
Carlos Sáenz Adán

Beatriz Pérez Valle y Francisco José García Izquierdo

Facultad de Ciencia y Tecnología

Matemáticas y Computación

Título

Director/es

Facultad

Titulación

Departamento

TESIS DOCTORAL

Curso Académico

Towards a framework for making applications
provenance-aware

Autor/es

© El autor
© Universidad de La Rioja, Servicio de Publicaciones, 2019

publicaciones.unirioja.es
E-mail: publicaciones@unirioja.es

Towards a framework for making applications provenance-aware, tesis doctoral
de Carlos Sáenz Adán, dirigida por Beatriz Pérez Valle y Francisco José García Izquierdo

(publicada por la Universidad de La Rioja), se difunde bajo una Licencia Creative Commons
Reconocimiento-NoComercial-SinObraDerivada 3.0 Unported.

 Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los
titulares del copyright.

UNIVERSIDAD DE LA RIOJA

DOCTORAL THESIS

Towards a framework for making
applications provenance-aware

Author:
Carlos Sáenz Adán

Supervisors:
Dr. Beatriz Pérez Valle

Dr. Francisco José García Izquierdo

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

Grupo de Informática
Departamento de Matemáticas y Computación

July 2019

This work is partially supported by the Spanish Ministry of Economy and Competitiveness
(Project MTM2014-54151-P and Project EDU2016-79838-P), the University of La Rioja

(Grant FPI-UR-2015), the University of La Rioja together with the Government of La Rioja
(Research stay grants 2016, 2017, and 2018), and Santander Bank (ATUR2016, ATUR2017,

and ATUR2018).

Declaration

All uses of “we”, “our”, and “us” herein refer to Beatriz Pérez Valle, Francisco José García
Izquierdo, and Carlos Sáenz Adán.

Carlos Sáenz Adán
July 2019

Acknowledgements

I would firstly like to acknowledge Luc Moreau for always being available and for giving
me the opportunity to be part of his group. Undoubtedly, this thesis would not have been
possible without his help. The next part of this chapter is written in Spanish since I would
like for those Spanish speakers who have supported me to know how I feel.

A continuación, voy a presentar un texto que durante mucho tiempo ha sido una fuente
de motivación para mi.

Están los que usan siempre la misma ropa.
Están los que llevan amuletos.
Los que hacen promesas.
Los que imploran mirando al cielo.
Los que creen en supersticiones.
Y están los que siguen corriendo cuando les tiemblan
las piernas.
Los que siguen jugando cuando se les acaba el aire.
Los que siguen luchando cuando todo parece per-
dido.
Como si cada vez fuera la última vez.
Convencidos de que la vida misma es un desafío.

Sufren, pero no se quejan.
Porque saben que el dolor pasa, el sudor se seca, y
el cansancio termina.
Pero hay algo que nunca desaparecerá:
la satisfacción de haberlo logrado.
En sus cuerpos hay la misma cantidad de músculos.
En sus venas corre la misma sangre.
Lo que los hace diferentes es su espíritu.
La determinación de alcanzar la cima.
Una cima a la que no se llega superando a los demás,
Sino superándose a uno mismo.

Este texto habla del sacrificio, del esfuerzo en conseguir una meta, y afirma que lo que
nos hace diferentes es nuestra determinación de alcanzar la cima. ES MENTIRA. En esos
momentos en los que el aire se acaba y todo parece perdido, lo que de verdad nos hace
diferentes y nos empuja a alcanzar la cima es la gente que tenemos alrededor. Por eso siento
la necesidad de agradecer a esas personas (una vez más) su apoyo, parte de esta tesis es suya.

Como expertillo en provenance, me siento en la obligación de empezar por el origen
de este viaje, cuyo destino nunca fue Ítaca. Eloy, causante de mi inclusión en el “Miriam
Andrés”, y donde conocí a Gadea, Félix, Rubén y Nuria. Investigación no sé si aprendí, pero
de la vida, bastante. Muchas gracias a todos por acogerme desde el primer día como uno más,
y sobre todo por hacerme parte de vuestro equipo. De entre ellos, me siento en la obligación
de destacar a Gadea, la cual ha sido un pilar fundamental durante todo este tiempo, todo lo
que pueda decir de ella se queda corto; sin lugar a duda, uno de los mejores resultados de
esta tesis es su amistad.

viii

Posteriormente llegaron Emilio, Ángel Luis y Francisco, los cuales me permitieron
juguetear con sus preciados RCMs y me contagiaron el germen de la investigación. Esto me
llevó a dar mi primera charla en un congreso internacional; si un año antes me lo llegan a
decir, no me lo hubiera creído. Muchas gracias por darme la oportunidad.

Me gustaría agradecer también a todas las personas del Departamento de Matemáticas y
Computación de la Universidad de La Rioja todo su apoyo durante esta andadura, especial-
mente en los últimos momentos. Me resulta inimaginable el poder haber hecho la tesis en
un ambiente diferente a este. En este departamento no solo he encontrado apoyo, si no que
también he descubierto referentes tanto a nivel de investigación como a nivel personal. De
entre todos ellos, tengo que destacar a todos aquellos profesores que me han guiado durante
la carrera, los cuales van desde Judit, que impartió mi primera clase, hasta Ángel Luis,
que me impuso la beca de Graduado en Informática. No solo os agradezco las enseñanzas
técnicas sino también las personales, de las cuales me siento más orgulloso. Entre otras cosas,
siempre tendré en cuenta que la informática es poder, que herrar es de umanos, y que una
buena asignatura empieza con un buen cronograma.

Un apartado especial se merecen Francisco y Bea, mis directores de tesis. A ellos quiero
mostrar mi más sincera gratitud. Cuando empecé la tesis no entendía por qué la gente se
refería a sus directores como “padres” y “madres”, ahora que la he terminado lo comprendo
perfectamente. Cada uno de ellos ha conseguido guiarme hasta aquí, lo cual no siempre ha
sido fácil. De ellos tengo que destacar su paciencia y su implicación. Es un orgullo el haber
podido aprender de ellos. Muchas gracias por todo.

También me gustaría agradecer a todos aquellos amigos que durante este tiempo se han
preocupado por mí y me han animado a seguir adelante.

Que sería de mí sin mi familia, los que me han podido acompañar físicamente durante
este camino y los que lo han hecho de otra manera. El término “físicamente” no ha sido
escogido de forma aleatoria. A pesar de mi testarudez, siempre han estado ahí, les daba igual
que fuera un pueblo perdido por Francia, que el gran Londres, ahí han estado, orgullosos de
mí. Muchísimas gracias por haber hecho este camino conmigo y por haberme hecho creer en
mi mismo cuando yo no lo hacía.

Finalmente, mis últimas líneas de agradecimientos son para Paula. Gracias por tu
comprensión, por tu apoyo y por tu cariño. Gracias por darme aire cuando parecía que se
acababa y mostrarme que todo no estaba perdido. En resumen, gracias por haber estado
siempre a mi lado sacándome una sonrisa.

¡Muchas gracias a todos!
To all of you, thanks.

Abstract

Aiming at shedding light on data produced by systems, provenance has emerged to refer to
the entire amount of information that contributes to the existence of a piece of data. The
capture of provenance entails a number of benefits, from reproducibility to accountability,
including assessing data quality and validity. With such tangible benefits, it is no wonder
that the ability to consider the use of provenance from the early stages of the software
development cycle, such as the design phase, has become critically important to support
software designers in making provenance-aware applications; that is, applications with the
functionality to answer questions regarding the provenance they produce. However, current
approaches considering provenance during the design phase do not integrate with existing
software engineering methodologies. This makes them challenging to use in practice.

UML2PROV is a novel framework intended to bridge the gap between application design
and provenance design, minimising software engineers intervention and without requiring
them to have provenance skills. With UML2PROV, designers can follow their preferred
software engineering methodology in order to create the UML diagrams representing an ap-
plication’s design, and then, UML2PROV comes into play to automatically generate: (1) the
design of the provenance to be generated (expressed as PROV templates); and (2) a software
module for collecting values of interest as application is running (encoded as variable-value
associations referred to as bindings), and which can be deployed in the application with a
minimal developers intervention. The combination of the PROV templates with the bindings
generates high-quality provenance ready to be exploited. Hence, UML2PROV ultimately
comes to help software engineers in making applications provenance-aware.

Around UML2PROV, this thesis presents three main contributions. First, a systematic
review of provenance systems, which, among other results, provides a six-dimensional
taxonomy of provenance characteristics that can help researchers analyse provenance systems.
Second, the conceptual definition of UML2PROV, consisting of a rigorously defined set of
17 patterns mapping UML diagrams to PROV templates, along with the requirements that
any generated software module to be deployed in the application for collecting bindings must
meet. This approach has been proposed aiming at minimising the intervention on software
designers’ and developers’ modus operandi, as well as at facilitating the maintenance of the

x

provenance-aware applications. Third, a reference implementation of UML2PROV based
on Model Driven Development techniques. This implementation automatically generates,
starting from the UML diagrams of an application, both the PROV templates and the module
to collect bindings. Additionally, this reference implementation provides potential users with
mechanisms for managing the collection of bindings in different ways. Thus, users may
choose the mechanism that best suits their needs attending to the persistence system, the
run-time overhead, and storage needs, among others.

UML2PROV has also been systematically evaluated. We analysed the quality and
efficiency of the provenance generated by our reference implementation, to show the benefits
and trade-offs of applying UML2PROV, yielding relevant conclusions for the software
engineering community. In particular, as the UML design drives both the design and capture
of provenance, we study how different strategies followed during the UML design phase can
affect aspects such as provenance design generation, application instrumentation, provenance
capability maintenance, run-time overhead and storage needs, and quality of the generated
provenance.

Resumen

Con el objeto de arrojar luz sobre los datos producidos por los sistemas, el término provenance
ha surgido para referirse al conjunto de información que contribuye a la existencia de un dato.
La captura de provenance conlleva una serie de beneficios que van desde la reproducibilidad
hasta la responsabilidad, incluida la evaluación de la calidad y validez de los datos. A la
vista de estos beneficios, resulta natural que el tener en cuenta el provenance desde las
primeras etapas del ciclo de desarrollo del software, como la fase de diseño, haya adquirido
una importancia crítica para ayudar a los diseñadores de software a hacer aplicaciones
con capacidades de provenance; es decir, aplicaciones con la funcionalidad para responder
preguntas sobre el provenance que producen. Sin embargo, los enfoques actuales que
consideran el provenance durante la fase de diseño no se integran con las metodologías de
ingeniería de software existentes. Esto los hace difíciles de usar en la práctica.

UML2PROV es un novedoso entorno de desarrollo orientado a cerrar la brecha entre
el diseño de aplicaciones y el diseño de provenance, minimizando la intervención de los
ingenieros del software y sin necesidad de que estos tengan conocimientos sobre provenance.
Con UML2PROV, los diseñadores pueden seguir la metodología de ingeniería del software
que prefieran para crear los diagramas UML con el diseño de la aplicación, y posteriormente,
UML2PROV entra en juego para generar automáticamente: (1) el diseño del provenance
que va a ser generado (expresado a través de PROV templates); (2) un módulo software
para capturar valores de interés mientras la aplicación está ejecutándose (codificados como
asociaciones variable-valor a las que nos referiremos como bindings). La combinación
de los PROV templates con los bindings generará provenance de gran calidad, listo para
ser explotado. Por lo tanto, UML2PROV ayudará a los ingenieros del software a hacer
aplicaciones con capacidades de provenance.

En relación a UML2PROV, esta tesis presenta tres contribuciones principales. Primero,
una revisión sistemática de sistemas de provenance, la cual, entre otros resultados, ofrece
una taxonomía de seis dimensiones que puede ayudar a los investigadores en el análisis de
diferentes sistemas de provenance. Segundo, una definición conceptual de UML2PROV, la
cual consiste en (1) un conjunto de 17 patrones rigurosamente definidos y que establecen una
correspondencia entre elementos UML y PROV templates; y (2) un conjunto de requisitos

xii

que cualquier módulo software de captura de provenance debe satisfacer. Este módulo se
integrará dentro de la aplicación para la obtención de bindings. Tercero, una implementación
de referencia de UML2PROV basada en técnicas pertenecientes al Desarrollo Dirigido por
Modelos. Partiendo de los diagramas UML, esta implementación genera automáticamente
tanto los PROV templates como el módulo para obtener bindings. Además, esta imple-
mentación de referencia ofrece a los posibles usuarios de UML2PROV mecanismos para
configurar la obtención de los bindings de diferentes formas. Por lo tanto, los usuarios
pueden elegir el mecanismo que mejor se adapte a sus necesidades, atendiendo aspectos
como el sistema de persistencia que deseen utilizar, el coste que supone disponer la captura
de provenance en tiempo de ejecución, así como las necesidades de almacenamiento, entre
otros.

UML2PROV también ha sido evaluado de una forma sistemática. Concretamente, se
presenta un análisis de la calidad y la eficiencia del provenance generado por nuestra
implementación de referencia, con el objetivo de mostrar beneficios e inconvenientes de
utilizar UML2PROV. Este análisis nos ha permitido extraer conclusiones relevantes para la
comunidad de ingenieros de software. En particular, como el diseño UML controla tanto el
diseño como la captura de provenance, se ha estudiado cómo diferentes estrategias adoptadas
en la fase de diseño UML pueden afectar a aspectos como: la generación del diseño del
provenance, la instrumentación de aplicaciones, el mantenimiento de los artefactos que
proveen a la aplicación de capacidad de provenance, el coste que supone disponer de dichos
artefactos en tiempo de ejecución, así como las necesidades de almacenamiento, y calidad
del provenance generado.

Table of contents

List of figures xvii

List of tables xxi

List of Abbreviations xxiii

1 Introduction 1
1.1 Main goal and contributions of the thesis 4
1.2 Thesis overview . 5
1.3 Publications . 6

2 Background 9
2.1 Conceptual Background . 9

2.1.1 The Unified Modeling Language 10
2.1.2 Provenance-related background 18

2.2 Implementation Background . 24
2.2.1 Model-Driven Approaches . 24
2.2.2 Aspect Oriented Programming . 27

3 State of the art: A systematic review of provenance systems 31
3.1 Introduction . 31
3.2 Towards the definition of a taxonomy of provenance systems characteristics 34
3.3 Taxonomy of provenance systems characteristics: an overview 36

3.3.1 General Aspects dimension . 36
3.3.2 Subject dimension . 37
3.3.3 Storage dimension . 39
3.3.4 Data Capture dimension . 39
3.3.5 Data Access dimension . 40
3.3.6 Non–functional Requirements dimension 41

xiv Table of contents

3.4 Open problems . 42
3.4.1 Integration . 42
3.4.2 Interoperability . 43
3.4.3 Computational overhead . 44
3.4.4 Querying . 46

3.5 Conclusions . 46

4 Conceptual definition of UML2PROV 49
4.1 Motivation for UML2PROV . 50
4.2 UML2PROV architecture . 51

4.2.1 Stakeholders . 51
4.2.2 Key facets . 52
4.2.3 How to use UML2PROV . 53

4.3 From UML to PROV: the transformation patterns 54
4.3.1 Considered UML elements . 55
4.3.2 Principles for the definition of UML to PROV patterns 58
4.3.3 Structure of the patterns . 59
4.3.4 Overview of the defined transformation patterns 63
4.3.5 Three patterns as an example . 69

4.4 Towards the generation of bindings. BGM features and requirements 84
4.5 The consistency between templates and bindings 88
4.6 Conclusions . 92

5 Implementation of UML2PROV 95
5.1 Introduction . 96
5.2 A Proof of concept for implementing UML2PROV 97

5.2.1 Automatization of the transformation patterns: an XSLT-based ap-
proach . 97

5.2.2 Automatization of the generation of the BGM: a Proxy-pattern and
XSLT-based approach . 100

5.3 Reference implementation . 104
5.3.1 Automatization of the transformation patterns: an ATL and XPand-

based approach . 104
5.3.2 Automatization of the generation of the BGM: an event-based and

an XPand-based approach . 108
5.3.3 Fulfilment of BGM requirements 116

5.4 Conclusions . 117

Table of contents xv

6 Evaluation 119
6.1 Introduction . 119
6.2 GelJ and the Design Strategies . 120

6.2.1 UML design of GelJ . 122
6.2.2 Strategies for obtaining GelJ design 123

6.3 Analysing the benefits and trade-offs of using UML2PROV 127
6.3.1 Aspect 1: Generation of the provenance design 127
6.3.2 Aspect 2: Instrumentation of the application 128
6.3.3 Aspect 3: Maintenance of provenance capabilities 129
6.3.4 Aspect 4: Run-time overhead and storage needs 130
6.3.5 Aspect 5: Quality of provenance 134

6.4 Conclusions and discussion . 135

7 Conclusions and future work 139
7.1 Summary of results . 139

7.1.1 A systematic review of provenance systems 140
7.1.2 A conceptual definition of UML2PROV 140
7.1.3 An implementation of UML2PROV 141

7.2 Limitation of the study and future work 143

Conclusiones 147

References 149

Appendix A Provenance systems analysed in the systematic review 165

Appendix B Description of the transformation patterns used in this memoir 167

Appendix C Sequence of interactions with GelJ 195

List of figures

2.1 The taxonomy of structure and behaviour diagrams [1] 10
2.2 UML sequence diagram showing the interactions between objects of classes

Student, Seminar, and Course . 11
2.3 An excerpt of the UML class diagram for the University example 13
2.4 UML state machine diagram for class Seminar 15
2.5 The definition of the stereotype named Creator together with an example of

application of such a stereotype . 17
2.6 Organization of the PROV family of documents [2] 18
2.7 The core concepts of PROV-DM together with their relations 19
2.8 A graph notation for PROV elements . 21
2.9 A PROV document in PROV-N together with its graphical representation . 21
2.10 The architecture of the templating approach proposed in [3] 22
2.11 A graphical illustration of a template . 22
2.12 An example of bindings for the template of Figure 2.11 23
2.13 Simplified model driven process inspired by the one presented in [4] 25
2.14 An AspectJ aspect implementing a crosscutting concern 29

3.1 Our taxonomy of Provenance Systems Characteristics 35

4.1 The architecture of UML2PROV . 52
4.2 This chart is focused on those patterns that rule the transformation of SqDs 64
4.3 This chart is focused on those patterns that rule the transformation of CDs . 68
4.4 This chart is focused on those patterns that rule the transformation of SMDs 69
4.5 An excerpt of the SqD showing the interaction between Student and Seminar

when a student enrols in a seminar . 70
4.6 PROV template obtained by applying SeqP2 to the SqD depicted in Figure 4.5 74
4.7 An excerpt of a CD (together with an equivalent representation) showing

those elements that are involved in the enrolment of a student into a seminar 75

xviii List of figures

4.8 PROV template obtained by applying ClP10 to the CD highlighted in Figure 4.7 79
4.9 An excerpt of an SMD showing how the enrolment of a student into a seminar

affects the state of the objects of the class Seminar 80
4.10 PROV template obtained by applying StP3 to the SMD depicted in Figure 4.9 83
4.11 Possible set of bindings obtained from the execution of the enrolStudent

operation . 88
4.12 Three circles enclosing the variables that identify the elements in the PROV

templates generated by applying SeqP2, ClP10, and StP3 89
4.13 PROV documents obtained by expanding the PROV templates shown in

Figures 4.6, 4.8 and 4.10 with the set of bindings in Figure 4.11. We do not
show the PROV attributes to avoid overburdening the figure. 90

4.14 PROV document obtained by merging the documents shown in Figure 4.13 91

5.1 Proxy-pattern architecture . 101
5.2 Excerpts of Java code depicting the construction of an object as usual (with-

out provenance capture), and the construction of an object by following the
Proxy-pattern approach (with provenance capture) 103

5.3 Detailed MDD-based implementation of the templates generation process . 105
5.4 XPand templates defined for each <document> and <entity> in the template

models . 107
5.5 PROV activity in PROV-N [5] with different types of variables 108
5.6 UML Class diagram depicting our reference implementation for a BGM . . 109
5.7 Structure overview of a reference implementation of the BGMEventInstru-

menter in AspectJ . 111
5.8 Graphical representation of the three defined configurations 113
5.9 Detailed MDD-based implementation of the BGM for an application 115

6.1 Workflow of GelJ’s experiment wizard . 121
6.2 Number of instructions executed for collecting provenance data organised by

strategies . 131
6.3 Information about run-time overhead (%) 132
6.4 Information about storage needs (MB) . 133

B.1 UML representation that models the context given by SeqP1 168
B.2 PROV template generated from the UML representation used in SeqP1

(Figure B.1) . 169
B.3 UML representation that models the context given by SeqP2 173

List of figures xix

B.4 PROV template generated from the UML representation used in SeqP2
(Figure B.3) . 173

B.5 UML representation that models the context given by ClP10 178
B.6 PROV template generated from the UML representation used in ClP10

(Figure B.5) . 178
B.7 UML representation that models the context given by ClP10, including

Output Parameters . 182
B.8 PROV template generated from the UML representation used in ClP10,

including Output Parameters (Figure B.7) 182
B.9 UML representation that models the context given by StP1 184
B.10 PROV template generated from the UML representation used in StP1 (Fig-

ure B.9) . 185
B.11 Excerpt of a UML State Machine diagram locating the UML elements from

StP1 in a simple composite state . 187
B.12 PROV template generated from the UML diagram in Figure B.11 187
B.13 UML representation that models the context given by StP3 190
B.14 PROV template generated from the UML representation used in StP3 (Fig-

ure B.13) . 190
B.15 Excerpt of a UML State Machine diagram locating the UML elements from

StP3 in a simple composite state . 192
B.16 PROV template generated from the UML diagram in Figure B.15 193

C.1 Sequence of interactions with GelJ used in the evaluation of UML2PROV . 196

List of tables

2.1 Prefixes and Namespaces used in this document 20

3.1 List of the reviewed systems together with their references 34

4.1 Extension of the taxonomy of UML class’ operations given in [6] 66
4.2 Matching between the UML elements identified in SeqP2 and the UML

elements from Figure 4.5 . 70
4.3 Matching between the UML elements identified in ClP10 and the highlighted

UML elements from Figure 4.7 . 76
4.4 Matching between the UML elements identified in StP3 and the UML ele-

ments from Figure 4.9 . 81

5.1 An excerpt of the XSLT template focusing on the implementation of StP1 . 98
5.2 An excerpt of the ATL rule focusing on the implementation of StP1 106

6.1 Overview of tasks performed to obtain the UML design in each strategy . . 124
6.2 Questions identified from Q1 to Q9 raised by GelJ users, together with GelJ

classes involved in answering those questions 125
6.3 Information about PROV templates and BGMs generated per strategy . . . 128
6.4 For each strategy, it is indicated whether questions Q1-Q9 of Table 6.2 can

be answered completely, partially or cannot be answered 134

A.1 A brief description of the surveyed systems (I) 165
A.2 A brief description of the surveyed systems (II) 166

B.1 Set of patterns used to illustrate this memoir 167

List of Abbreviations

AOP Aspect-Oriented Programming
ATL ATLAS Transformation Language
BGM Bindings Generation Module
CD Class Diagram
ClPi Transformation Pattern number i for Class Diagrams
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
M2M Model to Text
M2T Model to Model
MDA Model Driven Architecture
MDD Model Driven Development
OMG Object Management Group
OOP Object Oriented Programming
OS Operating System
OWL Web Ontology Language
OWL2 Web Ontology Language version 2
PIM Platform Independent Model
PrIMe Provenance Incorporation Methodology
PROV Standard for the representation of provenance
PROV-AQ PROV Access and Query.
PROV-DC PROV Dublin Core
PROV-DM PROV Data Model
PROV-N PROV Notation
PROV-O PROV Ontology
PROV-SEM PROV Semantics
PSM Platform Specific Model
RCM References-enriched Concept Map
RDF Resource Description Framework
SeqPi Transformation Pattern number i for Sequence Diagrams
SMD State Machine Diagram
SqD Sequence Diagram
StPi Transformation Pattern number i for State Machine Diagrams

xxiv List of tables

UML Unified Modeling Language
UML2PROV A framework for making applications provenance-aware
W3C World Wide Web Consortium
WfMS Workflow Management Systems
XMI XML Metadata Interchange
XML Extensible Markup Language

Chapter 1

Introduction

Algorithms are everywhere. They constitute the basis of whichever computational system.
They could be defined as a self-contained step-by-step set of operations that computers
or other ‘smart’ devices carry out to perform calculation, data processing, and automated
reasoning tasks [7]. They have five important features as stated in [8]: (1) finiteness, “an
algorithm must always terminate after a finite number of operations are executed”; (2)
definiteness, “each step of an algorithm must be precisely defined, the actions to be carried
out must be rigorously and unambiguously specified for each case”; (3) input, “an algorithm
must has zero or more inputs: quantities that are given to it initially before the algorithm
begins, or dynamically as the algorithm runs”; (4) output, “an algorithm has one or more
outputs: quantities that have a specified relation to the inputs”; and (5) effectiveness, “the
operations must be sufficiently basic that they can in principle be done exactly and in a finite
length of time.”

Having said this, it is a widespread belief that algorithms are objective because they
strictly rely on data. However, this belief is not entirely true, because of the fact that
algorithms are created and maintained by people. There are even more sensitive cases, such
as machine learning algorithms, as they adapt their behaviour relying upon data usually
provided by people, what makes them highly dependent on those people. One example of
this is the chatbot released by Microsoft Corporation via Twitter on March 23, 2016 [9].
After a day learning from the user’s comments, the chatbot started to tweet misogynistic
and racist comments. Additionally, to make matters worse, there is also growing evidence
that algorithms may be opaque [7], which means that it is impossible to determine if their
resulting data are skewed or wrong. Some of the factors leading to this are technical (e.g., the
algorithm is not easily explainable), economic (e.g., trade secrets or it is not cost-effective),
and social (e.g., privacy policy) [7].

2 Introduction

To address this challenge, the term provenance has emerged to refer the entire amount
of information, comprising all the elements, and their relationships, that contribute to the
existence of a piece of data [10]. Provenance provides a great number of benefits such as
verifying a product, result reproducibility, sharing and reuse of knowledge, or assessing
data quality and validity. Throughout this thesis, we will use the term provenance-aware
application to refer to those applications that have the functionality to answer questions
regarding the provenance they produce [11]. With such tangible benefits, it is no wonder
that in recent years, research on provenance has grown exponentially, and has been applied
to a wide range of different scientific disciplines. An example of this interest is ACM
U.S. Public Policy Council (USACM)’s statement [7], which includes seven principles for
algorithmic transparency and accountability. Among these principles, it is worth noting the
data provenance principle, which is described as follows:

“A description of the way in which the training data was collected should be
maintained by the builders of the algorithms, accompanied by an exploration of
the potential biases induced by the human or algorithmic data-gathering process.
Public scrutiny of the data provides maximum opportunity for corrections. How-
ever, concerns over privacy, protecting trade secrets, or revelation of analytics
that might allow malicious actors to game the system can justify restricting
access to qualified and authorized individuals.”

This interest in provenance is not new. In 2006 the first provenance challenge [12]
was launched with the aim of establishing an understanding of the capabilities of available
provenance-aware applications and, in particular, to grasp concrete details about the repre-
sentations of the provenance used, capabilities for answering concrete provenance-related
questions, and which aspects are considered by each system in the scope of provenance.
Seventeen teams responded to the challenge and submitted their provenance-aware applica-
tions addressing it from different perspectives. After the first provenance challenge, three
more challenges were also launched seeking to the interoperability of provenance-aware
applications. The result was the definition of the Open Provenance Model (OPM) [13], which
demonstrated that provenance interoperability was achievable and thus mature enough to be-
gin standardisation by an organization like W3C [14]. The result of such a standarization was
the W3C PROV standard [2] for the representation of provenance. Since the PROV standard’s
aim is the interoperable exchange of provenance information, toolkits supporting PROV, such
as ProvPy [15] or ProvToolbox [16] have been facilitating the software engineer’s task of
creating, storing, reading and exchanging provenance. Similarly, the PROV-Template [3]
approach is a development for helping design the provenance data to be produced and making
easier its generation in a PROV compatible format. This approach allows the structure of

3

provenance to be described declaratively: a template is a document containing placeholders
(referred to as variables). An expansion algorithm generates the provenance to be exploited
by instantiating a template with values, which are contained in bindings associating variables
with concrete values. Although this approach reduces the development and maintenance
effort, separating responsibilities between software and provenance designers, it still requires
designers to be knowledgeable in provenance. Additionally, we note that in contrast to the
aforementioned toolkits, the PROV-Template approach helps decide what information should
be included in the generated provenance by means of the templates; however, as the toolkits
do, it does not show how software should be designed to allow for its capture. Therefore,
the ability to consider the use of provenance, specially in early stages of the software de-
velopment cycle, such as the design phase, has become critically important to support the
software designer in making provenance-aware applications. To address this challenge, the
Provenance Incorporation Methodology (PrIMe) [11] emerged for adapting applications
to be provenance-aware. However, although the application of this methodology showed
promising results in a variety of areas [11], PrIMe is standalone. It does not integrate with
existing software engineering methodologies, which makes it challenging to use in practice.

In contrast, in the realm of software engineering, design techniques have been proposed
to shorten the development time of software products, as well as to increase their quality.
Among such techniques, the Unified Modeling Language (UML) [1] is widely accepted
as the de-facto method for designing, or even simply describing, object-oriented software
systems. However, although UML comprises many types of diagrams in order to describe
different perspectives of a system (for instance, structural or behavioural information), it lacks
specific support for provenance. Specifically, UML does not provide specific tools to design
systems that can answer questions such as the activity that lead to specific resulting data, or
the elements that were involved in its creation. In fact, developing software applications by
including provenance in the design phase can entail significant changes to an application
design [11]. This is a cumbersome task for the software engineers, since they have to be
knowledgeable about provenance in addition to having to deal with complex diagrams, and,
what is worse, to maintain an application’s provenance-specific code.

In short, there exists a gap between application design and provenance design, which may
result in applications generating provenance that is not aligned with what the application
actually does, or that does not fit for its purpose.

4 Introduction

1.1 Main goal and contributions of the thesis

The main goal of this thesis is the definition of an overall framework, coined as UML2PROV,
which allows software engineers to bridge the gap between application design and provenance
design. This framework is intended to provide any application with the ability to generate
provenance information, by means of a fully automatic process that takes as source the UML
design of the application and creates the artefacts needed to generate provenance, without
requiring the manual application’s code instrumentation. Hence, this framework ultimately
comes to help software engineers in making provenance-aware applications, minimising their
intervention and without requiring them to be knowledgeable about provenance.

We have achieved this ambitious goal through the following three main contributions:

• A systematic review of provenance systems. We have undertaken a thorough analysis of
the literature, providing a broad overview of the existing provenance systems, identifying
the characteristics such systems are expected to have, and analysing the techniques and
methods proposed to address them. Based on the reviewed works, we have defined a
taxonomy of provenance characteristics attending to: general aspects, subject, storage,
data capture, data access, and non-functional requirements. The proposed taxonomy can
help other researchers analyse provenance systems. Ultimately, the results provided in this
phase helped us identify and contextualise the open problems of the provenance research
that motivated the UML2PROV approach and that served as the basis for this thesis.

• A conceptual definition of UML2PROV. We have established the conceptual aspects re-
garding the definition of the UML2PROV framework. Considering UML diagrams as key
elements of an application design, and PROV templates as cornerstone elements of the
provenance design, we have proposed a feasible procedure to obtain the two key elements
of the PROV-Template approach (templates and bindings). As for the creation of templates,
we define a set of transformation patterns that ultimately associates commonly appearing
structures in UML diagrams with PROV templates. Regarding the creation of bindings,
we provide each application with a concrete module that collects provenance data in the
form of bindings. This module has to be deployed in the application, without requiring
more intervention from developers than chosing the configuration for that module. The
disparate nature of applications prevents us from establishing a generic module for all
the applications; instead, we have provided a set of requirements each module for prove-
nance capture must fulfil. The conceptual definition of the transformations from UML
to PROV templates specifying the provenance design of an application, together with
the requirements a module for capturing provenance must fulfil, lay the foundations for

1.2 Thesis overview 5

making any application provenance-aware with UML2PROV. This conceptual definition of
UML2PROV serves as the basis for future implementations.

• A UML2PROV reference implementation. We have provided a reference implementation of
our conceptual proposal for UML2PROV. Using this implementation, software engineers
are allowed to follow their preferred software engineering methodology to create the
UML diagrams for their application and, then, UML2PROV comes into play to take those
UML diagrams as a starting point to automatically generate the artefacts to make such an
application provenance-aware: (1) the PROV templates with the provenance design, and (2)
the module for collecting bindings. This implementation prevents software engineers not
only from being knowledgeable about provenance, but also from the need of including the
provenance aspects into the application’s design diagrams (usually making them complex
and unreadable). It also prevents the provenance generation code from being interweaved
between the application code. Both achievements help designers and developers make
transparent the generation of provenance and make it easier the maintenance of provenance-
aware applications.

Finally, aiming at showing the benefits and trade-offs of applying UML2PROV for
software engineers seeking to make applications provenance-aware, we have performed a
systematic evaluation of our UML2PROV reference implementation based on quantitative
data and qualitative arguments. Although our proposal is intended to be applied to any
application no matter it is newly developed (thus, probably, UML designs are available) or
it is a legacy application (thus, it can lack UML designs), we have considered the worst-
case scenario, evaluating our proposal by making provenance-aware a legacy application
not initially designed with UML. Additionally, in order to make a more comprehensive
assessment of our proposal, we have applied different reverse engineering techniques to
obtain several UML application designs with different levels of detail. This has allowed
us to study how those levels of detail in UML diagrams affect aspects such as provenance
design generation, application instrumentation, provenance capability maintenance, run-time
overhead and storage needs, and quality of the generated provenance. Likewise, in the
evaluation, we have also tested different configurations of the generated module to collect
bindings that have shown us how they affect run-time overhead and storage needs.

1.2 Thesis overview

This thesis is organised as follows:

6 Introduction

• Chapter 2 introduces some background information that we have considered of interest
for understanding the subsequent chapters of this memoir. Concretely, we distinguish
two blocks related to the two main contributions of this thesis. The first block introduces
background information with regard to the conceptual definition of UML2PROV, whereas
the second block provides relevant information about the implementation of UML2PROV.

• Chapter 3 plots the landscape of published studies in the field of provenance by means of a
thorough overview of provenance systems. This chapter is twofold. First, we provide a
consistent background of provenance concepts and techniques that helps readers grasp this
memoir. Second, we justify the open research problems in the provenance field that served
as a basis for this thesis.

• Chapter 4 explains the conceptual definition of UML2PROV. We start by motivating the
need of this framework relying upon the aforementioned open problems. Next, we describe
the architecture we propose for UML2PROV, and finally, we explain its foundations
together with its contributions and benefits drawn from its usage.

• Chapter 5 provides a reference implementation of UML2PROV, that, following the afore-
mentioned conceptual definition, automatically generates those elements (the templates
and the module for collecting bindings) needed to obtain provenance.

• Chapter 6 includes an evaluation of UML2PROV that shows the benefits and trade-offs
of using UML2PROV attending to five aspects regarding provenance. Additionally, this
evaluation also shows the implications of using (1) UML diagrams with different levels of
detail, and (2) different configurations for creating bindings during the execution of the
application.

• Chapter 7 outlines various avenues for future work and concludes the thesis.

1.3 Publications

The work in this thesis is derived from the following publications:

• Carlos Sáenz-Adán, Francisco J. García-Izquierdo, Ángel Luis Rubio, Eduardo Sáenz-
de-Cabezón Irigaray, Emilio Rodriguez Priego, Oscar Díaz: A Tool for Management of
Knowledge Dispersed throughout Multiple References. ICSOFT-PT 2015: 79-86

• Beatriz Pérez, Julio Rubio, Carlos Sáenz-Adán: A systematic review of provenance systems.
In Knowledge and Information Systems 57(3): 495-543 (2018)

1.3 Publications 7

• Carlos Sáenz-Adán, Beatriz Pérez, Trung Dong Huynh, Luc Moreau: UML2PROV: Au-
tomating Provenance Capture in Software Engineering. SOFSEM 2018: 667-681

• Carlos Sáenz-Adán, Luc Moreau, Beatriz Pérez, Simon Miles, Francisco J. García-
Izquierdo: Automating Provenance Capture in Software Engineering with UML2PROV.
IPAW 2018: 58-70

• Carlos Sáenz-Adán, Beatriz Pérez, Francisco J. García-Izquierdo, Luc Moreau: Integrating
Provenance Capture and UML with UML2PROV: Principles and Experience. Submitted
for publication in IEEE Transactions on Software Engineering

In addition, results of this thesis were used in the work published in:

• Michael A. C. Johnson, Luc Moreau, Adriane Chapman, Poshak Gandhi, Carlos Sáenz-
Adán: Using the Provenance from Astronomical Workflows to Increase Processing Effi-
ciency. IPAW 2018: 101-112

Chapter 2

Background

This chapter provides background information required to understand the overall thesis work.
More specifically, in the line with the main contributions of this thesis – to provide (1) a
conceptual definition of UML2PROV, and (2) a reference implementation conforming to
such a conceptual definition – this chapter is divided into two main sections. The first section
introduces the background information that is needed to understand the conceptual definition
of UML2PROV, i.e., UML and concrete provenance-related information. The second section
presents implementation-related background: the Model Driven Development approach and
the Aspect Oriented Programming paradigm.

We note that this chapter’s content is not intended to be exhaustive, but to provide
sufficient information to grasp our proposal, as well as references for the reader to explore
further. If the reader is familiar with any subject presented here, he can skip the corresponding
subsection since this chapter does not contain any new research.

Finally, it is worth remarking that to illustrate this chapter, in particular, and the thesis, in
general, we will use a running example (which we will refer to as University example). This
running example is concerned with a system that manages the enrolment and attendance of
students to seminars of a specific University course. We have chosen this example for being
intuitive, thereby it does not require much effort from the readers for understanding it.

2.1 Conceptual Background

As the UML2PROV acronym suggests, there are two topics on which the conceptual back-
ground necessary to understand this thesis must be provided: UML and provenance. Here, we
first introduce the Unified Modeling Language, and then we provide information regarding
concrete provenance aspects used in this thesis.

10 Background

2.1.1 The Unified Modeling Language

Our approach is intended to make applications provenance-aware taking the design of
such applications as primary source. Concretely, we advocate using designs specified
by UML diagrams [1]. UML is a general purpose modeling language developed by the
Object Management Group (OMG). More specifically, UML has been widely accepted
and supported by the software industry as the de-facto standard language for specifying,
constructing, and documenting the artefacts of object-oriented systems [1]. One of its main
advantages is that it is a general-purpose language, and therefore, it can be used to model a
wide range of problems in different contexts of application. The fact that UML is a so general
purpose modeling language could be considered both a strength and a weakness. Particularly,
a language so general and of such a broad scope as UML may limit its effectiveness in
modeling some specific domains. In these situations, it would be desirable to have at ones
disposal specialized languages which may be more appropriate to express specific concepts of
the system to model. Faced with this situation, UML provides different types of approaches
that allow customizing and extending its own syntax and semantics to be adapted to certain
application domains. Among such approaches, we note UML stereotypes for being the basic
customization and extension mechanisms.

