

aðlÞ ¼ fx 2 X; n < lðxÞg;l 2 ½0;1�X ;

it is aðlÞ [ aðl0Þ ¼ fx 2 X; n < lðxÞg [ fx 2 X;lðxÞ < ng, what is not X, in general. Hence, ½0;1�X=a would not be a boolean
algebra.

In addition, changing a to

a1ðxÞ ¼ fx 2 X; n 6 lðxÞg;

a boolean algebra is not reached either. Now a1ðlÞ \ a1ðl0Þ ¼ fx 2 X; n 6 lðxÞg \ fx 2 X;lðxÞ 6 ng ¼ fx 2 X;lðxÞ ¼ ng, what
is not the empty-set, in general.

4.4. On Entemann’s ‘clarifications’

In order to prove that fuzzy logic is a Proof Theory, what Entemann does in [3], is to remove the propositions whose truth
value is 0.5, that is, to restrict to fuzzy propositions A such that tðAÞ– 0:5 (he cannot decide what to do when t(A) = 0.5).

Consider, as Entemann does, a set A of fuzzy propositions A;B . . . with truth values tðAÞ; tðBÞ 2 ½0;1� that fulfills the
axioms:

1. 0 6 tðAÞ; tðBÞ 6 1
2. tðA ^ BÞ ¼minðtðAÞ; tðBÞÞ
3. tðA _ BÞ ¼maxðtðAÞ; tðBÞÞ
4. tð:AÞ ¼ 1� tðAÞ

In this case is n ¼ 0:5. Provided that there are no propositions A in A such that tðAÞ ¼ 0:5, Theorem 2 gives the set of clas-
ses ½0;1�A0:5=a, isomorphic to the boolean algebra ðf0;1g;min;max;1� idÞ. Actually, these facts are behind Entemann’s
reasoning.

5. Functions in ½0;1�X are computationally indistinguishable to those in ½0;1�Xn

In many of the application fields, only continuous membership functions l on a closed interval X ¼ ½a; b� of the real line
are considered. Such fact seems to imply that Theorem 2 is not relevant for applications.

Nevertheless, in the current practice everything is done with numerical values lðxÞ approaching the theoretical ones as
much as the computational precision threshold (precision granularity) allows to do.

Let e > 0 be the computational precision threshold in ½0;1�,

� y1 and y2 in ½0;1� are e-computationally indistinguishable values if jy1 � y2j < e.
� l and r in ½0;1�X are e-computationally indistinguishable membership functions if jlðxÞ � rðxÞj < e for all x 2 X. That is, if lðxÞ

and rðxÞ are always e-computationally indistinguishable values.

Theorem 3. For any l 2 ½0;1�X, there exists a bl 2 ½0;1�Xn that is e-computationally indistinguishable from l.

Proof. Let e > 0 be the computational precision threshold in ½0;1�. Let us denote by l�1ðnÞ the subset of the elements in X
that are inverse image of n 2 ð0;1Þ for the function l, that is, l�1ðnÞ ¼ fx 2 X;lðxÞ ¼ ng, define bld for any d 6 e, by (see
Fig. 1)

n+ε

n 
n-(δ/2) 

n-ε

Fig. 1. Function bld .
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bldðxÞ ¼
lðxÞ; if x R l�1ðnÞ
lðxÞ � d

2 ; if x 2 l�1ðnÞ:

(
Obviously, it is bl�1

d ðnÞ ¼ ; and then bld 2 ½0;1�Xn . We get jlðxÞ � ðlðxÞ � d
2Þj ¼ d

2 < e. Hence, once given the computational pre-
cision threshold e > 0, it follows

jlðxÞ � bldðxÞj < e forall x 2 ½a; b�:

That is, l and bld are e-computationally indistinguishable. Notice that bl in Theorem 3 is not unique.

Remark 3. If l 2 ½0;1�X is continuous, by Theorem 3 there exists an e-computationally indistinguishable membership func-
tion bld, which is in ½0;1�Xn .

Suppose f : ½0;1� ! ½0;1� is a continuous function, that is for any e > 0 and any b 2 ½0;1� there exists d > 0 such that if
jb� aj < d then jf ðbÞ � f ðaÞj < e.

Provided e > 0 is the computational precision threshold in ½0;1� and since f is, in particular, continuous in the point
lðxÞ 2 ½0;1�, there exists d > 0 such that if a 2 ½0;1� verifies jlðxÞ � aj < d then it is jf ðlðxÞÞ � f ðaÞj < e. Hence, there can be
found the membership function bld (that is, verifying jlðxÞ � bldðxÞj < d for all x 2 X) such that f ðbldðxÞÞ is e-computationally
indistinguishable from f ðlðxÞÞ for all x 2 X. Thus, if l is composed with a continuous function f, we can find bld in ½0;1�Xn , that
makes f � l and f � bld e-computationally indistinguishable.

In particular, if N : ½0;1� ! ½0;1� is a strong-negation its continuity implies that l0 ¼ N � l and the correspondingbl0 ¼ N � cld are e-computationally indistinguishable.

Theorem 4. Given e > 0, a membership function l and a finite family of continuous functions F ¼ ff1; . . . ; fng, there can be foundbld that makes fi � l and fi � bld e-computationally indistinguishable for all i 2 f1; . . . ;ng.

Proof. For each fi (i 2 f1; . . . ;ng), as it has just been shown, there exists di > 0, such that fi � l and fi � bldi
are e-computation-

ally indistinguishable. Thus with d ¼minðd1; . . . ; dnÞ, bld verifies jðfi � lÞðxÞ � ðfi � bldÞðxÞj < e for all x 2 X and for all
i 2 f1; . . . ; ng.

Analogously, it can be proven that if F : ½0;1� 
 ½0;1� ! ½0;1� is a continuous function in both variables, F � ðl
 rÞ is e-
computationally indistinguishable from some F � ðbld 
 brdÞ, with bld; brd 2 ½0;1�Xn . Obviously, if ðF � ðbld 
 brdÞÞðxÞ – n
8 x 2 X, we get F � ðbld 
 brdÞ 2 ½0;1�Xn .

In particular, if F ¼ T is a continuous t-norm (or F ¼ S is a continuous t-conorm), there can be found two membership
functions bld; brd 2 ½0;1�Xn such that T � ðl
 rÞ is e-computationally indistinguishable from T � ðbld 
 brdÞ (or S � ðl
 rÞ from
S � ðbld 
 brdÞ). h

Remark 4. In addition, l0 ¼ 1� l; ðl � rÞðxÞ ¼ minðlðxÞ;rðxÞÞ, and ðlþ rÞðxÞ ¼maxðlðxÞ;rðxÞÞ are e-computational
indistinguishable from bl0e ¼ 1� ble; ðble � breÞðxÞ ¼minðbleðxÞ; breðxÞÞ, and ðble þ breÞðxÞ ¼ maxðbleðxÞ; breðxÞÞ, respectively.

6. Crisp decisions with fuzzy sets

In several decision processes the final result has to be stated as a precise one, even though it is usually based on imprecise
information [2]. In order to transform an imprecise conclusion into a precise one, we must reduce fuzzy sets to crisp sets, and
sometimes to crisp singletons.

Using the mapping a we obtain the sets

aðlPÞ ¼ fx 2 X; u�1ð1=2Þ < lPðxÞg ¼ fx 2 X; NðlPðxÞÞ < lPðxÞg ¼ fx 2 X;l0PðxÞ < lPðxÞg;

which consist of the elements in X that are ‘more P, than not P’. Analogously,

aðl0PÞ ¼ fx 2 X; u�1ð1=2Þ < l0PðxÞg ¼ fx 2 X;lPðxÞ < u�1ð1=2Þg ¼ fx 2 X;lPðxÞ < NðlPðxÞÞg ¼ fx 2 X;lPðxÞ < l0PðxÞg;

which are the elements in X that are ‘more not P, than P’.

Example. If X ¼ ½0;10� � R; P ¼ Big with the fuzzy set representation lPðxÞ ¼ x
10, and considering the usual strong negation

N ¼ 1� id, then

lBigðxÞ > l0BigðxÞ ()
x

10
> 1� x

10
() x > 5;

and the set aðlBigÞ ¼ fx 2 X; x > 5g contains the elements that are more Big than not-Big, and the set aðl0BigÞ ¼ fx 2 X; x < 5g
the elements that are more not-Big than Big.

In this example the point 5 ¼ u�1ð1=2Þ is allocated neither to aðlPÞ, nor to aðl0PÞ, so it is an undecidable point.
If we transform this fuzzy set to its e-computationally indistinguishable blBig;d given in Section 5, this point will be allo-

cated to aðbl0P;dÞ. But considering this other valid definition of blP;d the point 5 will be assigned to aðblP;dÞ:
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blP;dðxÞ ¼
lPðxÞ; if x R l�1

P ðnÞ;
lPðxÞ þ d

2 ; if x 2 l�1
P ðnÞ:

(
Therefore this point plays a pivotal role in the decision and can be consider as the separation point between the two sets.

6.1. Threshold of separation of a predicate

The threshold of separation of an imprecise predicate P on X from its negation :P ¼ not P, once both are represented by
well designed membership functions lP and l:P ¼ l0P , respectively, is obtained (see [11]) through the analysis of the inequal-
ities l0PðxÞ < lPðxÞ and lPðxÞ < l0PðxÞ.

Based on these inequalities we define for all e > 0 the set of separation points as follows,

hlPi ¼
\
e>0

ffx 2 X; x� e 2 aðl0PÞ & xþ e 2 aðlPÞg [ fx 2 X; xþ e 2 aðl0PÞ & x� e 2 aðlPÞgg:

Examples

In the previous example the threshold of separation of Big will be

hlBigi ¼ f5g

But if we change the negation to NðxÞ ¼ 1�x
1þx then

l0Big < lBig ()
10� x
10þ x

<
x

10
() 0 < x2 þ 20x� 100 () 200 < ðxþ 10Þ2;

aðlBigÞ ¼ fx 2 ½0;10�; 200 < ðxþ 10Þ2g ¼ fx 2 ½0;10�; 10
ffiffiffi
2
p
� 10 < xg;aðl0BigÞ ¼ fx 2 ½0;10�; 10

ffiffiffi
2
p
� 10 > xg and a different

threshold of separation of Big will be obtained,

hlBigi ¼ 10
ffiffiffi
2
p
� 10 ¼ 10ð

ffiffiffi
2
p
� 1Þ � 4:1

Using the same negation NðxÞ ¼ 1�x
1þx, and representing P ¼ small by the decreasing function lPðxÞ ¼ 1� x

10, we get that

l0Small < lSmall () N 1� x
10

� �
¼ x

20� x
< 1� x

10
() 0 < x2 � 40xþ 200 () x < 5:9

hence, aðlSmallÞ ¼ fx 2 ½0;10�; x < 5:9g and aðl0SmallÞ ¼ fx 2 ½0;10�; 5:9 < xg and the threshold of separation of Small will be

hlSmalli ¼ f5:9g;

Hence, the study of the inequalities l < l0 and l > l0 is a way for obtaining a crisp decision from a fuzzy set.

6.2. Confidence on the crisp decisions

Although the threshold of separation of an imprecise predicate P on X can be found through the sets aðlPÞ and aðl0PÞ, in
most real-world cases it would be unrealistic to take that threshold as a crisp edge since a very small change in the values of
lP or l0P could produce opposite decisions for the same elements.

Therefore, let us define a confidence function (cP : X ! ½0;1�) on the decision of taking ‘‘x is P” when ‘‘x is more P than not-
P” (see Fig. 2), and (cP0 : X ! ½0;1�) on the decision of taking ‘‘x is not P” when ‘‘x is more not-P than P” (see Fig. 4):

cPðxÞ ¼
lPðxÞ � l0PðxÞ; x 2 aðlPÞ
0; otherwise

�
cP0 ðxÞ ¼

l0PðxÞ � lPðxÞ; x 2 aðl0PÞ
0; otherwise

�
For instance in the previous example of Big the confidence functions will be:

cBigðxÞ ¼
x

10� 1� x
10

� �
¼ x

5� 1; x 2 ð5;10�

0; x 2 ½0;5�

(

cnot�BigðxÞ ¼
1� x

10

� �
� x

10 ¼ 1� x
5 ; x 2 ½0;5�

0; x 2 ð5;10�

(
Thus, cBig allows us to take ‘‘x = 10” as ‘‘Big” with a confidence degree of 1, since cBigð10Þ ¼ 10

5 � 1 ¼ 1, while taking ‘‘x = 7.5” as
‘‘Big” can be done with a confidence degree of 0.5, since cBigð7:5Þ ¼ 7:5

5 � 1 ¼ 0:5 (see Fig. 3).
Function cnot-Big allows to take ‘‘x = 0”, ‘‘x = 2.5” or ‘‘x = 5” as ‘‘not-big” with the confidence degrees given by cnot-Bigð0Þ ¼

1� 0
5 ¼ 1, cnot-Bigð2:5Þ ¼ 1� 2:5

5 ¼ 0:5 and cnot-Bigð5Þ ¼ 1� 5
5 ¼ 0, (see Fig. 4) respectively (see Fig. 5).
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Looking at functions cBig and cnot-Big can be seen that the confidence degrees of taking ‘‘x = 5” as ‘‘Big” or as ‘‘not-Big” are 0,
as expected for an undecidable point.