UML is defined by the MOF UML metamodel, which gives a systematic description of
the syntax and semantics of the UML. UML provides two major types of UML diagrams
(structural and behavioural) used to diagrammatically model the structure and the behaviour
of object-oriented software systems (see Figure 2.1). While structural diagrams represent the
static structure of a system, behavioural diagrams capture the behavioural features, including
aspects concerning its runtime execution. Among the types of UML diagrams, in this research

Diagram

Structure
Diagram

Profile
Diagram

Class
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

Object
Diagram

Component
Diagram

Activity
Diagram

Use Case
Diagram

Interaction
Diagram

State Machine
Diagram

Behaviour
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Communication
Diagram

Timing
Diagram

Fig. 2.1 The taxonomy of structure and behaviour diagrams [1]. In grey, the diagrams of interest
for this thesis.

2.1 Conceptual Background 11

work we have focused on those that not only have a strong relation with provenance (later
we will explain the reasons), but that also are mostly used by software designers [17]. These
diagrams are UML Sequence Diagrams (SqDs) and UML State Machine Diagrams (SMDs),
which are two types of behavioural diagrams, and UML Class Diagrams (CDs), which are
part of the structural diagrams category. Next, we will give an insight into these UML
diagrams focusing on those elements that will play a key role in this work. Readers interested
in a deeper explanation about the elements included in these types of diagrams are referred
to the UML specification [1].

UML Sequence diagrams

Sequence diagrams (SqDs) are used to model the interactions among collaborating objects
and the exchange of information between them. They mainly consist of the following
elements: lifelines, messages, and execution specifications. The SqD in Figure 2.2 describes
the interactions between a student, a seminar, and a course in our University example.

Each object participating in an interaction is represented as a lifeline. Each lifeline is
normally shown by a rectangle, containing the object’s name, followed by a dashed line
which extends down vertically, indicating the object’s existence over some period of time.
Examples of lifelines are st:Student, s:Seminar and c:Course, depicted in the Figure 2.2.

A message specifies a communication from a sender to a receiver lifeline, in which a
sender makes a request for either an operation call or signal reception by a receiver. While
a signal refers to a communication between objects in which a reaction is asynchronously
triggered in the receiver without a reply, an operation call can be either synchronous or asyn-
chronous. A message is represented by a horizontal line with an arrow pointing in the direc-
tion in which the message is sent (e.g., enrolStudent(st) and includeAssociatedSeminar(s)

in Figure 2.2). UML distinguishes six sorts of messages reflecting different kinds of commu-
nications (they are specified by the shape of the arrow head) [1]:

st:Student

enrolStudent(st) includeAssociatedSeminar(s)

Synchronous
Message s:Seminar

Reply Message

enrolStudent(boolResponse)

Lifeline

Output Argument

c:Course
Input

Argument
Asynchronous

Message

Execution Specification

Fig. 2.2 UML sequence diagram showing the interactions between objects of classes Student,
Seminar, and Course. The name of the UML elements of interest are in red courier font.

12 Background

• A synchronous message (filled arrow head). The message was generated by a synchronous
call to an operation. The sender waits for a response.

• An asynchronous message (open arrow head). The message was generated by an asyn-
chronous call to an operation. The sender continues immediately after sending it, without
waiting for a response.

• A reply message (dashed line with either an open or filled arrow head). The message
represents the return from a synchronous call to an operation.

• An object creation message (dashed line with an open arrow head). This is the message
designating the creation of another lifeline object.

• An object deletion message (ends in a cross X at the bottom of the lifeline). The message
designates the termination of the receiver lifeline.

• An asynchronous signal (open arrow head). The message represents the asynchronous
sending and reception of an instance of the signal.

The name of the message must be the same as the name of the referenced signal or
operation. If the message signature is a signal, the arguments of the message correspond
to the attributes of the signal. Otherwise, if the message signature is an operation, two
options are possible. When it is a synchronous or asynchronous message, the arguments of
the message correspond to the in and inout parameters of the operation, in the same order.
When it is a reply message, the arguments of the message refer to the out, inout and return
parameters of the operation, in the same order. Parameters have a direction: in, inout, out
and return. The in direction indicates that the parameter values are passed by the caller.
The inout direction means that parameter values are passed in by the caller and (possibly
different) values are passed out to the caller. The out direction indicates that parameter
values are passed out to the caller. Finally, the return direction means that parameter values
are passed as return values back to the caller.

An execution specification is a fragment which represents a period during which a partic-
ipant’s lifeline is executing a unit of behaviour or action (such as an operation). Execution
specifications can be represented by a bar reached by a message at its top. In Figure 2.2, we
depict in blue two execution specifications representing the executions of the enrolStudent

and includeAssociatedSeminar operations, respectively. In the former case, the execution
specification is started by a synchronous message and is finished by a reply message, while
in the latter, it is started by an asynchronous message.

2.1 Conceptual Background 13

In addition to the previous elements, which appear in Figure 2.2, there are also common
UML elements that are worth mentioning. For instance, combined fragments are used to
model various control structures explicitly, which permit to describe a number of possible
execution paths compactly and precisely. The combined fragments are represented by a
rectangle with interactions inside, and with the operator type specified by the respective
keyword in a small pentagon in the upper left corner of this rectangle. The UML specification
provides 12 different types of operators [1]. For instance, the alt operator shows an alternative
interaction, whereas the opt operator indicates that an interaction is optional. Alternatively,
the loop operator specifies an iterative interaction.

UML Class diagrams

Class diagrams (CD) are without a doubt the most widely used UML diagrams [18]. They
are utilized to model the static structure of a system, therefore describing the elements of the
system and the relationships between them. The main elements are classes, which contain
attributes and operations, and the relationships between the classes. In Figure 2.3 we show
an excerpt of the class diagram specifying the structure of the University example.

In UML, the objects are classified attending to their characteristics and behaviour by
means of classes (e.g., Student, Seminar, and Course in Figure 2.3). Concretely, the character-
istics are specified by attributes (e.g., identifier and studentName in Student), whereas the
specific behaviour that can be triggered on individual objects is specified by the operations
(e.g., setName in Student). As for the notation of classes, they are represented by a rectangle
that can be subdivided into multiple compartments. The first one must contain the name of
the class, and it is mandatory. The second and third may contain the attributes and operations,

Seminar

+enrolStudent(in st:Student):Boolean

Class

Operation

Attributes

Output Parameter (return)

seminarName:String

Student

+setName(in n:String)

identifier:String
studentName:String

+startTerm()
+endClasses()

Course

+includeAssociatedSeminar(in s: Seminar)
+setName(in name: String)
+getName():String

courseName:String

+cancel()
+skipClass(in st:Student)

+studentList 0..*

+dropStudent(in st:Student):Boolean

+associatedSeminars

Input Parameter

Association

-
-

-

-
0..*

Fig. 2.3 An excerpt of the UML class diagram for the University example. The name of the UML
elements of interest are in red courier font.

14 Background

respectively. On the one hand, the attributes allow storing information that is known for all
instances but that generally have different specific values for each instance. An attribute has
at least a name, and its type may be specified after the name using a colon. The multiplicity
of an attribute indicates how many values an attribute can contain, and it is shown as an
interval enclosed by square brackets in the form [min, max], whereby min and max are natural
numbers indicating the lower and upper limits of the interval, respectively. On the other hand,
the operations are characterised by their name and their parameters. When an operation is
called, the behaviour associated with it is executed. The name of the operation is followed
by a list of parameters in parentheses, which may be empty. Each parameter has a name
(mandatory), type, multiplicity, and a direction of type in, inout, or out. In case the operation
has a parameter with return direction, it must be specified after the list of parameters using a
colon and followed by the type of the return value (see operation enrolStudent in Figure 2.3).

The associations between classes model possible relationships, known as links, between
instances of the classes. The associations are shown as edges between classes. For instance,
the CD in Figure 2.3 shows one association between Seminar and Student, and another one
between Course and Seminar. If the edge is directed (i.e., at least one of the two ends has an
open arrowhead), navigation from an object to its partner is possible and the object can access
its partner’s visible attributes and operations. Due to the fact that associations are realised as
references to the associated objects, an association can also be represented as an attribute with
the appropriate multiplicity, whereby the type of the attribute is the class of the partner objects
(page 206 in [1]). Similarly to multiplicities of attributes and parameters, the multiplicities of
associations are given as an interval in the form min..max, specifying the number of objects
that may be associated with exactly one object of the opposite side. Finally, it is important to
note a concrete form of associations called aggregations, used to represent the relationships
between a whole and its parts. UML differentiates between two types of aggregations: shared
aggregations and composite aggregations. The shared aggregation means that parts also exist
independently of the whole. The composite aggregations express that a specific part can only
be contained in at most one composite object at one specific point in time. It means that if the
composite object is deleted, its parts are also deleted. For example, in our University example,
each study program could be considered to be made up of any number of courses (which
will be represented by a shared aggregation between a StudyProgram class, representing the
whole, and the Course class, representing the parts). Similarly, a composition association
could be given among class Building, being the whole, and LectureHall, being the parts, for
example [18]. The differentiation between composite aggregation and shared aggregation is
indicated by a solid diamond for a composite aggregation and a hollow diamond for a shared
aggregation.

2.1 Conceptual Background 15

The generalization relationship between two classes is used to express that the charac-
teristics (attributes and operations) and associations that are specified for a general class
(referred to as superclass) are passed on to its subclasses [18]. A generalization relationship
is represented by an arrow with a hollow, triangular arrowhead from the subclass to the
superclass (for example, in our example, a superclass Person could be considered to represent
a generalization of the subclasses Student and Professor).

Finally, we would like to comment on another UML elements that may appear in Class
diagrams: abstract classes and interfaces. Classes that cannot be instantiated themselves
are modeled as abstract classes which are used to highlight common characteristics of the
classes related to it [18]. Similarly to the abstract class, an interface also does not have an
implementation or any direct instances. An interface represents a contract so that the classes
that implement an interface obligate themselves to provide the behaviour specified by the
Interface [18]. As for their graphical representation, abstract classes are written in italic
font or indicated by the keyword {abstract} before their name. Conversely, an interface is
denoted like a class but with the additional keyword «interface» before the name.

UML State Machine diagrams

State Machine diagrams (SMD) specify the discrete behaviour of individual elements of a
system. They are basically made up of states, pseudostates, and transitions. The SMD in
Figure 2.4 depicts the set of states an object of the class Seminar can go through during its
lifetime.

A state basically denotes a situation of an object during which some condition holds.
For instance, based on the SMD from Figure 2.4, objects belonging to class Seminar may be
in the states performing (enroling or studying), and examining. A state may have internal

performing

enroling

examining
entry/attend

enrolStudent

studying

cancel

startTerm

skipClass[missedSessions>5]/suspend

endClasses

Initial Pseudostate

Composite State

Simple State
EffectGuardEventTransition

Final State

Internal
Activities

close

Fig. 2.4 UML state machine diagram for class Seminar. The name of the UML elements of
interest are in red courier font.

16 Background

activities, whereby an activity may consist of multiple actions [18]. If the activity is specified
after the keyword entry, such an activity is executed when the object enters the state (e.g.,
examining); as opposed to an exit activity, which is executed when the object exists the state.
An activity preceded by the keyword do is executed while the object remains in the state. All
the activities are always specified with a prepended forward slash that clearly identifies it as
an activity.

There are three types of states: simple, composite, and submachine states. Simple
states are characterised by not having nested states, also known as substates (e.g., enroling,
studying, or examining). Conversely, composite states can hold a connected set of substates,
pseudostates and transitions (e.g., performing). Composite states are divided into orthogonal
composite states, which model concurrent behaviours where several substates are active
simultaneously, and simple composite states, which specify that only one of their substates
must be active at same time (this is the case of performing in Figure 2.4). A submachine
is a special kind of state that refers to another defined State Machine diagram. States are
represented by rectangles with rounded corners. A particular state referred to as final state
represents the completion of an activity within the enclosing state or that the overall SMD is
completed. It is depicted as a filled circle nested inside another (see Figure 2.4).

A transition is a mechanism by means of which an object leaves a state and changes
to a new state. Each transition can have a guard condition that indicates if the transition
can even be considered (enabled), a trigger specified by an event that causes the transition
to execute if it is enabled, and the effect that will be executed when the transition oc-
curs [19]. They are represented by labelling the transition with trigger[guard]/effect (e.g.,
skipClass[missedSessions>5]/suspend). For example, in Figure 2.4, guard missedSessions>5

is checked as soon as event skipClass occurs. If the guard is false, there is no change of state
and the effect suspend is not executed. Alternatively, if the guard is true, there is a change
of state, and the effect suspend is executed during the change to the studying target state. A
transition has a source and a target vertex, where each vertex can be either a pseudostate or a
state. A pseudostate is an abstraction used to connect multiple transitions into more complex
state transitions paths. An example of a pseudostate is the initial pseudostate, which is
represented by a filled circle, which can refer to the creation of an object or to the source of a
transition to the default state of a composite state (see Figure 2.4).

UML extension mechanisms

OMG provides two types of extension mechanisms: heavyweight extension mechanisms and
the lightweight extension mechanisms [20]. While the heavyweight extension mechanisms
provide mechanisms to change and adapt UML by modifying the standard UML metamodel,

2.1 Conceptual Background 17

the lightweight extension mechanisms are built into UML for enabling the adaptation of UML
to the requirements of a specific domain, without modifying the metamodel. Particularly, this
latter extension mechanism is supported by profiles. The profiles clause describes capabilities
that allow UML metaclasses to be extended to adapt them for different purposes [1], for
instance, to tailor the UML metamodel for different platforms (such as J2EE or .NET) or
domains (e.g., Service Oriented Architecture).

A UML stereotype is defined as part of a profile for specifying how an existing UML
metaclass (such a class, an operation, etc.) may be extended. As a way of example, in
Figure 2.5 we show an example extracted from the UML specification (page 265 in [1])
which illustrates both the definition and the application of a stereotype named Creator. In
particular, the left-hand side of Figure 2.5 shows the definition of this stereotype, which is
specified to be applicable to instances of the metaclass Class to provide them with extra
semantics regarding their creator. A stereotype is denoted like a UML Class, linked to the
metaclass to which it extends, and with the keyword «stereotype» above the name (see
Figure 2.5). Like a UML class, a stereotype may have properties, which have traditionally
been referred to as tag definitions. A stereotype’s property specifies a new kind of property
that may be attached to the model element to which the stereotype extends (e.g., name and
date in the stereotype Creator). When a stereotype is applied to a model element (an instance
of a stereotype is linked to an instance of a metaclass), the name of the stereotype is normally
shown within a pair of guillemets (« »). Similarly, when a stereotype is applied, the values
of its properties, which are traditionally referred to as tagged values, can be shown in a
comment symbol attached to the model element with the form name = value, where name is
the name of the tag definition and value denotes its value. For example, in the right-hand of
Figure 2.5 we show the application of the stereotype Creator to the particular class StopWatch,
with concrete tagged values.

Class

«stereotype»

Creator
name: String
date:String

«Creator»

StopWatch name= "Alice"
date='15-04-80'

«Creator»
«Metaclass»

Fig. 2.5 The left-hand side shows the definition of the stereotype named Creator. The right-hand
side depicts the application of such a stereotype.

18 Background

2.1.2 Provenance-related background

In this section we will present two crucial approaches to understand the conceptual definition
of UML2PROV. First, we provide an overview of the PROV standard [2] for representing
provenance information; later, we explain the PROV Template approach [3] for designing
provenance.

The PROV standard

In the past, most provenance systems had their own model for defining and managing
provenance, which caused a hindrance to exchange and use the generated provenance by
other users [10]. Against this background, the PROV standard [2] emerged. PROV is a
World Wide Web Consortium (W3C) standard that aims to facilitate the publication and
interchange of provenance among applications. PROV is fully specified in a family of
documents allowing provenance to be modeled, serialised, exchanged, accessed, merged,
translated, and reasoned over [14]. Among this family of documents, there are a conceptual
data model (PROV-DM) [21], an OWL ontology (PROV-O) [22], an XML serialisation
format (PROV-XML) [23], a human-readable text notation (PROV-N) [5], a formal semantics
of the conceptual model (PROV-SEM) [24], a set of constraints and inference rules (PROV-
CONSTRAINTS) [25], and a mapping to Dublin Core (PROV-DC) [26]. Inspired by [2],
Figure 2.6 shows the organisation of this family of documents and (roughly) how they
depend on each other. More specifically, the core is the conceptual data model (PROV-
DM), which defines the vocabulary for describing provenance. To allow the implementation
of provenance validators, a set of constraints (PROV-CONSTRAINTS) has been defined
over PROV-DM. The provenance defined with the vocabulary stated in PROV-DM can be
serialised in: RDF (PROV-O), a readable text notation (PROV-N), and XML (PROV-XML).

PROV-XML

PROV-DM PROV-CONSTRAINTS

PROV-O PROV-NPROV-DC PROV-SEM

Serialisation

Fig. 2.6 Organization of the PROV family of documents [2]

2.1 Conceptual Background 19

Additionally, PROV-DM is complimented by a formal semantics (PROV-SEM). Finally,
PROV-DC is an additional specification for representing dictionary style collections.

One of the purposes of our approach will be to obtain, from applications’ execution,
provenance information that is compatible with the PROV standard, in order to allow its
exchange and use by other users. Thus, next, we will focus on explaining the elements that
make up PROV-DM [21]. Concretely, PROV-DM is based around three classes or concepts
(Agent, Entity, and Activity) and their relations, which are shown in Figure 2.7. Below, in our
explanations, we will use the PROV-N [5] human-readable text notation for these concepts,
aimed at illustrating them.

• Entity is a physical, digital, conceptual or other kind of thing with some fixed aspects.
An entity is written in PROV-N as entity(id, [attributes]), where id is an identifier for
the entity, and attributes is an optional set of attribute-value pairs (e.g., (attr1, val1),. . .)
representing additional information about the fixed aspects of the entity.

• Activity is something that occurs over a period of time and acts upon or with entities;
it may include consuming, processing, transforming, modifying, relocating, using, or
generating entities. An activity is written in PROV-N as activity(id, startTime, endTime,

[attributes]). In such an expression, the id is an identifier for the activity; starTime is
an optional time for the start of the activity; endTime is an optional time for the end of the
activity; and attributes is an optional set of attribute-value pairs representing additional
information about the activity.

• Agent is something that bears some form of responsibility for an activity taking place, for
the existence of an entity, or for another agent’s activity. An agent is written in PROV-N

Entity Activity

Agent

wasInvalidatedBy

wasGeneratedBy

used

wasDerivedFrom

specializationOf

wasAttributedTo wasAssociatedWith

wasStartedBy

hadMember

Fig. 2.7 The core concepts of PROV-DM together with their relations

20 Background

as agent(id, [attributes]), whereby id is the identifier of the agent, and attributes is a
set of attribute-value pairs representing additional information about the agent.

These elements can be associated with each other by means of relations, among which we
highlight (see Figure 2.7): used, which is the beginning of utilizing an entity by an activity;
wasGeneratedBy, which is the completion of production of a new entity by an activity;
wasDerivedFrom, which is a transformation of an entity into another; wasAssociatedWith,
which is an assignment of responsibility to an agent for an activity; wasAttributedTo, which
is the ascribing of an entity to an agent; wasStartedBy, which is when an activity is deemed
to have been started by an entity; wasInvalidatedBy, which is the start of the destruction,
cessation or expiring of an existing entity by an activity; specializationOf, utilised for showing
an entity which shares the aspects of another entity, but also has more aspects; and finally
hadMember, used for stating the members of an entity.

Notational Conventions Throughout this memoir, in the depicted PROV documents, we
use qualified names (e.g., prov:value) conforming to PROV-DM [21]. In compliance
with PROV-DM, a qualified name can be mapped to an Internationalized Resource
Identifier (IRI) [27] by concatenating the IRI associated with the prefix (e.g., prov) and
the local part (e.g., value). Every qualified name with a prefix refers to the namespace
of the prefix. The prefixes and namespaces used in this thesis are depicted in Table 2.1.
We note that the three first prefixes refer to well-known namespaces as provided in
the corresponding definitions (see column “Definition”), whereas the two last names-
paces refer to concrete prefixes provided in this research work. More specifically, the
namespaces associated with var and tmpl belongs to the PROV-Template approach [3].
Whereas var is used to represent variables in such a proposal (it will be described in the
next section), tmpl is used to control the expansion of variables meant to generate time
and string values (we refer readers to [28] for details about its usage). Conversely, u2p
has been defined to identify concrete information as stated by our proposal. Later on,

Table 2.1 Prefixes and Namespaces used in this document

Prefix Namespace IRI Definition
prov http://www.w3.org/ns/prov# The PROV namespace
xsd http://www.w3.org/2000/10/

XMLSchema#
XML Schema namespace

ex http://example.com It represents application-dependent IRIs
var http://openprovenance.org/var# The namespace for PROV template variables
tmpl http://openprovenance.org/tmpl# The prov-template namespace
u2p http://uml2prov.unirioja.es/ns/u2p# UML2PROV namespace

http://www.w3.org/ns/prov#
http://www.w3.org/2000/10/XMLSchema#
http://www.w3.org/2000/10/XMLSchema#
http://example.com
http://openprovenance.org/var#
http://openprovenance.org/tmpl#
http://uml2prov.unirioja.es/ns/u2p#

2.1 Conceptual Background 21

we will present how this prefix is used, but the reader interested in further information
about u2p is referred to its namespace IRI (see column “Namespace IRI”).

On the other hand, in some cases, when the information in a PROV document is not
very extensive, a graphical notation could help us get an idea of such information at a
glance. The most widely used graph notation for PROV is presented in [29]. Although
it cannot be considered as a standarized notation for expressing provenance, we have
decided to use it throughout this thesis in order to show the essence of the depicted
PROV documents. Concretely, this notation will allow us to see at a glance PROV
entities, activities, and agents, as well as their relations. As we can see in Figure 2.8,
entities, activities and agents are represented as nodes, with oval, rectangular, and
pentagonal shapes, respectively. The relations are represented as directed edges, while
attribute-value pairs are depicted inside a note.

Entity Activity Agent Relation
name of the

relation

Attribute-value pairs

attribute1 value1
attribute2 value2

Fig. 2.8 A graph notation for PROV elements

For instance, the execution of an operation that changes to upper case the name
of a student (e.g., from "avelina" to "AVELINA") in the University example, could be
explained by the PROV documents depicted in Figure 2.9. The left-hand side of this
figure depicts the PROV document in PROV-N format, whereas the right-hand side
depicts the same information using the above graphical notation. Both representations
show that an activity with the identifier ex:toUpperCase used the entity ex:inParam1

with the attribute-value pair prov:value-"avelina", and generated (wasGeneratedBy)
the entity ex:outParam1 with the attribute-value pair prov:value-"AVELINA"; thus, it could
be said that the latter entity derived (wasDerivedFrom) from the former entity.

ex:inParam1

ex:outParam1

used

wasGeneratedBy

wasDerivedFrom

prov:value "avelina"

prov:value "AVELINA"

ex:toUpperCase

document
prefix prov <http://www.w3.org/ns/prov#>
prefix ex <http://example.org/>

 bundle ex:bundle1

entity(ex:inParam1 ,[prov:value="avelina"])
entity(ex:outParam1 , [prov:value="AVELINA"])
activity(ex:toUpperCase)
wasGeneratedBy(ex:outParam1 ,ex:toUpperCase ,-)
used(ex:toUpperCase , ex:inParam1 , - ,[])
wasDerivedFrom(ex:inParam1 , ex:outParam1 , [])

endBundle
endDocument

Fig. 2.9 A PROV document in PROV-N together with its graphical representation

22 Background

PROV-Template approach

In addition to obtaining provenance information compatible with the PROV standard, our
proposal aims at obtaining the design of the provenance directly from the design of the
application. In particular, to express the provenance design, we will use the PROV-Template
approach [3]. PROV-Template is a declarative approach that is intended to enable designers
and developers to design and generate provenance compatible with the PROV standard. The
architecture of this templating approach is made up of four main elements: PROV template,
binding, expansion algorithm, and the final PROV document. In Figure 2.10, we present an
overview of the PROV-Template architecture where all these elements are included.

in

in

Expansion
algorithm

out

PROV
template

Bindings

PROV
document

Application
out

Fig. 2.10 The architecture of the templating approach proposed in [3]

First, the design of the provenance to be generated is defined by means of a PROV template
(see Figure 2.10). A Template is a provenance document expressed in a PROV-compatible
format, containing placeholders (referred to as variables) for values. As a way of example,
Figure 2.11 shows a PROV template that would correspond to the design of the provenance
depicted in Figure 2.9. In this template there is an activity with the identifier var:operation

var:input

var:output

var:operation

used

wasGeneratedBy

w
as

D
er

iv
ed

Fr
om

prov:value var:inputValue

prov:value var:outputValue

Fig. 2.11 A graphical illustration of a template, where variables are qualified names with prefix
var and appear in red font.

2.1 Conceptual Background 23

(the prefix var denotes that it is a variable). This activity is related to the entity var:input by
means of the relation used, and it is also associated with the entity var:output through the
relation wasGeneratedBy (the relation wasDerivedFrom associates the latter entity with the
former). Additionally, we can see two more variables in the list of attribute-value pairs of
both entities: var:inputValue, in entity var:input, and var:outputValue, in entity var:output

(late,r we will see the information that these attributes provide).
The second step consists of obtaining the bindings (see Figure 2.10) from the application

execution. A binding is an association between a template’s variable and value(s), constructed
at runtime by a provenance-aware application. They are usually grouped in sets of bindings
(or bindings for short). The PROV-Template approach is agnostic about the mechanism used
to create bindings. For instance, an option could be to log the values of the bindings’ variables
and later to create the bindings from them, or, alternatively, to directly obtain the bindings as
the application executes. An example of bindings for the template of Figure 2.11 is shown in
Figure 2.12. In particular, these bindings, which are serialised in JSON-LD [30], include:
the "var" key, that contains the bindings represented as a JSON dictionary; @id, which is
the identifier of the corresponding value; @type, that is the data type of the corresponding
value; @value, which is the string serialisation of the value; and finally, the "context" key,
which provides the information to interpret the prefixes used in values. All the variables in
the template of Figure 2.11 are associated with a value: var:operation with ex:toUpperCase,
var:input with ex:inParam1, var:inputValue with "avelina", var:output with ex:outParam1,
and var:outputValue with "AVELINA".

{
"var":{
"operation": [{ "@id": "ex:toUpperCase " }],
input": [{ "@id": "ex:inParam1
"inputValue": [{ "@type": "xsd:string", "@value": "avelina" }],
output":[{ "@id": "ex:outParam1" }],
outputValue": [{ "@type": "xsd:string", "@value": " AVELINA " }]

xsd: "https://www.w3.org/2000/10/XMLSchema#",
...

}
}

"

"context":{

"
"

" }],

Fig. 2.12 An example of bindings for the template of Figure 2.11. They are encoded in JSON-LD
with variable names in bold red font, and values in underlined blue font.

Finally, the expansion algorithm (see Figure 2.10) takes as input the template and the
bindings, and generates the PROV document with the provenance information to be exploited.
This resulting PROV document contains the shape expressed in the template and the values,
associated with each variable, as given by the bindings. For example, the PROV document
obtained from the template in Figure 2.11 and the bindings in Figure 2.12 would correspond
to the one shown in Figure 2.9. We would like to note that, in a binding, a variable identifying

24 Background

a PROV template’s element (entity, activity or agent) can be associated with several values.
In this case, the expansion algorithm will generate, in the resulting PROV document, one
PROV element for each associated value. Consequently, the associations in which the PROV
element is involved will be replicated in the resulting PROV document.

We note that, since the previous process can be performed several times, it would result
in many PROV documents. Such documents can be merged in a single PROV document,
gathering together all the provenance information in a single place. To do this, we can use the
tool ProvToolbox [16] which has the functionality for merging PROV documents, ensuring
that the PROV elements are uniquely represented with all their attributes.

As Moreau et al. stated in [3], the PROV-Template approach provides several benefits in
terms of spatial overhead: bindings have a size that is typically 40 percent of that of expanded
provenance templates. Additionally, Moreau et al. also claim that the PROV-Template
approach offers several benefits from the software engineering perspective such as separation
of responsibilities, provenance maintenance, and so on.

2.2 Implementation Background

This section is devoted to those strategies that we have used to provide an implementation
of UML2PROV. We start by describing some notions of the Model Driven Development
approach, and then we give an insight into the Aspect Oriented Programming paradigm.

2.2.1 Model-Driven Approaches

This section introduces the notions of Model Driven Development (MDD) and Model Driven
Architecture (MDA) as they are described in literature, and gives a global overview of the
MDA approach.

As it is presented in [31], model-driven development is simply the notion that we can
construct a model of a system that we can then transform into the real thing. The MDD
approach is focused on models, rather than on computer programs, thereby the source code is
automatically generated from them through a refinement process. In this process, a high-level
abstract application model is successively translated into increasingly more detailed models
until one of these models can be directly translated into a final running system executed by
some platform. Concretely, UML2PROV advocates transforming UML diagrams, which
are considered a partial graphical representation of a model of a system, into artefacts for
generating provenance. Thus, the use of MDD to perform this task is quite natural.

2.2 Implementation Background 25

Possibly, the most well-known initiative of MDD is the Model Driven Architecture
(MDA) proposal [4, 32]. This framework leverages OMG’s standards to support the creation
of models. One of the main elements introduced by MDA is meta-modeling [32]. The main
idea behind meta-modeling is that models always conform to domain application metamodels.
A model defines what elements can exist in a system, whereas a metamodel defines every
kind of element that makes up their models. Hence, it is allowed to use a specific element in a
model because its metamodel considers a meta-element that defines the kind of that element.
For instance, since UML diagrams are considered a partial graphical representation of a
model of a system, a concrete model must conform to the UML metamodel. Additionally, one
of the main goals of MDA is to separate the specification of a system from its implementation
aspects on a specific platform. Particularly, MDA mainly identifies two types of models
of a system, conforming to the corresponding metamodels (see Figure 2.13): the Platform
Independent Models (PIMs), which describe the system without any implementation detail
being independent of the technological platform used to implement the solution, and the
Platform Specific Models (PSMs), which refine the PIM model by including implementation
details. Particularly, PSMs should be automatically obtained from PIMs and then, the
PSMs will be finally implemented in the target platform. As it is depicted in Figure 2.13,
usually, the model driven process comprises defining the PIM model, transforming it into
the PSM, and finally generating the code to be executed on the chosen platform, obtaining
the final software product. This figure also depicts how each model, independently of
its type, conforms to a metamodel.

Transformation
tool

Transformation
definition

Transformation
tool

Transformation
definition

conforms to conforms to

MetamodelMetamodel

PIM-Model PSM-Model Code

Fig. 2.13 Simplified model driven process inspired by the one presented in [4]

Depending on the type of artefacts (models and code) that takes place in the MDA
approach, it can be distinguished between model to model transformations (M2M), in which
both the source and the target are models, and model to text transformations (M2T), which
define transformations from a model to the final text. Among the different MDA-based tools,
in this thesis, we have used the ATLAS Transformation Language (ATL) [33] to carry out
the M2M transformations, whereas the M2T transformations have been performed by means

26 Background

of the Extensible Stylesheet Language Transformations (XSLT) [34] and XPand [35]. Next,
we provide a brief explanation of these tools:

XSLT is a specification for transforming XML documents into another text format (e.g.,
HTML, XML, or anything else). For example, since UML models can be serialised as XML
using the XML Metadata Interchange (XMI) [1], XSLT could be used to implement UML
model transformations. A transformation in the XSLT language is expressed in the form
of a stylesheet, which is made up of one or more XML documents. The transformation
is achieved by a set of template rules. A template rule associates a source pattern, which
typically matches nodes in the source document, with fixed text containing instructions to
obtain information from the source model. The resulting text document will contain the
fixed text together with the text resulted from the execution of such instructions. XSLT uses
the XML Path Language (XPath) [36] to define such instructions. XPath is an expression
language that allows navigating through elements and attributes in an XML document.

ATL is a model transformation language that enables to specify how one (or more) target
model(s) can be produced from a set of source models. ATL introduces a set of concepts
that make it possible to describe model transformations by providing both declarative and
imperative constructs. More specifically, in ATL, the main concept is the rule, which
can be a matched rule or a called rule. Matched rules constitute the core of an ATL
declarative transformation since they make it possible to specify (1) for which kinds of
source elements the target elements must be generated, and (2) the way the generated target
elements have to be initialised. Conversely, called rules provide developers with convenient
imperative programming facilities. They have to be explicitly called to be executed and
they can accept parameters. Developed on top of the Eclipse platform, the ATL Integrated
Environment [37] provides several development tools aiming at facilitating the development
of ATL transformations.

XPand is a statically-typed template language that enables the generation of text (e.g., code)
from models. Concretely, XPand transformations rely upon templates. An XPand template
associates a given element type in the source model with a block of text (which could be
code) containing placeholders. During the transformation, the placeholders are filled with
the concrete values obtained from the addressed element in the source model. Similar to
ATL, the XPand team provides users with a set of plugins [38] for the Eclipse platform in
order to ease development of XPand templates.

2.2 Implementation Background 27

2.2.2 Aspect Oriented Programming

It is very common that developers come across issues that are not possible to address in an
accuracy way by means of the usual paradigms such as procedural, functional, or Object-
Oriented Programming (OOP). Concretely, developers still have difficulties placing concerns
that do not fit naturally into a single module [39] (e.g., transaction management, security,
caching, and so on). Thus, they have to make decisions that usually incur in code located
across all the application. As a result, developers may write tangled code, in which a class or
module implements additional behaviour not related to its original behaviour, or scattered
code, in which the implementation of a behaviour is located across different parts of the
system [39]. These situations (tangled and scattered code) are deemed to affect both the
design and the development of applications in several ways, making the code unclear, and
difficult to maintain.

Against this background, the aspect-oriented programming (AOP) [40] paradigm aims to
increase modularity of applications by allowing the separation of crosscutting concerns from
core concerns. A core concern refers to the main behaviour of a module (e.g., book and ATM
transactions, management of clients and accounts, and so on), whereas a crosscutting concern
refers to secondary behaviours that crosscut several modules (e.g., concurrency control and
tracing). For instance, a well-known potential crosscutting concern in the University example
could be to trace operation calls. A developer who wants to implement this concern should
add code in every method of the application to be traced, crosscutting the core concerns of
the application and incurring in tracing code scattered throughout all the application classes.

The modular unit in AOP is the aspect, which encapsulates a concrete crosscutting
concern and identifies those points in the source code in which the crosscutting concern is
executed. Later, the aspect weaver composes the final system by combining the crosscutting
concern, defined in an aspect, and the core concerns through a process called weaving. There
are two main types of aspect weavers depending on the moment in which the weaving is
performed. While compile-time weavers perform the weaving as an additional phase in the
compilation phase, run-time weavers carry out the weaving “on the fly” as the application
is running. To implement a crosscuting concern, an AOP system may include many of the
following concepts defined as follows in [39]:

• Join points. They are well-defined points in the execution of a program. These may include
execution of methods, creation of objects, or throwing of exceptions. Such identifiable
points in the system are called join points.

• Pointcut. Implementing a crosscutting concern requires selecting a specific set of join
points. A pointcut selects any join point that satisfies some condition. For instance, a

28 Background

pointcut could refer to all the operations of a concrete class or package, or alternatively, to
those operations that start with a concrete string of characters.

• Advice. After a pointcut selects join points, the focus is augmenting those join points with
additional or alternative behaviour. The advice construct in AOP provides a facility to do
so. An advice adds behaviour before, after, or around the selected join points. A before
advice executes before the join point, whereas an after advice executes after it. An around
advice surrounds the join point execution and may execute it zero or more times.

• Aspect. Since the end goal of AOP is to have a module that embeds or encapsulates
crosscutting logic, a place to express that logic is needed. An aspect provides such a
place. Concretely, an aspect contains pointcuts and advices. It is worth noting that aspects
become a part of the system and therefore, they can use the elements of the system (e.g.,
classes in it) to perform their work.

There is a huge number of systems that have been defined on top of widely used program-
ming languages in order to provide them with AOP functionality. One of them is AspectJ [41],
which is an AOP extension to the Java programming language, Ajaxpect [42], which is an
AOP library for Ajax with JavaScript, and Aspects [43], which is a Python module that
enables AOP. As we will see in Chapter 5, which introduces our reference implementation in
Java, we have used AspectJ for being the most relevant AOP proposal for Java [39]. Thus,
next we give a brief introduction to the main features of AspectJ used later in such a chapter.

AspectJ

AspectJ [41] is an AOP extension to the Java programming language that, particularly, allows
a clean modularization of crosscutting concerns. AspectJ supports two styles for implement-
ing the aforementioned AOP concepts. One is a superset of Java syntax with additional
keywords (i.e., a code-based style), whereas the other one is a set of Java annotations (i.e.,
an annotation-based style). Below, we will explain the AspectJ code-based style for imple-
menting the aforementioned AOP concepts, which is the one used in our approach. In order
to illustrate such an explanation, we will suppose that we are interested in measuring the
execution time of all the operations with the name setName, from the University example. But,
instead of manually adding the corresponding Java instructions throughout the code, we de-
cide to define an AspectJ aspect. The AspectJ aspect implementing this crosscutting concern
(hereinafter we will referred to it as UniversityExampleAspect) can be seen in Figure 2.14.

Join point As we have mentioned previously, they are well-defined points in the execution
of the program. AspectJ permits a subset of all possible join points. Examples of these

2.2 Implementation Background 29

around(): call(* *.setName(..)) {

long startTime = System.currentTimeMillis();

proceed();

long stopTime = System.currentTimeMillis();
long elapsedTime = stopTime - startTime;
System.out.println(elapsedTime);

}
}

pointcutaspect

advice

type of
advice

pointcut
designator

actual
behaviour

behaviour
implementing

the
crosscutting

concern

aspect UniversityExampleAspect {

void

Fig. 2.14 An AspectJ aspect implementing a crosscutting concern to the University example.

supported join points are method/constructor calls, method/constructor executions, read
/write attributes, exception handler executions, class initializations, object initializations, and
object pre-initializations. For instance, in the UniversityExampleAspect, we are interested
in capturing calls to operations with the name setName.

Pointcut Aiming at creating the sets of join points, AspectJ includes several primitive point-
cut designators. A simple way to think about a pointcut designator is in terms of matching
certain join points at runtime. In order to capture join points that share common charac-
teristics, AspectJ defines wildcards. The pointcut defined in the UniversityExampleAspect

has the pointcut designator call and the signature “* *.setName(..)” (see Figure 2.14).
The call pointcut designator denotes that the pointcut refers to all the operation calls that
match a signature. As far as the signature is concerned, it is defined using two types of
wildcards ("*" and ".."). The wildcard "*" denotes any number of characters except for the
"." character. Thus, the first "*" refers to any type of return parameter, whereas the second
"*" means any class, in any package. The ".." wildcard denotes any number of characters
including the "." character. When it is used in the parameters section of an operation, it
refers to an arbitrary number of parameters, none or any parameters (see Figure 2.14).

Advice AspectJ distinguishes among three different types of advices depending on the
moment in which the advice is executed: before, after, and around. When there is a
before/after advice, the behaviour in the advice is executed before/after the actual behaviour
proceeds when its pointcut is matched. An around advice can modify the execution of
the code that is at the join point, by replacing it, or even bypassing it [39]. Additionally,
the behaviour inside the around advice could proceed with the actual behaviour when it

30 Background

considers it necessary. To do this, AspectJ defines the proceed() statement for carrying
out the actual behaviour. In the UniversityExampleAspect, we define an around advice
associated with the pointcut “call(* *.setName(..))”, so that the behaviour included in the
advice will be executed each time the pointcut is matched (i.e., when there is a call to an
operation with the name setName). We have used an advice of type around in order to wrap
the advised operation and to execute additional instructions both before and after it. As we
can see in Figure 2.14, the proceed() statement, which carries out the advised operation, is
wrapped by instructions implementing the crosscutting concern.

Aspect In AspectJ, an aspect can contain data, methods, and nested class members, just like
a normal Java class; and additionally, it also contains the AOP constructs that define the
crosscutting concern such as pointcuts and advices. In the UniversityExampleAspect, we
can see that an AspectJ aspect is similar than a Java class, but with AOP constructs inside
such as an advice. In this case, it only defines an around advice.

Finally, as we have mentioned previously, an aspect weaver composes the final system
by combining the classes and aspects through a process called weaving. AspectJ offers three
types of compile-time weavers (source, binary and load-time weaving) [39].

Chapter 3

State of the art: A systematic review of
provenance systems

The overall objective of this chapter is to plot the landscape of published studies in the
field of provenance, with two main purposes for this thesis. First, to present a consistent
background of remarkable aspects on the provenance issue. Second, to justify those open
research problems in the provenance field that serve as the basis for this thesis.

The information provided in this chapter is a concise version of a systematic review that
was conducted to focus the work developed in this thesis. Among other results of this review,
the proposal of a taxonomy of provenance systems stands out. Such a taxonomy is in itself a
relevant result of the research carried out in this thesis.
Interested readers can find this revision work in the following reference:

• Beatriz Pérez, Julio Rubio, Carlos Sáenz-Adán: A systematic review of provenance systems.
In Knowledge and Information Systems 57(3): 495-543 (2018) [10]

In addition, to support part of the conclusions presented in the abovementioned paper [10],
we used the work presented in:

• Carlos Sáenz-Adán, Francisco J. García-Izquierdo, Ángel Luis Rubio, Eduardo Sáenz-
de-Cabezón Irigaray, Emilio Rodríguez-Priego, Oscar Díaz: A Tool for Management of
Knowledge Dispersed throughout Multiple References. In the International Conference on
Software Paradigm Trends (ICSOFT-PT) 2015. [44]

3.1 Introduction

In recent years there has been a rapid growth of the provenance field, in general, and of
provenance systems, in particular, which has derived into a large and heterogeneous research

32 State of the art: A systematic review of provenance systems

corpus of approaches to address a variety of provenance concerns. Even so, at the present
time there does not appear to be a clear consensus or common ground on aspects such as
what requirements a provenance system should support, or what technical details are involved
in making these systems possible [45, 46]. Among such corpus of research, a non-negligible
number of surveys have touched the provenance field [45–63]. Although all these surveys
provide to some extent an overview of research issues in provenance, they address them from
different perspectives, even using different terminology to refer to the same concept. Only
a few of these works explicitly present some kind of categorisation scheme or taxonomy
for provenance characteristics ([49–51, 59]), making it difficult to provide a comparison
and to identify equivalent provenance aspects among these surveys. Although these works
identify a significant number of dimensions of comparison, they miss tackling aspects such
as integration of provenance capture with applications, interoperatibility of provenance
data, computational overhead or querying of provenance data. Some of these surveys apply
their classifications to specific provenance systems, being [61] the most complete proposal
comparing just 13 systems among the wide number of existing solutions.

Given the size and heterogeneity of the provenance literature, and taking into account that,
to the best of our knowledge, existing surveys not only are restricted to specific provenance
issues but they have also been conducted neither with an appropriate level of formality nor in a
systematic way, we have seen the need to organise and synthesise the existent research corpus
as a first step of this thesis. This task will offer us several benefits at the early stage of this
thesis. Firstly, it will provide a complete and consistent background of provenance concepts
and techniques. Secondly, not only will it inform about up-to-date available approaches and
technologies, but it will also help us uncover open research problems that serve as motivation
for this thesis. This work was performed by means of a systematic review [64–66]. A
systematic review is a mean of identifying, evaluating and interpreting all available research
relevant to a particular phenomenon of interest in a thorough and unbiased manner [64].
In contrast to a usual survey, it follows a controlled, rigorous and auditable procedure for
searching, collecting and selecting the acceptable quality published studies to be considered
in the review. Another difference from usual surveys is that the process followed in systematic
reviews is formally documented and hence it is repeatable.

Our systematic review on provenance systems is published in [10], providing the follow-
ing contributions to the state of the art in the provenance field, in general, and to this thesis,
in particular.

• Based on a comprehensive, thorough overview covering both early and recent work
in the area, the systematic review proposed a unified taxonomy of provenance systems
characteristics. This taxonomy encompasses the overall classifications considered by

3.1 Introduction 33

other works, and more fully captures the unique characteristics of provenance systems. In
contrast to other proposals, it is not limited either to a specific area of data management or
to a domain of application. This taxonomy, together with the process to obtain it, provided
us with clear benefits at the beginning of this thesis, because it gave us a broad overview of
the desired characteristics that provenance systems are expected to have, and familiarised
us with the terminology used in the field of provenance.

• We identified existing provenance systems considering not only those which were in wide
use for a long time but also those which emerged recently. We reviewed a representative set
of systems that we considered as the most representative or influential. More specifically,
based on our taxonomy, we performed an exhaustive analysis and comparison of 25
systems, which illustrated different solutions covering a broad spectrum of alternatives
along the aspects identified in our taxonomy. This analysis gave us an idea about the current
available approaches and technologies, and additionally, it also allowed us to discover the
open research problems that motivate this thesis.

Additionally, this systematic review is intended to provide several benefits to potential
readers. First, the resulting taxonomy and review of related background aim at informing
and enhancing the understanding of the field to potential researchers, software developers
or provenance technology users. Second, this work can enable general users to distinguish
different perspectives of provenance and guide them in their decision towards the selection
of the most suitable solution for their needs. Third, our target readership could also be those
potential researchers and software developers who are interested in up-to-date available
approaches, as well as open problems being seen in practice. Finally, the results provided by
this review could be particularly relevant for researchers aimed at identifying provenance
research issues that have been already tackled or directions for future research.

The thoroughness and size (more than 45 pages) of this systematic review prevent us
from giving a complete and detailed description of it in this memoir. Instead, we refer readers
to [10] for a detailed explanation, and herein, we will restrict attention to those aspects of
interest for this thesis. Concretely, we will give (1) an overview of the process for obtaining
the taxonomy of provenance systems characteristics, (2) a brief explanation of the dimensions
making up such a taxonomy, giving examples of systems and paying special attention to
those aspects needed to understand our proposal, and, finally, (3) based on the previous
explanation, the uncovered open problems that serve as foundations for this thesis.

34 State of the art: A systematic review of provenance systems

3.2 Towards the definition of a taxonomy of provenance
systems characteristics

As a starting point for the definition of our taxonomy, we performed a search strategy, paying
special attention to published surveys and reviewing papers (hereinafter we will refer to
these types of studies as simply surveys) on the provenance topic. Given the cost and time
involved in conducting these type of reviews, we performed our systematic review in two
review processes. The first review process was carried out from September 2015 to June
2016, and included research studies published up to and including December 2015. The
second review process took place between July and August 2017, and updated the first review
process, covering research studies published from January 2016 to July 2017. Therefore, the
overall systematic review covers studies published up to and including July 2017.

As a result of the overall search, we selected a set of 19 surveys, identified by “Su<N>”,
being N a numeric identifier: Su1 [45], Su2 [56], Su3 [58], Su4 [53], Su5 [54], Su6 [55],

Table 3.1 List of the reviewed systems together with their references

[ID] System Authors’ Rep. Name References
[S1] VisTrails J. Freire et al. [67–71]
[S2] myGrid/Taverna K. Wolstencroft et al. [72–75]
[S3] Kepler provenance I. Altintas et al. [76, 77]
[S4] PASS D. A. Holland et al. [78–80]
[S5] Trio J. Widom et al. [81–86]
[S6] Karma L.Y. Simmhan et al. [87–90]
[S7] Chimera I. Foster et al. [91–93]
[S8] ZOOM O. Biton et al. [94–97]
[S9] Cui 2000 Y. Cui et al. [98–101]
[S10] Swift I. Foster et al. [102–105]
[S11] PASOA/PreServ P. Groth et al. [106]
[S12] Tioga M. Stonebraker et al. [107–109]
[S13] Wings-Pegasus E. Deelman et al. [110–116]
[S14] Buneman P. Buneman et al. [117]
[S15] SPADE A. Gehani et al. [118–122]
[S16] ORCHESTA Z.G. Ives et al. [123–127]
[S17] Perm-GProM B. Glavic et al. [128–137]
[S18] ES3 J. Frew et al. [138, 139]
[S19] COMAD S. Bowers et al. [140]
[S20] DBNotes L. Chiticariu et al. [141, 142]
[S21] Lipstick Y. Amsterdamer et al. [143]
[S22] Redux R. Barga et al. [144]
[S23] BURRITO P.J. Guo et al. [145, 146]
[S24] PLUS B. Blaustein et al. [147–150]
[S25] RAMP R. Ikeda [151, 152]

3.2 Towards the definition of a taxonomy of provenance systems characteristics 35

Su7 [46], Su8 [48], Su9 [47], Su10 [51], Su11 [49], Su12 [59], Su13 [52], Su14 [57],
Su15 [50], Su16 [60], Su17 [61], Su18 [63], and Su19 [62]. From these surveys, and other
papers (more than 500) obtained through a snowballing process from these surveys, we
identified a total of 251 provenance systems. Among these systems, we selected 25 for being,
by far, the most referenced. Table 3.1 shows the list of the 25 selected systems together with a
representative authors’ name, and a list of references that (1) specially deals with the system,
or (2) performs any type of quality analysis of the system (such as surveys or reviewing
papers). Each selected provenance system is referred to as a unique identifier of the form
“[S<N>]”, where N is the numeric identifier, followed by the name of the system, including
a reference to its citation when no name is given (e.g., [S1] VisTrails and [S9] Cui 2000,
respectively). Additionally, we refer readers to Appendix A for a brief description of each
system. As a result, we selected a total of 105 papers classified into two groups attending
to (1) those which refer to surveys (19 papers), and (2) those that tackle any of the concrete
provenance systems classified for our review (86 papers).

Data Capture

Tracing

Level

Mechanism

Technique

Subject

Abstraction

Contents

Interoperability/
Exchange

Phase

Orientation

Granularity

Storage

Scalability

Coupling

Archiving

Persistence

Data Access

Querying

Accessing

Non-functional
requirements

Security/ Privacy

Verification

Repeatability/
Reproducibility/
Replayability

General Aspects

Application domain

Purpose

Availability

Data processing

Intended/Extended

Provenance definition

Provenance Characteristics

Fig. 3.1 Our taxonomy of Provenance Systems Characteristics

Relying upon the information extracted from such selected papers, we defined our
taxonomy by enriching and revisiting the taxonomy proposed in Su15, since we considered
it the most complete one. Additionally, we also analysed the remainder works, matching
common aspects and incorporating additional ones not considered in Su15. In Figure 3.1,
we present the resulting taxonomy in which we have depicted in bold those aspects that do
not appear in the original taxonomy Su15. Our taxonomy establishes six dimensions for
comparing provenance systems, attending to:

• general aspects, which are related to general background regarding provenance systems.

• subject, which refers to the different subjects or levels of detail in which provenance data
can be represented, also considering interoperability aspects.

36 State of the art: A systematic review of provenance systems

• storage, which describes the different approaches used by provenance systems to register
provenance information.

• data capture, which deals with the way in which provenance data can be captured on the
existing provenance systems.

• data access, which refers to how users can access provenance data repositories.

• non–functional requirements, comprising non–functional requirements of provenance
systems (such as security, verification, and so on).

Additionally, in each dimension, we have identified several categories that correspond
to particular aspects to focus on when comparing provenance systems. For example, re-
garding data capture in Figure 3.1, we can distinguish among tracing, level, technique, and
mechanism.

3.3 Taxonomy of provenance systems characteristics: an
overview

3.3.1 General Aspects dimension

As we previously stated, the provenance field has derived into a large and heterogeneous
research corpus of approaches to address a variety of provenance concerns from different
points of view. This dimension has six categories referring to general background regarding
provenance systems.

Provenance definitions It refers to the definitions of provenance considered by the differ-
ent authors in order to be analysed by means of the technique called References-enriched
Concept Maps (RCM) [153]. This technique, inspired by Concept Maps [154], can be used
to compare definitions and therefore improve the understanding of terms, keeping track of
the publications in which the different definitions were proposed. Later, the RCM can be
automatically created using the tool that Sáenz-Adán et al. presented in [44]. This analysis
was performed based on 34 definitions of provenance that were obtained relying upon the
identified surveys. Based on this analysis, which can be seen in [10], we can infer that there
is not a clear consensus on a definition of the provenance concept.

Data processing It refers to the strategy followed to manipulate data. The most notable
strategy followed is Workflow Management Systems (WfMS)-based. This strategy requires

3.3 Taxonomy of provenance systems characteristics: an overview 37

instructions expressed in a specific process definition language and the registration or wrap-
ping of external code. Most of the works that follow this strategy advocate declaring the
entire workflow in advance using a WfMS (e.g., [S1] VisTrails, [S3] Kepler provenance,
[S8] ZOOM), bridging the gap between experimentation and provenance management.

Application domains The selected systems have a wide variety of application domains
ranging from meteorology (e.g., [S1] VisTrails) to geology (e.g., [S3] Kepler provenance)
going through medicine (e.g., [S2] myGrid/Taverna). This fact gives an idea of how hetero-
geneous is the provenance field.

Intended/Extended This category aims at identifying if the system corresponds to a tool
explicitly developed for provenance purposes (e.g., [S4] PASS and [S11] PASOA/PreServ)
or if it is a tool which has been extended with provenance capabilities (e.g., [S1] VisTrails
and [S3] Kepler provenance).

Purposes It refers to the purpose for which a system acquires provenance capabilities.
Concretely, understanding derived data is one of the most important purposes when prove-
nance capabilities are implemented (e.g., [S7] Chimera, [S9] Cui 2000, [S15] SPADE, and
[S17] Perm-GProM).

Availability We note that 21 out of the 25 reviewed systems are released under an open-
source license (e.g., [S8] ZOOM and [S17] Perm-GProM).

3.3.2 Subject dimension

Provenance systems may represent provenance data in terms of distinct subjects and different
levels of detail. This dimension encompasses six categories associated with these aspects.

Contents This category only applies in the context of databases. It refers to the most
common forms of database provenance, which describe relationships between data in the
source and in the output, regarding the effect of queries. We have identified four main
approaches: lineage, where-provenance, why-provenance, and how-provenance. Lineage
considers tuples to belong to the provenance if they “contribute” to an output tuple [98].
Where-provenance refers to the identification of the source elements where the data in the
target are copied from, that is, it refers to where output data came from in the input [53]. Why-
provenance aims at explaining why a piece of data is being created. Finally, how-provenance
explains how source data are involved in the creation of the result.

Abstraction It refers to the use of approaches which help structure the provenance infor-
mation in order to deal with its complexity and size, easing the understanding of provenance

38 State of the art: A systematic review of provenance systems

and making sense of it. Among the surveyed systems, we remark the accounts approach.
Accounts allow for multiple descriptions of a given execution to co-exist in a provenance
trace [56] (e.g., [S5] Trio).

Interoperability/exchange It is related to the great efforts made on the interoperability and
exchange of data among the different provenance systems. Several attempts have been carried
out in order to establish a model to particularly represent workflow executions as provenance
records. In this category, the W3C PROV standard1 stands out for the representation of
provenance [2]. In order to add PROV capabilities, some systems have implemented a
plugin (e.g., [S2] myGrid/Taverna or [S18] ES3), whereas other systems have developed
export/import provenance functionalities (e.g., [S3] Kepler provenance and [S24] PLUS). It
is worth noting that interoperability issues are discussed later in Section 3.4.

Phase It refers to the different moments in time in which provenance is captured. We
distinguish between execution (or retrospective provenance) and composition (or prospective
provenance). Between these two approaches, we remark the retrospective approach for being
the most widely used. This approach is adopted by systems which capture information while
the workflow is executing (e.g., [S11] PASOA/PreServ and [S18] ES3).

Orientation Provenance data can be either available explicitly (i.e., data-oriented model) or
deduced indirectly (i.e., process-oriented model). In a data-oriented model, provenance meta-
data is specifically gathered about the data product (e.g., [S20] DBNotes and [S25] RAMP).
In a process-oriented model, the primary entities for which provenance is collected are the
deriving processes, while the inputs and outputs of these processes are inspected to obtain
the data provenance (e.g., [S11] PASOA/PreServ and [S22] REDUX).

Granularity It refers to the level of detail of a specific data product. More specifically, it
is related to the types of objects for which a system maintains provenance. The granularity
gathered by a specific proposal constitutes an aspect specially remarkable in such a proposal
since it establishes the usefulness of provenance. We distinguish systems that capture
provenance with a high level of detail (fine-grained provenance) from those that capture
provenance with a low level of detail (coarse-grained provenance). Most of the systems
capture fine-grained provenance (e.g., [S5] Trio and [S4] PASS), although we have considered
that systems such as [S21] LipStick and [S24] PLUS can capture both fine-grained and
coarse-grained provenance.

1Background information about PROV is provided in Section 2.1.2

3.3 Taxonomy of provenance systems characteristics: an overview 39

3.3.3 Storage dimension

This dimension is made up of four categories that describe the different approaches that
provenance systems may use to record provenance information.

Scalability The stored information can grow larger than the data it describes due to several
aspects such as the number of datasets, their granularity, the depth in the lineage, their geo-
graphical distribution, etc. [50, 59]. With storage scalability of the provenance data we refer
to whether the data is stored in a centralized or distributed way. Most of the surveyed systems
follow a centralized provenance storage (e.g., [S1] VisTrails and [S19] COMAD). Only eight
of them store provenance data distributively (e.g., [S21] LipStick and [S24] PLUS).

Coupling This category describes the relationship between the provenance data and the
data which is the target of provenance recording [51]. A high-coupling system stores
provenance directly associated with the data for which provenance is recorded (e.g., [S3] Ke-
pler provenance and [S20] DBNotes). Alternatively, a loose-coupling approach uses a mixed
storage scheme where provenance and data are stored in one storage system but logically
separated (e.g., [S8] ZOOM and [S9] Cui 2000). Finally, no-coupling systems store prove-
nance information in one or many provenance repositories, which store only provenance
data (e.g., [S12] Tioga and [S24] PLUS). The most used strategies are high-coupling and
loose-coupling.

Persistence It refers to the expressiveness of the conceptual models used by a provenance
management system to persist provenance. A provenance conceptual model defines what
information is supported in a provenance system. A wide variety of persistence approaches
have been used for storing provenance ranging from relational DB (e.g., [S5] Trio and
[S7] Chimera) and XML dialects (e.g., [S18] ES3 and [S19] COMAND), to noSQL databases
(e.g., [S23] BURRITO).

Archiving This category is related to the different approaches taken to archive provenance.
Most provenance systems advocate using time-stamps to mark the existence of data products
at various times (e.g., [S1] VisTrails and [S14] Buneman).

3.3.4 Data Capture dimension

The existing provenance systems follow different approaches to capture provenance data.
This dimension states four categories that define how they do it.

40 State of the art: A systematic review of provenance systems

Tracing The approaches adopted for tracing data provenance are eager, when the prove-
nance is computed immediately (e.g., [S4] PASS and [S25] RAMP), and lazy, when it is
computed on demand (e.g., [S9] Cui 200 and [S12] Tioga).

Mechanisms It refers to the mechanism used to capture provenance data [155]. Some
systems advocate using internal structures for capturing data (e.g., [S4] PASS and [S23] BUR-
RITO), whereas others rely upon external services (e.g., [S4] SPADE and [S23] PLUS). In
particular, the external services strategy is adopted to collect provenance from both distributed
and heterogeneous environments [155].

Level This category refers to the levels of capture; that is, the particular point in the
software or application stack where the provenance is collected [155]. It is related to the
relevant details of the computational tasks the capture mechanism needs access to. We have
identified five levels of capture: workflow-level, operating system (os)-level, process-level
(also called activity-level), services-level, and database-level. For their interest in this thesis,
we will focus on the first three levels. The workflow-level is the most common proposal
(e.g., [S1] VisTrails and [S13] Wings-Pegasus). At this level, each WfMS is responsible
for gathering all the provenance information [155]. Thus, in systems adopting this level
of capture the provenance gathering mechanisms are either attached to or integrated into
a WfMS [46]. Another remarkable approach is the capture of provenance at os-level (e.g.,
[S4] PASS and [S18] ES3). In this level of capture, provenance is collected at the API system
level, relying on the availability of specific functionality at the os-level. Finally, we note
the process-level proposal. At this level, each process involved in a computational task is
required to capture its own provenance information [155, 46].

Technique It is related to the techniques that existing provenance systems use to capture
provenance [49, 155]. On the one hand, the annotation approach refers to the process
of adding to or “making up” existing data (e.g., [S11] PASOA/PreServ and [S24] PLUS).
Alternatively, the inversion method leverages a property by means of which some derivations
can be inverted to find the input data used to derive the output data (e.g, [S8] ZOOM and
[S12] Tioga).

3.3.5 Data Access dimension

Once the provenance data is captured, the provenance systems may provide a way through
which provenance data can be accessed and explored. This dimension encompasses two
categories to describe the way in which provenance is accessed and queried.

3.3 Taxonomy of provenance systems characteristics: an overview 41

Accessing It refers to whether it is provided a way through which provenance data can
be accessed and explored. There exist two main approaches for accessing data provenance,
which are not mutually exclusive. Firstly, most of the systems allow data access by browsing,
that is, visualising and navigating data and processes dependencies. To do it, the most
commonly way to depict data relies on derivation graphs (e.g., [S4] PASS and [S15] SPADE).
Secondly, provenance systems usually provide an API which allows users to implement their
own usage mechanisms to access data [50] (e.g., [S2] myGrid/Taverna and [S15] SPADE).

Querying This category refers to the querying of provenance data. Concretely, it is related
to two issues: (1) the way in which querying is formulated, and (2) the query language
provided by the proposal, if any. As for the way in which querying is formulated, we
distinguish between browsing data (exploratory) and using a directed language (directed).
Regarding the query language, we draw a distinction between proposals that use languages
not specifically designed for provenance (e.g, [S6] Karma and [S8] ZOOM, which use SQL,
and [S15] SPADE, which uses Neo4J), and proposals that use their own querying language
(e.g., [S4] PASS, which uses PQL, and [S7] Chimera, which uses VDL-SQL).

3.3.6 Non–functional Requirements dimension

This dimension refers to non–functional requirements of provenance systems by means of
three categories.

Security/Privacy Security is especially important to guarantee the trustworthiness of prove-
nance data. With data security, we mean the protection of data against unauthorized access
or corruption. Security is necessary to ensure data integrity. In the context of provenance,
security traditionally refers to aspects such as: (1) confidentiality, which is related to the
conditions under which provenance data is shared and/or distributed in a controlled fashion,
(2) integrity, since provenance data must be immutable, (3) unforgeability, since provenance
data could not been forged without being detected, (4) non-repudiation, which ensures that
the user cannot deny if she/he has taken any action, and (5) availability, which means that
data must be available at any time from everywhere. Privacy, although related to security,
has always concerned more than just confidentiality. It refers to the way in which sensitive
information is managed. Applied to provenance, while security focus on the protection of
data, privacy rather deals with permission and the desire of limiting the distribution of such
existing provenance data. It is worth noting that most of the works published on provenance
systems hardly mention security or privacy; they assume that both privacy and security rely
on the host system or the file-system model (e.g., [S3] Kepler provenance and [S4] PASS).

42 State of the art: A systematic review of provenance systems

Verification In this category we want to show whether the provenance proposals consider
any way of formal verification. We uncovered that none of the surveyed systems uses formal
verification methods neither to verify provenance data nor to check business processes. In fact,
there is limited literature within the provenance context addressing formal verification [156].

Repeatability/Reproducibility/Replayability Repeatability relies on sufficient informa-
tion for the original researcher or others to be able to repeat the study. Reproducibility,
which is seen as a special case of repeatability, constitutes an interesting element within
provenance since it allows users both to replicate a result starting with the same source
elements and methods, and to see that a prior result can be confirmed. Finally, replayability
allows the investigator to "go back and see what happened" [157]. Concretely, reproducibility
is one of the characteristics that appears in almost all the surveyed provenance systems (e.g.,
[S13] Wings-Pegasus and [S22] REDUX). In fact, it is not considered a cause but rather a
consequence of applying provenance capabilities within a provenance system.

3.4 Open problems

So far, we have given an overview of our systematic review, which plots the landscape of the
different approaches to address a variety of provenance concerns. Thanks to this work, we
have determined the following four open problems.

3.4.1 Integration

The integration of provenance capture with applications is a problem to face with when
dealing with provenance. In fact, the effort required to perform this integration gives an idea
about how much the provenance solution will intrude on users’ modus operandis.

In this line, our systematic review uncovered two main approaches for capturing data in
the least intrusive manner: workflow-level and os-level approaches in the level category of
the data capture dimension (Section 3.3.4). The most notable strategy used by the surveyed
systems is the workflow-level approach through the integration of provenance capabilities
into a WfMS, bridging the gap between experimentation and provenance management [158].
These provenance systems advocate declaring the entire workflow in advance using a WfMS
(e.g., [S1] VisTrails and [S8] ZOOM), which leads to little effort from the users. Concretely,
it requires to move to a new environment, or wrapping external applications for their use
in the WfMS. However, its dependency on the WfMS makes it difficult to use the same
mechanism in other scenarios, being applicable only in non-heterogeneous scenarios where
only one WfMS is used. Alternatively, some systems capture provenance data at the os-level.

3.4 Open problems 43

This kind of systems leads to the lowest intrusiveness in addition to avoiding the modification
of the target applications; however, they do not deal with distributed applications and they do
not capture the high level meaning of application executions [159]. What is worse, since they
capture provenance for all the executions, such provenance may provide too much irrelevant
information and no particular nuances about the application workflow. In addition to these
two approaches, although it is scarcely used, another approach is to capture provenance at
process-level, but it has limitations that have hampered a broader adoption. In fact, none of
the surveyed systems capture provenance at process-level. This approach has the advantage
of being independent from the WfMS (as opposed to the workflow-level), and additionally,
it is able to capture high level meaning of the process (unlike the os-level). The issue at
this type of level of capture is the need of adapting pre-existing activities of the process to
incorporate provenance collection functionalities [155].

Aiming at integrating provenance capture with applications in order to make them
provenance-aware, the Provenance Incorporation Methodology (PrIMe [11]) has been devel-
oped. It consists of eliciting provenance requirements, identifying the parts of the application
that contain relevant information, and iteratively designing provenance, while modifying
the application design so that it can generate the expected provenance. However, PrIMe
is standalone, and it does not integrate with existing software engineering methodologies,
which makes it challenging to use in practice. In fact, Groth in [159] states as future work
that “this methodology [11] needs to be improved through integration with common devel-
opment methods such as those based on the Unified Modeling Language [1]. To assist in
the usage of the methodology, tools for integrated development environments need to be
developed. Taken together both improvements could engender an environment where making
applications provenance-aware is a central part of any application development effort.”

3.4.2 Interoperability

It is worth noting the enormous effort made by the provenance community to develop a
standard model for provenance data exchange. Existing attempts, such as the Provenance
Challenges series [12], shown the importance of providing such a means of exchange. Con-
cretely, the second provenance challenge was focused on understanding the interoperability
of the approaches. Thirteen teams responded to the challenge, and this resulted in discussions
about a common data model, which led to the proposal of the Open Provenance Model
(OPM) [13]. Subsequently, the third provenance challenge aimed at identifying the weak-
nesses and strengths of OPM. Fifteen teams were involved, and their proposals resulted in
a new version revisiting OPM. Finally, the fourth provenance challenge finished early as

44 State of the art: A systematic review of provenance systems

a consequence of the creation of the PROV standard [2] by the World Wide Consortium
Incubator on Provenance.

As we showed in the interoperability category of the subject dimension (Section 3.3.2),
some systems such as [S2] myGrid/Taverna and [S18] ES3 have made an effort to add PROV
capabilities by implementing a plugin, whereas other systems such as [S3] Kepler provenance
and [S24] PLUS have developed export/import provenance functionalities. In this line, toolk-
its supporting PROV have been facilitating the software engineer’s tasks. For instance, the
ProvToolbox [16] is a Java toolbox for handling PROV; ProvPy [15] is a Python implementa-
tion of the PROV data model; ProvExtract [160] is a tool to extract PROV from web-pages;
and ProvVis [161], which allows visualising PROV through different charts. However, such
toolkits do not help decide what information should be included in provenance, and how
software should be designed to allow for its capture. Therefore, the ability to consider the
intended use of provenance, specially during the software engineering design phase, has
become critically important to support the software designer in making provenance-aware
systems.

Against this background, a remarkable solution developed on top of PROV is the PROV-
Template approach [3]2, which allows the design of the provenance to be generated by means
of PROV templates. Although the PROV-Template approach reduces the development and
maintenance effort, separating responsibilities between software and provenance designers,
it still requires designers to be knowledgeable in provenance. Thus, an approach that
automatically links the design of the provenance with the actual design of the application is
desirable. This would lead to the design of applications as usual, but such applications would
be automatically provided with provenance capabilities.

3.4.3 Computational overhead

Another remarkable aspect when choosing a provenance system is the computational over-
head. Classical provenance data techniques and methods are usually data-intensive, resource
and time-consuming [45, 60]. This imposes the need for providing techniques that introduce
a minimum computational overhead [60]. Among the categories stated in our taxonomy,
those that are closely related to temporal or spatial overhead are granularity from the subject
dimension (Section 3.3.2), as well as tracing, level and technique from the data capture
dimension (Section 3.3.4).

As far as the granularity category is concerned, the amount and cost of provenance
information can be inversely proportional to the granularity [50]. More specifically, the

2Background information about the PROV-Template approach is provided in Section 2.1.2.

3.4 Open problems 45

provenance information can grow to be larger than the data it describes if the data is fine-
grained and the provenance information rich [50, 59]. Thus, how the provenance metadata is
captured is important for its scalability.

In the particular case of tracing, it may incur in both temporal and spatial overhead. To
follow an eager approach for computing provenance not only may cause run-time overhead
for the transformation to compute the output, but also it requires additional storage space to
store the produced provenance information. In contrast, a lazy computation does not result in
additional storage space and run-time overhead. However, this approach is not applicable for
all types of transformations and it can slowdown provenance retrieval [46, 55, 155].

Similarly, the level of capture is directly related to the spatial overhead. The capture of
provenance at the os-level provides the possibility of recording a low level of the metadata
completeness, which would be difficult or impossible to achieve with the workflow-level or
even with the process-level solution. However, this approach collects provenance information
for all the executions, leading to capture more provenance than required to satisfy specific
provenance requirements, and resulting in unnecessary overheads. Conversely, the storage
overhead for systems capturing provenance at the workflow-level and the process-level
depends on the amount of data per operation and the number of recorded operations [162];
thus, it is believed that they incur in less spatial overhead than the os-level approach. As for
time overhead of workflow-level approaches, they usually provoke a minuscule overhead
because of their limited approach to collecting running process information [162]. Finally,
for systems that record data at the process-level, provenance capture costs are related to the
cost of intercepting and recording observable operations [162].

The technique in data capture may also incur in temporal and spatial overhead. Con-
cretely, using the annotation approach is useful when the source data are unavailable after
transformation, but it takes more time and space for executing and storing the information
than the inversion approach. Indeed, the inversion approach does not have any performance
or storage overhead during data transformation. However, it cannot compute provenance
when the source is unavailable after its transformation.

Carata et al. in [162] claim that it is often essential to grasp if the overhead costs imposed
by the execution of provenance systems are acceptable. In fact, it is useful to predetermine
what provenance information will be required to answer queries, and at what granularity this
information will be sufficient. All in all, it is still considered an open question to reach the
appropriate mechanisms which find a balance between both the capture of provenance and
the computational overheads.

46 State of the art: A systematic review of provenance systems

3.4.4 Querying

As stated in [162], using a provenance system is as useful as the questions that someone can
answer based on the collected provenance. In fact, how to access such a provenance is a
well-known challenging problem [57, 163]. As we stated in the querying category of the data
access dimension (Section 3.3.5), there are two main approaches to address it: exploratory
and directed.

The exploratory approach is used when users do not have an exact idea of what metadata
they might want to retrieve. Thus, these systems usually provide both a visual representation
of the provenance graph, and tools to explore it without succumbing to information overload.
Conversely, when users know precisely what information they might want to query, the
directed approach is the most effective. Nevertheless, they must be knowledgeable about the
specific query language of the persistence system. Concretely, in the persistence category of
the storage dimension (Section 3.3.3) we gave some remarks about such an aspect. Basically,
the analysis we have performed on the provenance systems showed that there is a wide variety
of persistence systems, which has been motivated by the development of new approaches
which rely their data storage on new persistence systems based on, for example, XML or
noSQL, against older systems which usually rely on relational databases. This diversity
leads users seeking to exploit provenance data to have to learn the query language of the
persistence system, which is not desirable.

Against this background, we advocate for provenance solutions agnostic about any storage
system, so that users can decide which storage system best suits their needs, and consequently,
the query language. In this way, users do not need to learn a new query language, and what
is more, they leverage their previous experience in any query language for exploiting the
provenance data.

3.5 Conclusions

In this chapter, we gave an overview of a systematic literature review of studies, identifying
a comprehensive set of 105 relevant published works in the provenance field. The results
showed that there are common aspects or characteristics of provenance systems widely
renowned throughout the literature on the topic. Based on these results, we defined a six-
dimensional taxonomy of provenance characteristics attending to: general aspects, subject,
storage, data capture, data access, and non-functional aspects. Additionally, the study has
found that there are 25 most referenced provenance systems within the provenance context.

3.5 Conclusions 47

It is our belief that this work can provide several benefits for potential researchers, in general,
and for this thesis, in particular.

Our systematic review provides a comprehensive and consistent background of prove-
nance concepts and techniques that will allow potential readers to grasp this memoir. More-
over, does not only it report about the available approaches and technologies in the field of
provenance, but it also justifies the set of uncovered open problems that serves as foundations
for this thesis.

Chapter 4

Conceptual definition of UML2PROV

Taking into account the open problems uncovered in the previous chapter, here we provide the
reader with an explanation about the conceptual definition of our approach: UML2PROV. To
do this, first we motivate the need for UML2PROV by referring to the aforementioned stated
open problems. Later, we move on to describe the UML2PROV architecture. Subsequently,
we will explain its foundations and finally, we will finish this chapter with the conclusions.

The work explained in this chapter has been partially presented in:

• Carlos Sáenz-Adán, Beatriz Pérez, Trung Dong Huynh, Luc Moreau: UML2PROV:
Automating Provenance Capture in Software Engineering. In the International Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM) 2018. [164]

• Carlos Sáenz-Adán, Luc Moreau, Beatriz Pérez, Simon Miles, Francisco J.
García-Izquierdo: Automating Provenance Capture in Software Engineering with
UML2PROV. In the International Provenance and Annotation Workshop (IPAW)
2018. [165]

Additionally, an extended and enriched version of the previous works has been submitted for
publication in:

• Carlos Sáenz-Adán, Beatriz Pérez, Francisco J. García-Izquierdo, Luc Moreau:
Integrating Provenance Capture and UML with UML2PROV: Principles and Experience.
Submitted for publication in IEEE Transactions on Software Engineering.

50 Conceptual definition of UML2PROV

4.1 Motivation for UML2PROV

As a result of the previous systematic review, we identified that one of the significant hurdles
in the provenance field is how to integrate the capture of provenance with applications.
Concretely, the ability to consider the intended use of provenance during the software
engineering lifecycle, and particularly in the design phase, has become critically important
to support the software designer in making provenance-aware systems. As we mentioned
previously, in the realm of provenance, PrIMe [11] can be considered as the first attempt to
develop a methodology for making applications provenance-aware. However, it is standalone,
since it is not integrated with existing software engineering methodologies. Similarly, the
PROV-Template approach [3]1 allows the design of the provenance to be generated by
means of PROV templates; however, it requires a PROV expert during the design phase of
the application. Conversely, in the Software Engineering context, UML [1]2, a modeling
language that has become the software engineers’ lingua franca, offers no specific support
with regard to provenance. In fact, the inclusion of provenance within the UML design can
entail significant changes to the original application design, which can make it unreadable
and difficult to maintain.

Against this background, UML2PROV is intended to bridge the gap between application
design, specified by UML diagrams, and provenance design, based on of PROV templates.
Concretely, with UML2PROV a software engineer is able to design an application as usual,
by following the UML specification, and once the design is ready, UML2PROV comes
into play for (1) generating the design of the provenance to be generated (in the form of
PROV templates), and (2) creating artefacts that need to be linked with the application to
collect provenance. In short, UML2PROV avoids the designers and developers not only to
be knowledgeable about provenance, but also to having to deal with complex diagrams, and
to maintain an application’s provenance-specific source code. The generation of provenance
is transparent to them. These benefits, which will appeal to designers in early stages of the
development process, are mainly related to the following uncovered open problems.

• Integration. With UML2PROV, we provide a way to include provenance capabilities
during the design phase without changing the way in which software designers use UML.
During the design phase, software designers only have to deal with the design of the
system UML diagrams without needing to be knowledgeable about provenance aspects,
since provenance generation is handled automatically from such diagrams. Finally, it
is worth mentioning that UML2PROV complements PrIMe by integrating the design of

1Background information about the PROV-Template approach is provided in Section 2.1.2.
2Background information about UML is provided in Section 2.1.1.

4.2 UML2PROV architecture 51

provenance, by means of PROV templates, with the design of applications, using well-
known software engineering language, namely UML. This prevents software designers
from being knowledgeable about provenance during the design phase of the application.

• Interoperability. UML2PROV advocates representing the provenance design following
the PROV-Template approach. This incurs in several benefits associated with the PROV-
Template approach: separation of responsibilities, provenance maintenance, potential
runtime checks and static analysis, and provenance consumption [3]. Additionally, since
the PROV-Template approach is intended to generate provenance information following the
PROV standard, it also leads to several benefits in terms of interoperability. For instance,
the provenance generated by UML2PROV could be shared and used by other systems
supporting PROV. Some of these systems could be ProvToolbox [16] and ProvPy [15]
for managing the provenance by means of Java or Python, respectively; or ProvVis [161]
for visualising the provenance information using different types of charts, among other
systems. Additionally, it is worth noting that the generated provenance could be used for
Linked Data, since the PROV standard provides an OWL2 ontology allowing the mapping
to RDF [22].