Remark 5. If the predicate P is crisp in X, that is, lP 2 f0;1g
X , then aðlPÞ ¼ fx 2 X; lPðxÞ > 1� lPðxÞg ¼

fx 2 X;lPðxÞ > 1
2g ¼ l�1

P ð1Þ, since in this case it is l0PðxÞ ¼ NðlPðxÞÞ ¼ 1� lPðxÞ for all x 2 X, and lPðxÞ > 1
2 is equivalent to

lPðxÞ ¼ 1. Hence,

cPðxÞ ¼
lPðxÞ � ð1� lPðxÞÞ ¼ 2lPðxÞ � 1 ¼ 1; x 2 l�1

P ð1Þ
0; x R l�1

P ð1Þ

(
that is, cPðxÞ ¼ lPðxÞ for all x 2 X. In the limiting case when the predicate is crisp, the confidence function is nothing else than its
membership function, that is, the confidence is total for x 2 P. Of course, in general, the closer cP is to lP in aðlPÞ, the more
crisp is the set.

7. Conclusion

In this paper it has been proved that to obtain a Boolean algebra of classes of fuzzy sets isomorphic to ðPðXÞ;\;[;cÞ some
continuous functions should always be avoided. The functions in ½0;1�X to be avoided are those reaching the level given by the

)5.7(Pγ

0 7.55 10

P P’ 

2.5 

)10(Pγ)5(Pγ

Fig. 2. ‘‘x is more Big than not-Big”.

P
γ
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1 

Fig. 3. Confidence function cBig.
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Fig. 4. ‘‘x is more not-Big than Big”.
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Fig. 5. Confidence function cnot-Big.
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fix-point of the negation. However, in this paper it has also been proven that ½0;1�Xn and ½0;1�X are computationally
indistinguishable.

To reach a crisp decision from imprecise information we have taken an approach based on the threshold of separation
that could be stated as follows: we make a decision over a certain threshold and below it we make the opposite decision,
while in the rare case of exactly matching the threshold we cannot make a decision with confidence. Also the confidence
on the decision have been introduced, allowing to distinguish decisions with different degrees of confidence.

In this work we have answered two questions: how to find an appropriate threshold, and what is the meaning of this
threshold. Although not exactly with the same aim, these points were previously discussed in [9] and in [11].

Acknowledgement

Authors thank to the three anonymous reviewers, and mainly to reviewer 1, for their hints and comments, and to Prof.
Claudio Moraga (ECSC) for his help in the preparation of this paper.

References

[1] C. Alsina, M.J. Frank, B. Schweizer, Associative Functions. Triangular Norms and Copulas, World Scientific, Singapore, 2006.
[2] R.E. Bellman, L.A. Zadeh, Decision making in a fuzzy environment, Management Science 17 (4) (1970) B141–B164.
[3] C.W. Entemann, Fuzzy logic: misconceptions and clarifications, Artificial Intelligence (17) (2002) 65–84.
[4] A.O. Esogbue, Qiang Song, On optimal defuzzification and learning algorithms: theory and applications, Fuzzy Optimization and Decision Making 2 (4)

(2003) 283–296.
[5] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall PTR, Upper Saddle River, NJ, 1995.
[6] A. Pradera, E. Trillas, E. Renedo, An overview on the construction of fuzzy set theories, New Mathematics and Natural Computation 1 (3) (2005) 329–

358.
[7] E. Trillas, Sobre funciones de negación en la teoría de conjuntos difusos, Stochastica 3 (1) (1979) 47–59. Reprinted (English version), in: S. Barro et al.

(Eds.), Advances of Fuzzy Logic, Press of the Universidad de Santiago de Compostela, 1998, pp. 31–43.
[8] E. Trillas, C. Alsina, A. Pradera, Searching for the roots of non-contradiction and excluded-middle, International Journal of General Systems 5 (31)

(2002) 499–513.
[9] E. Trillas, A.R. de Soto, On the threshold of bounded pseudo-distances, Mathware and Soft Computing 15 (2) (2008) 189–200.

[10] E. Trillas, E. Renedo, S. Guadarrama, On a new theory of fuzzy sets with just one self-contradiction, in: Proceedings of the 10th IEEE International
Conference on Fuzzy Systems, Melbourne, Australia, vol. 2, 2001, pp. 105–108.

[11] E. Trillas, L.A. Urtubey, Towards the dissolution of the Sorites paradox, Applied Soft Computing, in press, doi: 10.1016/j.physletb.2003.10.071.
[12] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

E. Trillas et al. / International Journal of Approximate Reasoning 50 (2009) 1298–1305 1305

138



139



Evaluating premises, partial consequences and partial hypotheses ∗

I. Garcı́a-Honrado, E. Trillas, S. Guadarrama and E. Renedo

European Centre for Soft Computing
Mieres (Asturias), Spain

Email: {itziar.garcia, enric.trillas, sergio.guadarrama, eloy.renedo}@softcomputing.es

Abstract— To evaluate premises, consequences and hypotheses,
on this paper relevance and support ratios are defined for each of
them. This allows to distinguish consequences based on the num-
ber of premises that support them, and also to reduce the set of
premises while maintaining the same consequences. Since the re-
lation between premises and hypotheses is, in some sense, similar to
the relation between consequences and premises, analogous ratios
are defined for hypotheses and premises.

Keywords— Conjectures, Consequences, Hypotheses, Relevance,
Support.

1 Introduction
The aim of most problems is to make choice between possible
solutions, a clear example is a medical diagnosis problem. In
this paper we allocate degrees for the elements in the set of
consequences, hypotheses or premises in order to choose the
consequence, hypothesis or premise with the biggest degree.
Papers [2] and [3] had dealt with that idea of graded conse-
quences.

The following section will show Conjectures, Hypotheses,
and Consequences (CHC) models introduced in [7], which
was suggested, in part by Watanabe in [10], and takes into
account the particular case of partial consequence’s operator
[8] [9]. Partial operators of consequences are that allow to get
consequences of each premise, or subset of premises, and ob-
taining the final set of consequences as the union of all these
partial consequences.

To define support for each consequence (section 3) we con-
sider that consequences with bigger support, are those that are
supported by more premises or subsets of premises. By the
way, different degrees are allocated for consequences. So,
for example, following with a medical diagnosis problem in
which the premises are diseases and the consequences are
symptoms, we can choose between consequences, and select
as the stronger, the one with biggest support.

In section 4, we deal with a measure of relevance for
premises that is useful for knowing which premises have
more importance, in the sense of how many consequences can
be deduced from them. Thanks to that measure, the set of
premises can be reduced to a smaller set with the same rele-
vance. This reduced set of premises gets rid of superfluous
premises and yet allows to work with less premises, while
getting the same set of consequences. Till now all premises

∗This work has been partially supported by the Foundation for
the Advancement of Soft Computing (Asturias, Spain), and CICYT
(Spain) under project TIN2008-06890-C02-01

seemed to have the same importance.

Finally, in section 5, we also consider partial hypotheses,
that is, hypotheses of one premise, and not hypotheses of all
premises. And analogous measure of support for premises, as
well as of relevance for partial hypotheses, are defined. This
allows to evaluate subset of partial hypotheses by counting
how many premises they give as consequences.

2 Basic concepts

2.1 CHC models

Reasoning can be understood as a process allowing to get con-
jectures from a set of premises, P . There are three basic types
of reasoning: deduction, abduction and induction. A process
that allows to get consequences is a deductive reasoning, a
process that allows to get hypotheses is an abductive reason-
ing, and finally, if the process allows to get speculations, it is
an speculative reasoning.

In this paper, CHC models are defined on a preordered set
(L,≤), endowed with a negation, ′. And when it is neces-
sary, the preordered set will be endowed with an infimum,
·, and a supremum, +, operations (L,≤,′ , ·,+), a preorder
with infimum and supremum operations is a partial ordered
set (poset)with these operations. The infimum of L is called
first element and it is denoted by 0, the supremum of L is
called the last element and it is denoted by 1. The paper only
deals with finite algebraic structures, that is, with a finite set
L.

CHC models can be based on consequences operators [8, 9],

Definition 2.1 If L is a set, and F ⊂ P(L), it is said that
(L,F, C) is a structure of consequences, provided that C :
F → F verifies,

1. P ⊂ C(P ), for all P ∈ F (C is extensive)

2. If P ⊂ Q, then C(P ) ⊂ C(Q), for all P,Q ∈ F (C is
monotonic)

3. C(C(P )) = C(P ), or C2 = C, for all P ∈ F (C is a
clausure)

i.e. C is an operator of consequences (in the sense of Tarski)
for F in L.

For each {q} ∈ F, let us write C(q) = C({q}).
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Definition 2.2 A consequences’ operator C is consistent in
P , if for all q ∈ C(P ), q′ /∈ C(P ).
A structure of consequences (L,F, C) is consistent if C is con-
sistent for all P ∈ F.

Let P be the set of premises, P �= ∅, and C(P ) a set
of consequences for P . Conjectures of P can be defined
from a consistent consequences operator C, as those elements
whose negation is not in C(P ), Conj C(P ) = {q ∈ L; q′ /∈
C(P )}. Hypothesis can be defined by Hyp C(P ) = {h ∈
Conj C(P )− C(P ); {h} ∈ F, P ⊂ C(h)}.

Finally, speculations are those conjectures that are nei-
ther consequences, nor hypotheses. Hence, SpC(P ) =
Conj C(P )− [C(P )∪HypC(P )] = {q ∈ L, q /∈ C(P ), q′ /∈
C(P ), q /∈ HypC(P )}.

2.2

Definition 2.3 A consequences’ operation C is a partial con-
sequences operator if C(P ) =

⋃

R⊂P,R∈F

C(R).

Definition 2.4 A decomposable consequences operator is a
consequences’ operator such that C(P ) =

⋃

p∈P

C(R).

This paper considers partial hypothesis, elements that are
hypotheses of a subset of the set of premises P . This idea
comes from that of partial consequences.

Definition 2.5 For each set P of premises the partial hypothe-
ses set is,

Hyp∗C(P ) = {h ∈ {L − 0} − P ; {h} ∈ F,∃R ⊂ P,

R ⊂ C(h)}.
Obviously, hypotheses are partial hypotheses, since P ⊂ P

and P ⊂ C(h), provided h is a hypothesis.

Remark 2.6 Although hypotheses are anti-monotonic (P1 ⊂
P2, implies Hyp(P2) ⊂ Hyp(P1)), partial hypotheses are (as
it is easy to prove) monotonic (P1 ⊂ P2, implies Hyp∗(P1) ⊂
Hyp∗(P2)). That is why they can not be considered classical
hypotheses.

2.3

The paper deals with a general concept of measure [6], defined
in a preordered set (L,≤). A measure is a mapping m : L →
[0, 1], such that:

• There exists a minimal x0 ∈ L, such that m(x0) = 0

• There exists a maximal x1 ∈ L, such that m(x1) = 1

• If x ≤ y, then m(x) ≤ m(y).

3 Consequences support
This section introduces a ratio in order to distinguish which
consequences are the more supported by a given set of
premises. And proof in which cases is a measure

Let’s recall that in this paper L is assumed to be a finite set.

Definition 3.1 The support of q ∈ L is the ratio of subsets of
premises that allow getting q as a consequence, to all possible
subsets of premises.

Supp C,P (q) =
|{R ∈ P(P ); q ∈ C(R)}|

2|P | − 1
= (1)

|{R ∈ P(P ); q ∈ C(R)}|
|P(P )− ∅| .

Since P �= ∅, it is |P | > 0 and the quotient in the definition
is possible.

The bigger support a consequence has, the more subsets of
premises allow deducing it.
Notice that if q /∈ C(P ), Supp C,P (q) = 0, since if there
were R ∈ P(P ) such that q ∈ C(R), because of the mono-
tonicity of the consequence operator, C(R) ⊂ C(P ) would
imply q ∈ C(P ).

This ratio verifies the following properties,

• If P ⊂ Q, it is Supp C,P (q) ≤ Supp C,Q(q), for all
q ∈ L.

• If P = {p},∀q ∈ C(P ), it is Supp C,P (q) = 1.

• For all q ∈ C(P ), Supp C,P (q) > 0.

• Supp C,P (q) = 1 means that q is a consequence for all
R ∈ P(P ). Particularly, q is consequence of all p ∈ P .

The support defined by (1), is not a measure in general. For
example, if C(P ) = P, ∀P ∈ P(L), let P be a set with more
than one element. If q ∈ L, it is either q ∈ P , or Supp(q) = 0.
If q ∈ P , there exists p ∈ P such that p �= q, and q /∈ C(p)
and Supp(q) �= 1. Therefore, there is no q ∈ L such that
Supp C,P (q) = 1.

Remark 3.2 Supp C,P is monotonic with respect to the pre-
order given by C, q1 ≤C q2 iff q2 ∈ C(q1) [1],

Proof. Since if q1 ≤C q2, for each R such that q1 ∈ C(R), it
is C(q1) ∈ C(C(R)) = C(R), and, as q2 ∈ C(q1), it is also
q2 ∈ C(R). So, Supp C,P (q1) ≤ Supp C,P (q2).
�

Since, given P , the relation defined between the pairs of
elements in L with the same value of SuppC,P , is an equiva-
lence, the classes

[q] = {v ∈ L; Supp C,P (v) = Supp C,P (q)}

give a partition on L in a number of parts that is, at most, 2|P |.

3.1 The case of the operator C•
Let (L,≤) be now a preordered set in which is defined an
infimum operation denoted by ‘·’.

The partial consequences operator C• gives consequences
that are consequences for a subset of the set of premises P , it is
C•(P ) = {q ∈ L; ∃{p1, p2, ..., pn} ⊂ P : p1·p2·...·pn ≤ q}.
It is a partial consequences’ operator and it obviously verifies
C•(P ) =

⋃

R⊂P,R∈F

C•(R).

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

898

141



Notice, that as L is finite, P is also finite and C•(P ) =
{q ∈ L; inf P ≤ q}, which equal to the infimum operator of
consequences C∧.

Supp C•,P (q) =
|{R ∈ P(P ) ∈ P ; inf(R) ≤ q}|

2|P | − 1
(2)

Let’s see what specific properties are verified by
Supp C•,P ,

• If L has last element, it implies 1 ∈ L, then 1 ∈ C•(P )
and Supp C•,P (1) = 1.

• If q1 ≤ q2, then Supp C•,P (q1) ≤ Supp C•,P (q2). That
is the function Supp C•,P is monotonic.

• Supp C•,P (sup{q1, q2}) ≥
max{Supp C•,P (q1), Supp C•,P (q2)}, provided
sup{q1, q2} exists.

• Supp C•,P (inf{q1, q2}) ≤
min{Supp C•,P (q1), Supp C•,P (q2)}

Corollary 3.3 Let (L,≤,′ , ·,+) be a partial ordered set with
infimum and supremum operations and first and last elements.
If P �= {0}, the function Supp C•,P : L → [0, 1] is a measure.

Proof. It is monotonic, and it verifies the boundary condi-
tions, since 0 is not a consequence Supp C•,P (0) = 0 and
Supp C•,P (1) = 1. �

3.2 The case of the operator C≤
C≤ is the partial consequences operator that gives as conse-
quences those elements that follow from at least one premise
in P , formally, it is C≤(P ) = {q ∈ L; ∃p ∈ P : p ≤ q},
see [8]. Hence, it can be considered as a decomposable con-
sequences’ operator, since allows getting consequences that
are not deduced from all premises. It is straightforward that
C≤(P ) =

⋃

R⊂P,R∈F

C(R) = ∪
p∈P

C≤(p).

In this case, a different definition of the support’s ratio
seems to be more convenient, since it deals only with conse-
quences of each p ∈ P , nor with consequences of each subset
of P(P ).

Definition 3.4 The support of q ∈ C≤(P ) is the ratio of
premises that allow getting q as consequence to all premises.

Ŝupp C≤,P (q) =
|{p ∈ P ; p ≤ q}|

|P | (3)

Since P �= ∅, it is |P | > 0 and the quotient in the definition is
possible.

If q /∈ C≤, then Ŝupp C≤,P (q) = 0.

So, the bigger Support an element has, the more premises
allow to reach it.

Ŝupp C≤,P verifies,

• If P = {p},∀q ∈ C≤(p), it is Ŝupp C≤,P (q) = 1.

• If L has last element, 1, then 1 ∈ C≤(P ) and
Ŝupp C≤,P (1) = 1.

• For no q ∈ C≤(P ) is ŜuppP (q) = 0. That is, for all
q ∈ C≤(P ), Ŝupp C≤,P (q) > 0.

• Ŝupp C≤,P (q) = 1 means that q is a consequence for all
p ∈ P .

• If q1 ≤ q2, then Ŝupp C≤,P (q1) ≤ Ŝupp C≤,P (q2). That

is the function Ŝupp C≤,P is monotonic with respect to
≤.

Remark 3.5 In order to know what happens if we calcu-
late the support for the infimum or supremum, of two con-
sequences, provided it exists and it is a consequence, weak
boundaries are found,

• Ŝupp C≤,P (sup{q1, q2}) ≥
max{Ŝupp C≤,P (q1), Ŝupp C≤,P (q2)}

• Ŝupp C≤,P (inf{q1, q2}) ≤
min{Ŝupp C≤,P (q1), Ŝupp C≤,P (q2)}

Obviously, if the operator is consistent, that is, if q ∈ C≤(P ),
then q′ /∈ C≤(P ), it follows Ŝupp C≤,P (q

′) = 0.

Theorem 3.6 Let (L,≤,′ , ·,+) be a partial ordered set with
first and last elements and P �= {0}. Function Ŝupp C≤,P :

L → [0, 1] is a measure.

Proof. It is monotonic as it is stated above. Since 0 is not
a consequence Ŝupp C≤,P (0) = 0. Finally, it is obvious that

1 ∈ C≤(P ) and Ŝupp C≤,P (1) = 1. �

From Ŝupp C≤,P we can calculate Supp C≤,P . If

Ŝupp C≤,P (q) = k and |P | = n, it is |{R ∈ P(P ); q ∈
C(R)}| = k·n. Hence,

Supp C≤,P =

2n − ∑

i∈{0,...,n−k·n}
(n−k·n)!

i!(n−k·n−i)!

2n − 1
. (4)

The numerator in (4) is the number of subsets of premises
that contain at least one of the premises supporting q.

Corollary 3.7 Let (L,≤) be a preordered set with first and
last elements and P �= {0}. Function Supp C≤,P : L → [0, 1]
is a measure.

Proof. It is monotonic as it is proven at the beginning
of this section, and it verifies boundary conditions, since 0
is not a consequence Supp C≤,P (0) = 2n−2n

2n−1 = 0 and
Supp C≤,P (1) =

2n−1
2n−1 = 1. �
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Example 3.8 Figure 1 represents a preordered set of medi-
cal symptoms and deseases for patients. Let’s calculate
the support for the consequences for a patient with P =
{antibody, bacterium}. To such an end, let us notice
that, C≤(P ) = {antibody, bacterium, fever, eruption, 1}.
Then,

• Ŝupp C≤,P (antibody) = 1
2 , and

Supp C≤,P (antibody) = 22−(1+1)
22−1 = 2

3 .

• Ŝupp C≤,P (bacterium) = 1
2 , and

Supp C≤,P (bacterium) = 2
3 .

• Ŝupp C≤,P (fever) = 1, and
Supp C≤,P (fever) = 3

3 = 1.

• Ŝupp C≤,P (eruption) = 1
2 , and

Supp C≤,P (eruption) = 2
3 .

• Ŝupp C≤,P (1) = Supp C≤,P (1) = 1.

Hence, the consequence with greatest support is ‘fever’.

    fever 
  spot 

antibody 

smallpox 
vaccination

bacterium

eruption

bacteriumB
bacteriumA 

    1 

smallpox’ 
vaccination’ 

 bacterium’ 
antibody’ 

    fever’ 
spot’ 

     0 

   eruption’ 

bacterium
B’ 

bacterium 
A’

Figure 1: Preorder

4 Relevance for premises
This section introduces a measure to calculate the proportion
of consequences that are gotten from a subset of premises, and
what is more, it is shown how to reduce the set of premises
using this ratio in order to give the same set of consequences.

Definition 4.1 The relevance of a subset of premises R ∈
P(P )−{∅} is the ratio of consequences deduced from a R, to
all consequences.

Rel C,P (R) =
|{q ∈ L; q ∈ C(R)}|

|C(P )| =
|C(R)|
|C(P )| , if R ∈ P(P ) − {∅},

(5)
and, Rel C,P (∅) = 0.

Since |P | > 0 and P ⊂ C(P ), it is |C(P )| > 0, the quo-
tient does exist.

If a subset of premises allows to deduce all consequences,
the set of premises can be reduced to it, since both have the
same set of consequences.

There are many properties that Rel C,P verifies,

• If there exists R ∈ P(P ), such that Rel C,P (R) = 1, it
means that all consequences for P are consequences of
R. So, C(P ) = C(R).

• If R1 ⊂ R2, then Rel C,P (R1) ≤ Rel C,P (R2). That is
function Rel C,P is monotonic.

• It is Rel C,P (P ) = 1, and Rel C,P (∅) = 0.

Theorem 4.2 Function Rel C,P : P(P ) → [0, 1] is a mea-
sure.

Proof. Straightforward, by the last properties. �

Remark 4.3 In this case, the concept of fuzzy measure is
defined in the preordered set (P(L),⊂), since relevance is
defined for all subsets of premises and not only for single
premises. Remember that the support is defined for each ele-
ment.

The ratio of relevance applying for each premise allows
to define a partition into the set of premises, in classes
whose elements have the same relevance, [q] = {p ∈
L; Supp C,P (p) = Supp C,P (q)}. Analogously, it can
be built a partition in the set P(P ), defining each class as
[S] = {R ∈ P(P ); Supp C,P (R) = Supp C,P (S)}. The
maximum number of classes that can exist is |C(P )|+ 1.

4.1 Using the operator C≤
For the operator C≤ it is useful to calculate the relevance for
each p ∈ P , since it is sufficient to get consequences for each
premise and then join them. So, in this case is enough to deals
with

Rel C≤,P : P → [0, 1]

Definition 4.4 The relevance for a premise p ∈ P is the pro-
portion of consequences deduced from p.

Rel C≤,P (p) =
|{q ∈ L; p ≤ q}|

|C≤(P )| =
|C(p)|
|C(P )| . (6)

If a premise allows to deduce all consequences, the set of
premises can be reduced to that premise, since both give the
same set of consequences.

There are many properties that Rel C≤,P (p) verifies,

• For all p ∈ P , Rel C≤,P (p) > 0, since p ∈ {q ∈ L; p ≤
q} implies |{q ∈ L; p ≤ q}| > 0.

• If there exists p ∈ P such that Rel C≤,P (p) = 1, it
means that all consequence for P is consequence of p.
So, C≤(P ) = C≤(p).
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• If p1 ≤ p2, then Rel C≤,P (p2) ≤ Rel C≤,P (p1). That
is the function Rel C≤,P is anti-monotonic in this sense.
Then, the function 1− Rel C≤ is monotonic.

• Let L be endowed with an infimum operation. If inf P ∈
P , as Rel C≤,P (inf P ) = 1, because ∀q ∈ C≤(P ) there
exists p ∈ P such that p ≤ q, and inf P ≤ p ≤ q. Then,
C≤(P ) = C≤(inf P ).
A common consequence’s operator is C∧, defined by
C∧(P ) = {q ∈ L; inf P ≤ q}, that can be defined as
C∧(P ) = C≤(inf P ), so in that case C≤(P ) = C∧(P ).