4.2 UML2PROV architecture

We now overview the architecture we propose for UML2PROV relying on Figure 4.1. To do
this, we start by presenting the stakeholders, focusing on their tasks and roles in UML2PROV.
Later, we explain the key facets of the architecture. Finally, we move on to describe the
overall process of UML2PROV for making applications provenance-aware.

4.2.1 Stakeholders

As Figure 4.1 illustrates, the stakeholders involved in UML2PROV are: the software designer
and the software developer, at the beginning, and the provenance consumer, at the end. Since
providing a complete description of the usual tasks and duties of each stakeholder is beyond
the scope of this document, we only expose those aspects of interest from the UML2PROV’s
architecture perspective. Concretely, software designers are responsible for designing the
system, or an excerpt of it. Software developers write the application’s source code relying
on the design of the software designers. Finally, provenance consumers are the people who
exploit the collected provenance.

At this point, it is worth noting that both software designers and developers may not
be familiar with provenance, they just perform their usual tasks. Similarly, provenance

52 Conceptual definition of UML2PROV

UML2PROV

Bindings Generation Module (BGM)

in

out

out

in

in

out out

Step 1

Step 2.1

Step 2.2

Step 3.1

Step 3.2

Step 4

design time element

execution time element

involved tools

Legend
UML

diagrams

:Lifeline1 :Lifeline2

synch(inArgs)

synch(outArgs)

Class
+attributeName: String

set +operationName(in param: String)

:Lifeline1 :Lifeline2

synch(inArgs)

synch(outArgs)

Class
+attributeName: String

set +operationName(in param: String)

var:attribute

var:preObject

var:operation

var:postObject

var:input

wasDerivedFrom

wasGeneratedBy

wasGeneratedBy

var:collElement

hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:className var:inputType

used

used

u2p:className var: className
prov:type u2p:Object

u2p:className var: className
prov:type u2p:Object

tmpl:endTime var:operationEndTime
tmpl:startTime var:operationStartTime

prov:type var: operationName

var:newColl

wasDerivedFrom

hadMember

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:className var:attributeClass

prov:type u2p:Attribute
prov:value var:newCollValue
u2p:attributeName var:newCollName
u2p:className var:newCollType

var:attribute

var:preObject

var:operation

var:postObject

var:input

wasDerivedFrom

wasGeneratedBy

wasGeneratedBy

var:collElement

hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:className var:inputType

used

used

u2p:className var: className
prov:type u2p:Object

u2p:className var: className
prov:type u2p:Object

tmpl:endTime var:operationEndTime
tmpl:startTime var:operationStartTime

prov:type var: operationName

var:newColl

wasDerivedFrom

hadMember

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:className var:attributeClass

prov:type u2p:Attribute
prov:value var:newCollValue
u2p:attributeName var:newCollName
u2p:className var:newCollType

Context
dependent
component

Context
independent
component

Template
expander

Application
(source code)

PROV
templates

software
designer

software
developer

provenance
consumer

PROV
documents

Bindings

Fig. 4.1 The architecture of UML2PROV

consumers do not need to know how to design systems to exploit the provenance. Finally, we
remark that, although having identified three different stakeholders, the same person may
play several roles at the same time. For instance, a person may be in charge of designing the
application (software designer), and also of exploiting the collected provenance (provenance
consumer).

4.2.2 Key facets

As for the key facets making up the architecture of UML2PROV, we distinguish those that are
created at design time (red plain background in Figure 4.1) from those generated at runtime
elements (blue background with striped texture).

On the one hand, the design time facets encompass three key elements:

• UML diagrams, which constitute the design of the application conforming to the UML
specification [1] (see background information in Section 2.1.1). Among the wide range
of types of UML diagrams, UML2PROV takes as source those that not only have a
strong relation with provenance, but that also are mostly used by software designers [17]:
(i) Sequence Diagrams (SqDs) and State Machine Diagrams (SMDs), because they are
widely used to represent the behaviour of a system (one of the main purposes of capturing
provenance information); and (ii) Class Diagrams (CDs), since they are the most widely

4.2 UML2PROV architecture 53

adopted formalism for modeling the intentional structure of a software system (that is,
low level aspects from objects’ internal status, information not given by the considered
behavioural diagrams). All in all, taking these UML diagrams as source provides significant
benefits. First, we are able to address a wide range of applications, since we have considered
the most commonly used UML diagrams for designing systems. Secondly, we obtain
provenance from different perspectives, due to the fact that UML2PROV supports several
types of UML diagrams.

At this point, we note that more than a nuance in terminology, the distinction between
the state and the status of an object is crucial to understand this thesis. Concretely, in
accordance to UML terminology, in UML State Machine diagrams the state of an object
denotes a situation during which some invariant conditions holds [1]. In UML Class
diagrams, to avoid confusion, we use the term object’s status with a broad scope, referring
to the values of the object’s attributes at some moment, which particularly could correspond
to a concrete state.

• PROV templates, which express the shape of the provenance to be generated. Briefly
speaking, they are PROV documents containing variables that will be replaced by values3.

• Bindings Generation Module (BGM), which includes the code for capturing provenance
data in the form of bindings (explained below). It consists of two components: the context-
dependent component, which includes specific code for a concrete application, and the
context-independent component, which contains code that is common to all applications.

On the other hand, the runtime execution facets are made up of two key elements:

• Bindings, which associate concrete values collected from the execution (provenance data)
with variables from a PROV template3.

• PROV documents, which contain the provenance information suitable for consumption.
These documents conform to the PROV standard3.

4.2.3 How to use UML2PROV

The overall process of UML2PROV for making applications provenance-aware, in which the
aforementioned stakeholders and facets are involved, consists of four main steps, which have
been identified with a black label in Figure 4.1:

Step 1 Software designers model the application by means of structural and/or behavioural
UML diagrams, conforming to the UML specification.

3Background information about the PROV-Template approach is provided in Section 2.1.2.

54 Conceptual definition of UML2PROV

Step 2 Taking the UML diagrams as source, UML2PROV automatically produces both the
PROV templates with the design of the provenance to be generated for the concrete
application (Step 2.1), and the specific BGM responsible for generating the set of
bindings during the application execution (Step 2.2).

Step 3 The BGM is integrated into the existing application in a non–intrusive manner, so
that no changes to the application are required (Step 3.1). Subsequently, while the
application is running, the BGM comes into play collecting provenance data in the
form of bindings (Step 3.2).

Step 4 The template expander [3] takes both the PROV templates and the set of bindings,
replaces the templates’ variables by the concrete values from bindings, and generates
a set of PROV documents for the executed application that are ready to be exploited
by the provenance consumers.

In conclusion, UML2PROV takes as source a subset of UML diagrams modeling a system
(Sequence, State Machine, and Class diagrams) and automatically generates (1) the PROV
templates with the design of the provenance to be generated, as well as (2) the module
(i.e., the BGM) for collecting bindings during the execution of the application. Therefore,
UML2PROV is intended to be used with applications modeled by UML diagrams. These
UML diagrams could have been developed from scratch during the design phase of the
software development lifecycle; or alternatively, they could have been generated once the
system is developed by applying reverse-engineering (we will discuss this aspect further
on). Finally, we note that one of the main advantages of taking as source UML Sequence,
State Machine and Class diagrams, which provide different perspectives of a system, is
the generation of provenance with different viewpoints. Nevertheless, this fact does not
mean that UML2PROV must be used taking as source all types of diagrams from those
supported, but a potential user of UML2PROV may choose the perspective (or perspectives)
of provenance to be generated by selecting the type(s) of diagram to be processed.

4.3 From UML to PROV: the transformation patterns

Our conceptual proposal to generate PROV templates from UML diagrams (Step 2.1 in the
architectural overview) has been rigorously defined by an extensive set of 17 transformation
patterns (or patterns for short) that ultimately associates UML elements with PROV elements.
Below, we begin by discussing why we have selected some UML elements to be translated,
and why we have ruled out others. Then, we state the set of principles we have followed for

4.3 From UML to PROV: the transformation patterns 55

the definition of these patterns. Subsequently, we explain the common structure we have
used for describing them. Later, we move on to presenting a generic overview of the patterns.
At the end, an illustrative example is presented to explain how the patterns are applied.

4.3.1 Considered UML elements

One of the main reasons for UML2PROV supporting three different types of UML diagrams
is the common requirement in provenance systems for providing different viewpoints of a sit-
uation [14]. This fact forces us to choose a cornerstone situation common to all the supported
types of UML diagrams. Our proposal advocates designing provenance for different perspec-
tives of operations executions for two main reasons: (1) all the supported types of diagrams
provide elements for modeling different perspectives of them (later, we will see what these
elements are), and (2) the execution of concrete behaviour (execution of operations) drives
the provenance of a piece of data. Concretely, those templates generated from Sequence
diagrams will reflect how collaborating objects interact for executing operations, and the
exchange of information between them. The templates generated from Class diagrams will
contain specific information about (1) the objects’ characteristics at some point, i.e. the
object’s status, and (2) the operations that have led the objects’ status to be as they are.
Finally, the templates obtained from State machine diagrams will show information about
the evolution of the objects’ state as a consequence of operations executions taken place.

UML Sequence diagrams

Aiming at obtaining PROV templates with information about how collaborating objects
interact for executing operations, and the exchange of information between them, we have
selected the following elements: lifelines, messages, arguments, and execution specifications.
Concretely, we have selected lifelines because they expose information about the participants
involved in the interactions. This information will allow us to reflect in PROV not only the
information about the participants but also their responsibilities in the execution of operations.
We have taken into account messages due to the fact that they may model operation calls.
Messages provide us with information about the object that executed an operation, and the
object that called such an operation. Likewise, we translate arguments, which are contained
in messages, because they represent the data that are exchanged between the collaborating
objects. Finally, we have selected execution specifications because, among other things,
they represent concrete features of operations executions, which are the cornerstone of the
transformations into PROV (later, we will provide more information about this aspect).

56 Conceptual definition of UML2PROV

Conversely, we have ruled out those UML elements that are not of interest from our
point of view, or those whose semantics could be inferred from the provenance exposed
by the addressed UML elements. For example, we have not taken into account UML
combined fragments, which are commonly used in SqDs to explicitly model various control
structures. For example, the combined fragment with operator alt shows an alternative
interaction; the operator opt models an optional interaction; or loop specifies an iterative
interaction. The provenance information that could be exposed from these elements (and the
remaining operators) is indirectly collected during the execution. For instance, in case of
alternative (or optional) interactions, a provenance consumer will be able to know which
alternative (or optional) interaction has been executed because the collected provenance only
has information about the executed interactions. In case of loops, the provenance would
contain the information about how many times the loop has been executed. The same applies
to chronological aspects represented in the SqDs, the provenance collected from the execution
will have information about the order in which the operations were called, so that we do not
need to reflect such aspects in the templates.

UML Class diagrams

From CDs, we are interested in obtaining PROV templates about (1) the objects’ characteris-
tics at some point, i.e. the object’s status, and (2) the operations that have led the objects’
status to be as they are. To do this, we have taken into account the following elements:
classes, attributes, operations, and parameters. We have identified classes because they
are the main element of CDs, which are a means of classifying objects attending to their
characteristics, represented by attributes, and behaviour, modeled by operations. This set of
elements, together with the parameters inside the operations, will allow us to obtain PROV
templates with information about the objects’ status and how the execution of operations
affect such a status.

Whilst the aforementioned elements are widely used in CDs, there are also commonly
used UML elements that have not been taken into account. For instance, abstract classes
and interfaces because they are not instantiated. As for associations, we do not consider
the concrete semantics of shared and composite aggregations, they are translated as usual
binary associations. We consider that their semantics are not of interest from the provenance
point of view. Similarly, we do not directly address generalization relationships in the
transformations, although we represent their semantics. Concretely, when we address the
translation of a UML class, we identify its characteristics (attributes and operations) as well
the characteristics of its superclasses, if any.

4.3 From UML to PROV: the transformation patterns 57

UML State Machine diagrams

In order to produce PROV templates with information about the evolution of the objects’
state as a consequence of operations executions taken place, we have selected states, initial
pseudostates, and events to be translated into PROV. Firstly, among the different types of
states, we have chosen simple states, later we will explain why we have ruled out composite
and submachine states. Simple states will allow us to generate PROV templates with
information about an object’s situation in which some invariant conditions hold [1]. Secondly,
we have selected initial pseudostates because, among other things, they may refer to the
execution of the operation that creates an object. We consider that this specification is crucial
from the provenance point of view, since we are interested in determining when an object is
created and what is its first state. Finally, events may be used to specify that an operation
execution that triggers a change in an object’s state has taken place. This information will
allow us to obtain PROV templates with information about an operation execution from a
State Machine diagram perspective.

Transitions can have a guard condition that indicates if the transition can even be
considered (enabled), a trigger specified by an event that causes the transition to execute
if it is enabled, and the effect that will be executed when the transition occurs [19]. As
we mentioned previously, we only have considered events, and therefore, we have ruled
out guards and effects. Concretely, we have not considered guards because the collected
provenance only has information about the executed transitions, and such transitions are
executed because the guards were evaluated as true. Thus, a provenance consumer could infer
that the condition inside a guard was true when the corresponding transition was executed.
We made the decision of considering neither effects nor internal activities, whereby an activity
may consist of multiple actions [18]; however, we note that future research considering these
elements might provide finer-grained provenance. Finally, we note that in our transformations
we have mainly focused on simple states, instead of on composite or submachine states. This
is because SMDs with composite or submachine states may be transformed into SMDs with
only simple states by resorting to a flattening process, which is a very common approach in
the realms of model checking and code generation [166]. However, since the users might be
interested in representing composite states directly into the PROV templates, the description
of our patterns also provide an overview of how composite states can be mapped to PROV.

58 Conceptual definition of UML2PROV

4.3.2 Principles for the definition of UML to PROV patterns

The patterns have been defined taking into account a set of principles that are intended to
facilitate their understandability and maintenance, in addition to enabling other researchers
to replicate and implement their functionality. These principles are the following:

Consistency. Since UML diagrams model a system (or an excerpt of it) from different
perspectives (depending on the diagram used), the resulting PROV templates will represent
the provenance aspects associated with the perspective at hand. Although modeling different
perspectives of a system, UML diagrams can have a rich semantic overlap. Similarly, the
PROV templates generated from the UML diagrams of a system must have common
elements which allow the merging of the expanded PROV documents.

Level. The PROV templates obtained from the patterns contain the design of the prove-
nance to be generated and therefore, they state the level of capture of provenance (see
Section 3.3.4); that is, the particular point in the software stack where the provenance must
be collected. Due to the fact that the resulting PROV templates contain information about
operations executions, the provenance must be collected at process-level. At this level, it is
possible to obtain information regarding the operations executions.

Understandable. Each pattern identifies a UML design specifying a concrete situation of
the system that is related to an operation execution (hereinafter we refer to this situation as
context), and whose translation to PROV is provided. Aiming at facilitating the reader the
understandability of the situation modeled by the UML design, each pattern must provide
the reader with a description of the context, by using the natural language and software
engineering terminology. From our point of view, this has two advantages. First, it gives an
insight into the design of the provenance obtained from the UML design. Second, it may
help users barely familiar with UML find the pattern that best suits their purposes.

Self-explanatory. Each pattern must be easily understood from the information given and
not needing further explanation. As a consequence, one who reads all the patterns from
beginning to end will find that some explanations bear a strong resemblance, even that there
are repeated ones. We have made this decision to avoid that a potential user loses part of
the explanations that are discussed elsewhere in other patterns.

Systematic. The explanation of the patterns must be uniformly structured. This will allow
users to easily navigate the document and compare the patterns.

Finally, we note that potential designers (or developers) may extend the stated set of patterns,
under their responsibility, by following the aforementioned principles.

4.3 From UML to PROV: the transformation patterns 59

4.3.3 Structure of the patterns

Firstly, we have assigned to each pattern a unique identifier. This identifier is an acronym that
refers to the type of UML diagram together with a numeric identifier. The UML Sequence
diagram Patterns are referred to as SeqP<N>, where N is the numeric identifier. Likewise,
ClP<N> corresponds to the UML Class Diagram Patterns, and StP<N> to the UML State
Machine Patterns. Subsequently, following the aforementioned principles, we have defined
a common structure for all the patterns. This structure is made up of four blocks: Context,
UML diagram, Mapping to PROV, and Discussion. For illustrating the above explanation of
these blocks, we will use excerpts of the definition of the SeqP1, which are located inside a
frame to avoid confusion with the explanation. The complete explanation of SeqP1, gathering
all the following blocks together, is given in Appendix B.

Context The explanation of the situation addressed by the UML representation identified
in the pattern. With the aim of improving the understandability of the context, we use the
natural language by including well-known software engineering terminology (e.g., object,
operation. . .). Additionally, each pattern context block includes a detailed description of its
identified key elements, which are modeled in the UML representation.

Context block in SeqP1

A participant (the sender) interacts with another participant (the recipient) by calling an operation in
the recipient, and then, it continues immediately. The call causes the recipient to execute the operation.

Key elements

Sender The participant that makes the operation call.

Operation call The call that starts the execution of the operation.

Input data The information (if any) passed to the operation through the Operation call.

Operation execution The execution of the operation.

UML Diagram The excerpt of the UML diagram whose translation into PROV is ruled by
the pattern. We provide a table (see the frame below) that explains the reasons for using
each UML element that models each key element (column rationale). Additionally, we assign
a green label containing a numeric identifier (e.g., 1) to each UML element, which makes it
easier its location in the UML diagram. We remark that not all the elements in the UML
diagram are mandatory. Some patterns identify specific UML elements to provide a more
comprehensive translation (e.g., input or output data of operations or messages in some
patterns).

60 Conceptual definition of UML2PROV

UML diagram block in SeqP1
Key
Element

UML Rationale

Sender Lifeline 1 It models the Sender participant involved in the
interaction.

Operation
call

Asynchronous Message 2 It models the Operation call when the Sender
does not wait for a response, but instead continues
immediately after sending the message.

Input data Input Arguments 3 They specify the information passed to the opera-
tion through the Operation call.

Operation
execution

ExecutionSpecification 4 It shows the period of time that the recipient’s
participant devotes to the Operation execution.

:Lifeline1 :Lifeline2

asynch(inArgs)

1

3

4
2

Mapping to PROV The PROV template proposed as translation for the previous excerpt of
UML Diagram. This template is accompanied by an explanation about that transformation;
that is, how the PROV elements, attributes, and PROV relations are generated from the
elements in the UML Diagram. Each generated PROV element has a numeric identifier
inside a purple label (e.g., 1) that corresponds to the identifier of the UML element from
which it comes from (e.g., 1).

Mapping to PROV block in SeqP1: PROV elements (I)

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

var:operation

wasAssociatedWithc

wasStartedBy

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:senderObject

1
2

3

4

a

b

u2p:typeName var:senderClassName

usedd

prov:value var:inputValue
u2p:typeName var:inputType

4.3 From UML to PROV: the transformation patterns 61

Mapping to PROV block in SeqP1: PROV elements (II)

UML PROV / id Rationale

Lifeline 1 prov:Agent 1 /
var:senderObject

The sender Lifeline 1 is mapped
to a prov:Agent identified by
var:senderObject. It assumes
the responsibility for starting the
ExecutionSpecification 4 .

Asynchronous Message 2 prov:Entity 2 /
var:starter

The Asynchronous
Message 2 that initiates the
ExecutionSpecification 4 of
the recipient is a prov:Entity with
identifier var:starter.

Input Arguments 3 prov:Entity 3 /
var:input

Each argument of Input
Arguments 3 is a separate
prov:Entity identified as
var:input.

ExecutionSpecification 4 prov:Activity 4 /
var:operation

The ExecutionSpecification 4

is a prov:Activity with identifier
var:operation.

Mapping to PROV block in SeqP1: attributes (I)

PROV Element Attribute / Value Description

var:senderObject 1 u2p:typeName /
var:senderClassName

The value var:senderClassName is
the string with the name of the class
to which the var:senderObject 1

belongs.
var:starter 2 prov:type /

u2p:RequestMessage
The value u2p:RequestMessage
shows that var:starter 2 is a
request message.

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the di-
rect representation of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string
with the name of the class to which
var:input 3 belongs.

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#RequestMessage
http://uml2prov.unirioja.es/ns/u2p.html#RequestMessage
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName

62 Conceptual definition of UML2PROV

Mapping to PROV block in SeqP1: attributes (II)

PROV Element Attribute / Value Description

var:operation 4 prov:type /
var:operationName

The value var:operationName
is the name of the operation
var:operation 4 .

tmpl:startTime /
var:operationStartTime

var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 4 .

tmpl:endTime /
var:operationEndTime

var:operationEndTime is an
xsd:dateTime value for the end of
var:operation 4 .

Additionally, each relation among PROV elements appearing in the PROV template is
labelled with a letter (e.g., a) that helps link such a relation with its description. At
this point, we note that in PROV two relationships of the form (B, prov:used, A) and
(C, prov:wasGeneratedBy, B) may be enriched with (C, prov:wasDerivedFrom, A) to explicitly
express that C was derived from A. This is a well-known construction called use-generate-
derive triangle [167], which explicitly associates a generated prov:Entity with a used
prov:Entity. In the definitions of the patterns, this construction may be applied in those
templates in which a prov:Entity is used by a prov:Activity, and such a prov:Activity

generates another prov:Entity. Nevertheless, in order to avoid the overburden of the PROV
template explanations by including information that could be inferred, we only include the
relation prov:wasDerivedFrom only when we have considered that such a relation enriches
the provenance to be generated.

Mapping to PROV block in SeqP1: PROV relations

PROV Relation Description
a prov:hadMember It states that var:input is one of the elements in

var:starter.
b prov:wasStartedBy var:operation is deemed to have been started by

var:starter.
c prov:wasAssociatedWith It is the assignment of responsibility to var:senderObject

for var:operation.
d prov:used It is the beginning of utilizing var:starter by

var:operation.

Discussion Issues related to the transformation of UML to PROV. Basically, we explain
and justify the decisions we have made in the transformations addressed by the pattern.

http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#used

4.3 From UML to PROV: the transformation patterns 63

Additionally, we discuss alternative solutions (if any) and some questions that are likely to
come up to the reader.

Discussion block in SeqP1

• The UML diagram in this pattern depicts the responsibility of the Sender lifeline
(var:senderObject) for the recipient lifeline to execute the operation (var:operation). How-
ever, the recipient lifeline is not modeled in this PROV template, even though it is the participant that
executes the operation. This decision is based on other patterns’ better ability to both (1) identify
the participant responsible for executing that operation, and (2) give a more detailed information
about the implications that the execution of that operation has in the recipient participant. More
specifically, these patterns are: StP1-StP3, which mainly focus on representing possible changes in
an object’s state caused by an Operation execution; and patterns ClP1-ClP10, which put more stress
on how the execution affects the status of the object responsible for performing such an execution.

• [. . .]

4.3.4 Overview of the defined transformation patterns

Our approach identifies a total of 17 patterns, 4 of them addressing SqDs, 10 addressing
CDs, and 3 addressing SMDs. These patterns have been defined in a systematic and a
thoroughly way by following the principles stated in Section 4.3.2, and according to the
structure described in Section 4.3.3. Since each pattern has been defined in a self-explanatory
and systematic way, their sequential reading from the first to the last could be considered a
tedious task. This fact prevents us from including all the patterns’ explanation in this section.
Instead, in Appendix B we present five patterns used throughout this memoir (SeqP1, SeqP2,
ClP10, StP1, and StP3), and in [168], we provide the explanation of all the patterns together.

In this section, we will introduce a set of charts built on top of the patterns’ contexts for
helping users find the pattern of their interest, and to give an insight into the wide range of
situations they cover. Concretely, we have designed a chart for each type of UML diagram
supported by UML2PROV (figures from 4.2 to 4.4). These charts provide several benefits.
Firstly, they guide users to find the pattern that best suits their needs, preventing them from
performing the tedious task of reading all of the patterns sequentially. Secondly, all the
patterns provided for a concrete type of UML diagram are presented in the same figure. In
this way, users are not only able to easily compare the patterns, but also they can easily get
an idea of the wide range of situations that are addressed by the stated patterns. Finally, we
remark that to facilitate the access to the explanations of the patterns included in Appendix B,
the nodes in those charts representing such patterns include the number of the page in
this document that contains the pattern’s explanation, and a hyperlink to it (the latter only
available in digital format).

64 Conceptual definition of UML2PROV

UML Sequence Diagrams Patterns

Sequence diagrams are used to model the interactions among collaborating objects and the
exchange of information between them; thus, we have focused on the interaction between
components by means of operations’ calls, and the consequences of such calls. We have
defined four patterns identified from SeqP1 to SeqP4. As shown in Figure 4.2, there are two
cornerstone patterns when a sender participant calls an operation: (1) SeqP1 when the sender
does not wait for a response and it continues immediately, and (2) SeqP2 when the sender
waits for a response. Besides, both patterns may be complemented only by SeqP3 when,
during the execution of the called operation, a nested operation is called and the execution
continues immediately, or may be complemented by SeqP3 as well as SeqP4 when a nested
operation is called and additionally the execution waits for a response.

In a system, a participant (the sender) interacts with another partici-
pant (the recipient) by calling an operation in the recipient and . . .

SeqP1 (pg. 168) SeqP2 (pg. 172)

. . . the sender
continues
immediately

. . . the sender
waits for a
response

During the execution of the called opera-
tion, a nested operation is called and . . .

[optional] [optional]

SeqP3 SeqP3

. . . the execution
continues imme-
diately

. . . the execution
waits for a response

SeqP4

Fig. 4.2 This chart is focused on those patterns that rule the transformation of SqDs

UML Class Diagrams Patterns

Class diagrams model the static structure of a system by means of UML classes, and their
relationships, which classify objects and specify the features that characterise the structure
and behaviour of those objects [1]. Concretely, aiming at generating PROV templates with
detailed information about the changes performed within the objects modeled by classes, we

4.3 From UML to PROV: the transformation patterns 65

are interested in information about (1) the object’s status (i.e., values of the attributes) before
and after the execution of an operation, and (2) the object’s internal changes (e.g., setting a
new value of an attribute, or adding/removing an element in a collection attribute). However,
the different nature of the operations prevents us from defining a generic transformation
for all the UML operations. Depending on their nature, operations implicitly have specific
semantics that can also provide information of interest for provenance capture. For instance,
the key factors involved in the execution of an operation such as getID (which would return
information about an attribute) are different from the ones related to a setID operation (which
would set the value of an attribute).

Taking this into account, we made the decision of considering different types of operations
aiming at providing meaningful provenance which explains the behaviour of each UML
operation. To do this, we performed a literature review of studies identifying categorisations
of operations in general (not necessary UML operations) based on their behaviours. The
identified approaches showed that the behaviour of operations can be seen from different
levels of detail. For instance, the classification presented in [1] differentiates operations
that leave the state of the system unchanged from those that have side effects in the system.
Conversely, the taxonomy provided in [169] gives a finer-grained classification based on
aspects such as concurrency, synchronization, polymorphism, and so on. However, we
remark the taxonomy given in [6] for being the most complete one, in addition of being
agnostic about any specific context of application. Concretely, the taxonomy that we have
used (which we explain below) is based on such a taxonomy.

A taxonomy of class’ operations As we have mentioned, our taxonomy was built upon
the taxonomy presented in [6]. Such a taxonomy defines five categories, each one containing
UML stereotypes for identifying each type of behaviour. The five stated categories are the
following:

• The creational category refers to operations responsible for creating or destroying objects
of a class.

• The structural accessor category refers to operations that return information regarding the
attributes of the object to which the operation belongs, without changing the status of the
object.

• The structural mutator category corresponds to operations that change the status of the
object to which the operation belongs.

• The collaborational category which helps define the communication between objects and
how objects are controlled in the system.

• The degenerate category corresponds to operations which provide little information.

66 Conceptual definition of UML2PROV

Based on these categories, we defined our taxonomy (see Table 4.1). Concretely, our
taxonomy (1) discards the collaborational and degenerate categories, and (2) has been
enriched with additional stereotypes aimed at identifying extra/further operations’ semantics
not considered in the original taxonomy (marked with an asterisk in Table 4.1). On the one
hand, we have not taken into account the collaborational category since the collaboration
between objects is already given by the SqDs. Likewise, the degenerate category has
been discarded because it reflects aspects that cannot be faced without checking the source
code. On the other hand, we have included the search, add and remove stereotypes for
covering operations that manage collection attributes (such as search, addition or removal,
respectively); the process stereotype, for operations computing and returning information
based on the object’s status as a whole, without focusing on specific attributes; and the modify
stereotype, for operations that modify concrete attributes of an object.

Table 4.1 Extension of the taxonomy of UML class’ operations given in [6], showing the
categories considered in our proposal. An asterisk in a stereotype means that such a stereotype
does not appear in the original taxonomy, but it has been added by our proposal.

Category Stereotype
name Description

Creational «create» The operation creates an object.
«destroy» The operation destroys an object.

Structural
Accessor

«get» The operation returns values of concrete attributes of an object.
«search» * The operation returns elements belonging to a concrete collection

attribute of an object.
«process» * The operation returns values that are computed based on the ob-

ject’s status as a whole.
«predicate» The operation returns boolean values that are computed based on

concrete attributes of an object.
«property» The operation returns values (of any type) that are computed based

on concrete attributes of an object.
«void-accessor» The operation returns values (of any type) that are computed based

on concrete attributes of an object. These values are returned by
means of parameters.

Structural
Mutator

«command» The operation changes the status of an object as a whole (the
modified attributes are unknown or irrelevant). It does not return
information.

«non-void-command» The operation changes the status of an object as a whole (the
modified attributes are unknown or irrelevant). It does return
information.

«set» The operation directly sets the information passed to the operation
as values of concrete attributes of an object.

«modify» * The operation modifies concrete attributes of an object.
«remove» * The operation removes an element from a concrete collection

attribute of an object.
«add» * The operation adds an element on a concrete collection attribute

of an object.

4.3 From UML to PROV: the transformation patterns 67

It is worth noting that when we say “the object’s status as a whole” in the explanations
given in Table 4.1 for the process, command and non-void-command stereotypes, we refer
to the object’s characteristics at some point, without delving into the concrete values of
the object’s attributes. For instance, operations with the process stereotype compute and
return information based on the object’s characteristics at some point, without relying on
concrete attributes for computing the returned information. Thus, we can say that the involved
attributes are unknown or irrelevant.

Finally, we note that all the stereotypes whose definition involves one or various attributes
have been defined with a property (or tag definition) with the name attributes. This property
is used to keep the list of all the attributes involved in the behaviour of the stereotyped
operation. For example, the stereotype «get» linked with an operation (e.g., getName) that
returns the value of the name attribute, has the attributes property containing the string "name".

Based on the categories and stereotypes shown in Table 4.1, we have defined the set of
patterns included in the chart of Figure 4.3. Below, we explain such a chart relying on the
categories from the taxonomy.

Creational ClP1 is applied when an operation creates a new object («create»), whereas
ClP2 is focused on the destruction of an object («destroy»).

Structural Accessor In case of an operation execution not changing the object’s status, we
have focused on the returned information. More specifically, ClP3 addresses operations that
directly return values of concrete object’s attributes («get» and «search»), and ClP4 and
ClP5 focus on operations that return computed values. Concretely, ClP4 considers that the
returned values are computed relying on the object as a whole («process»), without taking
into account the concrete attributes involved in the computation. Conversely, ClP5 identifies
the concrete attributes used to compute such information («predicate», «property», and
«void-accessor»). Therefore, it gives a finer-grained provenance than ClP4. As we can
see in Table 4.1, the stereotypes «predicate», «property», and «void-accessor» denote
behaviours with specific nuances. Nevertheless, we have not included such nuances in the
PROV template because we consider that such information is irrelevant from the provenance
point of view and therefore, its inclusion would overburden the resulting PROV templates.
In our opinion, the most relevant feature of these stereotypes is that they compute the
returned values based on concrete object’s attributes without modifying the object’s status.

Structural Mutator In case of an operation execution changing the object’s status, we
distinguish two levels of granularity. Firstly, ClP6 is used when the operation modifies the
object as a whole («command» and «non-void-command»), in such a way there is no information

68 Conceptual definition of UML2PROV

about the attributes involved in such a change. Secondly, as we are interested in a finer-
grained provenance when the attributes are relevant, we have distinguished when the
execution of an operation:

• (ClP7) directly sets the information passed to the operation as values of attributes of the
object («set»);

The execution of an operation...

ClP1 ClP2

ClP3

ClP4 ClP5

ClP6

ClP7 ClP8

ClP9

ClP10 (pg.177)

. . . creates a
new object

. . . destroys
an object

else
. . . changes the
object’s status

does not
change the ob-
ject’s status
and . . .

. . . returns val-
ues of con-
crete object’s
attributes

. . . returns com-
puted values

the computed
values are
based on the
object as a
whole

the computed
values are
based on con-
crete attributes

the modified
attributes are
irrelevant

the modified
attributes are
relevant

directly sets the informa-
tion passed to the operation
as values of attributes

computes the
new values of
the attributes
based on the
passed informa-
tion

removes/adds ele-
ments from/into a
collection attribute

removes adds

Fig. 4.3 This chart is focused on those patterns that rule the transformation of CDs

4.3 From UML to PROV: the transformation patterns 69

• (ClP8) computes the new values of the object’s attributes based on the information passed
to the operation («modify»);

• removes (ClP9) or adds (ClP10) elements from/into a collection attribute of the object
(«remove»/«add»).

UML State Machine Diagrams Patterns

State Machine diagrams specify the behaviour of individual objects of a system by means
of the states they can go through during their lifetimes in response to events; hence, we
focus on the information regarding the evolution of the objects’ state caused by the execution
of operations. The patterns addressing SMDs, which are included in Figure 4.4, address
three different situations of an object, and concretely its state, caused by the execution of an
operation. First, when an object is created (StP1); second, when the behaviour of an object is
completed (StP2), and finally, when an object changes its state to another state (StP3).

As a consequence of the execution of an operation . . .

StP2StP1 (pg.184) StP3 (pg.189)

. . . an object is created

. . . the behaviour of
an object is com-
pleted

. . . an object changes its state

Fig. 4.4 This chart is focused on those patterns that rule the transformation of SMDs

4.3.5 Three patterns as an example

As an illustrative example, we have selected a situation from the University example (intro-
duced in Chapter 2). This situation refers to the enrolment of students into seminars that,
depending on the considered point of view, is modeled by a different type of UML diagram
(see the SqD depicted in Figure 4.5, the CD in Figure 4.7, and the SMD in Figure 4.9).
Below, we will explain how the patterns SeqP2, ClP10 and StP3 translate such diagrams into
PROV. Here we note that the generic and complete description of these patterns is provided
in Appendix B.

UML Sequence Diagrams

The enrolment of a student into a seminar could be modeled by the SqD depicted in Fig-
ure 4.5. It shows a context in which a sender participant (i.e., student), which is modeled

70 Conceptual definition of UML2PROV

by the lifeline st:Student 1 , interacts with a recipient participant (i.e., seminar) by calling
the enrolStudent operation (specified by the synchronous message enrolStudent 2), and
passing information (represented by the input argument st 3) into the operation execu-
tion. The call causes the recipient participant to execute the operation (modeled by the
ExecutionSpecification 4), which results in a response (specified by the reply message
enrolStudent 5) to the sender participant, containing output information (represented by the
output argument boolResult 6).

The UML elements in the excerpt (those identified from 1 to 6) match the UML
elements identified in SeqP2. This matching is illustrated in Table 4.2, where the first column
shows the UML elements generically identified in SeqP2, and the second column presents
the corresponding UML element in Figure 4.5. Hence, the transformation defined in SeqP2
can be applied.

Table 4.2 Matching between the UML elements identified in SeqP2 and the UML elements from
Figure 4.5

UML element in SeqP2 UML element in Figure 4.5
Lifeline st:Student 1

Synchronous message (request) enrolStudent 2

Input arguments st 3

Execution specification ExecutionSpecification 4

Reply message (response) enrolStudent 5

Output arguments booleanResult 6

Following the transformation from UML to PROV defined by SeqP2, below we will
explain the translation of the UML elements in Figure 4.5. Each step in the translation
is accompanied by a replica of Figure 4.5 highlighting the UML element to be translated,
together with the PROV element generated from it.

st:Student

enrolStudent(st)

s:Seminar

enrolStudent(boolResponse)

1

2

4

3

5 6

Fig. 4.5 An excerpt of the SqD depicted in Figure 2.2 showing the interaction between Student
and Seminar when a student enrols in a seminar

4.3 From UML to PROV: the transformation patterns 71

• The lifeline st:Student 1 models the Student object that calls the enrolStudent oper-
ation in a Seminar object. Since the Student object bears some form of responsibility
for the execution of the enrolStudent operation, the lifeline st:Student 1 is mapped to
a prov:Agent with the identifier var:senderObject 1 . As with all the PROV elements
in the template, this prov:Agent has a variable as identifier (var:senderObject in this
case). When the template expands, this variable will be replaced by a unique quali-
fied name such as ex:Student3. Additionally, this prov:Agent will contain the attribute
u2p:typeName associated with var:senderClassName to denote the name of the class to
which var:senderObject 1 belongs. In this case, when the resulting template expands,
var:senderClassName will be replaced by the string "Student", since it is the name of the
class to which the object represented by the lifeline st:Student 1 belongs.

var:senderObject u2p:typeName var:senderClassName

st:Student

enrolStudent(st)

s:Seminar

enrolStudent(boolResponse)

1

2

4

3

5 6

1

• The synchronous message enrolStudent 2 models the call that starts the execution of the
enrolStudent operation. It is translated into a prov:Entity identified as var:starter 2 .
Furthermore, in order to show that var:starter 2 is a request message, var:starter 2

has the attribute prov:type with the value u2p:RequestMessage.

st:Student

enrolStudent(st)

s:Seminar

enrolStudent(boolResponse)

1

2

4

3

5 6
var:starter prov:type u2p:RequestMessage

2

• The input argument st 3 specifies the Student object that is passed to the enrolStudent oper-
ation. It is mapped to a prov:Entity with the identifier var:input 3 . This prov:Entity has
the attributes prov:value and u2p:typeName associated with the variables var:inputValue

and var:inputType, respectively. When PROV template expands, the former variable will
be replaced by the direct representation of the input argument st 3 (e.g., "Carlos Sáenz"),

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#RequestMessage
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName

72 Conceptual definition of UML2PROV

and the latter variable will be replaced by a string with the name of the class to which the
input argument st 3 belongs (i.e., "Student").

st:Student s:Seminar

enrolStudent(boolResponse)

enrolStudent()

1

2

4

3

5 6
var:input prov:value var:inputValue

u2p:typeName var:inputType

3
st

• The ExecutionSpecification 4 shows the period of time that a Seminar object devotes to
the execution of the enrolStudent operation. It is translated into a prov:Activity identi-
fied as var:operation 4 . This prov:Activity has three attributes with information about
the execution of the enrolStudent operation. The attribute prov:type is associated with
the variable var:operationName, whose value will be the name of the executed opera-
tion (i.e., ex:enrolStudent). Likewise, the attributes tmpl:startTime and tmpl:endTime

are linked with the variables called var:operationStartTime and var:operationEndTime,
respectively. For example, when the template expands, the former will be replaced by
an xsd:dateTime value for the start of the execution of the enrolStudent operation (e.g.,
2019-07-17T14:21:12.085844), whereas the latter could be replaced by an xsd:dateTime for
the end of the enrolStudent operation (e.g., 2019-07-17T14:22:12.085844).

st:Student s:Seminar

enrolStudent(boolResponse)

1

2

4

3

5 6
var:operation

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

4
enrolStudent(st)

Note that the proposed translation into PROV takes into account the lifeline st:Student 1 ;
however, the lifeline s:Seminar is not addressed, even though it is the participant that exe-
cutes the operation enrolStudent. This decision was based on other patterns’ better ability
to both (1) identify the participant responsible for executing that operation enrolStudent,
and (2) give a more detailed information about the implications that the execution of
enrolStudent has in the object that executes it. As we will see in the following sections,
these patterns are: ClP10, which shows how the execution of enrolStudent affects the

http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://www.w3.org/TR/xmlschema11-2#dateTime

4.3 From UML to PROV: the transformation patterns 73

status (i.e., values of the attributes) of Seminar objects; and the pattern StP3, which rep-
resents the changes in the Seminar objects’ state caused by the execution of the operation
enrolStudent. Both StP3 and ClP10 will be described below. Later, we will explain how
the PROV templates resulting from these patterns are consistent with each other, and
therefore, the PROV documents generated after their expansion can be merged.