Example 4.5 Using the same preset in figure 1. Let’s calcu-
late the relevance for premises. Here, we have an example that
allows us to quantify the relevance of deseases of a patient.

If the patient has P = {antibody, smallpox}, then,
C≤(P ) = {antibody, smallpox, spot, fever, 1}. Hence,

• Rel C≤,P (antibody) = |{antibody,fever,1}|
|C≤(P )| = 3

5 .

• Rel C≤,P (smallpox) =
|{antibody,smallpox,spot,fever,1}|

|C≤(P )| = 5
5 = 1

• Obviously, Rel C≤,P (P ) = 1.

This example shows the case that a premise allows to de-
duce all consequences of P , since C≤(P ) = C≤(smallpox).

Theorem 4.6 If (L,≤,′ , ·,+) is a partial ordered set and
P ⊂ L such that inf P �= 0.
There exists p ∈ P such that Rel C≤,P (p) = 1, if and only if
p = inf P .

Proof. If Rel C≤(p) = 1, it is p ≤ q for all q ∈ C≤(P ). And
since C≤(P ) ⊂ C∧(P ), it is inf P ≤ q ∀q ∈ C≤(P ). The
infimum is the greatest lower bound of a set, then p ≤ inf P .
It is also inf P ≤ p. Thus, p = inf P , because L is a lattice, so
verifies antisymmetric property and has an infimum for each
subset.
On the other hand if p = inf P , implies inf P ∈ P , and as it
is said, Rel C≤,P (inf P ) = 1. �

In the theorem and in the above example, it is shown that
the set of premises can be reduced to an only premise with rel-
evance one, but if there is no one premise with relevance one,
it could be found a subset of premises that allows to obtain
the same consequences as the initial set of premises. When
models deal with not a very big number of premises, a simple
program can be used in order to find a minimal set of premises
by calculating all combination of premises.

This algorithm is exponential in the number of premises.
So, others algorithms can be designed in order to deal with a
big number of premises.
,

The algorithm is as follows.

First of all, we look for premises with greatest relevance, we
put one of these premises (p1) into the set of reduced premises,
then we calculate a relative relevance

Rel C≤,P−{p1}(p) =
|{q ∈ C≤(P )− C≤(p1); p ≤ q}|

|C≤(P )− C≤(p1)| ,

and we introduce a premise with the greatest relative relevance
(p2), and then we calculate other relative relevance,

Rel C≤,P−{p1,p2}(p) =

|{q ∈ (C≤(P )− C≤(p1))− C≤(p2); p ≤ q}|
|(C≤(P )− C≤(p1))− C≤(p2)| ,

and this process is repeated till the lowest r that verifies
C≤(P ) =

⋃

i∈{1,...,r}
C≤(pi). Then the reduced set searched

in this way will be {p1, ..., pr}.

4.2 Using the operator C•
In this case we can particularize the definition of relevance for
each subset of premises.

The relevance for a subsets of premises R ⊂ P(P ) − {∅}
is the ratio of consequences deduced from R, to consequences
deduced from P .

Rel C•,P (R) =
|{q ∈ L; q ∈ C•(R)}|

|C•(P )| =

|{q ∈ L;∃R̃ ⊂ P(R), inf R̃ ≤ q}|
|C•(P )|

Example 4.7 Let P be {c, d, a′} defined in the preorder in
figure 2. So, C•(P ) = {c, d, f, g, b, e, d′, a′, 1}. Relevance
for all subset of premises are,

  

  a 

     b    d

g’   e’

    d’

 g     e

  0

1 

c

f
a'

c’ b’ 

  f’

Figure 2: Preorder

• Rel C•,P ({c}) = 3
7 , Rel C•,P ({d}) = 5

7 ,
Rel C•,P ({a′}) = 2

7

• Rel C•,P ({c, d}) = 1, Rel C•,P ({c, a′}) = 1,
Rel C•,P ({d, a′}) = 5

7

This example gives two reduced sets of premises, {c, d} and
{c, a′}. Obviously C•(P ) = C•({c, d}) = C•({c, a′}).

5 Validating premises and partial hypotheses
Each premise is supported, or explained by hypotheses, so
in this section, a support for each premise is defined. Then,
we define the relevance of each partial hypothesis. This is
analogously to the above section, because premises are conse-
quences of hypotheses.

Let Hyp∗C(P ) �= ∅.
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Definition 5.1 The support of p ∈ P is the ratio of subsets of
hypotheses that allow getting p as consequence, to all subsets
of partial hypotheses.

SuppC,Hyp∗
C(P )(p) =

|{H ⊂ Hyp∗C(P ); p ∈ C(H)}|
2|Hyp∗

C(P )| − 1
(7)

Since |Hyp∗C(P )| > 0 the quotient in the definition is possi-
ble.

The bigger Support a premise has, the more hypotheses a-
llow to deduce it.

The SuppC,Hyp∗
C

verifies,

• If P = {p}, it is SuppC,Hyp∗
C(P )(p) = 1.

• If 1 ∈ P , then SuppC,Hyp∗
C(P )(1) = 1.

• SuppC,Hyp∗
C(P )(p) = 1 means that p is explained by all

h ∈ Hyp∗C(P ), in particular for all h ∈ Hyp(P ).

• If p1 ≤ p2, then
SuppC,Hyp∗

C(P )(p1) ≤ SuppC,Hyp∗
C(P )(p2). That is,

function Sup is monotonic.

• SuppC,Hyp∗
C(P )(sup{p1, p2}) ≥

max{SuppC,Hyp∗
C(P )(p1), SuppC,Hyp∗

C(P )(p2)}.

• SuppC,Hyp∗
C(P )(inf{p1, p2}) ≤

min{SuppC,Hyp∗
C(P )(p1), SuppC,Hyp∗

C(P )(p2)}.

SuppC,Hyp∗
C(P ), allows to compare premises in relation to

hypotheses and to allocate different degrees to each premise.

Definition 5.2 The relevance for a subset of partial hypothe-
ses H ⊂ Hyp∗C(P ) is the proportion of premises deduced
from H .

Rel C,Hyp∗
C(P )(H) =

|{p ∈ P ; p ∈ C(H)}|
|P | , (8)

if H ∈ P(Hyp∗C(P ))− {∅},

and, Rel C,Hyp∗
C(P )(∅) = 0.

Since |P | > 0, the quotient is possible.

There are many properties that Rel C,Hyp∗
C(P ) verifies,

• If P = {p}, it is Rel C,Hyp∗
C(P )(H) = 1, for all H ⊂

Hyp∗C(P ).

• For all H ⊂ Hyp∗C(P ), Rel C,Hyp∗
C(P )(H) > 0.

• If H1 ⊂ H2, then Rel C,Hyp∗
C(P )(H1) ≤

Rel C,Hyp∗
C(P )(H2). That is, function Rel C,Hyp∗

C(P ) is
monotonic.

• If there exists h ∈ Hyp∗C(P ) such that
Rel C,Hyp∗

C(P )({h}) = 1, it means that h is a partial hy-
pothesis that can explain all premises, so it is hypothesis.

Theorem 5.3 If HypC(P ) �= ∅, then Rel C,Hyp∗
C(P ) is a

measure.

Proof. It is monotonic as it is stated above,
Rel C,Hyp∗

C(P )(∅) = 0, and since there exists h ∈ HypC(P )
Rel C,Hyp∗

C(P )({h}) = 1.
�

The measure, Rel C,Hyp∗
C(P ), allows to compare partial hy-

potheses, and to distinguish which partial hypotheses are hy-
potheses in the classical sense, that are those one with rele-
vance one.

6 Conclusions
In this paper, it is built a measure in the set of consequences,
premises and partial hypotheses. That can be useful in deci-
sion problems in order to choose the consequence, premise or
hypotheses with the biggest measure.

It should be also pointed out that by using a relevance mea-
sure, we can get rid of premises that do not add information,
and still get the same set of consequences.

It is also introduced the concept of set of partial hypotheses,
that contains the classical hypotheses one. The measure built
allocate value one to that partial hypotheses that are hypothe-
ses in the classical sense.

As future work it can be proposed to apply these measures
to practical problems, for examples medical diagnosis prob-
lems much more bigger than the one that appears in this paper.
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Abstract
This short paper just contains some reflections on the
symmetric difference operator (∆) translating into an al-
gebraic framework the connective exclusive disjunction,
the linguistic either/or. In particular, it tries to find an
upper bound for the fuzzy operators generalizing the clas-
sical symmetric difference, that is, those to deal with im-
precise statements. This search is made throughout the
preservation of the inferential schemes

a∆b & a′ : b, and a∆b & a : b′,

in fuzzy logic. The paper tries to stress the inferential
interest of the symmetric difference.

1 Introduction

1.1
As it is well known, the exclusive disjunction either/or
with precise statements is representable, in the framework
of bounded lattices with negation [6], by the symmetric
difference

a∆b = (a+ b)·(a·b)′,
that enjoys the properties: 1). a∆b = b∆a, 2). a∆0 =
a, 3). a∆1 = a′, and 4). a∆a = a·a′ (equal to 0 in
ortholattices).

In the case of imprecise predicates representable by
means of fuzzy sets in a given universe of discourse [12],

∗This work has been supported by the Foundation for the Advance-
ment of Soft Computing (ECSC) (Asturias, Spain), and by the Span-
ish Department of Science and Innovation (MICINN) under project
TIN2008-06890-C02-01.

[3], several models for the symmetric difference were pre-
sented in [2]. Among them, the following ones are re-
markable,

∆1(a, b) = ϕ−1(|ϕ(a)− ϕ(b)|), and

∆2(a, b) = min(max(a, b),max(N(a), N(b))),

with an order-automorphism ϕ of the ordered unit interval
([0, 1],≤), and a strong negation N [7]. Notice that

• ∆1(a, b) = ∆1(b, a), ∆1(a, 1) = Nϕ(a),

• ∆1(a, 0) = ∆2(a, 0) = a, ∆1(a, a) = 0, like in the
ortholattice case,

• ∆2(a, a) = min(a,N(a)), that is equal to 0 if only
if a ∈ {0, 1},

Remember that Nϕ = ϕ−1 ◦ (1− id) ◦ ϕ is the strong
negation generated by ϕ (see [7]).

2 Some properties of the symmetric
difference in boolean algebras

2.1
It is obvious that in any lattice with negation is a∆b ≤ a+
b and a∆b ≤ (a·b)′. In addition and in boolean algebras,
from a·(a∆b) = a·b′ follows

a∆b = (a∆b)+a·(a∆b) = (a∆b)+a·b′ ⇒ a·b′ ≤ a∆b.

Hence, a·b′ ≤ a∆b ≤ a+ b and a·b′ ≤ a∆b ≤ (a·b)′.

Analogously, from a′·(a∆b) = a′·b, follows a′·b ≤
a∆b, and a′·b ≤ a∆b ≤ a+ b and a′·b ≤ a∆b ≤ (a·b)′.

1
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2.2
A curious, and interesting, property of the symmetric dif-
ference in boolean algebras is given by the following:

Proposition 2.1 The solutions of the equation a·x = b·x,
are x ≤ (a∆b)′.

Proof. If a·x = b·x it follows 0 = a′·b·x and
0 = b′·a·x, that is 0 = (a′·b + a·b′)x = (a∆b)·x, that
is equivalent (in boolean algebras) to x ≤ (a∆b)′. Recip-
rocally, if this last inequality holds, is x ≤ (a′·b+a·b′)′ =
(a+ b′)·(a′ + b), and

• a·x ≤ a·(a+ b′)(a′ + b) = a·(a′ + b) = a·b ≤ b→
a·x ≤ b·x

• b·x ≤ b·(a+ b′)(a′ + b) = b·(a+ b′) = b·a ≤ a→
b·x ≤ a·x.

Hence, a·x = b·x. �

Notice that in the Chinese Lantern orthomodular lattice
(Figure 1),

Figure 1: Chinese Lantern

it is b·a = b′·a, and (b∆b′)′ = (1·0′)′ = 0, but a 6= 0.
Hence, in the framework of ortholattices proposition 2.1
does not hold in general.

In the case of De Morgan algebras, for instance, taking
the De Morgan algebra ([0, 1]X ,min,max, 1 − id), and
dealing with the pointwise order, it is easy to find exam-
ples for which the property fails. With the discrete fuzzy
sets µ = 0.8/1+0.5/2+0.5/3, σ = 0.5/1+0.5/2+0.8/3

and δ = 0.3/1 + 0.9/2 + 0.3/3, it is min(µ, δ) =
min(σ, δ), but δ � (µ∆σ)′ = 0.5/1 + 0.5/2 + 0.5/3.

Notwithstanding, in the linear De Morgan algebra
([0, 1],min,max, 1− id), since if a ≤ b,

min(a, x) = min(b, x)⇔ x ≤ a,

and (a∆b)′ = (b·a′)′ = a + b′ = max(a, 1 − b) ≥ a,
it can be said that if min(a, x) = min(b, x), then x ≤
(a∆b)′, and an analogous result follows if b ≤ a. But
the reciprocal is not true: it is enough to take a = 0.3,
b = 0.4, x = 0.5, since x ≤ (a∆b)′ = 0.6, but 0.3 =
min(a, x) 6= min(b, x) = 0.4.

3 Schemes of inference with ∆

In [3] there is an interesting comment for the boolean
case, relative to a difference between the inclusive or,
and the exclusive either/or, from an inferential point
of view. It can be synthesized by: a·(a + b) = a, but
a·(a∆b) = a·(a + b)·(a·b)′ = a·(a′ + b′) = a·b′ ≤ b′,
showing the different deductive schemes

a or b
a and

a

Either a or b
a

not b.

Under the first scheme only one of the arguments can
be deduced from itself, but under the second what can be
deduced from an argument is the negation of the other.
Such last scheme reflects a kind of forwards-backwards
type of reasoning.

The inequality that follows:

a′·(a∆b) = a′·(a+b)·(a′+b′) = a′·(a+b) = a′·b ≤ b

reflects the scheme

Either a or b
not a

b,

that is a kind of backwards-forwards type of reasoning.
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Remark 3.1 Out of boolean algebras these schemes do
not always hold. For instance, in the Chinese Lantern or-
thomodular lattice in figure 1, it is a′·(a∆b) = a′·(a +
b)·(a·b)′ = a′·1·0′ = a′ � b, and a·(a∆b) = a·(a +
b)·(a·b)′ = a·1·0′ = a � b′. In the De Morgan alge-
bra ([0, 1],min,max, 1 − id), is 0.3·(0.3∆0.9) = 0.3 �
0.1 = 0.9′, and 0.5′·(0.5∆0.4) = 0.5·0.5 = 0.5 � 0.4.

4 On the three-valued logic case

A three valued logic [11] is a triplet (Ω, L, t), where Ω
is a set of propositions closed by negation, disjunction,
and conjunction. L is a set of three elements, in which
two of them are 1, 0 such that 0 6= 1 and 0′ = 1, and the
third element will be denoted by 1

2 , L is endowed with
′,+ and · operations given by tables. Finally t : Ω → Ł
is a function preserving the corresponding operations,
that is t(not p) = t(p)′, t(p and q) = t(p)·t(q),
t(p or q) = t(p) + t(q).

Function t is supposedly translating the ‘truth’ of the
propositions in Ω, for instance, 1 represents ‘true’, 0
represents ‘false’, and 1

2 can represent ‘undecided’.

As examples of three-valued logics it can be collected
those of Łukasiewicz, Gödel, Kleene, Bochvar and Post,
with the operations defined by the following tables ([4]):

• Łukasiewicz
′

1 0
1
2

1
2

0 1

· 1 1
2

0
1 1 1

2
0

1
2

1
2

1
2

0
0 0 0 0

+ 1 1
2

0
1 1 1 1
1
2

1 1
2

1
2

0 1 1
2

0

• Gödel
′

1 0
1
2

0
0 1

· 1 1
2

0
1 1 1

2
0

1
2

1
2

1
2

0
0 0 0 0

+ 1 1
2

0
1 1 1 1
1
2

1 1
2

1
2

0 1 1
2

0

• Kleene
′

1 0
1
2

1
2

0 1

· 1 1
2

0
1 1 1

2
0

1
2

1
2

1
2

0
0 0 0 0

+ 1 1
2

0
1 1 1 1
1
2

1 1
2

1
2

0 1 1
2

0

• Bochvar
′

1 0
1
2

1
2

0 1

· 1 1
2

0
1 1 1

2
0

1
2

1
2

1
2

1
2

0 0 1
2

0

+ 1 1
2

0
1 1 1

2
1

1
2

1
2

1
2

1
2

0 1 1
2

0

• Post
′

1 1
2

1
2

0
0 1

· 1 1
2

0
1 0 0 1

2
1
2

0 1 1
2

0 1
2

1
2

1
2

+ 1 1
2

0
1 1 1 1
1
2

1 1
2

1
2

0 1 1
2

0

So, it is possible to calculate the symmetric difference by
the formula a∆b = (a + b)·(a·b)′, and only three differ-
ent tables are obtained, one for Łukasiewicz, Kleene and
Bochvar logics, other for Gödel’s, and other for Post’s.

• Łukasiewicz, Kleene and Bochvar
∆ 1 1

2
0

1 0 1
2

1
1
2

1
2

1
2

1
2

0 1 1
2

0

• Gödel
∆ 1 1

2
0

1 0 0 1
1
2

0 0 1
2

0 1 1
2

0

• Post
∆ 1 1

2
0

1 0 0 1
1
2

0 1 1
2

0 1
2

1
2

1
2

Symmetric difference in the two first tables, ver-
ifies the properties in section 1.1. But, this is not
the case for the Post three-valued logic, in which
such properties are not verified. For instance,
∆(0, 0) = 1

2 6= 0, ∆(0, 1) = 1
2 6= 0′ = 1, and

∆( 1
2 ,

1
2 ) = 1 6= 1

2 ·( 1
2 )′ = 1

2 ·0 = 1
2 .

Regarding the verifications of the two schemes
a·∆(a, b) ≤ b′ and a′·∆(a, b) ≤ b, the case of Gödel
is the only in which they are verified. For instance, in
Łukasiewicz three-valued logic with a = 1

2 and b = 1,
is a·∆(a, b) = 1

2 · 12 = 1
2 � 1′ = 0, and the first scheme

fails. With a = 1
2 and b = 0, a′·∆(a, b) = 1

2 · 12 = 1
2 � 0,

and the second scheme also fails.

Taking into account the three-valued logics of
Łukasiewicz, Gödel, Kleene, and Bochvar it is also ver-
ified that a′·b ≤ a∆b ≤ a+ b, but it is not the case of the
three-valued logic of Post which fails for the lower bound
with the pairs (a = 1, b = 1

2 ) and (a = 1
2 , b = 1).
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5 The fuzzy case

5.1
In the case of imprecise predicates representable by fuzzy
sets in a universe of discourse X , and once an algebra of
fuzzy sets [8] ([0, 1]X , ·,+,′ ) has been selected, accord-
ingly with the context and purposes of the current problem
[10], the statements of the type

x is P or x is Q, and Either x is P or x is Q,

can be represented in the forms (µP + µQ)(x), and
(µP∆µQ)(x), respectively. Although in fuzzy logic, +
is usually represented by a continuous t-conorm [1], the
representation of ∆ is not always done through a single
type of numerical functions [2]. What is not yet clarified
is which ones of these functions do verify the deductive
scheme of disjunctive inference1

Either x is P or x is Q
x is not P

x is Q,

that is, T1(N(µP (x)),∆(µP (x), µQ(x))) ≤ µQ(x),
for some continuous t-norm T1 [1], and a strong negation
N . For instance, the models of the type (see [2]):

∆T (a, b) = T (max(a, b),max(N(a), N(b))),

in general do not verify that scheme since with T = min
and N = 1− id, it is: ∆min(0.1, 0) = min(0.1, 1) = 0.1,
and T1(N(a),∆min(a, b)) ≤ min(N(a),∆min(a, b)),
that is equal to min(0.9, 0.1) = 0.1 � 0.

Remark 5.1 The numerical functions ∆ : [0, 1] ×
[0, 1] → [0, 1] allow to reach the functional expres-
sion (µ∆σ)(x) = ∆(µ(x), σ(x)) for all x ∈ X ,
and µ, σ in [0, 1]X . With those ∆, the two deductive
schemes whose validity is to be studied are µ′·(µ∆σ) ≤
σ, and µ·(µ∆σ) ≤ σ′.

5.2
Within the framework of the standard algebras of fuzzy
sets ([5]), the models of ∆ verifying the first scheme are,

1See [9] for the typical disjunctive reasoning

consequently, submitted to satisfy the functional inequal-
ity

T1(N(a),∆(a, b)) ≤ b (1)

for all a, b in [0, 1] and some continuous t-norm T1, with
∆ such that, at least,

∆(a, b) = ∆(b, a), ∆(a, 1) = N(a), ∆(a, 0) = a.

Lemma 5.2 For the verification of the inequality (1) it is
necessary2 that T1 = Wϕ, and N ≤ Nϕ for any order
automorphism ϕ of the unit interval.

Proof. Taking b = 0, (1) is T1(N(a),∆(a, 0)) =
T1(N(a), a) = 0, equivalent to T1 = Wϕ and N ≤ Nϕ
[1]. �

Theorem 5.3 If T1 = Wϕ and N = Nϕ, inequality 1
holds if and only if ∆ ≤W ∗ϕ.

Proof.

1. If T1 = Wϕ and N = Nϕ, inequal-
ity 1 is Wϕ(Nϕ(a),∆(a, b)) ≤ b ⇔
W (1 − ϕ(a), ϕ(∆(a, b))) ≤ ϕ(b), that is,
max(0, ϕ(∆(a, b)) − ϕ(a)) ≤ ϕ(b), that implies
ϕ(∆(a, b)) ≤ ϕ(b) + ϕ(a).

Since ϕ(∆(a, b)) ≤ 1, it follows ∆(a, b) ≤
ϕ−1(min(1, ϕ(a) + ϕ(b))) = W ∗ϕ(a, b).

2. Provided ∆ ≤ W ∗ϕ, it is : Wϕ(Nϕ(a),∆(a, b)) ≤
Wϕ(Nϕ(a),W ∗ϕ(a, b)) =
ϕ−1W (1− ϕ(a), ϕ(W ∗ϕ(a, b))) =
ϕ−1 max(0, 1− ϕ(a) + ϕ(W ∗ϕ(a, b))− 1) =
ϕ−1 max(0,min(1, ϕ(a) + ϕ(b))− ϕ(a)) =
ϕ−1 max(0,min(1− ϕ(a), ϕ(b))) =
ϕ−1 min(1− ϕ(a), ϕ(b)) =
min(Nϕ(a), b) ≤ b.

�
Notice that ∆(a, 0) = ∆(a, 0) ≤ W ∗ϕ(a, 0) = a,

∆(a, 1) ≤ W ∗ϕ(a, 1) = 1, and ∆(a, a) ≤ W ∗ϕ(a, a) =
ϕ−1(min(1, 2ϕ(a))).

2Being ϕ an order automorphism, the t-norms of Łukasiewicz are
Wϕ(a, b) = ϕ−1 max(0, ϕ(a) + ϕ(b) − 1), and the t-conorms
W ∗

ϕ(a, b) = ϕ−1 min(1, ϕ(a) + ϕ(b))
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Remarks 5.4

• Last theorem gives an upper bound for the operators
∆ such that ∆(a, 0) = a.

• Since W ∗ϕ(a, 1) = 1 6= N(a), it is clear that the
upper bound W ∗ϕ is not an operator ∆.

• ∆ ≤ W ∗ϕ is a translation of a∆b ≤ a + b into the
fuzzy case.

5.3
The bounds for ∆ verifying the second scheme
µ·(µ∆σ) ≤ σ′, once translated into

T1(a,∆(a, b)) ≤ N(b), (2)

for all a, b in [0, 1], are different from those verifying (1).

Lemma 5.5 For the verification of the inequality (2) it is
necessary that T1 = Wϕ, and N ≤ Nϕ for any order
automorphism ϕ of the unit interval.

Proof. Taking b = 1, in (2): T1(a,∆(a, 1)) =
T1(a,N(a)) = 0, equivalent to T1 = Wϕ and N ≤ Nϕ.
�
Theorem 5.6 If T1 = Wϕ and N = Nϕ, inequality 2
holds if and only if ∆ ≤W ∗ϕ ◦ (Nϕ ×Nϕ).

Proof.