• The reply message enrolStudent 5 models the response to the call that starts the ex-
ecution of the enrolStudent operation. It is mapped to a prov:Entity with identifier
var:response 5 . Additionally, so as to note that var:response 5 is a reply message,
var:response 5 has the attribute prov:type with the value u2p:ReplyMessage.

st:Student s:Seminar

enrolStudent(boolResponse)

1

2

4

3

5 6
var:response prov:type u2p:ReplyMessage

5enrolStudent(st)

• The output argument boolResult 6 represents the Boolean object contained in the response
of the enrolStudent operation. It is translated into a prov:Entity identified as var:output 6 .
Furthermore, it has two attributes, prov:value and u2p:typeName that are linked with the
variables var:outputValue and var:outputType, respectively. When the template expands,
var:outputValue will be replaced by the direct representation of boolResult 6 (i.e., true or
false) and var:outputType by a string with the name of the class to which boolResult 6

belongs (i.e., "Boolean").

st:Student s:Seminar

enrolStudent(boolResponse)

1

2

4

3

5 6
var:output prov:value var:outputValue

u2p:typeName var:outputType

6enrolStudent(st)

In addition to defining the translation from concrete UML elements (identified from 1

to 6) to PROV elements (identified from 1 to 6), SeqP2 also states how the generated
PROV elements must be related between each other in order to generate a PROV template
containing the full semantics of the translated UML SqD. Below, we explain the PROV

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#ReplyMessage
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName

74 Conceptual definition of UML2PROV

relations defined by SeqP2 which, together with the aforementioned PROV elements, define
the PROV template shown in Figure 4.6.

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

prov:value var:inputValue
u2p:typeName var:inputType

var:operation

wasAssociatedWithc

wasStartedBy
prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:senderObject

1
2

3

4

a

b

var:response

var:output

hadMember

prov:type u2p:ReplyMessage

prov:value var:outputValue
u2p:className var:outputType

5

6

f

wasGeneratedByd

wasDerivedFrome

u2p:typeName var:senderClassName

usedg

Fig. 4.6 PROV template obtained by applying SeqP2 to the SqD depicted in Figure 4.5

• a prov:hadMember. Since the input argument st 3 (var:input 3) is contained in the
synchronous message enrolStudent 2 (var:starter 2), the relation a prov:hadMember

links var:starter 2 with var:input 3 .

• b prov:wasStartedBy. The ExecutionSpecification 4 (var:operation 4), referring to the
execution of the enrolStudent operation, is deemed to have been started by the synchronous
message enrolStudent 2 (var:starter 2). Thus, the relation b prov:wasStartedBy

associates var:operation 4 with var:starter 2 .

• c prov:wasAssociatedWith. The lifeline st:Student 1 (var:senderObject 1) is responsi-
ble for the execution of the enrolStudent operation. This is because the lifeline st:Student 1

(var:senderObject 1) sends the synchronous message enrolStudent 2 (var:starter 2)
that starts the ExecutionSpecification 4 (var:operation 4). This responsibility is in-
cluded in the template using the relation prov:wasAssociatedWith from var:senderObject 1

to var:operation 4 .

• d prov:wasGeneratedBy. The reply message enrolStudent 5 (var:response 5) is the
response obtained from the execution of enrolStudent (which is represented in UML
by the ExecutionSpecification 4 that is translated into var:operation 4). This fact is
shown by means of the relation d prov:wasGeneratedBy between var:response 5 and
var:operation 4 .

http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasGeneratedBy

4.3 From UML to PROV: the transformation patterns 75

• e prov:wasDerivedFrom. The reply message enrolStudent 5 (var:response 5) is the
response to the synchronous message enrolStudent 2 (var:starter 2). To reflect this fact,
the relation e prov:wasDerivedFrom associates var:response 5 with var:starter 2 .

• f prov:hadMember. Since the output argument boolResult 6 (var:output 6) is contained
in the reply message enrolStudent 5 (var:response 5), the relation f prov:hadMember

associates var:response 5 with var:output 6 .

• g prov:used. Due to the fact that the execution of the operation enrolStudent (specified
by the ExecutionSpecification 4 that is translated into var:operation 4) uses the syn-
chronous message enrolStudent 2 (var:starter 2) to perform its behaviour, the relation
g prov:used is included for linking var:operation 4 with var:starter 2 .

Finally, we remark that, contrary to what may be expected, the PROV template generated
by SeqP2 does not reflect the usage of the input argument st 3 (var:input 3) by the operation
execution (modeled by the ExecutionSpecification 4 that is translated into var:operation

4). This is because SqDs focus on the flow of information, not its usage. As we will
see below, the pattern ClP10 is better suited for this purpose, since it will include detailed
information regarding the role of var:input 3 in the execution of the operation enrolStudent.

UML Class Diagrams

The situation of enroling a student into a seminar involves the UML elements inside the CD
depicted on the left-hand side of Figure 4.7. It shows a context in which the execution of the
enrolStudent operation (modeled by the operation enrolStudent 2 with the stereotype add)
on a Seminar object (specified by the class Seminar 1) directly adds the information passed
to the operation (the input parameter st:Student 3) as new element(s) of a concrete object’s

Seminar

add2
3

1

4 -seminarName:String

Student

+studentList 0..*
Seminar

add +enrolStudent(in st: Student):Boolean

4
-studentList:Student[0..*]

2
3

1

-seminarName:String

4

+enrolStudent(in st: Student):Boolean

5

5

Fig. 4.7 On the left-hand side, there is an excerpt of the CD depicted in Figure 2.1.1 showing
those elements that are involved in the enrolment of a student in a seminar. On the right-hand
side, there is an equivalent representation of it.

http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used

76 Conceptual definition of UML2PROV

collection attribute (specified by the association with the role studentList 4), thus provoking
a change in the Seminar object’s status. Additionally, the execution of the enrolStudent

operation returns a boolean value (represented by the output parameter Boolean 5).
On the basis of the UML specification (page 206 in [1]), we note that the association

with the role studentList 4 can be represented as an attribute inside the class Seminar 1

with the appropriate multiplicity, whereby the type of the attribute is the class of the partner
objects (i.e., Student), and the name of the attribute is the role of the association (i.e.,
studentList). Aiming at facilitating the understanding of the following explanation, we will
use this equivalent representation, which is depicted on the right-hand side of Figure 4.7.

The elements in the excerpt (identified from 1 to 5) match with those UML elements
identified in ClP10, and consequently, the transformation defined in ClP10 can be applied.
The match between the elements identified in the pattern, and the elements in the excerpt
is shown in Table 4.3. The first column depicts the UML elements from ClP10, and in the
second column there are the matched UML elements from the right-hand side of Figure 4.7.

Table 4.3 Matching between the UML elements identified in ClP10 and the highlighted UML
elements from Figure 4.7

UML element in ClP10 UML element in Figure 4.7
Class Seminar 1

«add» Operation enrolStudent 2

Input parameters st:Student 3

Attributes studentList and seminarName 4

Output parameters (optional) Boolean 5

Guided by the transformation defined in ClP10, we will explain how the UML elements
from the right-hand side of Figure 4.7 are translated into PROV. Each step in this transfor-
mation is illustrated by a copy of the right-hand side of Figure 4.7 highlighting the UML
element(s) to be translated, together with the PROV element(s) generated from it(them).

• The class Seminar 1 classifies Seminar objects attending to their static characteristics
and behaviour. Thus, it represents Seminar objects both before and after the execution
of an operation. Since the execution of the enrolStudent operation changes the object’s
status, the class Seminar 1 is translated into two PROV elements: (1) the prov:Entity

var:preObject 1.1 , which is the Seminar object with the status (pre) before the execution;
and (2) the prov:Entity var:postObject 1.2 , which is the Seminar object with the status
(post) after the execution. Additionally, both var:preObject 1.1 and var:postObject 1.2 have
the attributes u2p:typeName and prov:type. On the one hand, u2p:typeName is associated
with the variable var:className, which will be replaced by the string "Seminar" when the

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#typeName

4.3 From UML to PROV: the transformation patterns 77

template expands. On the other hand, prov:type has the value u2p:Object to denote that
both var:preObject 1.1 and var:postObject 1.2 are objects.

Seminar

add +enrolStudent(in st: Student):Boolean

4
-studentList:Student[0..*]

2
3

1

-seminarName:String

5

var:preObject

var:postObject

1.1

1.2
u2p:typeName var:className
prov:type u2p:Object

u2p:typeName var:className
prov:type u2p:Object

• The operation enrolStudent 2 with the stereotype «add» shows that the execution of the
operation directly adds a new element into a concrete collection attribute (in this case, the at-
tribute studentList 4). It is translated into a prov:Activity identified as var:operation 2 .
Such a prov:Activity has three attributes: prov:type, tmpl:startTime, and tmpl:endTime.
These attributes, when the template expands, will be replaced by the values such as
ex:enrolStudent, "2019-07-17T14:21:12.085844" and "2019-07-17T14:22:12.085844", re-
spectively.

Seminar

add +enrolStudent(in st: Student):Boolean

4
-studentList:Student[0..*]

2
3

1

-seminarName:String

5

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

var:operation2

var:input3
prov:value var:inputValue
u2p:typeName var:inputType

var:output
prov:value var:outputValue
u2p:typeName var:outputType5

Additionally, the operation enrolStudent 2 shows two parameters: the input parameter
st:Student 3 , and the output parameter Boolean 5 . On the one hand, the input parameter
st:Student 3 is mapped to a prov:Entity with the identifier var:input 3 , which has
the attributes prov:value and u2p:typeName associated with the variables var:inputValue

and var:inputType, respectively. On the other hand, the output parameter Boolean 5

is translated into a prov:Entity identified by var:output 5 . This prov:Entity contains
the attributes prov:value and u2p:typeName linked with the variables var:outputValue and
var:outputType, respectively. When the template expands, the variables var:inputValue

and var:outputValue will be replaced by the direct representation of their correspond-
ing prov:Entity (e.g., var:inputValue by "Carlos Sáenz" and var:outputValue by true),
whereas var:inputType and var:outputType will be replaced by the name of the type of the
parameter (i.e., var:inputType by "Student" and var:outputType by "Boolean").

• The attributes studentList and seminarName 4 represent the static characteristics of Seminar
objects. They are translated as follows:

http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#Object
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://openprovenance.org/tmpl#endTime
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#Entity

78 Conceptual definition of UML2PROV

– studentList is the collection attribute that the operation modifies by adding a new
element. It is translated into the prov:Entity identified by var:modCollAttribute 4.1 .
Additionally, each element in this collection preceding the operation execution is a sepa-
rate prov:Entity identified by var:collElement 4.1.1 . The prov:Entity with the identifier
var:modCollAttribute 4.1 has four attributes: prov:type, prov:value, u2p:attributeName,
and u2p:typeName. As for the attribute prov:type, it is related to the value u2p:Attribute

to show that var:modCollAttribute 4.1 in an attribute. The attribute prov:value is as-
sociated with the variable var:modCollAttributeValue which will be replaced by the
direct representation of var:modCollAttribute 4.1 when the template expands (e.g., the
string "[Carlos Sáenz, Beatriz Pérez, Francisco García]"). Regarding the attribute
prov:attributeName, it is linked with the variable var:modCollAttributeName. This vari-
able will be replaced by the string value "studentList" when the template expands.
Finally, the attribute u2p:typeName is related to the variable var:modCollAttributeType,
which, when the template expands, will be replaced by a string such as "List", which
denotes the name of the class to which the attribute studentList 4 belongs.

Seminar

add +enrolStudent(in st: Student):Boolean

4
-studentList:Student[0..*]

2
3

1

-seminarName:String

5

var:modCollAttribute

4.1 prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

var:collElement

4.1.1

– seminarName, which is an attribute not modified by the execution of the operation, is
mapped to a prov:Entity identified with var:attribute 4.2 . As before, this prov:Entity

has the attributes prov:type, prov:value, u2p:attributeName, and u2p:typeName, which
are respectively associated with u2p:Attribute, var:attributeValue, var:attributeName,
and var:attributeType. As previously, when the template expands, the variables
var:attributeValue, var:attributeName, and var:attributeType will be replaced with
values such as "Provenance_seminar", "seminarName", and "String".

Seminar

add +enrolStudent(in st: Student):Boolean

4
-studentList:Student[0..*]

2
3

1

-seminarName:String

5

var:attribute

4.2 prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

The aforementioned generated PROV elements are not isolated, ClP10 also defines how
the they must be related to obtaining a PROV template with the full semantics of the translated

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#type
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#attributeName
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#Attribute
http://www.w3.org/ns/prov#value
http://www.w3.org/ns/prov#attributeName
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#type
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#attributeName
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://uml2prov.unirioja.es/ns/u2p.html#Attribute

4.3 From UML to PROV: the transformation patterns 79

UML CD. Next, we will explain the PROV relations stated in ClP10, which together with
the previous PROV elements, define the resulting PROV template shown in Figure 4.8.

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

u2p:typeName var:className
prov:type u2p:Object

u2p:typeName var:className
prov:type u2p:Object

var:modCollAttribute

4.1

wasDerivedFrom

g

h hadMember

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

var:outputk wasDerivedFrom

l wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

m wasDerivedFrom

5

Fig. 4.8 PROV template obtained by applying ClP10 to the CD highlighted in Figure 4.7

• The operation enrolStudent 2 (var:operation 2) uses the input parameter st:Student 3

(var:input 3) to perform its behaviour, and generates the output parameter Boolean 5

(var:output 5). These facts are shown in the PROV template through the relations
a prov:used between var:operation 2 and var:input 3 , and l prov:wasGeneratedBy

between var:output 5 and var:operation 2 . Additionally, according to the use-generate-
derive triangle [167], we associate the generated prov:Entity var:output 5 with the used
prov:Entity var:input 3 by means of the relation k prov:wasDerivedFrom.

• The operation enrolStudent 2 (var:operation 2) provokes the change in the object’s sta-
tus from a pre-operation (var:preObject 1.1) to a post-operation status (var:postObject 1.2).
This fact is denoted by b prov:used between var:operation 2 and var:preObject 1.1 ,
and by c prov:wasGeneratedBy associating var:postObject 1.2 with var:operation 2 . In
this case, we have applied the use-generate-derive triangle three times. First, associating
var:postObject 1.2 with var:preObject 1.1 by the relation d prov:wasDerivedFrom. Sec-
ond, linking var:postObject 1.2 with var:input 3 by the relation f prov:wasDerivedFrom.
Third, associating var:output 5 and var:preObject 1.1 by m prov:wasDerivedFrom.

• The object of the class Seminar 3 with the status after the execution (var:postObject 1.2)
has the attributes seminarName 4 (var:attribute 4.2) and studentList 4 (var:modCollAttri-
bute 4.1). Thus, var:postObject 1.2 is associated with var:attribute 4.2 through the
relation e prov:hadMember, and with var:modCollAttribute 4.1 using g prov:hadMember.

http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember

80 Conceptual definition of UML2PROV

A question likely to come up is why var:attribute 4.2 is linked with var:postObject 1.2

(which represents the object with the status after the execution of the operation), but it
is not associated with var:preObject 1.1 (the object with the status before the execution).
We have taken this decission because the object of the class Seminar 1 that acts as a
var:preObject here, was a var:postObject in a previous operation execution. Therefore,
those attributes associated with this object in a var:preObject were registered when it
previously played the role of var:postObject.

• This pattern states that the operation enrolStudent 2 stereotyped with add (var:operation 2)
directly adds into the collection attribute studentList 4 (var:modCollAttribute 4.1) the
input parameter st:Student 3 (var:input 3). We show this fact by using two relations:
i prov:wasGeneratedBy for associating var:modCollAttribute 4.1 with var:operation 2 ;

and h prov:hadMember for linking var:modCollAttribute 4.1 with var:input 3 .

• The operation enrolStudent 2 adds a new element into the attribute studentList 4

(var:modCollAttribute 4.1), but such an attribute already had elements before the execution
(var:collElement 4.1.1). Thus, j prov:hadMember associates var:modCollAttribute 4.1

with var:collElement 4.1.1 .

UML State Machine Diagrams

Figure 4.9 shows an except of a state machine (modeled by the StateMachine 2) that models
the behaviour of objects of the Seminar class. Concretely, it depicts a context in which as
a consequence of the execution of the enrolStudent operation (represented by the event
enrolStudent 5), an object of the Seminar class 1 changes its state (specified by the source
state enroling 3 and the target state enroling 4). Two remarks are necessary in this case.
First, the objects of the Seminar class, whose behaviour is modeled by the StateMachine 2 ,
lack a graphical representation in UML SMDs. Thus, we will refer to the object that changes

enroling

enrolStudent

Seminar State Machine

3

4
5

2

1

*This is an excerpt of the
State Machine of each
object Seminar

Fig. 4.9 An excerpt of the SMD depicted in Figure 2.4 showing how the enrolment of a student
into a seminar affects the state of the objects of the Seminar class

http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember

4.3 From UML to PROV: the transformation patterns 81

its state as “object Seminar 1 .” Second, so as to simplify the following explanation, Figure 4.9
lacks the performing composite state, which appears in the original State Machine diagram
(Figure 2.4). Nevertheless, readers interested in how to include both simple composite states
(e.g., the performing state) and orthogonal composite states are referred to the definition of
StP3.

The object Seminar 1 as well as the UML elements in this excerpt (those identified from
2 to 5) match with the UML elements identified in StP3. We can see this matching in
Table 4.4, in which the first column depicts the UML elements identified in StP3, and the
second column shows the matched UML elements from Figure 4.9.

Table 4.4 Matching between the UML elements identified in StP3 and the UML elements from
Figure 4.9

UML element in StP3 UML element in Figure 4.9
Object Seminar 1

State machine StateMachine 2

(source) State (source) enroling 3

(target) State (target) enroling 4

Event enrolStudent 5

Based on the transformation from UML to PROV defined in StP3, we will explain how
the UML elements from Figure 4.9 are mapped. Each step in this translation is attended by a
copy of Figure 4.9 highlighting the UML element(s) to be translated, together with the PROV
element(s) generated from it.

• The StateMachine 2 is used to express the set of states through which each object
Seminar 1 goes during its lifetime in response to events; for instance, the execution
of the enrolStudent operation could be an event. On the one hand, the StateMachine 2

is translated into a prov:Entity identified as var:objectSM 2 . We use this prov:Entity to
represent the abstraction of the states of the object Seminar 1 , which will be specialized
by each state of the object Seminar 1 . Aiming at showing that var:objectSM 2 represents
a state machine, it has the attribute prov:type with the value u2p:StateMachine. On the
other hand, each object of the class Seminar 1 is mapped to a prov:Agent identified by
var:object 1 . We have decided to use a prov:Agent because later we want to show that
the object Seminar 1 bears responsibility for its StateMachine 2 (var:objectSM 2). This
prov:Agent has the attribute u2p:typeName associated with the variable var:typeName to
show the name of the class to which var:object 1 belongs. In this case, when the template
expands, var:typeName will be replaced by the string "Seminar".

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#StateMachine
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://uml2prov.unirioja.es/ns/u2p.html#typeName

82 Conceptual definition of UML2PROV

enroling

enrolStudent

Seminar State Machine

3

4
5

2

u2p:typeName var:typeNamevar:object
1

var:objectSM prov:type u2p:StateMachine

2

*

1

This is an excerpt of the
State Machine of each
object Seminar

• The object Seminar 1 changes from the (source) state enroling 3 to the (target) state
enroling 4 . The state enroling 3 , which is the state before (pre) the operation, is trans-
lated into a prov:Entity identified by var:preObject 3 , whereas the state enroling 4 ,
which is the state after (post) the operation, is mapped to a prov:Entity with the iden-
tifier var:postObject 4 . On the one hand, the prov:Entity var:preObject 3 contains
the attributes prov:type and u2p:state associated with the variables var:className and
var:sourceState, respectively. When template expands, the former variable will be re-
placed by the name of the class to which the object Seminar 1 belongs (i.e., ex:Seminar),
and the latter variable will be replaced by the string with the name of the state enroling 3

(i.e., "enroling"). On the other hand, the prov:Entity var:preObject 3 also contains the
attributes prov:type and u2p:state in order to include information about the class of the
object, and the name of the target state.

enroling

enrolStudent

Seminar State Machine

3

4
5

2

4

var:preObject

3
prov:type var: className
u2p:state var:sourceState

*

var:postObject

4
prov:type var: className
u2p:state var:targetState

1

This is an excerpt of the
State Machine of each
object Seminar

• The event enrolStudent 5 specifies that the execution of the enrolStudent operation has
taken place. It is translated into a prov:Activity with the identifier var:operation 5 . As the
previous patterns, this prov:Activity contains three attributes (prov:type, tmpl:startTime
and tmpl:endTime) with information regarding the execution of the enrolStudent operation.

enroling

enrolStudent

Seminar State Machine

3

4
5

2

var:operation

5
prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

1

This is an excerpt of the
State Machine of each
object Seminar

*

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#state
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#state
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://openprovenance.org/tmpl#endTime

4.3 From UML to PROV: the transformation patterns 83

In addition to the definition of the translation from UML elements (identified from 1

to 5) to PROV elements (from 1 to 5), StP3 also states relations between the aforemen-
tioned PROV elements. These relations together with the PROV elements define the resulting
template depicted in Figure 4.10. Next, we will describe these relations.

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine

var:preObject specializationOf

var:operation

wasInvalidatedBy

3

4

5

a

c

b

d

g

f

e

specializationOf

wasDerivedFrom
wasGeneratedBy

used

1

2

prov:type var: className
u2p:state var:sourceState

prov:type var: className
u2p:state var:targetState

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:typeName var:className

Fig. 4.10 PROV template obtained by applying StP3 to the SMD depicted in Figure 4.9

• As we stated previously, the decision of using the prov:Agent var:object 1 for repre-
senting each object Seminar 1 comes with the need for showing its responsibility for its
StateMachine 2 (var:objectSM 2). Concretely, we use a prov:wasAttributedTo to link
var:objectSM 2 with var:object 1 in order to show this fact in the PROV template.

• The prov:Entity var:objectSM 2 obtained from the StateMachine 2 represents the ab-
straction of the states of the object Seminar 1 . Thus, both the (source) state enroling 3

(var:preObject 3) and the (target) state enroling 4 (var:preObject 4) specialise the
StateMachine 2 (var:objectSM 2). This is shown by two relations. First, the relation
b prov:specializationOf associates var:preObject 3 with var:objectSM 2 . Second,
c prov:specializationOf links var:postObject 3 with var:objectSM 2 .

• The event enrolStudent 5 (var:operation 5) povokes the change in the object’s state
from a pre-event state (var:preObject 3) to a post-event state (var:postObject 4). This
fact is shown by the relation e prov:used between var:operation 5 and var:preObject 3 ,
and the relation f prov:wasGeneratedBy linking var:postObject 4 with var:operation 5 .
Additionally, we have applied the use-generate-derive triangle resulting in the relation
d prov:wasDerivedFrom between var:preObject 3 and var:postObject 4 .

Consistency among the resulting PROV templates

Throughout the aforementioned explanations, the reader may notice that there are com-
mon PROV elements in the resulting templates, e.g., the prov:Activity with the identifier

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#Activity

84 Conceptual definition of UML2PROV

var:operation appears in all of them. This is because one of the principles for the definition
of the patterns that we stated in Section 4.3.2 is consistency. Concretely, this principle states
that, although some generated PROV templates design the provenance of the same situation
from different perspectives, these PROV templates must have common elements which allow
the merging of the expanded PROV documents. We note that we have decided to postpone
the explanation of the consistency between templates until we have already explained the
generation of bindings (in Section 4.5). This will allow us to illustrate the explanation of the
consistency between patterns with the final provenance that is generated from such patterns.
This will facilitate the reader to grasp how we have reached the consistency not only between
patterns but also in the final provenance.

4.4 Towards the generation of bindings. BGM features and
requirements

Having presented the conceptual approach of UML2PROV for obtaining PROV templates,
with the design of the provenance to be generated from UML, in this section, we give our
proposal for creating the bindings to be used for instantiating the aforementioned PROV
templates, and thus generating the provenance ready for consumption. Concretely, our
approach advocates providing each application with a Bindings Generation Module (BGM,
see Figure 4.1) for automatically obtaining the bindings as the application is executed.
However, since the generation of bindings is driven by UML designs of applications with
different nature, to establish an only generic module is not a suitable option. Instead, we have
decided to describe the features that, from our point of view, the BGMs should have in order
to minimise the intrusion on software designers’ and developers’ modus operandi, as well as
to facilitate the maintenance of the provenance-aware applications. To define these features,
we will leverage the analysis of the approaches for capturing data that we performed in our
systematic review, concretely in the data capture dimension in Section 3.3.4. Based on these
features, we have defined a set of requirements that the BGMs for an application must satisfy,
independently of the UML designs of such an application and the technologies used for its
development.

As we stated in Section 3.3.4, the data capture dimension refers to the way in which
provenance data can be captured, distinguishing four categories: tracing, level, mechanism,
and technique.

• As far as the tracing category is concerned, it refers to the proposal taken for computing
provenance information. In our context, the provenance information is computed when the

4.4 Towards the generation of bindings. BGM features and requirements 85

PROV templates are instantiated with bindings. The BGM should provide developers with
a mechanism to select when to compute provenance: when required (lazy) or immediately
(eager). Regardless of when and how bindings are generated, one strategy could be to delay
the computation of provenance (i.e., the expansion of templates obtaining the final PROV
documents) until the application finishes (lazy approach). This strategy could be possible
by storing the sets of bindings, or each binding independently. Later, these bindings may
be used to instantiate the PROV templates on demand. Alternatively, another strategy
could be to expand the templates as the application is being executed (eager approach).
This strategy does not need to store the bindings since it directly stores the final PROV
documents.

Feature 1 The BGM must be agnostic about when to compute provenance.

• Regarding the level of capture, it refers to the level (i.e., point in the software stack)
where the distinct forms of provenance can be gathered. As we mentioned previously in
Section 4.3.2, our approach advocates designing provenance for operations executions
since the three supported types of UML diagrams have elements for representing aspects
of operations executions. Taking this into account, the BGM must generate bindings
based on provenance data obtained from the operations executions of a process (i.e., at
process-level).

Feature 2 The BGM must capture provenance data from operations executions.

• The mechanism used to capture provenance data could rely upon internal structures
or external services. The BGM is meant to be integrated into the existing application,
relying on internal structures for generating the bindings. Whilst to use external services
could have been a valid alternative, we have decided not to deal with distributed and
heterogeneous systems. Nevertheless, we remark that this could be a further line of work.

Feature 3 The BGM must rely upon internal structures for generating bindings.

• Finally, the technique category refers to the techniques used by existing provenance systems
to capture provenance. In Section 3.3.4 we identified two approaches: annotation and
inversion. Whereas the annotation method refers to the process of adding to or “making
up” existing data, the inversion approach uses the property by means of which some
derivations can be inverted to find the input data used to derive the output data. Concretely,
an annotation is a name-value pair [92], in which the value may be text, int values, and so
on. Thus, bindings can be seen as a kind of annotation. These bindings must be generated
automatically.

86 Conceptual definition of UML2PROV

Feature 4 The BGM must automatically annotate the existing data when generating
bindings.

Once we have enumerated the desirable features that, to the best of our knowledge,
any BGM should have, we have stated a set of requirements that the BGM created for an
application must follow so as to satisfy such features.

1. To manually adapt the applications’ source code to generate bindings could be a valid
option for satisfying the aforementioned features. In that way, the developer is free to
select any of the approaches in the above categories: e.g. she/he could choose when to
compute provenance (Feature 1) as well as to capture provenance from operations execu-
tions (Feature 2). Additionally, she/he could use internal structures for the generation
of bindings (Feature 3), and implement mechanisms for automatically annotating the
existing data items (Feature 4). However, to manually adapt the applications’ source code
is a tedious, time-consuming and error-prone task. Concretely, software developers would
have to transverse the whole applications’ source code and add suitable instructions to
generate the bindings. Thus, we have identified the following requirement:

Requirement 1 (R1) The instrumentation of the application to add the instructions for
generating bindings must be carried out automatically.

2. To rely upon internal structures (Feature 3) for generating bindings would result in
provenance capture code spread out over the application’s code (scattered code), which
makes the maintenance of the application a cumbersome task. This is because the bindings
must be generated in concrete points distributed over the application’s code. Another
disadvantage is that if software designers modify the design of the application by including
those elements that model the generation of bindings, the resulting diagrams become
complex and difficult to manage. Otherwise, if designers do not perform such changes
in the design, there will be an inconsistency between the application’s design and the
application’s source code. In order to instrument applications without affecting their
design and maintenance, we have stated the following two requirements regarding the
internal structures to be used for generating bindings:

Requirement 2 (R2) The instructions for bindings generation must be located apart from
the application’s source code, in an independent module, avoiding the generation of
repetitive and obfuscated code.

Requirement 3 (R3) The BGM has to be able to identify the specific moments within
the application’s source code where it is required to execute such instructions.

4.4 Towards the generation of bindings. BGM features and requirements 87

3. The BGM should be agnostic about when to compute provenance (Feature 1). That is,
software developers must be able to follow a lazy approach by computing the provenance
(that is, to expand the PROV templates) when required, or alternatively, to follow an eager
approach by computing the provenance as the application is running. Taking this into
account, we state that:

Requirement 4 (R4) The BGM must provide the software developer with mechanisms
for selecting the configuration that best suits her/his needs, allowing the developer to
decide when to compute the provenance.

4. The generated bindings will be used to instantiate the PROV templates obtained from the
UML design in order to obtain the provenance to be exploited. Thus, these bindings must
be consistent with such PROV templates aiming at obtaining provenance that describes
what the application actually does. This consistency involves two features. First, since the
generated templates contain the design of the provenance to be generated from operations
executions, the BGM must collect provenance data from operations executions (Feature 2).
Second, the bindings must be generated automatically (Feature 4). Each PROV element in
a template has a variable that unequivocally identifies the element at hand; thus, the values
of such variables must be included in the bindings. Taking these issues into account, we
have identified two requirements:

Requirement 5 (R5) Each binding obtained from an application’s execution must be
associated with at least one PROV template automatically generated from the UML
diagrams.

Requirement 6 (R6) The variables included in a set of bindings must correspond with
the variables in their associated PROV templates.

With all these requirements, we have defined a conceptual background over which the
BGMs should be implemented in order not only to generate bindings accordingly with
the designed provenance, but also to automatically generate bindings without affecting the
maintenance of the application. Concretely, a possible list of bindings for the PROV templates
depicted in Figures 4.6, 4.8, and 4.10 is depicted in Figure 4.11. In addition to the list of
bindings (in the right-hand side), on the left of each binding it is the patterns that generated a
template containing the name of the variable in the binding. This set of bindings satisfies
requirements R5 and R6 since each binding is associated with at least one of the PROV
templates obtained from SeqP2, ClP10 and StP3, and the variables correspond with the
variables in the PROV templates. To optimise space, the serialisation of these bindings was
inspired from the JSON-LD serialisation [30]: "var" key contains the bindings represented

88 Conceptual definition of UML2PROV

 {"var":{
 "senderObject": [{ "@id": "ex:Student3" }],
 "senderClassName": [{ "@type": "xsd:string", "@value": "Student" }],
 "starter": [{ "@id": "ex:Message_1" }],
 "input": [{ "@id": "ex:Student3_1" }],
 "inputValue": [{ "@type": "xsd:string", "@value": "Carlos Sáenz" }],
 "inputType": [{ "@type": "xsd:string", "@value": "Student" }],
 "operation": [{ "@id": "ex:enrolStudent1" }],
 "operationName": [{ "@id": "ex:enrolStudent" }],
 "operationStartTime": [{ "@type": "xsd:dateTime", "@value": "2019-07-17T14:21:12.085844" }],
 "operationEndTime": [{ "@type": "xsd:dateTime", "@value": "2019-07-17T14:22:12.085844" }],
 "response": [{ "@id": "ex:Message_2" }],
 "output": [{ "@id": "ex:Boolean1_1" }],
 "outputValue": [{ "@type": "xsd:boolean", "@value": "true" }],
 "outputType": [{ "@type": "xsd:string", "@value": "Boolean" }],
 "object": [{ "@id": "ex:Seminar1" }],
 "className": [{ "@type": "xsd:string", "@value": "Seminar" }],
 "objectSM": [{ "@id": "ex:Seminar1_0" }],
 "preObject": [{ "@id": "ex:Seminar1_5" }],
 "sourceState": [{ "@type": "xsd:string", "@value": "enroling" }],
 "postObject": [{ "@id": "ex:Seminar1_6" }],
 "targetState": [{ "@type": "xsd:string", "@value": "enroling" }],
 "modCollAttribute": [{ "@id": "ex:List_5" }],
 "modCollAttributeValue": [{"@type":"xsd:string","@value":"[Carlos Sáenz, Beatriz Pérez, Francisco García]"}],
 "modCollAttributeName": [{ "@type": "xsd:string", "@value": "studentList" }],
 "modCollAttributeType": [{ "@type": "xsd:string", "@value": "List" }],
 "attribute": [{ "@id": "ex:String1_1" }],
 "attributeValue": [{ "@type": "xsd:string", "@value": "Provenance_seminar" }],
 "attributeName": [{ "@type": "xsd:string", "@value": "seminarName" }],
 "attributeType": [{ "@type": "xsd:string", "@value": "String" }],
 "collElement": [{ "@id": "ex:Student1_1" },
 { "@id": "ex:Student2_1" }]
 },
 "context":{
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "u2p": "http://uml2prov.unirioja.es/ns/u2p#",
 "ex": "http://example.com"
 }}

SeqP2
SeqP2
SeqP2
SeqP2
SeqP2
SeqP2
SeqP2
SeqP2
SeqP2
SeqP2
SeqP2
SeqP2
SeqP2
SeqP2

ClP10
ClP10
ClP10
ClP10
ClP10
ClP10
ClP10

ClP10
ClP10
ClP10

ClP10

ClP10

ClP10

ClP10
ClP10
ClP10
ClP10
ClP10
ClP10
ClP10
ClP10
ClP10

StP3
StP3
StP3
StP3

StP3
StP3
StP3
StP3
StP3
StP3
StP3

Fig. 4.11 Possible set of bindings obtained from the execution of the enrolStudent operation.
On the left-hand side, those patterns that generated a template including the variable next to it.

as a JSON dictionary; @id is the identifier of the current value; @type is the data type of the
current value; @value is the string serialisation of the value; and "context" key provides the
information to interpret the prefixes used in values.

4.5 The consistency between templates and bindings for
obtaining consistent provenance

Throughout Section 4.3.5, we have seen how different types of UML diagrams, which
model the enrolment of a student into a seminar, are translated into PROV templates. The
consequence of using different types of UML diagrams is the generation of PROV templates
with different information, covering different perspectives of the same situation. As we
noted in Section 4.3.2, one of the stated principles for the definition of those patterns is the
consistency, which refers to the semantic overlap that the PROV templates resulting from
different types of UML diagrams should have. To see at a glance the overlap between the
aforementioned generated templates, we have included the Figure 4.12. This figure contains

4.5 The consistency between templates and bindings 89

colored circles that enclose the variables that identify the PROV elements in the templates
obtained by applying SeqP2 (template in Figure 4.6), ClP10 (template in Figure 4.8), and StP3
(template in Figure 4.10). Later, we will base on this figure for explaining the consistency of
the generated provenance.

SeqP2 StP3

var:senderObject

var:starter

var:response

var:input

var:output

var:operation

var:object

var:objectSM

var:preObject

var:postObject

var:modCollAttribute

var:attribute

var:collElement

ClP10

Fig. 4.12 Three circles enclosing the variables that identify the elements in the PROV templates
generated by applying SeqP2, ClP10, and StP3

.

Similarly, to ensure the generation of consistent PROV documents after expansion, in
Section 4.4 we stated the requirements R5 and R6 for ensuring the consistency between
bindings and templates. For instance, the set of bindings in Figure 4.11 fulfils these require-
ments. Concretely, the expansion of the templates shown in Figures 4.6, 4.8 and 4.10 with
the set of bindings in Figure 4.11 generates three final PROV documents with the prove-
nance information ready to be exploited. Each PROV document (depicted in Figure 4.13)
contains provenance information about the perspective of the template from which it comes.
More specifically, the provenance information in Figure 4.13(a) is focused on the flow of
information, since its source template comes from a Sequence diagram. Figure 4.13(b)
shows provenance information related to a change in an object’s status because its template
was obtained from a Class diagram. Finally, the provenance information in Figure 4.13(c)
is related to a change in an object’s state due to the used template resulting from a State
Machine diagram.