1. If T1 = Wϕ, and N = Nϕ, from 2 follows
Wϕ(a,∆(a, b)) ≤ Nϕ(b). That is,

W (ϕ(a), ϕ(∆(a, b))) ≤ 1− ϕ(b), or

max(0, ϕ(a) + ϕ(∆(a, b))− 1) ≤ 1− ϕ(b),

that implies

ϕ(a) + ϕ(∆(a, b))− 1 ≤ 1− ϕ(b), or

ϕ(∆(a, b)) ≤ 2− ϕ(a)− ϕ(b).

Hence,

ϕ(∆(a, b)) ≤ min(1, 2− ϕ(a)− ϕ(b)), or

∆(a, b) ≤ ϕ−1(min(1, 2− ϕ(a)− ϕ(b))

or ∆(a, b) ≤ ϕ−1(min(1, 1− ϕ(a) + 1− ϕ(b))) =
ϕ−1W ∗(ϕ(Nϕ(a)), ϕ(Nϕ(b))) = W ∗ϕ ◦ (Nϕ ×
Nϕ)(a, b).

2. If ∆ ≤ W ∗ϕ ◦ (Nϕ × Nϕ), it follows ∆(a, b) ≤
ϕ−1(min(1, 1−ϕ(a) + 1−ϕ(b))), or ϕ(∆(a, b)) ≤
min(1, 1−ϕ(a)+1−ϕ(b)) ≤ 1−ϕ(a)+1−ϕ(b),
that implies ϕ(a) + ϕ(∆(a, b)) − 1 ≤ 1 − ϕ(b)
or max(0, ϕ(a) + ϕ(∆(a, b)) − 1) ≤ 1 − ϕ(b).
Finally, ϕ−1(max(0, ϕ(a) + ϕ(∆(a, b)) − 1)) =
Wϕ(a,∆(a, b)) ≤ ϕ−1(1− ϕ(b)) ≤ Nϕ(b).

�
It should be noticed that the upper bound W ∗ϕ ◦ (Nϕ ×

Nϕ) is not a ∆ operator, since

• W ∗ϕ ◦ (Nϕ ×Nϕ)(a, 0) = W ∗ϕ(Nϕ(a), 1) = 1 6= a

• W ∗ϕ◦(Nϕ×Nϕ)(a, a) = ϕ−1(min(1, 2−2·ϕ(a))) =
1. So, it is not Nϕ(a,Nϕ(a)) = 0.

Theorem 5.6 gives an upper bound for the operators ∆
such that ∆(a, 1) = N(a).

6 Last comment
It is well known the importance that in fuzzy logic has the
inference involving fuzzy and crisp sets, as it is the case,
for instance and in fuzzy control, of the Takagi-Sugeno
model, in which the antecedents of the values are fuzzy,
but the consequents are crisp.

For what concerns the fuzzy models ∆1 and ∆2 in sec-
tion 1, and with a crisp set A, it is:

• ∆2(µA, σ)(x) = ∆2(µA(x), σ(x)) =
T (max(µA(x), σ(x)),max(N(µA(x)), N(σ(x))))

=

{
T (1, N(σ(x))) = N(σ(x)), if x ∈ A
T (σ(x), 1) = σ(x), if x /∈ A

• ∆1(µA, σ)(x) = ∆1(µA(x), σ(x)) =
ϕ−1(|ϕ(µA(x))− ϕ(σ)|) ={
ϕ−1(1− ϕ(σ(x))) = Nϕ(σ(x)), if x ∈ A
σ(x), if x /∈ A.

Hence,

• The scheme “µ′A(x),∆(µA(x), σ(x)) : σ(x)”, al-
ways holds since,
T (N(µA(x),∆(µA(x), σ(x)))) ={

0, if x ∈ A
σ(x), if x /∈ A

}
≤ σ(x).
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• The scheme “µA(x),∆(µA(x), σ(x)) : σ′(x)”, also
holds always since,
T (µA(x),∆(µA(x), σ(x))) ={

∆(1, σ(x)) = N(σ(x)), if x ∈ A
0, if x /∈ A

}
≤

≤ N(σ(x)).

7 Conclusion
Apart of showing some few properties of the symmetric
difference in boolean algebras, and their not validity in
ortholattices and De Morgan algebras, this paper tries to
continue with a comment made by Bernard Bosanquet
[3], concerning a scheme of boolean deduction based on
the exclusive disjunction either/or. It also tries to stress
the inferential interest of the symmetric difference, an
operator that is yet scarcely studied in multiple-valued
and fuzzy logic.

The two considered schemes, like the classicals a′·(a+
b) ≤ b, and b·(a·b)′ = b·(a′ + b′) = b·a′ ≤ a′, are of
a backwards-forwards and forwards-backwards reasoning
type, respectively. With this idea in mind, upper bounds
for the operators of symmetric difference ∆, are obtained
for the two fuzzy schemes given by µ′·(µ∆σ) ≤ σ, and
µ·(µ∆σ) ≤ σ′, from the corresponding functional in-
equalities

T1(N(a),∆(a, b)) ≤ b, and T1(a,∆(a, b)) ≤ N(b).
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Some (Unended) Queries on Conjecturing

Itziar Garcı́a-Honrado, Adolfo R. de Soto, and Enric Trillas

Abstract— This paper deals with some of the queries still
waiting for a good answer in the new field of the so called
CHC Models related to approach ordinary reasoning through
the conjectures concept. Namely, with two subjects of which
the first is of a practical interest, and the second is of a
theoretical one: The growing in the number of conjectures
once new premises of a different character are added, and
the relationships between Galois’ Connections and Conjecture
Operators. Since ‘conjecturing’ mainly refers to ordinary
reasoning, CHC Models can be included in the new field of
Computing With Words and Perceptions.

Keywords: Conjectures, Galois’ Connections, Crisp+Fuzzy
Information.

I. INTRODUCTION

Ordinary, everyday, or commonsense reasoning basically
consists in processes that, starting with a set P of premises,
conduct to a conclusion q such that either

1) q follows necessarily from P , that is, q is a ‘safe’
conclusion of P , or

2) q is a contingent explanation of the premises in P , in
the sense that every p in P is a ‘safe’ conclusion of
the singleton q, or

3) q is a contingent conclusion that is neither a ‘safe’ one,
nor a contingent explanation of P .

Those processes are respectively called: Deductive, or
Formal, in case (1), Abductive, or Presumptive, in case (2),
and Speculative, or Tentative, in case (3).

Although deduction is formalized from time ago by the
consequence operators defined by Alfred Tarski, abduction
and speculation only recently were included in a unified
formal framework separately containing the above three
types of conclusions. Following William Whewell ([15]), the
elements in this unifying framework are called ‘conjectures’,
and respectively denoted by the linguistic terms ‘logical
consequences’, ‘hypotheses’, and ‘speculations’.

Let us remember that the term ‘abduction’ was introduced
by Charles S. Peirce ([8]), and that a logic in a universe
of discourse X is commonly understood as a pair (X,C),
where C is a Tarski’s operator of consequences defined
in some subset of P(X), the family of subsets of X . By
adding to these three processes those known as reasoning
by similitude or analogy ([1], [2]) that are not considered
in the current paper, most of the ways with which humans

Itziar Garcı́a-Honrado and Enric Trillas are in the European Cen-
tre for Soft Computing (Mieres, Spain), and Adolfo R. de Soto in
the School of Industrial Engineering and Computer Science, University
of León (Spain). (emails: {itziar.garcia, enric.trillas}@softcomputing.es,
adolfo.rdesoto@unileon.es).

conduct their reasonings are captured. Since the new field of
Computing with Words and Perceptions (CW/P), introduced
by Lotfi A. Zadeh ([16]), deals with ordinary reasoning in
Natural Language, this paper although it is not in the current
lines of research in CW/P, deserves to be included in it.

The formal study of conjecturing, under the so-called CHC
Models (Consequences, Hypotheses and Conjectures (see
[9])), is a young research subject actually born with the
paper ([3]), published in the last year of the XX Century.
Most of the several questions that immediately followed after
this paper, were posed and solved or just partially solved, in
the papers that subsequently appeared (see [12],[13],[11]).
Anyway, there remain some neither posed, nor yet solved or
approached questions; among them, for instance,

1) To find ‘rules’, like those presented by J.S. Mill ([7]),
for obtaining hypotheses and speculations from the
premises. These rules can conduct to find computer
programs or algorithms actually able, when possible,
to reach either hypotheses or speculations from the
premises.

2) To obtain suitable ways of numerically measuring the
support a speculation or a hypothesis deserves from a
given set of premises.

3) To clarify how, from a previously solved problem
and by analogy or similitude, it is possible to obtain
hypotheses or logical consequences, through ‘similar’
speculations.

4) To study what happens to the conjectures when new
information, supplied by new premises added out of
the initial formal framework, appear.

5) To find theoretical alternative ways of dealing with all
kind of conjectures which are able to better explain
their behavior in ordinary reasoning.
and etc.

One of the drawbacks shown by the current formalization
of ordinary reasoning by CHC Models, concerns its ‘static’
character relatively to the information contained in the
premises that, actually, in a lot of cases and from several
points of view [14], is in flux. The reasoning processes
humans develop are not static, but dynamic. Although the
subject is actually a wide one, this paper just tries to present
a first case-example that can be considered typical of fuzzy
logic.

So that, this paper tries to begin with point (4) in the
case the old information is crisp and the new is fuzzy, and
with point (5) with the help of Galois connections. What it
contains should be just considered as a first attempt to deal
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with such topics.

II. BASIC CONCEPTS

A possible model for commonsense reasoning can be built
(through some information) by the concept of a conjecture,
which includes those of consequence, hypothesis and spec-
ulation (see [5], [9], [11]).

This model was initially defined in a given universe of
discourse, in which there are both the available information
and all conjectures. But it could be said that such definition
is ‘static’, and that it lacks to afford the actually real case
in which information is in flux. Along this paper we try to
consider what happens when new information from even
other universe of discourse is added to the previously given
one, or the order in the universe of discourse is changed.

In the model the order in the universe of discourse is
relevant, because changing it the concept of deduction also
changes. That is so because the concept of deduction from
some information P is accommodated in this model by
means of a consequence operator in the sense of Tarski, and
there is an intimate relationship between these operators
and preorders ([11]). Let us suppose that (L,≤) is, at least,
a preordered set.

Definition 2.1 (Structure of consequences): Let L be the
universe of discourse and F ⊆ P(L). It is said that (L,F, C)
is a structure of consequences, or, alternatively, that C is an
operator of consequences (in the sense of Tarski) for F in L,
provided C : F→ F verifies the four following properties:

1) P ⊆ C(P ), for all P ∈ F (C is extensive)
2) If P ⊆ Q, then C(P ) ⊆ C(Q), for all P,Q ∈ F (C is

monotonic)
3) C(C(P )) = C(P ) for all P ∈ F, or C2 = C (C is a

clausure)
4) If q ∈ C(P ), then q′ /∈ C(P ) (C is consistent, and

q′ =not q).

The operators C∧(P ) = {q ∈ L; inf P ≤ q} and
C≤(P ) = {q ∈ L; ∃p ∈ P, p ≤ q} defined for all
P ∈ F = {P ∈ P(L); inf P 6= 0} form an structure
of consequences provided all non-empty subset in L has
infimum, that is, L is infimum complete.

Conjectures are those elements that are non-contradictory
with the available information. They can be defined from an
operator of consequences, in the following way

ConjC(P ) = {q ∈ L; q′ /∈ C(P )}, (1)

understanding that an element q is not contradictory with
the premises when its negation q′ is not deducible under C
from the premises. Obviously, P ⊂ C(P ) ⊂ ConjC(P ).

It should be noticed that the term non-contradictory can
be understood in different ways, for instance in a infimum
complete ordered structure (L,≤), the operators (· = and):
• Conj1(P ) = {q ∈ L; inf(P )·q 6= 0},

• Conj2(P ) = {q ∈ L; inf(P )·q � (inf(P )·q)′},
are sets of conjectures that can not be written in the form
(1) with C a consequence operator. Anyway, it is always
P ⊂ C∧(P ) ⊂ Conji(P ) and C≤(P ) ⊂ Conji(P ), for
i = 1, 2.

Hypotheses are those elements that ‘explain’ the
information supplied by P . They can be also built
by a consequences operator in the sense of Tarski by
Hyp C(P ) = {q ∈ Conj(P ) − C(P ); {q} ∈ F and P ⊆
C(q)}. In the cases of C∧ and C≤ this set reduces to
Hyp(P ) = {q ∈ Conj(P ); {q} ∈ F and 0 < q ≤ inf P}.

Finally, speculations are those elements in the set of
conjectures that are neither consequences, nor hypotheses:
Sp(P ) = Conj(P )− [C(P ) ∪Hyp(P )]. With all that, it is
the partition L = Ref(P )∪Conj(P ) = Ref(P )∪C(P )∪
Hyp(P ) ∪ Sp(P ), with ‘refutations’ of P , Ref(P ) = {q ∈
L; q /∈ Conj(P )}.

III. INITIAL POINTS

3.1 An interesting, and not yet studied, problem in CHC
models is to analyze the change in the sets of conjectures,
hypotheses and consequences through a mapping between
two lattices. Fuzzy Set Theory could offer an interesting
example of this problem.

Let L1, L2 be the lattices

L1 = ({0, 1}X ,min,max, 1− id) ≈ (P(X),∧,∨,′ ),
L2 = ([0, 1]X ,min,max, 1− id).

of crisp sets, P(X), and fuzzy sets, F (X), on the same
universe X , respectively. L1 is a boolean algebra, L2 is a
de Morgan-Kleene algebra and L1 is a sublattice of L2.
Obviously, there exists a injective morphism between L1

and L2.

Let us consider the case in which the conjectures of
a set of premises P come from logical consequences
given by the operator C∧. To simplify the problem,
let’s take P = {p1, p2} ⊂ L1, and suppose that a new
premise p∗3 ∈ F (X) − P(X) is considered and so
P ∗ = {p1, p2, p∗3} ⊂ L2 is a set of two crisp, and one fuzzy
premises.

Of course, Conj(P ) = {p ∈ P(X) : p1 · p2 =
min(p1, p2) 6≤ p′} is in L1, but Conj∗(P ) = {µ ∈ F (X) :
p1 · p2 · p∗3 = min(p1, p2, p

∗
3) 6≤ µ′ = 1 − µ} is in L2 and,

since p1 · p2 · p∗3 ≤ p1 · p2, if µ ∈ C∧(P ) from p1 · p2 ≤ µ
it follows p1 · p2 · p∗3 ≤ µ, and C∧(P ) ⊂ C∗∧(P ∗). From the
same type of argument it follows that

Conj∗(P ∗) ⊂ Conj∗(P ),

being also obviously that:

Conj(P ) ⊂ Conj∗(P ).

That is,
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1) P ∗ has less conjectures than P in L2.
2) P has more conjectures in L2 than in L1,

and the question arises when considering that our interest
lies in the new conjectures in Conj∗(P ∗)− Conj(P ).

Remark 3.1: What has been done can be identically re-
peated if L1 is any boolean algebra B since, by the
Stone’s Representation Theorem, B is isomorphic with a
boolean algebra of subsets of some universe. Provided B
is isomorphic with a boolean algebra L1 included in P(X),
it is enough to take the isomorphism (P(X),∩,∪,c ) ≈
({0, 1}X ,min,max, 1 − id) to have the boolean algebra of
B by the isomorphism in L2.

Remark 3.2: Given a De Morgan algebra L =
(L, ·,+,′ ; 0, 1), the set L0 = {a ∈ L; a·a′ = 0} of
its ‘boolean elements’ is a boolean algebra L0 with the
restriction of the operations in L. Hence, what has bean
done can be also repeated in these cases.

3.2 The last can be seen as an example of a Galois
Connection.

Definition 3.3 (Galois Connection): Given a couple of
posets (R,≤) and (U,�), a Galois Connection G =<
R,U, α, γ > is a couple of mappings α : R −→ U and
γ : U −→ R such as

α(r) � u⇐⇒ r ≤ γ(u) ∀r ∈ R, u ∈ U.
Usually, the mapping α is called the lower adjoint, or

coadjoint, while the mapping γ is called the upper adjoint,
or adjoint.

Returning to the above case, it can be written as a
Galois connection G1 =< L1, L2, α1, γ1 > by defining two
mappings between the lattices L1 and L2:

α1 : L1 −→ L2, α1(p) = p,∀p ∈ P(X), (2)
γ1 : L2 −→ L1, γ1(µ) = bµc,∀µ ∈ F(X) (3)

where

bµc(x) =

{
1 if µ(x) = 1
0 otherwise

}
= sup{p ∈ P(X) : p ≤ µ}.

Both mappings constitute a Galois connection because,
with the pointwise ordering, it is evident that

α1(p) = p ≤ µ⇐⇒ p ≤ γ1(µ) = bµc.
Remark 3.4: Note that γ1 ◦α1 = idL1

, but it is only α1 ◦
γ1 ≤ idL2 .

3.3 The Galois connection defined in the previous para-
graph can not be reversed. In other words, if the coadjoint
member is taken as the adjoint member and vice versa,
it is not a Galois connection. Notwithstanding, a Galois
connection G2 =< L2, L1, α2, γ2 > between L2 and L1

can be obtained with the mappings:

α2 : L2 −→ L1, α2(µ) =, dµe,∀µ ∈ F(X) (4)
γ2 : L1 −→ L2, γ2(p) = p,∀p ∈ P(X), (5)

where

dµe(x) =

{
1 if µ(x) > 0
0 otherwise

}
= inf{p ∈ P(X) : µ ≤ p}.

Again, the proof is easy because to prove that

α(µ) = dµe ≤ p⇐⇒ µ ≤ γ(p) = p,

is enough to take account of µ ≤ dµe, and also if µ ≤ p
then µ is 0 when p is 0 and so, in this case, dµe ≤ p. This
Galois connection will be named G2.

IV. CHC MODELS THROUGH GALOIS CONNECTION

Let G =< R,U, α, γ > be a Galois connection. Let us
suppose that the conjectures in R and U are given by the
consequences operator C∧ and let CR, CU be that operator
defined on R and U , respectively.

A. Consequences

The following properties are satisfied.

Proposition 4.1: α(CR(r)) ⊆ CU (α(r)).
Proof. By monotonicity of the coadjoint α. �
Proposition 4.2: γ−1(CR(r)) = CU (α(r)).
Proof.

u ∈ γ−1(CR(r)) ⇔ ∃s ∈ R : u = γ−1(s), s ∈ CR(r)

⇔ r ≤ s = γ(u)

⇔ α(r) � u
⇔ u ∈ CU (α(r)).

�
Corollary 4.3: γ(CU (α(r))) ⊆ CR(r).
Corollary 4.4: If γ is a surjective mapping, then

γ(CU (α(r))) = CR(r).

The Galois Connection G1 has a surjective adjoint and then
last corollary applies. So in this case is γ1(CF (p)) = CP(p),
but it only says that the projection of the fuzzy consequences
of a classical predicate is the set of its classical consequences.
It is known that when the adjoint of a Galois connection is
a surjective mapping, the coadjoint mapping is one-to-one,
and, of course, this is the case of G1. These kind of Galois
connections are called embeddings.

In the case of the Galois connection G2 the adjoint map-
ping is not surjective, so it is only valid that CP(α2(µ)) ⊂
CF (µ). This expression says that the set of classical con-
sequences of the projection of a fuzzy predicate is a subset
of the set of fuzzy consequences of the fuzzy predicate. Re-
member that in this case the projection of a fuzzy predicate is
given by the adjoint γ2. This relation can be used to invalidate
some consequences because if a classical predicate is not a
consequence of the projection of a fuzzy predicate, then it
can not be a fuzzy consequence of that fuzzy predicate.

Galois connection G2 is an example showing that the
condition on the adjoint mapping of being a surjection is
a necessary condition to obtain the result of the corollary
4.4. In this case, a fuzzy set µ is an image by the adjoint
γ2 if and only if it is a classical set. If the corollary 4.4
is reduced to classical sets, then it is also true for G2, so
any fuzzy consequence of µ can be calculated by means of
CP(α2(µ)) = CP(dµe) because any fuzzy consequence of µ
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is also a classical consequence of dµe because in this case
it is just µ.

B. Hypotheses

Usually, in CHC models the definition of the set of hy-
potheses of a predicate does not include the predicate itself,
but in this case we consider the definition of hypotheses as

Hyp(p) = {q : 0 < q ≤ p}.
Proposition 4.5: α(Hyp≤(r)) ⊆ Hyp�(α(r)).
Proof. By monotonicity of the coadjoint α. �

Proposition 4.6: α−1(Hyp�(u)) = Hyp≤(γ(u)).
Proof.

r ∈ α−1(Hyp�(u)) ⇔ ∃v ∈ U : r = α−1(v),

v ∈ Hyp�(u)

⇔ α(r) = v � u
⇔ r ≤ γ(u)

⇔ r ∈ Hyp≤(γ(u)).

�
Corollary 4.7: Hyp�(u) ⊇ α(Hyp≤(γ(u))).
Corollary 4.8: If α is a surjective mapping, then

Hyp�(u) = α(Hyp≤(γ(u))).

The relation between hypotheses and premises is just the
opposite with respect to the relation between consequences
and premises, this fact explains that in the case of the Galois
connection G1, since the coadjoint is not surjective, it is
Hyp�(u) ⊇ α1(Hyp≤(γ1(u))), therefore the projection of
all classical hypotheses does not cover, the set of all hy-
potheses. Notwithstanding, the coadjoint of G2 is surjective,
so Hyp�(u) = α2(Hyp≤(γ2(u))), and that implies that
classical hypotheses can be calculated as the projections of
fuzzy hypotheses, once translating the crisp set into a fuzzy
set though the identity γ2.

C. The general case of conjectures

Taking into account the definition of conjectures from a
consequence operator, that is ConjC(P ) = {q ∈ L;N(q) /∈
C(P )}, and translating the results for consequences in
section IV-A, for any Galois connection G =< R,U, α, γ >
such that the adjoint is surjective and verifies N ◦γ = γ ◦N ,
it can be said that the following chain is verified

ConjC(α(p)) = {q ∈ U ;N(q) � γ−1(C(p))} = {q ∈
U ; γ(N(q)) � C(p)} = {q ∈ U ;N(γ(q)) � C(p)} =
γ(Conj(α(p))).

Anyway neither G1 nor G2 verify this conditions, since
γ1 is surjective but it does not verify N ◦ γ = γ ◦N , and γ2
is not surjective. That is the reason why conjectures in one
universe cannot be determined by conjectures in the other.

In the particular case of G1, the set of conjectures in L1

can be translated into the set of conjectures in L2 by means of

the mapping α1 in G1. It is α1(Conj(p)) ⊂ Conj(α1(p)).
Since if q ∈ α1(Conj(p)), it is p � N(q), that is, ∃x ∈ X ,
such that p(x) > N(q(x)), and that is p(x) = 1 and q(x) =
1, and for that x ∈ X , it is also α1(p)(x) > N(α1(q)(x)),
so α1(q) ∈ Conj(α1(p)). The relation of inclusion is strict:
it could exists σ ∈ Conj(α1(p)), and σ 6= α1(q), for all
q ∈ Conj(p). Notice that all elements in Conj(α(p)) −
α(ConjC(p)) are new conjectures.

Regarding the set of refutations, when the lattices in a
Galois connection are orthocomplemented it is easy to prove
the next result.

Proposition 4.9: α−1(Ref�(u)) = Hyp≤(γ(u′)).
Proof.

r ∈ α−1(Ref�(u)) ⇔ ∃v ∈ U : r = α−1(v),

v ∈ Ref�(u)

⇔ α(r) = v � u′
⇔ r ≤ γ(u′)

⇔ r ∈ Hyp≤(γ(u′)).

�
Corollary 4.10: Ref�(u) ⊇ α(Hyp≤(γ(u′))).
Corollary 4.11: If α is a surjective mapping, then

Ref�(u) = α(Hyp≤(γ(u′))).
So, in the general case, it is possible to know that an

element of R is not a refutation (so it is a conjecture) if
it does not belong to the α−range of the set of hypotheses
of the image of its negation by γ. When α is a surjective
mapping, that condition is also a necessary one.

V. CHANGING THE ORDER IN THE UNIVERSE OF
DISCOURSE

Conjecturing between two frameworks, can be understood
as conjecturing in two different universes of discourse
connected by a Galois connection, or as conjecturing in the
same universe of discourse but ordered in different ways,
this is what it will be developed in this section.