The generated PROV templates design the provenance for the execution of enrolStudent
operations from three viewpoints. This execution is shown in all the templates by means of
the prov:Activity with the identifier var:operation (see Figure 4.12). This prov:Activity

has been obtained from three different UML elements appearing in the three types of UML

http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity

90 Conceptual definition of UML2PROV

diagrams that are addressed. Concretely, it has been generated from an execution specification
shown in a Sequence diagram, an operation from a Class diagram, and an event depicted in a
State Machine diagram. When an enrolStudent operation is executed, a concrete binding is
generated for linking a unique identifier value with var:operation. As we can see in the set
of bindings from Figure 4.11, var:operation is linked with the value ex:enrolStudent1. As
a consequence of this, when the templates expand, we obtain three final PROV documents
with the same prov:Activity (see Figure 4.13), but with different elements and relations that
define the specific perspective of the provenance in such a document.

ex:String1_1

ex:Seminar1_5

wasDerivedFrom

wasGeneratedBy

wasGeneratedByex:Student1_1

hadMember

hadMember

hadMember

ex:Seminar1_0

ex:Seminar1

wasAttributedTo

specializationOf

wasInvalidatedBy

specializationOf

wasDerivedFrom

wasGeneratedBy

used

ex:enrolStudent1

(a) Provenance obtained from SeqP2 (b) Provenance obtained from ClP10

(c) Provenance obtained from StP3

used

used

ex:List_5

wasDerivedFrom

hadMember

wasDerivedFrom

wasGeneratedBy

wasDerivedFrom

ex:Message_1

ex:Student3_1

hadMember

ex:enrolStudent1

wasAssociatedWith

wasStartedBy

ex:Student3

ex:Message_2

ex:Boolean1_1

hadMember

wasGeneratedBy

wasDerivedFrom

used

ex:Boolean1_1

ex:Seminar1_6

ex:Student2_1

hadMember ex:Student3_1

ex:enrolStudent1

ex:Seminar1_6

ex:Seminar1_5

Fig. 4.13 PROV documents obtained by expanding the PROV templates shown in Figures 4.6, 4.8
and 4.10 with the set of bindings in Figure 4.11. We do not show the PROV attributes to avoid
overburdening the figure.

Another remarkable aspect is the different perspectives of StP3 and ClP10 to reflect
the change in an object of the Seminar class, which is triggered as a consequence of
the execution of the enrolStudent operation (var:operation). Both patterns generate the
prov:Entities var:preObject and var:postObject (see Figure 4.12) to show this change in
the object, but from two different perspectives. On the one hand, in ClP10, var:preObject
and var:postObject are the object with the status (i.e., values of its attributes) before and
after the execution of the operation, respectively. Hence, this perspective gives a finer-grained
provenance about the change in the object by showing how the values of its attributes change.

http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entities

4.5 The consistency between templates and bindings 91

On the other hand, in StP3 these variables represent the source and target state of the object
before and after the execution of enrolStudent, respectively. Thus, this pattern will reflect
how a Seminar object changes its state as a consequence of the execution of enrolStudent.
Finally, we note that, despite the fact that var:preObject and var:postObject appear in two
different templates, both templates are consistent. This is because, when the operation
enrolStudent is executed, it is created one binding associating var:preObject with a unique
value, and another binding associating var:postObject with another unique value. For in-
stance, the set of bindings from Figure 4.11 shows that var:preObject is linked with the value
ex:Seminar1_5, and var:postObject with the value ex:Seminar1_6. As a consequence of this,
the final PROV documents (see Figures 4.13(b)(c)) have the same prov:Entities with the
identifiers ex:Seminar1_5 and ex:Seminar1_6, but they are related to different elements that
show the change of status (in Figure 4.13(b)), and the change of state (in Figure 4.13(c)).

Similarly, both SeqP2 and ClP10 translate the input and output data into two different
prov:Entities identified by var:input and var:output (see Figure 4.12). The pattern SeqP2
translates the input and output data that is modeled using UML input and output arguments of
UML messages, whereas ClP10 translates the input and output data specified by UML input
and output parameters of UML operations. When the enrolStudent operation is executed, a
concrete value is associated with var:input and var:output. Concretely, the set of bindings in

ex:Seminar1_6

ex:Seminar1_0

specializationOfex:enrolStudent1

wasGeneratedBy ex:String1_1

hadMember

ex:List_5

hadMember wasDerivedFrom

wasDerivedFrom

ex:Seminar1_5

specializationOf

wasInvalidatedBy

ex:Student2_1ex:Student1_1

ex:Seminar1

wasAttributedTo

ex:Student3_1

wasGeneratedBy

hadMember

hadMemberhadMember

ex:Boolean1_1

wasGeneratedBy wasDerivedFromwasDerivedFrom

ex:Message_1

hadMember

ex:Message_2

wasGeneratedBy

hadMemberwasDerivedFrom

wasAssociatedWith

used

used

usedwasStartedBy

ex:Student3

Fig. 4.14 PROV document obtained by merging the documents shown in Figure 4.13

http://www.w3.org/ns/prov#Entities
http://www.w3.org/ns/prov#Entities

92 Conceptual definition of UML2PROV

Figure 4.11 shows that var:input is associated with ex:Student3_1 and var:output is linked
with ex:Boolean1_1. These associations lead to the generation of two different final PROV
documents (in Figures 4.13(a)(b)) with the same prov:Entities identified by ex:Student3_1

and ex:Boolean1_1. However, as before, the remaining relations and elements in that PROV
documents define the perspective of the provenance in such documents. Whereas the prove-
nance in Figure 4.13(a) shows the flow of the input and output data because its design is
given by a UML Sequence diagram, the provenance in Figure 4.13(b) gives information
about the usage and the generation of such data.

The remainder variables are specific of a concrete template and therefore, when the
templates expand, they will be replaced only in the template that contains them.

Finally, we would like to note that although the expansion of each PROV template
resulted in a PROV document with provenance regarding a concrete perspective (Fig-
ures 4.13(a)(b)(c)), these final PROV documents can be merged in one PROV document
containing the three perspectives together. Figure 4.14 shows the result of merging the three
PROV documents depicted in Figure 4.13.

4.6 Conclusions

This chapter introduced the conceptual definition of UML2PROV, a framework for making
applications provenance-aware. Unlike other approaches, UML2PROV addresses the design
and the capture of provenance from the design of the application. To do this, UML2PROV
encompasses two main elements (PROV templates and BGM) that are obtained from the UML
diagrams of an application. While PROV templates contain the design of the provenance to
be generated, BGM is the module deployed into the application to generate bindings. Once
we have the templates and the bindings, the template expander takes as input both of them
and generates the final PROV documents with the provenance ready to be exploited.

On the one hand, we defined the generation of PROV templates by an extensive set of 17
transformation patterns, which were stated following a set of principles that facilitates their
understandability and maintenance. As far as these patterns are concerned, we also provided
readers with a set of charts that aims to (1) help users find the pattern that best suits their
interests and (2) see at a glance information about all the patterns together, allowing users to
compare them easily. Additionally, in order to illustrate the application of these patterns, we
showed how the provenance of a situation from the University example, which is modeled in
UML, can be designed using PROV templates generated by UML2PROV.

On the other hand, UML2PROV advocates providing each addressed application with
a BGM obtained from the application’s UML design, so as to minimise the intrusion on

http://www.w3.org/ns/prov#Entities

4.6 Conclusions 93

software designers’ and developers’ modus operandi, as well as to facilitate the maintenance
of the provenance-aware applications. In order to define a conceptual background over
which the BGMs will be implemented, we stated a set of requirements that all the generated
BGMs must fulfil. Finally, we shown how the consistency between the templates, which are
produced by our transformation patterns, and the bindings, which are generated by BGMs
fulfilling our set of requirements, results in consistent provenance.

We note that the transformation patterns together with the BGM’s requirements define a
conceptual background over which an implementation of UML2PROV should rely on. In the
following chapter, we will introduce our reference implementation of UML2PROV.

Chapter 5

Implementation of UML2PROV

This chapter aims at providing a reference implementation of UML2PROV, that, following the
conceptual considerations presented in Chapter 4, automatically generates PROV templates
and a BGM from the UML design of an application. Concretely, the process followed to-
wards the development of such a reference implementation has consisted of two main stages.
First, we implemented a proof of concept that addressed part of the conceptual definition of
UML2PROV. More specifically, this proof of concept was developed in order to verify the
feasibility of such a conceptual definition, as well as to validate if a potential implementation
of it was possible. Once we validated both aspects, we developed our reference implementa-
tion, which provides a complete development of the conceptual definition of UML2PROV
and therefore, it automates the full process for making an application provenance-aware.

The poof of concept of UML2PROV has been presented in:

• Carlos Sáenz-Adán, Beatriz Pérez, Trung Dong Huynh, Luc Moreau: UML2PROV:
Automating Provenance Capture in Software Engineering. In the International Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM) 2018. [164]

• Carlos Sáenz-Adán, Luc Moreau, Beatriz Pérez, Simon Miles, Francisco J.
García-Izquierdo: Automating Provenance Capture in Software Engineering with
UML2PROV. In the International Provenance and Annotation Workshop (IPAW)
2018. [165]

The reference implementation, which implements the full conceptual definition of
UML2PROV, has been submitted for publication in:

• Carlos Sáenz-Adán, Beatriz Pérez, Francisco J. García-Izquierdo, Luc Moreau:
Integrating Provenance Capture and UML with UML2PROV: Principles and Experience.
Submitted for publication in IEEE Transactions on Software Engineering.

96 Implementation of UML2PROV

5.1 Introduction

Our conceptual definition of UML2PROV establishes the background and considerations to
create, starting from UML diagrams, the two main elements of the UML2PROV architecture:
the PROV templates and the BGM. The disparate nature of applications, with their own
nuances and complexity, and thus the UML design of such applications, prevent us from
performing a manual generation of the two main elements of the UML2PROV architecture,
since it would constitute a time-consuming and error-prone task. Thus, the automatization of
this process is desirable. Since the starting point of UML2PROV is a set of diagram models
of a system, the usage of MDD1 tools to implement UML2PROV is natural.

Relying upon MDD, we started developing a proof of concept [164, 165] in order to
verify that the conceptual definition of UML2PROV was feasible, as well as to validate
if a potential implementation of it was possible. Concretely, this first approach focused
on providing a pragmatic solution that did not necessarily fully implement UML2PROV.
Thus, we based on technologies we were familiar with, instead of learning new techniques.
Whilst this proof of concept allowed us to verify the feasibility of the conceptual definition
of UML2PROV and showed us that an implementation of it was possible, we realised that a
more complete and accurate implementation of UML2PROV could be provided (later, we
will explain the reasons).

Subsequently, we based on the experience acquired during that prior implementation to
develop a more complete solution that would constitute the reference implementation of our
proposal. This reference implementation strictly implements the full conceptual definition of
UML2PROV (see Chapter 4) for the automatic generation of (1) the templates and (2) the
BGM for an application.

It is remarkable that our reference implementation for generating templates could be
seen as a generic solution suitable for being used by any final user of UML2PROV, who has
the UML design of its application. Such a reference implementation provides a complete
automatic translation from any UML design to PROV templates as established by our patterns.
However, unlike the generation of templates, our reference implementation for generating the
BGM of an application is limited to applications developed in Java. Nevertheless, we have
defined a generic structure for the BGM aimed at allowing potential developers to implement
BGMs in other programming language. An example of this fact is the work presented by
Johnson et al. in [170], where they modeled their system by means of UML Sequence
diagrams, and later, they used our reference implementation of UML2PROV to generate
templates. Since their system is developed in a programming language other than Java, they

1Background information about MDD and tools is provided in Section 2.2.1

5.2 A Proof of concept for implementing UML2PROV 97

did not generate the BGM by using our reference implementation, but they implemented
their own mechanisms to generate bindings during the execution of the system.

That the BGM generated by our reference implementation satisfactorily addresses two
of the open problems uncovered in Section 3.4: computational overhead and querying. On
the one hand, we mentioned that the computational overhead is intrinsically related to the
capture of provenance, and therefore, it is desirable to provide users with mechanisms to
find a balance between both the capture of provenance and the computational overheads
attributable to it. On the other hand, querying the generated provenance was also identified
as an open problem in the provenance field. Concretely, when a provenance consumer
is interested in directly retrieving provenance information, she/he must know the specific
query language of the persistence layer of the used provenance system. This requirement
usually forces provenance consumers to learn new query languages, which is an undesirable
task. Thus, the BGM has been implemented in such a way that not only it satisfies all the
requirements stated for BGMs, but it also allows developers to follow different approaches
(called configurations) to manage bindings, keeping in mind both computational overhead
and querying aspects. Concretely, although we will explain three different configurations,
which are considered by us as the most relevant for reasons that we will explain later, we
will give developers guidelines to implement their own configurations.

5.2 A Proof of concept for implementing UML2PROV

In this preliminary stage, we considered only two types of UML diagrams (Sequence and
State Machine Diagrams) used to design an application. The purpose of this implementation
was to validate if both the conceptual definition of the transformation patterns and the
BGM were feasible. Thus, we prioritised our experience with XSLT [34] and the Proxy-
pattern [171] over other available solutions that were unknown for us. Concretely, we used
(1) XSLT to automate the transformation patterns and the generation of the BGM, and (2) the
Proxy-pattern approach to implement the BGM. Next, we will explain the implementation of
this proof of concept together with some of the issues raised by this solution.

5.2.1 Automatization of the transformation patterns: an XSLT-based
approach

As advanced previously, following an MDD approach, we first implemented a preliminary
version of the SMD and SqD patterns described in Section 4.3 by using XSLT [34]. Besides
our previous experience with other developments, another reason for choosing XSLT as the

98 Implementation of UML2PROV

technology to be used for our first implementation of UML2PROV was that UML diagrams
models are serialised in XMI, and XSLT was specifically developed for transforming XML-
based documents into another text format. Taking this into account, the use of XSLT seemed
natural. Concretely, following this approach, the UML diagram models, encoded in XMI,
are automatically translated into PROV templates files, serialised in PROV-N (a text notation

Table 5.1 An excerpt of the XSLT template focusing mainly on the implementation of the StP1
pattern. For each fragment in the excerpt (“XSLT source code” column), the description of the
transformation (“Description” column) as well as the graphical notation of the template model
(last column).

var:objectSM

var:object

var:operation

var:postObject

var:objectSM

var:object

wasAttributedTo
var:operation

specializationOf

wasGeneratedBy

var:object

wasAttributedTo

var:objectSM

var:operation

XSLT source code Description
Graphical representation of

the PROV template file

document
[...]

agent(var:object, ...)

entity(var:objectSM, ...)

activity(var:operation, ...)

<xsl:when test="
 (//subvertex[@xmi:type='uml:Pseudostate' and
@xmi:id=$idSource]) and
(//subvertex[@xmi:type='uml:State' and
@xmi:id=$idTarget]) and
not(//subvertex[@xmi:type='uml:State' and
@xmi:id=$idTarget]/region) and
not(//subvertex[@xmi:type='uml:Pseudostate' and
@xmi:id=$idTarget]/region)">

wasAttributedTo(var:objectSM,
var:object,

 ...)

wasGeneratedBy(var:postObject,
 var:operation,
...)

entity(var:postObject, ...)

wasAttributedTo(var:postObject,
 var:objectSM,
...)

This excerpt checks if the transition
corresponds with UML elements
identified in StP1. That is, if the
tackled transition has an initial
pseudostate as source, and a state as
target.

var:objectSM with var:object by
means of the PROV relation
wasAttributedTo.

First, it generates an entity identified
by var:postObject. Subsequently, it
creates two PROV relations. (1) The
PROV relation wasGeneratedBy
between var:postObject and
var:operation. (2) the PROV relation
specializationOf between
var:postObject and var:objectSM.

It states that the template is applied
to all the UML Transitions in the
source model.

It generates the document

It creates an agent with identifier
var:object

It creates an entity identified by
var:objectSM

It creates an activity with the
identifier var:operation

This block creates those elements
shared by all the patterns addressing
State Machine patterns

Next, it is the code that generates the
concrete elements of each pattern, in
particular, StP1.

[...]
endDocument

</xsl:when>

</xsl:template>

[...]

This excerpt is responsible for linking

Below it is the code implementing the
remaining SMD patterns.

<xsl:template match=
 "//uml:Model/packagedElement/region/transition">

5.2 A Proof of concept for implementing UML2PROV 99

format). As a way of illustrating how the transformation patterns were implemented, Table 5.1
depicts an excerpt of the XSLT template focusing mainly on the implementation of the pattern
StP12. Such a pattern deals with UML transitions that lead objects to their first states; that
is, a transition that goes from an initial pseudostate to a simple state. In particular, this
table shows, for each fragment of the XSLT template (in the first column), a description of
the transformation (second column) as well as the graphical notation of the PROV template
file being generated by such a fragment (third column). Additionally, these fragments are
organised around horizontal blocks of three colours with different intensity. The first block
shows the XSLT code that defines which UML element is addressed by the XSLT template.
In this case, as it is an XSLT template addressing UML State Machine diagrams, the XSLT
template considers UML transitions due to the fact that transitions are triggered by events,
which can reflect occurrences of operation executions (from which we want provenance data).
The second block contains fragments of code that create PROV elements shared by all the
State Machine diagram patterns. The third block shows the code responsible for generating
the specific PROV elements of StP1. More specifically, at the beginning of this block, we
can see the excerpt (inside a frame) in charge of checking whether StP1 has to be applied or
not; to do this, we have used XPATH expressions in order to check inside the XMI model if
the source of the transition is an initial pseudostate, and if the target is a simple state.

Although this XSLT-based implementation was functional, during its development we
came across several hurdles. More specifically, we found that the implementation of the
patterns in XSLT implies to have a great knowledge of XMI specification, because when
using XPATH in XSLT, we must take into account the deep structure of models that depends
on metamodels which are themselves highly dependent on XMI [172]. Another disadvantage
is that, in addition to the fact that the resulting XSLT code is not very understandable, it
highly depends on the XMI structure [172], which leads to a high cost of maintenance as the
UML diagrams’ complexity increases. This is a crucial drawback since our proposal is also
intended to support Class diagrams in addition to State Machine and Sequence diagrams,
which would make us to define new XSLT templates taking into account the concrete XMI
structural aspects concerning also Class diagrams. For instance, in Table 5.1, the excerpt
located inside the frame serves to give an idea regarding the deep knowledge about the XMI
structure that it is required. This excerpt aims at checking whether StP1 has to be applied or
not; the implementation of this condition in XSLT requires a great knowledge about not only
how the involved UML elements are serialised in XMI, but also how we could access these
elements by using XPATH.

2The complete definition of this pattern can be seen in Appendix B

100 Implementation of UML2PROV

Finally, we remark that this first attempt for implementing our patterns followed an
M2T approach. That is, it directly translated UML diagrams into PROV template files in
PROV-N format. The fact of implementing a direct transformation makes this approach
highly dependent on the format of the PROV templates files. Thus, if we want to serialise the
PROV templates in other format, it is required to modify the whole XSLT code to meet such
a requirement. Considering this, we believe that a chain of M2M and M2T transformations
is more suitable, since it contributes to the distinction between the transformation of UML
diagrams into PROV templates, and the subsequent serialisation of these PROV templates.

In conclusion, although this proof of concept implementation for our patterns was a
feasible solution at the beginning, we realised that using XSLT for defining our mapping rules
was no longer the best suitable option. Specially, taking into account the existing mapping
and transformation languages created by the MDD community that have better properties
in terms of maintenance, reusability, and support to software development processes [173].
Later, in the reference implementation, we will see how alternative solutions to XSLT have
allowed us to address the implementation of the transformation patterns in a more suitable
way.

5.2.2 Automatization of the generation of the BGM: a Proxy-pattern
and XSLT-based approach

Next, we explain our proof of concept implementation for automatically generating the BGM
of an application, taking as input the UML design of such an application. We will start by
explaining the implementation of the BGM we proposed as part of this first attempt and
which relied upon the Proxy-pattern approach. Later, we will describe the XSLT template
that we defined to automatically generate BGMs according to such an implementation.

An implementation of the BGM: a Proxy-pattern approach

Given our knowledge about the Proxy-pattern [171], we first decided to implement a proof of
concept of the BGM based on such a pattern. The Proxy-pattern [171] is mainly intended to
manage the access to objects’ operations, allowing us to modify their behaviour dynamically.
Briefly speaking, the Proxy-pattern provides a surrogate (called proxy) for another object
(called real subject) to control its behaviour. In our case, we leverage the Proxy-pattern in
order to extend the behaviour of the object’s operations with extra functionality to generate
bindings. Figure 5.1 depicts a UML Class diagram showing the structure of the Proxy-pattern.
Next, we explain the four elements of this pattern together with the way we have used them
for our implementation of the BGM:

5.2 A Proof of concept for implementing UML2PROV 101

Proxy Real subject

operation() operation()

operation()

«interface»
Subject

Client

Fig. 5.1 Proxy-pattern architecture

1. The Real subject corresponds to the object whose behaviour we want to modify. It
must implement the Subject interface. Concretely, we are interested in modifying its
behaviour in order to obtain bindings during the execution of the object’s operations while
an application is running.

2. The Subject interface specifies all the operations implemented by the Real Subject.

3. The Proxy element also implements the Subject interface so that it can be used in any
location where the Real Subject can be used. The Proxy element further maintains a
reference to the Real subject and may execute code before and after the execution of the
Real subject’s operations. In our case, this element contains all the instructions to generate
bindings.

4. The Client element is in charge of invoking the Subject, which allows the Client to
interact with the Proxy as though it was the Real Subject. Thus, the Proxy constitutes
the intermediary between the Client and the Real Subject. Each time an operation of the
Real Subject is called, the Proxy intercepts the operation invocation, gathers bindings, and
delegates the execution of the operation to the Real Subject.

Whilst to leverage the Proxy-pattern to generate bindings is a valid option, this solution
requires to manually modify the application’s source code (later, we will see how). Thus,
this solution does not meet the BGM requirements stated in Section 4.4.

Automatization of the implementation of the BGM: an XSLT-based approach

To automatically obtain a BGM from the UML design for an application, we originally
followed an XSLT-based proposal which took the UML diagram models, encoded in XMI,
and generated the Java implementation of the BGM based on the Proxy-pattern. Concretely,
the defined XSLT template generates a BGM encompassing two main elements: a set of

102 Implementation of UML2PROV

Subject interfaces or interfaces for short (one per each class in the SqD and SMDdiagrams)
and a Java class called ProxyProvGenerator (which would correspond to the Proxy element
in the Proxy-pattern architecture).

Interfaces It is important to note that in the Proxy-pattern the Real subject must implement
a Subject interface, and this interface should not necessarily appear in the original design of
the application. Aiming at facilitating the creation of the Subject interface per each Real
subject by making it in an automatic way, the defined XSLT transformation takes each
UML class involved in the UML diagrams (SqD and SMD) and returns a Java interface
containing all the class’s operations. These interfaces will allow us to wrap a Real subject
with the Proxy and consequently, to execute the additional behaviour for generating bindings.
However, to do this, developers have to manually add a clause in the definition of each Real
subject’s class in order to state that such a class implements the generated interface. To
easily identify the interface of the Real subject, we have followed a naming convention of
these interfaces so that each generated interface is named with the character “I” preceding
the name of the Real subject class (e.g., the IStudent interface is generated for the Student

class).

Finally, we note that these interfaces are considered context-dependent components (see the
UML2PROV architecture in Figure 4.1) since they directly depend on the classes involved
in the UML Sequence and State Machine diagrams.

ProxyProvGenerator Each Real subject needs a concrete Proxy that wraps it. In order to
automatically generate these Proxies for concrete Real subjects, the XSLT transformation
directly generates an only Java class called ProxyProvGenerator.

This class defines a static method called generateProxy, which receives a Real subject
implementing its corresponding Subject interface and then, the method returns a specific
Proxy for such a Real subject, which also implements the Subject interface. This Proxy is
created with all the bindings generation instructions within. When a developer wants to
capture provenance from the execution of the operations of a concrete object (i.e., a Real
subject), she/he has to transverse the source code of the application identifying those objects
of interest, and then to insert a call to the generateProxy operation with the identified object
as input.

ProxyProvGenerator class uses the Proxy [174] class together with the interface named
InvocationHandler [175] provided by the java.lang.reflect package. Using these Java
elements, we are able to create a dynamic proxy object. More specifically, the Proxy class
creates the dynamic proxy element itself, whereas the interface InvocationHandler invokes
the methods of the dynamic proxy element.

5.2 A Proof of concept for implementing UML2PROV 103

without provenance
capture

Student student = new Student();

IStudent student = ProxyProvGenerator.generateProxy(new Student());
with provenance

capture

Fig. 5.2 Excerpts of Java code depicting the construction of an object as usual (without provenance
capture), and the construction of an object by following the Proxy-pattern approach (with
provenance capture)

In Figure 5.2, we give an example of construction of an object of the class Student (from
the University example) without/with provenance capture. When the capture of provenance
is required, the variable student must be typed as IStudent. Additionally, the operation
generateProxy of the ProxyProvGenerator class has to be invoked, sending to it the instance
of the class Student to be wrapped in the generated Proxy, which also implements the
interface IStudent. This Proxy contains the behaviour to collect bindings regarding the
invocation of Student objects’ operations. The new variable student can be used as usual,
but its behaviour has been modified to capture bindings.

Finally, we note that the ProxyProvGenerator is considered a context-independent component
since it is agnostic about the given Real subject.

As it can be inferred from the above explanation, using the Proxy-pattern requires a
manual instrumentation of the application’s code. More specifically, this instrumentation task
consists of (1) adding an implements clause in each Real subject class denoting that such a
class implements a Subject interface, and (2) using the ProxyProvGenerator class to construct
a concrete Proxy for each instance of a Real subject object. This latter task is especially
remarkable for being time-consuming, since users have to transverse the source code of the
application identifying those Real subjects of interest, and instantiating the generateProxy

operation of the ProxyProvGenerator class to obtain the Proxy which generates bindings.
All in all, with this proof of concept implementation, we can conclude that, although

considering only UML Sequence and State Machine diagrams, the conceptual definition
of UML2PROV stated in Chapter 4 was feasible and, what is more, its implementation
was possible. However, the technologies used in this implementation incurred in some
drawbacks that led us to search for other alternatives. First, XSLT is not the best option to
implement transformations from UML diagram models since it implies a deep understanding
of the XMI specification. Additionally, the resulting XSLT code is not very understandable,
which hinders its maintenance and scalability. Second, although the Proxy-pattern is a
suitable solution for generating bindings during the execution, it still requires a manual
instrumentation of the code in addition to including provenance-related instructions within
the code. Thus, it does not meet the Requirement 1 for the BGM (defined in Section 4.4)

104 Implementation of UML2PROV

which states that the instrumentation must be carried out automatically. Similarly, it also
does not fulfil Requirements 2 and 3, which state that the instructions for binding generation
must be located apart from the application’s source code (Requirement 2), and that the BGM
must be able to identify those moments within the source code where it is required to execute
the instructions (Requirement 3).

5.3 Reference implementation

As opposed to the previous implementation, which only supports UML Sequence and State
Machine diagrams, this implementation supports all types of the UML diagrams considered
in this work.

In order to avoid the disadvantages arose in the proof of concept concerning the automatic
generation of both the templates and the BGMs, we decided to look for a MDD alternative
solution. Concretely, we have chosen ATL and XPand as languages to implement the transfor-
mation patterns, which have better properties than XSLT in terms of maintenance, reusability
and support to software development processes [173]. As for an implementation of BGMs
which fulfils the BGM requirements as stated in Section 4.4, in this second approach we have
advocated an event-based proposal developed on top of the Aspect Oriented Programming
paradigm (AOP) [40]3 for generating bindings without user intervention. As a result, we
have achieved a reference implementation which provides a complete implementation of the
conceptual definition of UML2PROV given in Chapter 4.

5.3.1 Automatization of the transformation patterns: an ATL and XPand-
based approach

Our first implementation approach directly generated PROV templates from the UML design
by means of XSLT transformations; thus, the transformation from UML to PROV templates
is closely related to the concrete PROV format chosen to serialise such PROV template files
(PROV-N in that case). Now, our reference implementation automatically generates the
PROV template files relying upon a refinement MDD-based process (see Figure 5.3) which,
instead of directly generating the templates from the UML design, includes an intermediate
step. We have decided to define an intermediate step in the transformation process in order
to draw a distinction between the transformation from UML to PROV templates, and the
concrete serialisation format of the final PROV template files. In this way, if a potential user is
interested in a different serialisation format, it is not necessary to modify the transformation

3Background information about AOP is provided in Section 2.2.2

5.3 Reference implementation 105

from UML diagrams to PROV templates. As we can see in Figure 5.3, our reference
implementation follows an MDD-based tool chain that comprises two transformations: the
first one corresponds to an M2M transformation (T1), and has been implemented in ATL [33],
and the second one is an M2T transformation (T2), and has been defined in XPand [35]. First,
the process starts with T1 by means of which the UML diagram models are translated into
transitional models (template models), which are basically the PROV templates serialised in
XMI (a serialisation format independent of any PROV-compatible format). Subsequently, the
transformation T2 a takes place, by means of which these template models are translated into
the PROV template files, which are written in a PROV compatible format (PROV-N in this
case).

in out
T1 T2

out

used

input

wasGeneratedBy

collElements

hadMember

operation

target

source

used

wasDerivedFrom

hadMember

wasDerivedFrom

coll_new

wasGeneratedBy
hadMember

PROV-N.uml

Seminar

add +enrolStudent(in student:Student)

search +searchStudent(in idStudent:String):Student

remove +removeStudent(in idStudent: String): Boolean

Student

+name: String
+identifier:String

constructor +Student(in identifier: String, in name:String)
get +getName():String
set +setName(in name:String)
command +modifyAll(in id:String, in name:String)

+studentList

*
*+seminarList

.xmi

template
models

in

conforms to

PROV
metamodel

UML
metamodel

conforms to

UML2PROV

XPandATL

PROV template
files

UML diagram
models

Fig. 5.3 Detailed MDD-based implementation of the PROV templates generation process

Transformation T1: from UML diagram models to template models

This M2M transformation takes as source the UML diagram models, conforming to the UML
metamodel [1], and generates the corresponding template models, conforming to the PROV
metamodel [21]. To that end, our transformation patterns serve as the basis for the definition
of an ATL module that consists of a set of ATL rules. These rules describe how the UML
elements identified by the patterns are translated into the specific PROV elements, and their
relations, constituting the corresponding template model.

In order to show how these ATL rules look like, Table 5.2 depicts an excerpt of the ATL
rule focusing mainly on the implementation of the pattern StP14. This rule is equivalent
to the previous one in Table 5.1 defined in XSLT. Concretely, Table 5.2 shows, for each
fragment of the rule (in the first column), the PROV elements/relations in the template model
that are generated by such a fragment (see column “Template model”). Additionally, this

4The complete definition of this pattern can be seen in Appendix B

106 Implementation of UML2PROV

Table 5.2 An excerpt of the ATL rule focusing mainly on the implementation of StP1. For
each fragment in the excerpt (“ATL source code” column), the PROV elements it generates
are provided (“Template model” column) together with a description of the transformation
(“Description” column) as well as the graphical notation of the template model (last column).

rule transition2Document{
 from
 trans: UML!Transition

to

 doc: PROV!Document(),

ob: PROV!Agent (id<-'var:object',
...),

 objSM: PROV!Entity (id<-'var:objectSM',
 ...),

 op: PROV!Activity (id<- 'var:operation',
...)

do {

 if(trans.source.oclIsTypeOf(UML!Pseudostate)
and trans.source.kind=#initial and
trans.target.oclIsTypeOf(UML!State)){

 thisModule.genWATAss('var:object',
'var:objectSM');

thisModule.genEntity('var:postObject', ...);

thisModule.genWGBAss('var:postObject',
'var:operation');

thisModule.genSpeAss('var:postObject',
'var:objectSM');

 }

[...]

}

var:objectSM

var:object

var:operation

var:postObject

var:objectSM

var:object

wasAttributedTo
var:operation

specializationOf

wasGeneratedBy

var:object

wasAttributedTo

var:objectSM

var:operation

<agent id="var:object"/>

<entity id="var:objectSM"/>

<activity id="var:operation"/>

<entity id="var:postObject"/>

<wasGeneratedBy>
 <entity ref="var:postObject"/>
 <activity ref="var:operation"/>
</wasGeneratedBy>

<specializationOf>
 <specificEntity

ref="var:postObject"/>
<generalEntity

ref="var:objectSM"/>
</specializationOf>

<wasAttributedTo>
 <entity ref="var:objectSM"/>
 <agent ref="var:object"/>
</wasAttributedTo>

ATL source code Template model Description
Graphical representation of

the template model

<document>

This excerpt is responsible for linking
var:objectSM with var:object by
means of the PROV relation
<wasAttributedTo>.

First, it generates an <entity>
identified by var:postObject.
Subsequently, it creates two PROV
relations. (1) The PROV relation
<wasGeneratedBy> between
var:postObject and var:operation.
(2) the PROV relation
<specializationOf> between
var:postObject and var:objectSM.

It states that the rule is applied to all
the UML Transitions in the source
model.

It generates the <document>

It creates an <agent> with identifier
var:object

It creates an <entity> identified by
var:objectSM

It creates an <activity> with the
identifier var:operation

This block creates those elements
shared by all the patterns addressing
State Machine diagrams.

Next, it is the code that generates the
concrete elements of each pattern, in
particualr, StP1.

This excerpt checks if the transition
corresponds with the UML elements
identified in StP1. That is, if it has an
initial pseudostate as source, and a
state as target.

Below it is the code implementing the
remaining SMD patterns

}

table also depicts how PROV elements such as document, entity, and activity, in addition
to PROV relations such as wasAttributedTo, appear in the column as <document>, <entity>,
<activity>, <wasAttributedTo>, and <wasGeneratedBy>. Finally, it also shows in the two right-
hand columns the description of the fragment together with the graphical notation of the
template model being generated. This table has been organised in the same way as Table 5.1.
Thus, it is easy to compare both implementations. We remark two main differences. First, in
the XSLT implementation, the resulting text of the PROV template files is directly defined
inside the XSLT template (e.g., agent(var:object, ...)), which implies that a change in
the serialisation requires to update the XSLT template. As opposed to this, in the ATL
implementation (Table 5.2), we can see that the elements to be generated in the template
model are generated by calling elements from the PROV metamodel (e.g., PROV!Agent,
PROV!Entity, and so on). With this implementation, we draw a distinction between the

5.3 Reference implementation 107

transformation from UML diagram models to template models and the serialisation format of
the PROV template models. The second main difference is about the fragment that checks
if the transition corresponds with StP1 (located inside a frame in both tables). In XSLT,
the excerpt relies on how the UML models are serialised in XMI, which implied a great
knowledge in the XMI specification. Conversely, the ATL implementation relies on the
UML metamodel, which leads to more clear code and, additionally, there is no need to be
knowledgeable in XMI.

Transformation T2: from template models to PROV template files

This second transformation, identified as T2, is an M2T transformation that takes as input
the template models resulting from T1, and automatically produces the PROV template files
in PROV-N format. We have implemented this transformation in an XPand module which
consists of XPand templates that associate each PROV element/relation with its PROV-N
representation. One potential user could define its own XPand templates in order to obtain the
PROV template files in another PROV-compatible format. Among the implemented XPand
templates, there is a main template (see Figure 5.4) which translates each PROV <document>

from the template models (line 1) into a PROV template file (line 2), defined as a .provn

extension text file. This PROV-N document will include: (1) the fixed text, shown in green in
Figure 5.4, and (2) the text resulting from instantiating those XPand templates responsible
for translating the PROV elements/relations included in the <document> (lines from 3 to 15).

1: «DEFINE documentTemplate FOR Document »
2: «FILE id+ ".provn"»

 document
 prefix prov<http://www.w3.org/ns/prov#>
 prefix tmpl <http://openprovenance.org/tmpl#>
 prefix var <http://openprovenance.org/var#>
 prefix ex <http://example.org/>
 prefix u2p <http://uml2prov.unirioja.es/ns/u2p#>
bundle ex:bundle1

3: «EXPAND entityTemplate FOREACH entity »
4: «EXPAND activityTemplate FOREACH activity »
5: «EXPAND agentTemplate FOREACH agent »
6: «EXPAND wgbTemplate FOREACH wasGeneratedBy»
7: «EXPAND usedTemplate FOREACH used»
8: «EXPAND wibTemplate FOREACH wasInvalidatedBy»
9: «EXPAND wdfTemplate FOREACH wasDerivedFrom»
10: «EXPAND hmTemplate FOREACH hadMember»
11: «EXPAND spOTemplate FOREACH specializationOf»
12: «EXPAND watTemplate FOREACH wasAttributedTo»
13: «EXPAND wawTemplate FOREACH wasAssociatedWith»
14: «EXPAND wInfByTemplate FOREACH wasInformedBy»
15: «EXPAND wStartedByTemplate FOREACH wasStartedBy»

 endBundle
 endDocument
«ENDFILE»

«ENDDEFINE»

entityTemplate FOR Entity»
entity(«this.id» «EXPAND entityAttributeTemplate FOR this»)

«ENDDEFINE»

«DEFINE

Fixed
text

Fixed
text

Fig. 5.4 XPand templates defined for each <document> and <entity> in the template models

108 Implementation of UML2PROV

Figure 5.4 also depicts the XPand template (next to line 3) that translates each <entity>, in
the source template model, into the corresponding prov:Entity in PROV-N.

5.3.2 Automatization of the generation of the BGM: an event-based
and an XPand-based approach

Here, we explain in detail our reference implementation for the automatic generation of the
BGM corresponding to a certain application.

Implementation of the BGM

In order to provide a fully automatic solution to generate bindings, which does not require
the manual instrumentation of the application’s source code, we have defined a generic
event-based approach to implement the BGMs. While events are notable occurrences that
happen while the application is running, listeners contain the behaviour for processing the
events. Due to the fact that BGMs must capture provenance from operations executions
(see Feature 2 in Section 4.4), we have identified four notable types of occurrences that
may take place during an operation execution, and which correspond to four types of events,
respectively. Two of these events are related to the start and end of an operation. The two
remaining event types refer to the collection of values associated with two different types of
variables (group variables and statement-level variables), which have been stated in [176]
for being useful for the expansion algorithm. Figure 5.5 shows a prov:Activity in PROV-N
with variables occurring in different positions within the definition of the activity.

While a group variable is a type of variable that occurs in a mandatory identifier position
(e.g., var:operation), a statement-level variable is a variable that occurs in an optional
identifier position (e.g., var:operationStartTime), or that occurs in an attribute-value pair,
either in an attribute position or in a value position (e.g, var:operationName).

In this context, the event types we have defined are the following:

• (1) operationStart and (2) operationEnd. These types of events refer to the start and end
of an operation execution, respectively. As we will see later, these types of events are of
interest when developers are interested in creating and storing sets of bindings associated
with a concrete operation execution, instead of storing each binding independently.

activity(var:operation, var:operationStartTime, var:operationEndTime, [prov:type=var:operationName])
value positionmandatory

identifier
position

optional
identifier
position

optional
identifier
position

Fig. 5.5 PROV activity in PROV-N [5] with different types of variables

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity

5.3 Reference implementation 109

• (3) newBinding. This type of event refers to the occurrence of the collection of a provenance
value associated with a group variable. For instance, the collection of a value associated
with the variable var:operation in Figure 5.5 will trigger an event of type newBinding
since var:operation occurs in a mandatory identifier position.

• (4) newValueBinding. This type of event refers to the occurrence of the collection of a
provenance value associated with a statement-level variable. For instance, the collection
of values associated with var:operationEndTime and var:operationName in Figure 5.5 fires
newValueBinding events due to var:operationEndTime occurring in an optional identifier
position, and var:operationName occurring in a value position.

Our reference implementation of BGM consists of four main components written in Java
(see Figure 5.6) which are divided into two main groups: context-independent components and
context-dependent components. The context-independent components group is made up of
those elements that do not depend on the source UML diagram models, and therefore, they are
the same in all the BGMs. This group encompasses the BGMEventListener, BGMEvent, and
BGMEventManager (see components in white background in Figure 5.6). The second group,
called context-dependent components, is made up of those elements whose implementation
depends on the source UML diagram models. Concretely, in this reference implementation
the only element included in this group is the BGMEventInstrumenter (depicted in dark
background in Figure 5.6). Next, we describe these components in detail:

• BGMEventListener. It is a Java interface that defines four operations for managing each
type of event (operationStart, operationEnd, newBinding, and newValueBinding). Such
operations have an input parameter of type BGMEvent (see below) that contains the

BGMEvent
-executionID:String
-className:String
-executionIdMethod:String
-varName:String
-value:String
-state:String

BGMEventInstrumenter

BGMEventManager

+addListener(l:BGMEventListener): void
+removeListener(l:BGMEventListener): void
+disseminateEvent(event:String, e:BGMEvent):void

+getExecutionID():String
+getClassName(): String
+getExecutionIDMethod(): String
+getVarName(): String
+getValue(): String
+getState(): String

<<aspect>>

<<interface>>
BGMEventListener

+operationStart(e:BGMEvent):void
+operationEnd(e:BGMEvent):void
+newBinding(e:BGMEvent):void
+newValueBinding(e:BGMEvent):void

Application
(source code)

1..*

1

1

1

1
0..*

+listListeners

Fig. 5.6 UML Class diagram depicting our reference implementation for a BGM

110 Implementation of UML2PROV

provenance data to be processed. The implementation of these operations constitutes
the mechanism used by a class implementing this interface to generate, manage, and
store the bindings. Hence, developers are free to choose the mechanisms that best suits
their requirements by developing classes implementing the BGMEventListener interface,
without coupling this task to a concrete persistence infrastructure as other provenance
systems do (see Chapter 3). In this way, this reference implementation of BGM meets
the Requirement 4 defined in Section 4.4, which states that developers must be able to
select when to compute provenance (i.e., when to expand the PROV templates with the
collected bindings). Later, we will give three different implementations of this interface,
which manage bindings in three different ways (called configurations). At this point, we
highlight that with the aim of simplifying the design, we have grouped all the operations
for managing the abovementioned event types in the same interface (BGMEventListener).
In case a developer is not interested in handling a concrete event, she/he can leave empty
the implementation of its corresponding operation.

• BGMEvent. This component is used to carry information about the occurrence of an event,
which corresponds to the provenance data to be processed. We have decided to use the
same class BGMEvent to contain information about the four event types (operationStart,
operationEnd, newBinding, newValueBinding) because such information can be stored
using the same structure. Concretely, this structure will contain the provenance data
necessary for constructing the bindings. Among the attributes of the BGMEvent, we remark
the attribute varName for the name of the variable to which the binding corresponds, and
the attribute value for the value associated with such a variable (see Figure 5.6). For
instance, in case of an operationStart event, a BGMEvent object could have an attribute
varName containing the value "var:operationStartTime", and an attribute value with the
value "2019-07-17T14:21:12.08584". Another example could be a BGMEvent object with
information about a newBinding event, where the attribute varName could contain the
value "var:operation", and whose attribute value could have "ex:enrolStudent1" as value.
Readers may notice that the values of these varName-value attribute pairs correspond to the
set of bindings previously depicted in Figure 4.11 (Chapter 4). Thus, those bindings could
have been constructed using this information.

• BGMEventManager. In some circumstances, having only one listener for managing
bindings could not be enough, and the same happens with the mechanisms for generating
and storing provenance. For instance, one provenance consumer may be interested in
replicating the information by storing in different storage systems both the provenance data,
and the bindings generated from them. To address these scenarios, we have decided to

5.3 Reference implementation 111

include the BGMEventManager component with two main responsibilities: to manage a list
of subscribed listeners (addListener and removeListener operations), and to disseminate
the objects of type BGMEvent among them (disseminateEvent operation).

• BGMEventInstrumenter. As we mentioned in the Requirement 1 for BGMs of Section 4.4,
to manually adapt the source code of an application could be a valid option to capture
provenance data. Nevertheless, this strategy would require a developer to traverse the
whole code of the concrete application identifying the classes that will be the source of
the events, and those places within these classes where events will be fired. Then, the
developer would have to include in those places instructions not only for constructing
BGMEvent objects with the provenance data, but also for disseminating such events among
the listeners. This task constitutes a tedious, time-consuming and error-prone process.
Additionally, the manual adaptation could incur in such instructions for provenance capture
scattered across all the application classes, making their maintenance a cumbersome task.

To avoid such inconveniences, we propose to use the AOP paradigm [40] for implementing
what we have named BGMEventInstrumenter. As we already presented in Chapter 2, AOP
aims at improving the modularity of software systems, by capturing inherently scattered
functionality, often called cross-cutting concerns, (e.g., the capture of provenance), and
placing that functionality apart from the actual application’s source code. More specifically,
in our reference implementation, we have used the AOP extension for Java, AspectJ [41],
to implement the BGMEventInstrumenter by means of an aspect, which is made up of an
advice with a pointcut (see Figure 5.7). On the one hand, the pointcut identifies locations
within the application code where we want to fire events (i.e., to collect provenance
data). In our case, we identify operation calls (call pointcut designator) and constructor
invocations (initialization pointcut designator). More specifically, in the pointcut of
Figure 5.7 we have denoted the identified operations as “<objectClass>.<operation>”,
where <objectClass> would correspond to the full class name of the objects involved in

public aspect BGMEventInstrumenter{

Object around(): initialization (<objectClass>.new(..))call(* <objectClass>.<operation>

behaviourBeforeExecution();

Object rtn = proceed();

behaviourAfterExecution();

return rtn;
 }
}

Pointcut

advice

aspect

Custom behaviour executed
before the actual behaviour

Actual behaviour

Custom behaviour executed
after the actual behaviour

(..)|| }

Fig. 5.7 Structure overview of a reference implementation of the BGMEventInstrumenter in
AspectJ

112 Implementation of UML2PROV

the UML design, while <operation> would refer to the name of each identified operation.
Likewise, we have denoted the constructor invocations of each class in the UML design
as <objectClass>.new. To construct the final pointcut, the expression call(...) would
have to be repeated per each identified operation, whereas initialization(...) would
have to be repeated per each class in the UML design. On the other hand, the advice
describes the behaviour executed when the pointcut is matched (before, after or around the
pointcut). Since our identified events can occur both before and after operations calls and
constructors invocations, we have used an around advice for executing custom behaviours
before and after the actual behaviour. These custom behaviours consist of constructing
objects of type BGMEvent and disseminating them to the listeners (by invoking the
disseminateEvent operation from BGMEventManager). In the end, the AspectJ weaver
automatically integrates the behaviour from the aspects into the locations specified by the
pointcut at compilation time. In this way, our AOP approach does not require a manual
intervention for adapting the source code, and automatically collects provenance data in
a transparent way for software developers. In this way, we fulfil the requirements R1-R3
stated in Section 4.4.

Several implementation configurations for the BGMEventListener

Here, we present three configurations for managing bindings through three different im-
plementations of the BGMEventListener interface. We will refer to these configurations
by using the name of the class that implements the BGMEventListener interface in each
configuration (i.e., BindingsBGMEventListener, SetBindingsBGMEventListener, and Prove-
nanceBGMEventListener). The reason why we present three different configurations is that
we will evaluate their time and spatial overheads in Section 6.1 of Chapter 6. Thus, these
configurations have been defined taking into account those aspects that incur in overhead. As
presented in Section 3.4, those categories from the systematic review that were related to
temporal and spatial overheads were granularity, tracing, level, and technique. Whereas the
granularity, the level and the technique are intrinsic aspects of the UML2PROV proposal,
the tracing category, which refers to whether provenance is computed on demand (lazy) or
as the application executes (eager), does not. In particular, the BGMEventListener could
be implemented by several classes, each considering a different strategy for computing
provenance (lazy or eager). In fact, providing software developers with mechanisms to
decide when to compute the provenance is one of the stated requirements in Section 4.4
(Requirement 4). Additionally, this mechanism also allows developers to use the persistence
system more suitable for their needs. For the evaluation of our reference implementation we
have used MongoDB [177] as persistence system. We have made the decision of using only

5.3 Reference implementation 113

one persistence system due to the fact that we are interested in a comparative analysis between
different configurations of the BGM, and we consider that the different characteristics of the
persistence systems may add noise to such an analysis. We consider that the evaluation of
the performance of UML2PROV with other persistence systems is out of the scope of this
thesis, since it depends on the characteristics of such systems.

Concretely, we have considered two lazy configurations (BindingsBGMEventListener and
SetBindingsBGMEventListener) that compute provenance (i.e., expands the templates) on
demand. The main difference between these configurations is that the BindingsBGMEventLis-
tener corresponds to the simplest way of implementing the BGMEventListener interface,
whereas SetBindingsBGMEventListener adds more complexity in its implementation (later,
we will see more details). Furthermore, we have considered an eager configuration (Prove-
nanceBGMEventListener) that computes provenance as the application executes. These
configurations are illustrated in Figure 5.8, which include two main blocks. On the left-hand

BD Set of
Bindings

Template
expander

PROV
templates

PROV
documents

in

in out

Start

End

operationStart(BGMEvent)

operationEnd(BGMEvent)

newBinding(BGMEvent) or
newValueBinding(BGMEvent)

BD Template
expander

PROV
templates

PROV
documents

in

in out

Start

End

operationStart(BGMEvent)

operationEnd(BGMEvent)

newBinding(BGMEvent) or
newValueBinding(BGMEvent)

binding

binding

binding

BDTemplate
expander

PROV
templates

PROV
documents

in

in
out

Start

End

operationStart(BGMEvent)

operationEnd(BGMEvent)

newBinding(BGMEvent) or
newValueBinding(BGMEvent)

binding

binding

binding

Bindings-
BGMEvent-
Listener

PROV
documents

(c) ProvenanceBGMEventListener

(a) BindingsBGMEventListener

(b) SetBindingsBGMEventListener

SetBindin-
gsBGMEv-
entListener

Provenan-
anceBGM-
EventList-
ener

Set of
Bindings

Set of
Bindings

Operation Execution

Operation Execution

Operation Execution

Provenance consumer
tasks

Provenance consumer
tasks

Provenance
consumer

tasks

binding

binding

binding

binding

binding

binding

Set of
Bindingsstore

store retrieve

retrieve

store retrieve

Fig. 5.8 Graphical representation of the three defined configurations

114 Implementation of UML2PROV

side (block “Operation Execution”), it is the behaviour carried out during the execution of a
tracked operation, from the start to the end of the operation execution. On the right-hand side
(block “Provenance consumer tasks”), it is the behaviour executed to exploit the provenance
information, and which takes place after the execution of the tracked operation. Next, we
present these three configurations in detail:

• BindingsBGMEventListener. In this configuration (see Figure 5.8(a)), PROV templates
are expanded on demand (i.e., a lazy approach). This class corresponds to the simplest
implementation of the BGMEventListener interface. Concretely, it implements all the
operations from the BGMEventListener interface, so that each time they are executed, the
provenance data contained in the BGMEvent is shipped to the database in the form of
binding. In this way, when the provenance consumer wants to generate the final PROV
documents, she/he has to: (1) retrieve each binding from the database, (2) create the set of
bindings, and (3) instantiate the PROV templates with the created set of bindings.

• SetBindingsBGMEventListener. As the BindingsBGMEventListener, in this configuration
(see Figure 5.8(b)) PROV templates are expanded on demand (i.e., a lazy approach).
This class implements the four operations defined in the BGMEventListener, so that they
generate bindings as the tracked operation executes, and accumulate them in memory until
the execution of the tracked operation finishes. When the execution of the tracked operation
ends (i.e., when the operationEnd event is fired), the accumulated set of bindings is shipped
to the database. Thus, this implementation is only in charge of generating and storing sets
of bindings, delaying the expansion of templates until the tracked operation finishes. In
this way, when the provenance consumer wants the PROV documents, she/he has to (1)
retrieve the set of bindings from the database, and (2) instantiate the PROV templates with
the retrieved set of bindings.

• ProvenanceBGMEventListener. In this configuration (see Figure 5.8(c)), PROV templates
are expanded as the application is running (i.e., eager approach). This class implements
all the operations of BGMEventListener, so that the provenance data in the BGMEvent is
used to create the set of bindings in memory while the tracked operation is running. When
the execution of the tracked operation ends (i.e., when the operationEnd event is fired), the
PROV templates are expanded with the generated set of bindings and the resulting PROV
documents are shipped to the database. Thus, when the provenance consumer wants to
exploit the provenance, she/he only has to retrieve the PROV documents from the database.

With these three different configurations, a reader can get an idea about the inverse
relationship between the number of tasks carried out during the operation execution (defined

5.3 Reference implementation 115

by means of a class implementing the BGMEventListener) and the effort required from
the provenance consumer for exploiting the final provenance. Concretely, the more effort
devoted to implementing the BGMEventListener interface, the less effort required from the
provenance consumer. This is the case of the ProvenanceBGMEventListener configuration,
whose implementation contains most of the tasks for obtaining the provenance to be exploited
(to create the set of bindings, to expand the templates,...), and consequently, the provenance
consumer only has to retrieve the PROV documents from the database to exploit the prove-
nance. Conversely, in the BindingsBGMEventListener configuration, the implementation
effort is limited to store the generated bindings independently, so the effort required from the
provenance consumer is very high (to retrieve each binding, to create set of bindings, and to
instantiate the PROV templates). Whilst the ProvenanceBGMEventListener is in principle the
most suitable implementation, since it requires the lowest effort from provenance consumers,
later in Chapter 6, we will see that it incurs in additional run-time overhead and storage cost
that developers may not be willing to assume.

Automatization of the implementation of the BGM

As an alternative to XSLT, we decided to follow an MDD proposal similar to that presented
for generating the PROV templates in Section 5.2.1. In this case, the BGM for an application
is automatically generated by means of an M2T transformation referred to as T3 in Figure 5.9.
Such a transformation has been implemented by means of an XPand module that takes as
source the application’s UML diagram models, conforming the UML metamodel [1], and
generates the java code of the BGM.

As we stated previously, the source code of the context-independent components (i.e.,
BGMEvent, BGMEventManager, and BGMEventListener) is the same for all the BGMs;
thus, it does not depend on the UML diagram models used as input of the transformation.

in out
T3

.uml

Seminar

add +enrolStudent(in student:Student)

search +searchStudent(in idStudent:String):Student

remove +removeStudent(in idStudent: String): Boolean

Student

+name: String
+identifier:String

constructor +Student(in identifier: String, in name:String)
get +getName():String
set +setName(in name:String)
command +modifyAll(in id:String, in name:String)

+studentList

*
*+seminarList

UML diagram
models

.xmi

UML
metamodel

conforms to

UML2PROV

XPand

AspectJ
code

Bindings Generation Module

Java
dependencies

(context dependent
component)

(context independent
component)

Fig. 5.9 Detailed MDD-based implementation of the BGM for an application

116 Implementation of UML2PROV

Conversely, the implementation of the context-dependent component (i.e., BGMEventInstru-
menter) depends on the source UML diagram models.

Consequently, we have decided to implement the XPand module so that it (1) directly
creates all the context-independent components, and (2) generates the BGMEventInstrumenter
based on the source UML design. Whilst we could have provided users with a separate
library including all the context-independent components, we have made the decision of
generating them automatically together with the BGMEventInstrumenter in order to reduce
the code dependencies.

In particular, the XPand module generates the BGMEventInstrumenter so that its pointcut
identifies the calls to operations and invocations of constructors. Concretely, this pointcut
matches (1) the invocations of the constructors of classes involved in the UML design, and
(2) the calls of operations that are involved in the source diagrams: SqDs (i.e., the operations
whose calls are modeled by means of UML Messages), SMDs (i.e., the operations whose
occurrences are associated with UML Events), and CDs, (i.e., the operations that are modeled
by UML Operations). The remainder source code of the BGMEventInstrumenter (that is, the
advise) is also shared by all the BGMs.

5.3.3 Fulfilment of BGM requirements

We would like to note that the reference implementation of the BGMs given in this document
fulfils the six requirements stated in Section 4.4 (identified from R1 to R6). As we previously
mentioned, requirements from R1 to R3 have been met thanks to the AOP implementation
of the BGMEventInstrumenter. As for R4, we have noted that it is satisfied by the different
configurations a developer can make by implementing the BGMEventListener interface.
Regarding the requirements R5 and R6, we remark that they have been satisfied because of
the suitable ad hoc implementation of the BGMEventInstrumenter for a concrete application
(explained in the previous section). On the one hand, the automatically generated pointcut
inside the BGMEventInstrumenter ensures that the collected bindings are associated with
at least one PROV template (requirement R5). This is because the pointcut corresponds
to operations calls and constructors invocations that are modeled in the UML design, and
therefore they have an associated PROV template. On the other hand, the requirement R6 is
fulfilled since the transformation T3 has been implemented so that it respects the names of the
variables appearing in the PROV templates generated by the chain of transformations T1-T2.

5.4 Conclusions 117

5.4 Conclusions

In this chapter we have mainly introduced a reference implementation of the conceptual
definition of UML2PROV, which addresses the automatic generation of the two main artefacts
of UML2PROV: PROV templates and the BGM. This reference implementation was not
our first implementation attempt, but we originally developed a proof of concept in order
to validate whether the conceptual definition was feasible and if its implementation was
possible. This proof of concept considered only two types of UML diagrams (UML Sequence
and State Machine Diagrams) used to design an application. Concretely, we used (1) XSLT
to implement the transformation patterns, and (2) the Proxy-pattern to develop the BGM
for generating bindings. It is remarkable that, although this implementation was a feasible
solution at the beginning, we found that both XSLT, for defining the transformation patterns,
and the Proxy-pattern, for implementing the BGM, were no longer the best suitable options.
On the one hand, XSLT incurred in several drawbacks regarding maintenance, reusability
and support to software development processes. On the other hand, the Proxy-pattern forced
the developers to manually instrumentate the application’s source code.

After this proof of concept, we developed a reference implementation considering the
whole conceptual definition of UML2PROV. In this reference implementation, we used
MDD-based approaches, more suitable than XSLT, to perform the transformations from the
source models to the corresponding targets. As for the implementation of the transformation
patterns, it is worth remarking that it could be used ‘as it is’, without any modification, by any
potential user seeking to obtain the provenance design from the UML design. This is because
this implementation is agnostic about the technologies and programming languages used to
develop the target application. Regarding the implementation of the BGM, it is automatically
generated by an XPand module. The generated BGMs fulfil the six requirements stated in
Section 4.4, so that the generation of bindings boils down to deploy the BGM into the target
application. As we decided to develop this reference implementation in Java, we note that the
usage of the generated BGMs is limited to Java applications. To address this drawback and
allow potential developers to implement their own BGM, the reference implementation of the
BGM is built on top of a generic structure (depicted in Figure 5.6) that could be implemented
in other programming languages. The unique requirement for using this structure is to have
an AOP implementation compatible with the programming language of the target application,
which we do not consider a hindrance because, since the initial release of the AOP concept, a
large number of implementations for various programming languages have emerged (such as
Python, C, Ada, JavaScript, C#, and so on).

118 Implementation of UML2PROV

All in all, with this reference implementation, we provide a feasible and complete
implementation of the conceptual definition given for UML2PROV. Concretely, this imple-
mentation automatically generates the PROV template files (with the provenance design) and
the BGM (to be deployed in the application for collecting bindings) from UML diagrams.
In this way, software developers only have to deal with the design of the UML diagrams
without needing to be knowledgeable about provenance, since UML2PROV is in charge of
taking such UML design and automatically generating the artefacts for obtaining provenance.
In the following chapter, we provide an extensive and systematic evaluation of this refer-
ence implementation. In this evaluation, we will use both quantitative data and qualitative
arguments to show the benefits and trade-offs of our overall proposal.

Chapter 6

Evaluation

In the present chapter, we describe the analysis we have carried out to evaluate the bene-
fits and trade-offs of using UML2PROV, in general, and our reference implementation of
UML2PROV, in particular. More specifically, we have applied our reference implementation
to a legacy Bioinformatics application called GelJ [178], which has been adapted to be
provenance-aware, giving support for 9 different provenance requirements raised by its users.
Below, we start by introducing this evaluation. Subsequently, we present GelJ together with
the design strategies that we have defined to obtain different UML designs of GelJ, which
state the basis for benchmarking UML2PROV. Then, we analyse the benefits and trade-offs
of using UML2PROV based on five aspects regarding provenance, and finally, we end up
with a conclusion block.

The work presented in this chapter has been partially submitted for publication in:

• Carlos Sáenz-Adán, Beatriz Pérez, Francisco J. García-Izquierdo, Luc Moreau:
Integrating Provenance Capture and UML with UML2PROV: Principles and Experience.
Submitted for publication in IEEE Transactions on Software Engineering.

6.1 Introduction

The provenance capture has been shown to have implicit costs [45], as any other computa-
tional functionality. One of the main goals of this chapter is to show the UML2PROV costs
and benefits to software engineers seeking to make applications provenance-aware.

In UML2PROV, UML diagrams drive both the design and the capture of provenance, so
that the intuition is that the systems’ diagrams themselves have implications on a number
of aspects regarding the generation of provenance. For example, for reasons that will

120 Evaluation

be clear later on, taking a detailed UML design as source of UML2PROV may incur in
the capture of more provenance than required to satisfy certain provenance requirements,
resulting in unnecessary overheads. Conversely, if the UML design is limited to tackle certain
provenance requirements, only relevant provenance will be generated, thus reducing the
overhead. Nevertheless, it is worth noting that adapting the UML design to precisely fit
provenance requirements demands additional effort from the designer. Concretely, the more
effort is devoted to adapting the UML diagrams to selectively expose the relevant information
for certain provenance requirements, the less provenance collected and the less run-time
overhead and storage needs.

As we have stated previously, to show both the benefits and trade-offs of using UML2PROV,
we have decided to apply UML2PROV to a Bioinformatics application called GelJ [178],
which originally lacks a UML design. Aimed at analysing the implications of using
UML2PROV with different UML designs, we have considered what we have named design
strategies (see Section 6.2). More specifically, we have defined three different design strate-
gies that yield three UML designs of GelJ with different levels of detail. On the basis of these
resulting UML diagrams, we have analysed the implications of the design in the generation of
provenance with UML2PROV. Concretely, this analysis has been made based on five aspects:
generation of the provenance design, instrumentation of the application, maintenance of
provenance capabilities, run-time overhead and storage needs, and quality of provenance.
At this point, we note that the run-time overhead and storage needs aspect directly depends
on the configuration of the BGM. Thus, this aspect not only has been analysed on the basis
of different UML designs (produced from the design strategies), but also through the three
different configurations of the BGM provided by our reference implementation (described in
Section 5.3.2).

6.2 GelJ and the Design Strategies

GelJ [178] is an open-source tool used in the realm of Bioinformatics in order to analyse
DNA fingerprint gel-images (hereinafter gel-images), and to compare DNA patterns. More
specifically, this tool allows the analysis of the genomic relatedness among different samples,
as well as their classification. The analysis of DNA patterns has applications in different fields
such as in medical diagnosis, forensic science, parentage testing, food industry, agriculture,
and many others [179]. This tool has been selected for three main reasons. First, it has a large
user community with needs for provenance for their DNA analysis. Second, the tool lacks
a UML design, which allows us to show how to deal with this type of applications. More
specifically, it will give us the possibility to show the trade-offs between the effort devoted to

6.2 GelJ and the Design Strategies 121

obtaining the UML diagrams and the benefits of the generated provenance. Third, we have
direct contact both with developers and potential users of GelJ. In particular, the developers
can provide us with meaningful information about the implementation of the tool, whereas
potential users can assist us to asses the quality of the provenance obtained by UML2PROV
against their real needs.

GelJ includes an experiment wizard that users must use for analysing DNA fingerprint
gel-images. More specifically, as depicted in Figure 6.1, after choosing a gel-image as
source, this wizard guides the user through a process that consists of four steps. In Step 1,
the user may perform operations to increase the quality of the source gel-image. In Step 2,
GelJ automatically detects the lanes of the gel-image. Subsequently, the user might have
to perform some adjustments over the lanes such as adding new ones, removing or editing.
Finally, among all the detected lanes the user selects one or several as reference. In Step 3,
a normalization task is performed by means of which GelJ automatically detects markers
in the reference lane. Subsequently, the user might have to handle these markers by adding
or removing some of them. In Step 4, GelJ automatically detects bands inside the detected
lanes; the user might modify these bands later (e.g., adding, moving, and removing). The
result of this workflow is an experiment consisting of the source gel-image together with
a set of detected bands (see Figure 6.1). At this point, it is worth remarking that GelJ’s
database only stores concrete characteristics with regard to an experiment (e.g., its name,
the user who performed it, and biological information such as genus, species,. . .). It does

Fig. 6.1 Workflow of GelJ’s experiment wizard

122 Evaluation

not store aspects such as the steps followed during the experiment creation or its origin (an
experiment can be created from scratch, using the experiment wizard, duplicated or imported).
Therefore, scientists usually have to ask other colleagues about the process followed to create
an experiment, its authorship, or its origin.

In order to provide an unbiased evaluation of our proposal, we have selected an experiment
with a concrete sequence of interactions among the 13 substeps of the GelJ experiment wizard.
To select this sequence of interactions, we have analysed the successive actions of a user to
generate 10 different experiments, each one for a different source gel-image. While the user
worked, we wrote down the performed interactions with GelJ for creating those experiments.
Among the 10 collected traces, we selected the one with the higher number and diversity of
interactions to be used in obtaining the data for the performance evaluation. Concretely, the
selected experiment comprises a sequence of 114 interactions among the 13 substeps of the
GelJ experiment wizard (this sequence of interactions is shown in Appendix C).

6.2.1 UML design of GelJ

As stated, the starting point of UML2PROV for making an application provenance-aware
is the UML design of the application. Thus, a key challenge regarding GelJ is that it is a
legacy application that, in particular, lacks a UML design. So, aiming to use UML2PROV
for making GelJ provenance-aware, we have decided to leverage reverse-engineering in
order to obtain the UML design from the GelJ source code. Concretely, reverse-engineering
is focused on the challenging task of understanding legacy program code without having
suitable documentation [180]. This is done mainly by reconstructing a design that could
have been used to specify the application implementation. Performing reverse engineering
is known to be challenging [180], and thus, automatic techniques are desirable. These
techniques can employ static or dynamic analysis.

Static analysis The structure of the software is described as it is written in the source
code [181]. It relies on complex source code analysis, and on specific techniques (such
as symbolic execution) to identify operation call sequences in the source code; thus, it
may become challenging to apply it to large systems [182]. Several well-known CASE
tools can obtain automatically CDs from code, e.g., Visual Paradigm [183], Papyrus [184],
and Modelio [185], among others. Likewise, ObjectAid [186] applies static analysis for
obtaining SqDs by checking the call hierarchy of a selected operation. In this case, to obtain
SqDs demands more effort than for CDs since it requires each operation to be traversed.

Dynamic analysis It is defined by Ball as “the analysis of the properties of a running
software system” [187]. This analysis usually involves instrumenting an application to

6.2 GelJ and the Design Strategies 123

collect certain behaviour as the application is running. Thus, it gives information based on
the behaviour captured from the execution rather than from the source code. Approaches
such as MaintainJ [188] and the one given by Briand et al. [189] employ dynamic analysis
to generate SqDs. This analysis is completely automatic and only requires to execute the
application for capturing the behaviour to generate the concrete SqD.

As far as the reverse engineering of SMDs is concerned, we would like to note the
scarce literature addressing this issue, regardless of the used type of analysis. Whilst the
existing approaches show efficacy in contexts such as pattern identification and conformance
checking [190], to the best of our knowledge, they are not able to automatically extract
high-level abstract information that is not included in the code and is only known by the
designer (e.g., descriptive names for the states). For instance, in [191] the states are named
as qN , in which N is a numeric identifier from 0 to 6. From our point of view, descriptive
states’ names are of great importance since they provide high-level information that cannot
be inferred from CDs and SqDs.

Taking this into account, while we have chosen concrete reverse-engineering techniques
to obtain the SqDs and CDs of the GelJ UML design, we have proposed to use SMDs
manually defined by the designers of GelJ, so that they may provide SMDs’ states with more
meaningful names.

6.2.2 Strategies for obtaining GelJ design

To perform the evaluation of UML2PROV, we have identified three strategies in which the
application of different reverse-engineering techniques, each requiring a different effort from
the software engineer, leads to three different UML designs for GelJ. The reason why we have
defined these three strategies is to cover a wide range of situations in which UML2PROV
must be applied. It must be noted that assessing the level of effort is difficult, and often
imprecise, because it closely depends on the software engineer’s ability to perform each
strategy. However, it is possible to give an insight by identifying those tasks performed
manually and those carried out automatically. The more manual tasks, the greater the effort.
Ultimately, each strategy comprises a set of tasks, some of them relative to analysis activities,
and others to the design itself of the UML diagrams describing the system. The description
of each strategy has been organised into four blocks that characterise it. The first block
is the aim for which the strategy is proposed. In this block we will specify the types of
UML diagrams we are interested on, and whether the UML design considered in the strategy
derives from some provenance requirements. The second block is the provenance analysis.
In case of having considered provenance requirements, in this block we explain how we

124 Evaluation

identify the provenance requirements and the involved system’s elements. The third block is
the UML design generation, in which we explain the use of reverse-engineering for obtaining
the different UML designs of GelJ. Finally, the fourth block is the required effort, in which
we sum up the effort that is needed to perform the tasks involved in the strategy. Here, we
highlight if the tasks performed in the UML design generation are automatic, manual, or
semi-manual. More specifically, the set of tasks comprising each strategy are summarized in
Table 6.1, which can be used to easily compare the characteristics of each strategy. Next to
each task there is a symbol indicating if the task is automatic (), manual (), or semi-manual
(). Under each set of tasks, we depict a summary of its outcome in the form of number
and type of elements generated by performing such tasks. In particular, in the provenance
analysis block, these generated elements correspond to the provenance requirements taken
into account in the strategy, as well as the GelJ code artefacts involved in fulfilling them. In
the UML design generation block, the resulting elements refer to the UML elements making
up the design. Next, we describe in detail each strategy.

Table 6.1 Overview of tasks performed to obtain the UML design in each strategy. Under each
set of tasks is the number of elements that result from them.

Strategy 2 Strategy 3

Tasks: (T1.1) To iden�fy provenance requierements

(T1.2) To iden�fy classes and opera�ons involved in the
 provenance requirements

None None

Result: 9 provenance requirements / 17 classes / 66 opera�ons - -

Tasks: (T1.3) Sta�c reverse engineering by iden�fied opera�on (T2.1) Dynamic reverse engineering None

Result: 76 messages -

Tasks:

133 messages

 (T1.4) Manual genera�on None None

Result: 33 states and ini�al pseudostates / 68 transi�ons - -

Tasks: (T1.5) Sta�c reverse engineering

 (T1.6) To rule out clases and opera�ons not iden�fied

 (T1.7) To add stereotypes to the iden�fied opera�ons

 (T2.2) Sta�c reverse engineering

Result: 17 classes / 66 opera�ons 279 classes / 1688 opera�ons

Those tasks requiring manual effort Those tasks performed automa�cally

Phase Strategy 1

SqD

Provenance

Analysis

UML

design

genera�on

SMD

CD (T3.1) Sta�c reverse engineering

279 classes / 1688 opera�ons

Those tasks requiring semi-manual effort

Design Strategy 1

• Aim. To obtain a UML design encompassing UML Sequence, State Machine, and Class
diagrams that only exposes the information necessary to fulfil a set of stated provenance
requirements.

• Provenance analysis. Here we have been inspired by the first phase of PrIMe [11] which,
as we have mentioned in Section 3.4, is a methodology for adapting applications to become
provenance-aware. More specifically, we involved a group of GelJ users, asking them
for the typical questions they are seeking to answer, and which the current system cannot
answer (task T1.1 in Table 6.1). Among these questions, first, we excluded those that can be
answered by using information stored in the GelJ database, and second, we refactored them
in terms of PROV. These resulting questions, shown in Table 6.2, reflect the provenance

6.2 GelJ and the Design Strategies 125

requirements (called provenance use case questions in PrIMe). Subsequently, inspired
by the second phase of PrIMe, in collaboration with the developers, we identified those
classes and operations (called actors in PrIMe) involved in answering the above questions
(T1.2). We show such classes in column “Identified classes” of Table 6.2. To determine
them, we performed the following process. For each class included in GelJ’s CD, the
developers checked if the class was involved in answering any of the identified questions;
in case of doubt, it was selected. Subsequently, for each operation of the selected classes,
the developers confirmed if it was involved or not in the identified questions; again if they
had doubts, it was selected.

As a result of these tasks, we identified 17 classes and 66 operations out of the 279 classes
and 1688 operations that compose GelJ’s CD. Thus, we can say that, in the UML design
generation, we used ∼6% of the classes and ∼3.9% of the operations of GelJ.

Table 6.2 Questions identified from Q1 to Q9 raised by GelJ users, together with GelJ classes
involved in answering those questions

ID Provenance requirements

Q1
Iden�fied classes

Q2

Q3

Q4

Q5 Step2_2

Q6

Q7

Q8 Step1_1-Step1_4

Q9
What is the �me-cost of crea�ng a new experiment?

Iden�fied classes

Step1_1-Step1_4

Step2_1-Step2_3

Step3_1-Step3_3

Step4_1-Step4_3

Experiment

Step4_3

Image_Assistant

What is the origin of an experiment? (from scratch, duplicated or imported)

Step1_1-Step1_4

Step2_1-Step2_3

Step3_1-Step3_3

Step4_1-Step4_3

Step1_1-Step1_4

Step2_1-Step2_3

Step3_1-Step3_3

Step4_1-Step4_3

Step4_1

Image_Assistant

Menu

Main

Step1_1-Step1_4

Step2_1-Step2_3

Step3_1-Step3_3

Step4_1-Step4_3

Step4_3

What is the set of ac�vi�es that has led an experiment as it is?

Which background (dark or light) has been used during an experiment construc�on?

Who is the user who has carried out a specific step of an experiment wizard?

How many lanes have been added/removed during an experiment’s genera�on process?

What is the height-threshold used for band detec�on during the experiment's genera�on process?

How many bands have been added/removed during an experiment's genera�on process?

What is the detailed informa�on regarding the pre-processing ac�vi�es? (source/target states, nested ac�vi�es called)

• UML design generation. We used ObjectAid [186] (task T1.3 in Table 6.1) to obtain SqDs
with the interactions between the objects of the identified classes. For each class, we
performed reverse engineering of each of its operations, obtaining a Sequence diagram
representing the interactions (including UML lifelines, messages, etc.) where such an
operation was involved. This process resulted in a set of 76 UML messages. Regarding

126 Evaluation

SMDs, as we said previously, we had to involve the designers of GelJ to obtain SMDs with
high-level abstract information that cannot be inferred from the source code (T1.4), such
as meaningful states’ names. They designed a UML SMD for each class whose states were
related to the provenance requirements, which led to a set of 13 state machine diagrams
with 33 states and initial pseudostates, and 68 transitions modeling the behaviour of the
classes StepN_M (where N refers to one of the four steps, and M to one of its corresponding
substeps). Finally, we used Papyrus [184] to obtain a Class diagram containing all the
classes of GelJ (task T1.5 in Table 6.1), and finally, we ruled out those classes and
operations not identified before (T1.6).

The resulting Class diagram comprises the 17 classes and 66 operations identified in
the provenance analysis. Additionally, to obtain more meaningful provenance, we have
assigned to these resulting UML operations a stereotype from Table 4.1, which denotes the
concrete behaviour of the operation (task T1.7 in Table 6.1).

• Required Effort. Most of the effort devoted by the software designer to perform this strategy
corresponds to the identification of the provenance requirements (T1.1) and the selection
of the involved classes and operations (T1.2), both tasks corresponding to the provenance
analysis phase. Besides, to perform these tasks, the software engineer needed to consult
with users and designers of the application. As for the UML design generation, the SqDs
were obtained by means of a manual traversal of the operations of each class in the CD,
followed by an automatic reverse engineering of each operation, that is, we performed
a semi-manual process (T1.3), while the SMDs were fully-manually obtained (T1.4).
In contrast, the CD was generated automatically (T1.5); however, we had to transverse
the generated CD ruling out classes an operations not identified previously (T1.6), and
assigning to identified UML operations a stereotype from Table 4.1 (T1.7).

Design Strategy 2

• Aim. To obtain a UML design encompassing UML Sequence and Class diagrams not
derived from provenance requirements.

• Provenance analysis. As this strategy was applied without considering specific provenance
requirements, there was no need to perform a provenance analysis, which considerably
reduced the effort involved in this strategy.

As a consequence, the subsequent phases took into account 100% of the classes and
operations in GelJ.

6.3 Analysing the benefits and trade-offs of using UML2PROV 127

• UML design generation. First, again using MaintainJ [188], we performed dynamic reverse
engineering of every class (considering all its operations), resulting in a set of SqDs with
133 messages. Then, we applied Papyrus [184] to obtain a Class diagram with 279 classes
and 1688 operations (task T2.2 in Table 6.1).

• Required effort. This strategy only involved the automatic tasks carried out in the UML
design generation to generate the SqDs and the CD (T2.1 and T2.2).

Design Strategy 3

• Aim. To obtain a UML design encompassing only a Class diagram not derived from
provenance requirements.

• Provenance analysis. Since this strategy does not focus on provenance requirements, as
with Strategy 2, we took into account 100% of classes and operations.

• UML design generation. Same as in Strategy 2, but just for obtaining the CD.

• Effort required. This strategy only involved the automatic task carried out in the UML
design generation to obtain the CD (task T3.1 in Table 6.1).

6.3 Analysing the benefits and trade-offs of using UML2PROV

We have identified five aspects to consider when analysing the benefits and trade-offs of
using UML2PROV for provenance generation. As advanced previously these aspects attend
to: generation of the provenance design, instrumentation of the application, maintenance of
provenance capabilities, run-time overhead and storage needs, and quality of provenance.
The above stated strategies provide us with a basis for benchmarking UML2PROV throughout
the identified aspects, where we put emphasis on the implications of the UML design applied
in each case. Additionally, throughout these aspects, we have also taken into account whether
the concrete implementation of UML2PROV could have any implication, in particular, in the
run-time overhead and storage needs aspect. Thus, the analysis of this aspect is based not
only on the UML diagrams yielded from the strategies, but also on the different configurations
of the BGM provided by our reference implementation.