Taking the universe of discourse of fuzzy sets, [0, 1]X , its
usual order is the pointwise order. Given µ, σ ∈ [0, 1]X it is
said that µ ≤ σ if and only if µ(x) ≤ σ(x) for all x ∈ X ,
but it can be also used the sharpened order, being ϕ an order
automorphism,

µ ≤ϕ σ ⇔
{
µ(x) ≤ σ(x), if σ(x) ≤ ϕ−1( 1

2 )
σ(x) ≤ µ(x), if σ(x) > ϕ−1( 1

2 )

introduced to study the behavior of the predicate P = fuzzy
in [0, 1]X , (see [10], [6], [4]).

From a body of information P = {µ1, µ2, ..., µn} 6= ∅
and a preorder ≤, it can be built up the consequences
operator C≤(P ) = {σ ∈ [0, 1]X ;∃µi ∈ P ;µi ≤ σ}, that
verifies C≤(P ) = ∪

1≤i≤n
C≤({µi}) ([11]). So, we can reduce

the study to that of CHC models for only one single premise.1

1Notice that in the case of C∧, consequences are obtained through one
element InfP , that is not necessary a premise.
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From a premise µ ∈ [0, 1]X , conjectures will be those
elements that are non-contradictory with it: Conj C≤(µ) =
{σ ∈ [0, 1]X ;µ � N(σ)}, being N some strong
negation, and it is Conj C≤(P ) = ∩

1≤i≤n
Conj C≤(µi).

Hypotheses are those elements that explain the premise,
that is, those whose consequences include the premise
Hyp C≤(µ) = {σ ∈ Conj C≤(µ); 0 < σ ≤ µ},
and speculations are those conjectures that neither
explain the premise nor are deduced form it,
Sp C≤(µ) = Conj C≤(µ)− [C≤(µ) ∩Hyp C≤(µ)].

The consequences operator C≤ is determined by the
order in the universe of discourse, therefore, changing
such order, the obtained consequences also change. That
is why the concept of deduction (inherent to the concept
of consequence operator) depends on the order of the
universe, and the reason why consequences obtained using
one order can became speculation in the other order. In
fact, that is what happens with some consequences obtained
by the sharpened order that became speculations using the
pointwise order.

First of all, let us check that C≤ϕ
⊂ Conj C≤ ,

Proposition 5.1: If µ 6= µ0, every consequence obtained
with the sharpened order and having prototypes (x1 ∈ X ,
such that σ(x1) = 1) is a conjecture obtained with the
pointwise order.

Proof. If σ ∈ C≤ϕ
(µ), it is µ ≤ϕ σ or{

µ(x) ≤ σ(x), if σ(x) ≤ ϕ−1( 1
2 )

σ(x) ≤ µ(x), if σ(x) > ϕ−1( 1
2 )

.

If σ has prototypes, ∃x1 ∈ X , such that
σ(x1) = 1 > ϕ−1( 1

2 ), so N(ϕ−1( 1
2 )) ≥ N(σ(x1)) or

ϕ−1( 1
2 ) ≥ N(σ(x1)).

Since σ ∈ C≤ϕ
(µ), it is µ ≤ϕ σ, therefore µ(x1) = 1.

Then, N(σ(x1)) ≤ ϕ−1( 1
2 ) < σ(x1) = µ(x1), that is

µ � N(σ), or σ ∈ Conj C≤(µ). �
Then, let us clarify which kind of conjecture with respect

to the pointwise order are some consequences obtained
thought the sharpened order,

Proposition 5.2: Whenever µ, σ has prototypes and anti-
prototypes (x0 ∈ X , such that σ(x0) = 0) and the
sets of prototypes (and, respectively, anti-prototypes) of µ
strictly includes the sets of prototypes (and, respectively, anti-
prototypes) of µ. If µ 6= µ0, every consequence of µ obtained
through the sharpened order, denoted by σ, in the previous
conditions, is a speculation obtained through the pointwise
order.

Proof. By proposition 5.1, if σ ∈ C≤ϕ
(µ) has prototypes,

then σ ∈ Conj C≤(µ) = C≤(µ) ∪Hyp C≤(µ) ∪ Sp C≤(µ).
So, it will be enough to check that σ /∈ C≤(µ) and σ /∈
Hyp C≤(µ).
• If µ has prototypes not coincidental with the prototypes

of σ, ∃xc ∈ X such that µ(xc) = 1, and σ(xc) < 1, so

σ(xc) < µ(xc) and σ /∈ C≤(µ).
• If µ has anti-prototypes not coincidental with the anti-

prototypes of σ, ∃xh ∈ X such that µ(xh) = 0 and
σ(xh) > 0, so µ(xh) < σ(xh), and σ /∈ Hyp C≤(µ).

�
So, it is interesting to note that the consequences actually

vary when the order is changed.

Remark 5.3: It can not be built a Galois connection
between ([0, 1]X ,≤) and ([0, 1]X ,≤ϕ) with the adjoint

γ(µ) =

{
1, if µ(x) ≥ ϕ−1( 1

2 )
0, if otherwise. and the coadjoin

α(p) = p. Since the implication p ≤ γ(µ) ⇒ α(p) ≤ϕ µ
is not verified. It is enough to take the following

µ, σ ∈ [0, 1][0,6]: µ =

{
x
3 , if x ∈ [0, 3]
6−x
3 , if x /∈ [0, 3].

and

p = µ[2,2.5] =

{
1, if x ∈ [2, 2.5]
0, otherwise, and N = 1 − id (that

is ϕ−1(x) = 1
2 ), since p ≤ γ(µ) = µ[1.5,4.5] but α(p) �ϕ µ.

Reciprocally, it is α(p) ≤ϕ µ ⇒ p ≤ γ(µ), since if
it is supposed that α(p) ≤ϕ µ and p � γ(µ), it exists
x0 ∈ X , such that p(x0) = 1 and µ(x0) ≤ ϕ−1( 1

2 ). So,
p(x0) ≤ µ(x0) ≤ ϕ−1( 1

2 ), then p(x0) = 0, and an absurd is
reached.

Following the same scheme of proof, if µ, σ ∈ {0, 1}X
such that µ ≤ϕ σ, it is {x ∈ X;µ(x) = 1} ⊂ {x ∈
X;σ(x) = 1}. Since, from σ(x) = 0, it obviously follows
µ(x) = 0, that is the same to from µ(x) = 1, it follows
σ(x) = 1.

VI. EXAMPLE

A. Consequences and conjectures in two different universes
of discourse

.
It will be deal with the universes of crisp (L1), and fuzzy

sets (L2).

Let it be the premise “be between 0.4 and 0.6”,
represented by p = µ[0.4,0.6] in L1,

µ[0.4,0.6](x) =

{
1, if x ∈ [0.4, 0.6]
0, if x /∈ [0.4, 0.6]

Fig. 1.
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Consequences for p in L1 with the consequences operators
C = C≤ or C∧, are those elements in C(p) = {q ∈ L1; p ≤
q} = {q ∈ L1;∀x ∈ [0.4, 0.6], q(x) = 1}, and in L2

consequences are C(α(p)) = {q ∈ L2; p ≤ q} = {σ ∈
L2;∀x ∈ [0.4, 0.6], σ(x) = 1}. In L1, consequences are
elements are all sets containing [0.4, 0.6], but in L2 are
those fuzzy sets containing the crisp set [0.4, 0.6], so they
collect uncertainty that allow us to consider a predicate like
“being more or less between 0.4 and 0.6”.

For this example, all results obtained along this paper
using a Galois connection will be shown. For instance, taking
G1, it is obvious that α1(C(p)) ⊂ C(α1(p)), but it is not
α1(C(p)) = C(α1(p)), since taking

σ =





x−0.2
0.2 , if x ∈ [0.2, 0.4]

1, if x /∈ [0.4, 0.6]
0.8−x
0.2 , if x ∈ [0.6, 0.8]

0, otherwise,
drawn in the picture 2, it is σ in C(α(p))− α(C(p)).

Fig. 2.

The equality γ−11 (C(p)) = C(α1(p)), is obviously
verified, for instance the previous σ ∈ C(α1(p)), verifies
that it exists µ[0.2,0.8] ∈ C(p) such that µ[0.2,0.8] ∈ γ−11 (σ).

Finally, as γ1 is surjective C(p) = γ1(C(α1(p))). See for
instance the case of µ[0.2,0.8] = γ1(σ).

Conjectures of p in L1 are in the set, Conj(p) = {q ∈
L1; p � 1− q} = {q ∈ L1;∃x ∈ [0.4, 0.6], q(x) = 1}, those
sets that, at least, has a element in [0.4, 0.6], linguistically
it can be said that they are not in contradiction with p, and
conjectures in L2, are Conj(α(p)) = {q ∈ L1; p � 1−q} =
{q ∈ L1;∃x ∈ [0.4, 0.6], q(x) 6= 0}, those fuzzy sets that
allocate a value different to 0 for at least one element in the
set [0.4, 0.6]. It is obvious that α(Conj(p)) ⊂ Conj(α(p)).

B. What happens if adding a new premise?

Now, taking as set of premises two different premises, one
crisp and the other fuzzy, p =“be between 0.4 and 0.6” and
µ=“be near 0.5”, the representation will be P = {p, µ},
with the previous p ∈ L1 and µ ∈ L2, consequences and
conjectures of P will be calculated.

First of all, consequences and conjectures for µ are
computed with C = C≤ and C∧ as, C({µ}) = {σ ∈
L2;µ ≤ σ} = {σ ∈ L2;∀x ∈ [0, 1], µ(x) ≤ σ(x)}, and
Conj({µ}) = {σ ∈ L2;µ � 1 − σ} = {σ ∈ L2;∃x ∈
[0.4, 0.6], p(x) > 1− q(x)}.

Fig. 3.

So, by the properties of the operator C≤, consequences
and conjectures for P in L2 can be calculated in the
following way, C≤(P ) = C≤(α(p)) ∪ C≤(µ) = C≤(α(p))
and Conj C≤(P ) = Conj C≤(α(p)) ∩ Conj C≤(µ) =
Conj C≤(µ).

On the other hand, with the consequences operator
C∧, it is InfP = µ, so C∧(P ) = C≤(µ) and
Conj C∧(P ) = Conj C∧(µ) = Conj C≤(µ).

See that adding a new premise it is Conj(p) ⊂
Conj(α(p)), obtained by the antimonotonicity of the op-
erator ConjC .

C. What happens if using the sharpened order in L2?

Till now, the universe of discourse [0, 1]X was ordered
by the pointwise order, but changing it by sharpened order
≤ϕ, different consequences and conjectures are obtained.

For instance, taking the premise representing
“being around 0.5” by the fuzzy set δ =



x−0.43
0.02 , if x ∈ [0.43, 0.45]

1, if x /∈ [0.45, 0.55]
0.57−x
0.02 , if x ∈ [0.55, 0.57]

0, otherwise,

and ϕ = id:

C≤ϕ
({δ}) = {σ ∈ [0, 1]X ;µ ≤ϕ σ},

and for instance the representation of the predicate “being
around 0.5” by µ

in figure 4 is in C≤ϕ
({δ}). So, it directly follows for the

premise.

Fig. 4.

On the other hand, notice that dealing with the pointwise
order, µ ∈ Conj({δ}) = {σ ∈ L2;µ � 1 − σ} = {σ ∈
L2;∃x ∈ [0.4, 0.6], p(x) > 1− q(x)}. Since, taking x = 0.5,
it is p(x) = 1 > 1− q(x) = 0, that corroborate what is said
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in proposition 5.1. But, µ is an speculation, this is that it is
neither in C≤({δ}) (δ � µ), nor in HypC≤({δ}) (µ ≮ δ).

VII. CONCLUSIONS

This paper deals with two topics neither solved, nor
clearly possed before, and it does not offer conclusive but
only provisional results.

The main subject concerns the growing in the number of
possible conjectures when, once some crisp information is
known and from which either some logical consequences, or
some conjectures followed, new but imprecise information
is added. Such a realistic question, actually concerning
Computing with Words, is posed by means of a particular
example, and its general solution still remains an open
problem. As a second topic, the paper tries to pose the
relationships existing between consequence and conjecture
operators with Galois’ Connections.

If with the first of these topics the relationships are clear
but the suitable theoretic methodology is not so, only some
elementary and previous results are actually obtained with
the second. Although more work at the respect is still to
be done, it is to be remarked how the character of the
beforehand conclusions (either consequences of hypotheses)
can abruptly change by a change in the order of the universe.

This work is only an opening step for those topics, and
the answers to the posed queries actually remain unended.
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