6.3.1 Aspect 1: Generation of the provenance design

Prior to UML2PROV, software designers had to manually develop the PROV templates
with the structure of the provenance to be generated. This constituted a cumbersome, time-
consuming and error-prone task which was significantly facilitated by the assistance of PROV

128 Evaluation

experts working closely with the application developer or designer, to reflect the application’s
functionality in the templates [3]. To make matters worse, this procedure does not scale
up when the amount of provenance to be designed increases. To address this challenge,
UML2PROV makes the design of provenance straightforward, while providing significant
benefits for the software engineer. Concretely, we can identify two main benefits. First, the
automatic generation of templates avoids human intervention, thus preventing any kind of
human mistake. Consequently, it is not required a PROV expert supporting the development
of templates, since the templates are automatically generated from the UML design. Second,
the time cost of generating the full set of templates, a few seconds (see column “Templates
generation time cost” in Table 6.3), may be considered negligible compared to the hours,
even days, needed to create them manually.

Regarding the influence of the strategy followed to obtain the UML design, it should not
be surprising that part of the results collected in Table 6.3 shows that the closer the UML
design fits the application provenance requirements, the less templates are generated, the
smaller their total size, and the faster their generation. Table 6.3 shows that Strategy 1 (more
adjusted design, with less UML elements, but requiring more effort to obtain) presents the
lowest number of templates (198). Conversely, Strategies 2 and 3 (less precise designs, with
more elements, and automatically generated), result in a higher number of templates (1,821
and 1,688, respectively). Considering these results, it could be said that a greater initial effort
to obtain a more accurate UML design sifted by a set of provenance requirements, as made
in Strategy 1, results in fewer templates. As we will see later on, this will positively affect
the instrumentation, the maintenance, and the performance of the application. However, it
has little impact in either templates generation time cost or size (see columns ‘Templates
generation time cost” and “Total size of templates” in Table 6.3), since the differences
between the strategies (few seconds and bytes) are considered negligible.

6.3.2 Aspect 2: Instrumentation of the application

Having the templates generated, developers would have to instrument the application to
collect bindings conforming to these templates. To address this challenge, UML2PROV

Table 6.3 Information about PROV templates–number, size, number of variables, time cost–and
time cost for generating the BGM per strategy.

Num.

templates
Total size of

templates (MB)
 Num.

variables

198 0.30 954 3.94 6.77
Strategy 2 (SqD, CD) 1,821 1.48 5,980 8.98 10.31

Strategy 3 (CD) 1,688 1.30 5,236 8.10 9.72

Strategy (UML diagrams)

Strategy 1 (SqD, SMD, CD)

Templates genera�on

�me cost (s)

BGM genera�on

�me cost (s)

6.3 Analysing the benefits and trade-offs of using UML2PROV 129

advocates providing each application with a BGM that must fulfil a set of requirements. To
support the development of these BGMs, our reference implementation of UML2PROV
automatically generates a specific BGM from the UML design of each application, so that
the instrumentation of the application boils down to deploy the generated BGM into the
application at hand.

Nevertheless, the generated BGM, independently of its configuration, changes depending
on the source UML design. As concluded from Section 6.3.1, the more UML elements
making up the UML design, the more templates are generated (and variables in these
templates). Typically, for each variable in a template, an operation call is needed to assign
a value to it, thus, a developer would need to write one line of code for each variable in
a template. Hence, the intuition is that the number of instructions included in the BGM
grows as the number of UML elements does. The column “Num. variables” of Table 6.3
corresponds to the number of instructions for bindings generation contained in the BGM.
The strategy with least UML elements (Strategy 1) leads to the BGM with fewest instructions
(954), as opposed to Strategies 2 and 3 that generate BGMs with more instructions (5,980
and 5,236, respectively). Once again, the effort devoted to obtaining a more precise design
according to the provenance requirements incurs in a simplification of the BGM, which has
significant performance implications, as we will discuss later in Section 6.3.4.

Here, we remark that the above analysis is independent of the configuration of the BGM.
All of our stated configurations are defined in such a way that only an operation call is needed
to assign a value to a variable from a template (that is, to create a binding). However, these
details about the internal implementation of the BGM are irrelevant to its usage, since one of
the main advantages of BGMs’ requirements is that they ensure that software engineers do
not need to write any line of code. Thus, the complexity of the BGM is an irrelevant aspect
for them. Conversely, potential users that implement their own BGMs (or other mechanisms
for generating bindings) must do it under their responsibility, since the number of instructions
may grow out of control.

6.3.3 Aspect 3: Maintenance of provenance capabilities

The provenance intended to be generated by an application must describe what the application
actually does. For this reason, when an application is redesigned, it is necessary to analyse
if the PROV templates need to be changed [3]. In turn, the instrumented code may have
to be updated in order to generate bindings conforming the updated templates. Without
UML2PROV, these tasks would need to be performed by a software engineer with PROV
skills, who eventually would have to modify the templates and the instrumented code to
reflect the new design.

130 Evaluation

Moreau et al. [3] deal with some types of template evolution that are likely to occur in
practice. For instance, a template may be renamed. Likewise, a new template may be added,
when the application includes new functionality, or even dropped, in case of decommissioning
a component. Another type of template evolution takes place when templates are merged
or split. Additionally, the content of templates may be modified in several ways, e.g.,
adding/removing a variable, adding/removing a node or a relation, and so on. The analysis
performed by Moreau et al. in [3] states that, whilst the bindings remain correct in most cases,
some modifications to templates result in a partially generated provenance, or even in errors.
For instance, when a template adds a new variable, bindings become partially incomplete
because the new variable is not considered in the bindings. This fact will potentially result in
a partially generated provenance. Against this background, UML2PROV entails huge benefits
for the compatibility and synchronisation between the UML design and the application’s
provenance facets. Every time the UML design is updated, the templates and the BGM can
be regenerated, which guarantees the immediate and automatic redesign of the application
provenance facets. Additionally, the generation of these provenance facets is fully automatic,
so that it does not require provenance skills.

Since templates are obtained from the UML design and bindings from the execution,
another remarkable fact regarding this third aspect is the consistency between the application’s
UML design and implementation. It is important to note that the UML diagrams describe a
part of the application, and therefore, its implementation must conform to such a UML design.
However, although it is not a good practice, it is very common to have applications that do
not strictly follow the design specified by the UML diagrams [192]. In these cases, users
could leverage reverse-engineering to obtain the UML design according to the source code,
as we have done with GelJ. In fact, users in this situation could apply the design strategy that
best suits her/his needs.

6.3.4 Aspect 4: Run-time overhead and storage needs

As we mentioned previously in Section 3.4.3, a remarkable aspect when choosing a prove-
nance system is the cost of capturing provenance, thus, it is desirable to minimise the
influence of provenance collection on the actual application execution. Here, we analyse
the run-time overhead and the storage needs, attributable to our reference implementation
of UML2PROV for the instrumentation of GelJ under Strategies 1 to 3. Additionally, since
the run-time overhead and storage needs depend on the way in which the BGM manages
bindings, in this analysis we have also taken into account the three different BGM configura-
tions provided in our reference implementation of Chapter 5 (BindingsBGMEventListener,
SetBindingsBGMEventListener, and ProvenanceBGMEventListener). Recall that Bindings-

6.3 Analysing the benefits and trade-offs of using UML2PROV 131

BGMEventListener stores each binding independently. SetBindingsBGMEventListener, for
its part, creates sets of bindings and stores them. Finally, ProvenanceBGMEventListener
generates the sets of bindings and additionally instantiates the PROV templates with them in
order to obtain the final PROV documents. These final PROV documents are stored in the
database.

700,000

N
u
m

b
er

 o
f
in

st
ru

ct
io

n
s

or
 N

u
m

b
er

 o
f
b
in

d
in

g
s

600,000

500,000

400,000

300,000

200,000

100,000

0
17,977

594,433 562,833

Strategy 1 (SqD, SMD, CD) Strategy 2 (SqD, CD) Strategy 3 (CD)

Fig. 6.2 Number of instructions executed for collecting provenance data organised by strategies.
This number of instructions matches with the number of bindings collected.

This performance evaluation has been based on the sequence of interactions of the GelJ
experiment wizard previously chosen (shown in Appendix C), and has been run on a personal
computer, Intel(R) Core(TM) i7 CPU, 2.8GHz, with Oracle JDK1.8 and a Windows 10
Enterprise OS running MongoDB [177].

It is clear that the run-time overhead and storage needs associated with provenance
depend on the execution of the instructions included for capturing it (see the differences
between strategies in Figures 6.3 and 6.4, respectively). Hence, it is believed that the more
instructions executed, the more run-time overhead and storage needs are required. As we
see in Figure 6.2, Strategy 1 yields the least number of bindings (17,977) in comparison
with Strategies 2 and 3 (594,433 and 562,833 respectively). Note that Strategy 1 captures
less bindings since the collection of provenance is focused on satisfying a specific set of
requirements. Conversely, Strategy 2 and 3 have higher results since they capture provenance
for all the classes and methods derived from the whole UML diagrams produced by the
reverse engineering tools, much more than the necessary to satisfy the application provenance
requirements. Whilst this number of instructions/bindings has a direct impact on the final
run-time overhead and storage needs (as we will see below), they can vary depending on the
configuration of the BGM. Below, we will analyse how these two aspects are affected by (1)
the three different UML designs yielded by the aforementioned design strategies (Strategies 1,
2 and 3), and (2) the three different configurations of the BGM (BindingsBGMEventListener,
SetBindingsBGMEventListener, and ProvenanceBGMEventListener).

132 Evaluation

Run-time overhead Figure 6.3 depicts the run-time overhead (%) per strategy and con-
figuration. In general terms, we can see that, as Strategy 1 generates the least number
of bindings (17,977), it yields the best overheads regardless of the configuration (6.21%
with BindingsBGMEventListener, 1.26% with SetBindingsBGMEventListener, and 1.53%
with ProvenanceBGMEventListener). As for the implications each configuration has in the
run-time overhead, SetBindingsBGMEventListener gives the best overheads, followed by the
ProvenanceBGMEventListener and by the BindingsBGMEventListener, respectively. Con-
cretely, BindingsBGMEventListener yields the higher results (6.21% in Strategy 1, 115.77%
in Strategy 2, and 112.36% in Strategy 3) because it stores the bindings one by one, and
therefore, it needs to execute persistence operations many times, which are time-consuming.
Conversely, ProvenanceBGMEventListener stores the expanded PROV documents, which
considerably reduces the number of time-consuming database operations and, consequently,
the run-time overhead (1.53%, 68.67%, and 53.42%). Finally, SetBindingsBGMEventLis-
tener yields the best results (1.26%, 55.05%, and 48.45%) because it reduces the number
of time-consuming database operations by storing sets of bindings rather than one by one
(in contrast to BindingsBGMEventListener), and avoids expanding templates (as opposed to
ProvenanceBGMEventListener).

Strategy 1 (SqD, SMD, CD) Strategy 2 (SqD, CD) Strategy 3 (CD)

BindingsBGMEventListener SetBindingsBGMEventListener ProvenanceBGMEventListener

R
u
n
-t

im
e

ov
er

h
ea

d
 (

%
)

Fig. 6.3 Information about run-time overhead (%) for Strategies 1 to 3 recording provenance with
configurations BindingsBGMEventListener, SetBindingsBGMEventListener, and ProvenanceBG-
MEventListener.

Storage overhead Figure 6.4 depicts the storage needs (MB) per strategy and configura-
tion. Since Strategy 1 generates the least number of bindings, it requires the least storage
regardless of the configuration (3.5MB with BindingsBGMEventListener, 2.3MB with Set-
BindingsBGMEventListener, and 3.6MB with ProvenanceBGMEventListener). As for the
implications of each configuration in terms of storage needs, SetBindingsBGMEventListener

6.3 Analysing the benefits and trade-offs of using UML2PROV 133

leads to the most compact storage in all the strategies (2.3MB in Strategy 1, 64.9MB in
Strategy 2, and 57.2MB in Strategy 3). This is due to two main facts. First, each binding
collected by means of the BindingsBGMEventListener is stored with additional information
needed to create the sets of bindings for expanding the templates (e.g., a unique identifier
of the operation from which it was recorded, its associated templates, and so on). This fact
leads to store a lot of recurrent information. With SetBindingsBGMEventListener, the sets of
bindings (i.e., not each binding) are associated with the information needed for expanding
the templates, thereby reducing the recurrent information stored in the database. Second,
as opposed to ProvenanceBGMEventListener, SetBindingsBGMEventListener stores sets
of bindings that contain no topological information; thus, SetBindingsBGMEventListener
results in a more compact storage than ProvenanceBGMEventListener.

All in all, we can say that a whole UML design produced by using reverse-engineering
techniques provokes much more provenance than the necessary to satisfy the application
provenance requirements, and therefore, it increases the run-time overhead and storage needs.
On the contrary, the effort devoted to obtaining a UML design focused on specific prove-
nance requirements (which means the capture of the provenance necessary to satisfy those
requirements) results in a run-time overhead reduction and a compact storage. Additionally,
we have also seen that using a configuration for recording bindings that delays the expansion
of templates until the application finishes and stores sets of bindings (rather than bindings
independently) incurs in less run-time overhead and more compact storage.

BindingsBGMEventListener SetBindingsBGMEventListener ProvenanceBGMEventListener

Strategy 1 (SqD, SMD, CD) Strategy 2 (SqD, CD) Strategy 3 (CD)

S
to

ra
g
e

n
ee

d
s

(M
B
)

Fig. 6.4 Information about storage needs (MB) for Strategies 1 to 3 recording provenance with
configurations BindingsBGMEventListener, SetBindingsBGMEventListener, and ProvenanceBG-
MEventListener

134 Evaluation

6.3.5 Aspect 5: Quality of provenance

The provenance generated with each strategy is different since each strategy produces UML
designs that expose different levels of detail about the application. Taking this into account,
we have considered of relevance to analyse how the level of detail affects to the quality of
the obtained provenance. With this aim, we have studied if the collected provenance can
answer completely, partially, or if it cannot answer at all the questions in Table 6.2. Our
conclusions are summarised in Table 6.4, where we also shown, in those cases in which
the provenance can give an answer, the number of elements (prov:Entity, prov:Activity,
prov:Agent) involved in such an answer. This number of elements has helped us identify
three kinds of implications the strategy used to obtain the UML design may have on the
ability to produce provenance answers: no effect, when the followed strategy does not affect
the results; more detailed information, when the retrieved answer gives a different level of
detail depending on the strategy; and crucial, when concrete information included in the
UML diagrams is crucial for responding to the question. Next, we explain these implications
in detail.

Table 6.4 For each strategy, it is indicated whether questions Q1-Q9 of Table 6.2 can be answered
completely (Y), partially (P) or cannot be answered (N). If a question can be answered, the
number of elements of the provenance involved in its answer appears in brackets.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
St. 1 Y (5) Y (206) Y (3) Y (152) Y (12) Y (3) Y (10) Y (198) Y (234)
St. 2 Y (7) Y (386) Y (3) P (35) Y (12) N Y (10) P (155) Y (483)
St. 3 N Y (386) Y (3) P (35) Y (12) N Y (10) N Y (489)

No effect In order to answer question Q3, it is necessary to get the value of an attribute
belonging to classes StepN_M, whereas to answer questions Q5 and Q7 we need to identify
the execution of certain operations from classes Step2_2 and Step4_3, respectively. The
provenance from the three strategies answers the three questions because of different reasons.
On the one hand, provenance from Strategy 1 answers the three questions due to the fact that
the involved classes and operations were identified in the provenance analysis performed in
such a strategy. On the other hand, provenance from Strategies 2 and 3 answers the questions
because these strategies include in their class diagrams all the classes and operations of
GelJ. Consequently, we can conclude that the strategy followed to obtain the UML design
does not influence the ability to answer questions Q3, Q5 and Q7.

More detailed information A detailed UML design may lead to the generation of more
provenance, obtaining more detailed answers. For instance, to answer question Q1 is crucial

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Agent

6.4 Conclusions and discussion 135

to have information referred to nested operation calls. Since nested operations are specified
by UML Sequence diagrams, the Strategy 2, which has the most detailed SqDs, gives a more
detailed answer to Q1. Likewise, to answer Q2 and Q9 it is necessary to get information
about operations identified in classes StepN_M. Thus, the provenance from Strategies 2 and
3, which identify all the operations in classes StepN_M, gives a more detailed information
than Strategy 1. This is because the provenance from Strategy 1 only contains information
about the operations of classes StepN_M identified in the provenance analysis. Whilst,
in principle, giving answers with a higher level of detail seems to be a valuable fact, it is
worth considering the extra time and storage that this implies (see Section 6.3.4). Taking
into account that Strategy 1 has been designed precisely to expose only the information
necessary for responding to the identified questions, the additional provenance elements in
Strategies 2 and 3 could be considered unnecessary, rather than a good characteristic of the
result.

Crucial There are some aspects of an application that are modeled only by certain types
of UML diagrams, even by certain elements of those diagrams. For example, to answer
question Q6, it is necessary to have information provided by SMDs. Thus, due to the fact
that Strategy 1 is the only one that considers SMDs, it is the only strategy that answers
Q6. Similarly, in order to answer Q8, we need information exposed by SqDs and SMDs.
This fact explains (1) why Strategy 2, which has SqDs but lacks SMDs, can only partially
answer; and (2) why Strategy 3, which lacks SqDs and SMDs, cannot even give an answer.
Another example of relevant UML elements that help respond to some kind of answers
are operations’ stereotypes, which explain the nuances of class operations, thus helping to
capture a more meaningful provenance. These nuances are crucial to answer Q4. Hence,
Strategy 1, which is the only one that has stereotyped operations, can completely respond
to Q4, while Strategies 2 and 3 only partially answer it. These examples delve into the
arguments in favour of the convenience of making a prior investment of time to conduct a
detailed UML design of the application, guided by a set of provenance requirements.

6.4 Conclusions and discussion

Throughout this chapter, we have presented an evaluation of UML2PROV that uses quantita-
tive and qualitative arguments to show the benefits and trade-offs of applying UML2PROV.
To do this, we have applied UML2PROV to a Bioinformatics application called GelJ. More
specifically, we have applied our reference implementation of UML2PROV to three different
UML designs of GelJ, which contain different levels of detail. Taking such UML designs as
source of UML2PROV has allowed us to evaluate the implications of the UML design over a

136 Evaluation

set of aspects with regard to provenance such as generation of the provenance design, instru-
mentation of the application, maintenance of provenance capabilities, run-time overhead
and storage needs, and quality of provenance.

All in all, we have seen that UML2PROV links two key artefacts for generating prove-
nance (PROV templates and BGM) with the actual design of an application, requiring only
few seconds to generate them. Likewise, with UML2PROV, the instrumentation of an applica-
tion is transparent to software engineers since it only consists in deploying the BGM into the
application at hand. These two aspects incur in great benefits with regard to the maintenance
of the provenance capabilities. Software engineers do not need to devote time making the
PROV templates and instrumenting applications to generate bindings and, what is more, they
do not even need to have knowledge about provenance. Something similar happens with
the maintenance of the provenance capabilities, every time the UML design is updated, the
templates and the BGM can be regenerated immediately. Thus, it is completely transparent to
software engineers. Finally, based on this evaluation, we have reached two main conclusions
regarding UML2PROV and its associated provenance costs (run-time overhead and storage
needs). First, using a detailed UML design incurs in the capture of more provenance than re-
quired to satisfy provenance requirements. Alternatively, whether the UML designer focuses
on addressing provenance requirements, only relevant provenance is collected, resulting in
low run-time overhead and storage needs (as low as ∼1.26% of in execution time and 2.3MB
for storing provenance with the configuration SetBindingsBGMEventListener). Second, the
configuration of the BGM has a high impact in the provenance costs. Concretely, we have
seen that the number of operations against the database is crucial in increasing the costs. The
largest number of operations against the database, the highest the run-time overhead and
storage needs. Thus, to group bindings and to store set of bindings reduces considerably the
costs of provenance.

To conclude, there is an important aspect we would like to discuss. Whilst we have
carried out each design strategy relying on the whole source code of GelJ, a potential software
engineer may be interested in either focusing on a concrete application’s module (unlike the
whole source code) or combining strategies so as to collect different provenance information
depending on the module (as opposed to using only one strategy). For example, a potential
software engineer may be interested in obtaining provenance from the whole application
execution, but she/he has concrete provenance requirements with regard to a specific module.
In this situation, it is not needed to apply Strategy 1 to the whole application, which requires
a great manual effort. The software engineer should apply Strategy 1 only to the module with
provenance requirements, thereby aiming at capturing provenance to meet the requirements,
and to apply another strategy, which does not require manual effort, to the remaining modules.

6.4 Conclusions and discussion 137

This procedure has two main benefits for the software engineer. First, she/he can fulfil their
provenance requirements, since part of the collected provenance is focused on them. Second,
she/he does not need to devote an extra effort to apply Strategy 1 to the whole application,
since Strategy 1 is only applied to the module of interest. Similarly, whether a software
engineer is only interested in provenance regarding a specific module, she/he only needs to
apply one strategy to such a module. The strategy chosen by the software engineer depends
on her/his needs, such as if she/he has provenance requirements, or the level of effort she/he
is willing to do for collecting provenance. In any case, software engineers can focus on the
module of interest, avoiding the collection of provenance from the rest of the application.

Chapter 7

Conclusions and future work

We started the writing of this thesis aiming at developing a framework for making applica-
tions provenance-aware. A framework that took as a starting point the UML design of an
application, and that ultimately generated the suitable artefacts to capture provenance data
about its execution. In addition, our claim was for the developed framework to be minimally
invasive both for software designers, responsible for designing the provenance to be captured,
as well as for developers, who had to write the code to instrument the application. So much
so, that we advocated that both participants in the development of the application do not need
to be knowledgeable of provenance.

Thus, UML2PROV was born. And now the time has come to recap and analyze what has
been achieved, and what are the aspects that we shall have to do further work on.

7.1 Summary of results

We believe we can say that the goal has been met. As we already advanced in the introduction
of this thesis, there have been three main contributions that have led this research work
to its intended goal. Let’s start by mentioning our review of the literature, conducted as a
systematic review, which, besides helping motivate UML2PROV, constitutes a contribution
in itself. Later we proposed a conceptual definition for UML2PROV, which established the
conceptual aspects for bridging the gap between application design and provenance design.
Finally, a UML2PROV reference implementation was provided, which fully automatises the
generation of provenance by following the stated definition of UML2PROV.

Let us now revisit how we have achieved these contributions.

140 Conclusions and future work

7.1.1 A systematic review of provenance systems

Aimed at identifying open problems in the field of provenance that may serve as motivation
for our main goal, we have performed a thorough review of provenance systems. This
systematic literature review identifies a comprehensive set of 105 relevant published works
in the provenance field from more than 500 analysed works. Based on these selected works,
we have defined a six-dimensional taxonomy of provenance systems characteristics attending
to: general aspects, data capture, data access, subject, storage, and non-functional aspects.
This taxonomy encompasses common characteristics of provenance systems thoroughly
renowned through-out the literature on the topic. Additionally, based on this taxonomy,
we have performed an exhaustive analysis and comparison of 25 systems, which illustrated
different solutions covering a broad spectrum of alternatives along the aspects identified in our
taxonomy. In this thesis, we have given a concise version of this systematic review (published
in [10]). Concretely, we have presented an overview of the taxonomy of provenance systems
keeping in mind two main aspects with regard to the main goal of this thesis.

First, to present a consistent background of provenance concepts and techniques that
have allowed potential readers to grasp the performed work. Our taxonomy encompasses the
overall classifications considered by other works, and more fully captures the unique charac-
teristics of provenance systems. Thus, it has familiarised the reader with the terminology
used in the field of provenance, in general, and in this thesis, in particular.

Second, to identify the uncovered open problems that have served as foundations for our
main goal in mind. Concretely, the analysis and comparison of the provenance systems have
given us an idea about the current available approaches and technologies, and additionally, it
has also allowed us to discover the open research problems that motivated this thesis. More
precisely, we have identified four open problems: integration, interoperability, computational
overhead, and querying.

7.1.2 A conceptual definition of UML2PROV

We have established the conceptual definition of UML2PROV by means of an architecture
that defines two key elements: PROV templates and BGM. They are obtained from the UML
diagrams of an application.

To address the creation of PROV templates from UML diagrams, we have defined a
comprehensive, extensive, and systematic set of 17 transformation patterns that ultimately
associates UML elements with PROV elements of a template. Concretely, 4 of these patterns
address Sequence diagrams and 3 patterns address State Machine diagrams. We have chosen
these types of diagrams because they are widely used to represent the behaviour of a system,

7.1 Summary of results 141

which is one of the main purposes of capturing provenance information. Additionally, 10 of
these patterns address Class diagrams. We have decided to consider this type of diagrams
since it is the most widely adopted formalism for modeling the intentional structure of a
system, giving low level aspects from objects’ internal status, information not given by the
Sequence and State Machine diagrams. With these three types of UML diagrams, we can
obtain provenance from three different perspectives related to the types of UML diagrams.
Concretely, the provenance obtained from SqDs reflects how collaborating objects interact
for executing operations, and the exchange of information between them. The provenance
obtained from CDs contains information about (1) the objects’ characteristics at some point,
i.e. the object’s status, and (2) the operations that have led the objects’ status to be as they
are. Finally, the provenance coming from SMDs shows information about the evolution of
the objects’ state as a consequence of operations executions taken place. Aiming at easing
the use of these patterns, we have presented a set of charts that guides users through concrete
features of the patterns, in order to help them find the pattern that best suits their needs. What
is more, this set of charts also permits readers to see at a glance all the contexts addressed by
the patterns, as well as to compare the patterns easily.

As for the creation of the BGM for each application, we have defined a set of requirements
that each BGM must fulfil so as to minimise the intrusion on software designers’ and
developers’ modus operandi, as well as to facilitate the maintenance of the provenance-
aware applications. To do this, we have leveraged the performed systematic review of the
approaches for capturing data in order to define a set of features that, from our point of
view, the BGMs should have. Later, relying on these features, we have defined a set of
requirements that the BGM for an application must meet to satisfy such features. Generally
speaking, with this set of requirements we have ensured that the generation of bindings boils
down to deploy a BGM into an application, without requiring from developers to instrument
such an application.

All in all, the transformation patterns, together with the BGM’s requirements, define a
conceptual background over which an implementation of UML2PROV should rely on.

7.1.3 An implementation of UML2PROV

In order to verify the feasibility of the conceptual definition of UML2PROV, as well as to
validate if a potential implementation of it were possible, our starting point was to develop a
proof of concept implementation of UML2PROV. Subsequently, based on the lessons learned
from this proof of concept, we developed a reference implementation of UML2PROV. This
reference implementation provides a complete development of the conceptual definition of

142 Conclusions and future work

UML2PROV to automatise the process for generating templates and BGM from the UML
design of an application.

As for the generation of templates from the UML design, the reference implementation of
UML2PROV leverages ATL, to perform M2M transformations, and XPand, to carry out M2T
transformations. This implementation consists of two stages. First, an ATL module, which
implements the transformation patterns, takes the UML diagram models and automatically
generates PROV template models, which are serialised in a PROV independent format (XMI).
Second, an XPand module takes the previous PROV template models and automatically
generates the PROV template files in PROV-N format. These two stages allowed us to
distinguish between the implementation of the transformation patterns (which is agnostic
about any PROV serialization format) and the serialization format of the final PROV templates
files. In this way, the implementation of the transformation patterns in ATL can be seen as
a generic solution regardless of the final PROV template format, since the XPand module
defines the serialization format of the final PROV template files (PROV-N in our case). Thus,
potential users who are interested in another serialization format could implement their
own XPand module that transforms the PROV template models into such a format, without
affecting the implementation of the transformation patterns.

Regarding the BGM, we have advocated using a generic event-based approach developed
on top of AOP in order to provide a fully automatic solution to generate bindings. Based on the
UML design of an application, our reference implementation of UML2PROV automatically
generates a BGM for such an application. Each generated BGM meets the set of requirements
stated in Section 4.4, so that the instrumentation of the application to generate bindings boils
down to deploy the BGM into the application. More specifically, these generated BGMs
ensure that the generation of bindings is fully automatic (R1), without affecting the design
and maintenance of the application’s source code (R2 and R3), and providing mechanisms to
configure the capture of provenance (R4). Additionally, these BGMs also ensures that the
generated bindings are consistent with the previously obtained PROV templates (R5 and R6).

At this point, we would like to note that our reference implementation for generating
templates could be seen as a generic solution suitable for being used by any final user of
UML2PROV ‘as it is’, without any modification. This reference implementation gives a
complete automatic translation of any UML design into PROV templates as it is stated by our
patterns. Unlike the generation of templates, our reference implementation for generating the
BGM of an application is limited to Java applications. Nevertheless, any potential developer
can implement her/his own BGM relying on the generic structure we have defined for BGMs.
The unique requirement for leveraging this structure is to have an AOP implementation
compatible with the programming language of the target application. We do not consider

7.2 Limitation of the study and future work 143

this requirement as an obstacle because, since the initial release of the AOP concept, a large
number of implementations for various programming languages have emerged (such as
Python, C, Ada, JavaScript, C#, and so on). In any case, whatever developer may implement
her/his own mechanisms for generating bindings under her/his responsibility. For example,
Johnson et al. in [170] used UML2PROV for obtaining PROV templates from their UML
design, but, since their application was not developed in Java, they implemented their own
mechanisms to generate bindings.

Finally, we would like to note that we have performed a systematic evaluation that
showed the benefits and trade-offs of applying UML2PROV for software engineers looking
to make applications provenance-aware. This evaluation, based on different UML designs
of a legacy application, yielded two key lessons that are worth mentioning. First, taking as
source a detailed UML design leads to the capture of more provenance than required to fulfil
provenance requirements and thus, unnecessarily increases the run-time overhead and storage
needs. Otherwise, whether the UML design sticks to address provenance requirements, only
appropriate provenance is collected, and consequently, the run-time overhead and storage
needs decrease.

7.2 Limitation of the study and future work

Although we have successfully evaluated UML2PROV with different UML designs of a
legacy application, obtaining encouraging results, we recognise there are certain limitations
to the presented work. Here, we touch upon six issues, which provide a basis for the extension
of this research.

In our proposal, the PROV templates obtained from the application UML design define
what information is included in the final provenance; thus, they define the granularity of
the provenance to be generated. More specifically, when we defined these transformation
patterns, we made the decision of considering a high level of detail in the flow of logic within
the system (SqDs), in the objects’ status (CDs), or in the change of objects’ states (SMDs).
Thus, our proposal generates fine-grained provenance. Future research could examine how
to manage the level of detail of the provenance to be generated (i.e., its granularity). An
alternative to do this could be to examine how to adapt the transformation patterns, by
selectively discarding some PROV elements or relations, and consequently, generating
coarser-grained data provenance. In this line, we also consider of interest to provide the UML
designer with a mechanism to specify the elements in the UML diagrams for provenance
capture. In this way, she/he could manage the amount of provenance information to be
generated. For instance, a potential UML designer could selectively avoid provenance

144 Conclusions and future work

capture regarding specific input parameters of an operation, a fact that cannot be avoided
with the current approach.

UML2PROV supports the generation of templates from UML Class diagrams, which is
guided by operations associated with stereotypes from our taxonomy of operations. Thus,
before the transformation process, designers have to traverse the whole set of operations
identifying the stereotype that represents the operation’s behaviour. In order to prevent
designers from performing this task, an interesting future line of work is to reverse engineering
the operation stereotype from the UML operation’s signature. For instance, a possible starting
point could be operations with the stereotype «get», «set» or «search». It is well-known
that an operation that directly returns a value of a concrete attribute of an object (denoted
by the stereotype «get») is named with the prefix get followed by the name of the returned
attribute. Something similar occurs with stereotype «set» and operations which start with
set, as well as stereotype search and operations which start with find. To do this, we have
thought in enriching the implementation of the transformations from UML Class diagrams
into PROV templates to support reverse engineering operation stereotypes from the UML
operation signature.

Although our proposal takes into account three of the most used UML diagrams, con-
sidering a wider number of UML elements. Nevertheless, we consider that to include other
kinds of UML Diagrams (such as UML Activity Diagrams), and other elements (such as
State Machine Diagram’s effects and internal activities, not considered in our patterns) could
constitute a more complete proposal. Thus, this is an interesting line for future research to
explore.

Another line of future work that we consider of interest is the application of UML2PROV
in a system comprising distributed components. We plan to tackle this goal by automatically
generating a BGM for each component of the distributed system, and implementing the
provenance exchange among the BGMs. To address the provenance exchange, one option
could be to explore the PROV-AQ specification [193]. This document specifies how to
use standard Web protocols (such as HTTP) to obtain information about the provenance
of resources on the web. It would constitute our mechanism for exchanging data among
distributed systems.

In the provenance field, there is a well-known problem called n-by-m [45]. This problem
refers to those situations in which may not be possible to accurately determine the depen-
dencies between input and output. For example, an operation with the stereotype «command»

changes the status of an object as a whole, sometimes relying upon input data. In this situa-
tion, it is not possible to infer which inputs affected the change of the object’s status, so the
provenance graph has to link the resulting object, in a concrete status, with all of the inputs.

7.2 Limitation of the study and future work 145

In our context, this problem can be solved by adding more semantics to UML operations by
means of new stereotypes. For instance, we could define a stereotype associated with UML
operation’s parameters to mark those parameters involved in the generation of outputs.

Finally, we would like to state two more lines of further work regarding the implementa-
tion of UML2PROV, which are focused on expanding the number of potential users. First,
we believe that providing UML2PROV as a web service could incur in large benefits for
potential users. Users could upload their UML diagrams models and they could automatically
obtain both the templates and the BGM. Second, we consider that the generation of the BGM
only for Java applications limits the number of potential users; thus, a possible line of future
work is to offer support to other programming languages. Concretely, we have thought in
scripting programming languages as a good starting point to expand our approach, since this
kind of languages is widely used for implementing scientific applications.

Conclusiones

Al comenzar la redacción de esta tesis se planteó como objetivo general la creación de un
marco de desarrollo para hacer aplicaciones con capacidades de provenance, que tomase
como punto de partida el diseño software en UML de la aplicación y que generase los
artefactos necesarios para obtener información provenance sobre la ejecución de la misma.
Además, nuestra pretensión era que el framework desarrollado fuese mínimamente invasivo
tanto para los diseñadores software encargados del diseño de provenance a capturar, como
para los desarrolladores de la aplicación. Tanto era así, que ambos partícipes del desarrollo
de la aplicación no necesitasen ser expertos en provenance.

Así surgió UML2PROV. Y ahora ha llegado el momento de recapitular y analizar qué es
lo que se ha conseguido.

Como ya hemos avanzado en la introducción de esta tesis, tres han sido las contribuciones
principales que han llevado a este trabajo de investigación a su meta pretendida. Comence-
mos mencionando nuestra revisión de la literatura, realizada como una revisión sistemática
que, además de motivar UML2PROV, constituye una contribución en sí misma. Más tarde,
propusimos una definición conceptual para UML2PROV, que estableció los aspectos con-
ceptuales para salvar la brecha entre el diseño de la aplicación y el diseño del provenance.
Por último, proporcionamos una implementación de referencia de UML2PROV, que autom-
atiza completamente la generación de provenance siguiendo la definición establecida de
UML2PROV.

Finalmente, nos gustaría señalar que hemos realizado una evaluación sistemática que
mostró los beneficios e inconvenientes de UML2PROV para aquellos ingenieros de software
que buscan hacer que sus aplicaciones tengan capacidades de provenance. Esta evaluación,
basada en diferentes diseños UML de una aplicación ya existente, arrojó dos lecciones clave
que vale la pena mencionar. Primero, el utilizar un diseño detallado de UML conduce a la
captura de más cantidad de provenance que el requerido para cumplir con los requisitos de
provenance y, por lo tanto, aumenta innecesariamente las necesidades de almacenamiento y
los gastos generales de tiempo de ejecución. De lo contrario, si el diseño UML se atiene a
los requisitos de provenance, solo se recopila el provenance necesario y, en consecuencia,

148 Conclusions and future work

el coste que supone disponer de dichos artefactos en tiempo de ejecución, así como, las
necesidades de almacenamiento disminuyen.

References

[1] OMG. Unified Modeling Language (UML). Version 2.5, 2015. Document formal/15-
03-01, March, 2015.

[2] Paul Groth and Luc Moreau (eds.). PROV-Overview. An Overview of the PROV
Family of Documents. W3C Working Group Note NOTE-prov-overview-20130430,
World Wide Web Consortium, April 2013.

[3] Luc Moreau, Belfrit Victor Batlajery, Trung Dong Huynh, Danius Michaelides, and
Heather Packer. A templating system to generate provenance. IEEE Transactions on
Software Engineering, 44(2):103–121, 2018.

[4] Anneke G Kleppe, Jos Warmer, Jos B Warmer, and Wim Bast. MDA explained: the
model driven architecture: practice and promise. Addison-Wesley Professional, 2003.

[5] Luc Moreau and Paolo Missier (eds.). PROV-N: The Provenance Notation. W3C
Recommendation REC-prov-n-20130430, World Wide Web Consortium, April 2013.

[6] Natalia Dragan, Michael L. Collard, and Jonathan I. Maletic. Automatic identification
of class stereotypes. In Proceedings of the 26th IEEE International Conference on
Software Maintenance, pages 1–10, 2010.

[7] Statement on Algorithmic Transparency and Accountability. Available
at https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_
algorithms.pdf. Last visited on July 2019.

[8] Donald Ervin Knuth. The Art of Computer Programming: Fundamental Algorithms.
Fundamental Algorithms. Addison-Wesley, 1997.

[9] BBC News. Microsoft chatbot is taught to swear on Twitter. Available at https:
//www.bbc.com/news/technology-35890188. Last visited on July 2019.

[10] Beatriz Pérez, Carlos Sáenz-Adán, and Julio Rubio. A systematic review of provenance
systems. Knowl. Inf. Syst., 2018.

[11] Simon Miles, Paul T. Groth, Steve Munroe, and Luc Moreau. PrIMe: A methodology
for developing provenance-aware applications. ACM Trans. Softw. Eng. Methodol.,
20(3):8:1–8:42, 2011.

[12] Provenance Challenge Series. Available at: http://twiki.ipaw.info/bin/view/Challenge/.
Last visited on July 2019.

https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
https://www.bbc.com/news/technology-35890188
https://www.bbc.com/news/technology-35890188

150 References

[13] The Open Provenance Model v1.01. Available at:
http://eprints.soton.ac.uk/266148/1/opm-v1.01.pdf. Last visited on July 2019.

[14] Luc Moreau, Paul Groth, James Cheney, Timothy Lebo, and Simon Miles. The
rationale of prov. Web Semantics: Science, Services and Agents on the World Wide
Web, 35:235–257, 2015.

[15] ProvPy. Python implementation of the PROV data model. Available at https://pypi.
org/project/provpy/. Last visited on July 2019.

[16] ProvToolbox. Available at lucmoreau.github.io/ProvToolbox/. Last visited on July
2019.

[17] Gianna Reggio, Maurizio Leotta, Filippo Ricca, and Diego Clerissi. What are the
used UML diagrams? A preliminary survey. In In EESSMOD@MoDELS, USA, pages
3–12, October 2013.

[18] Martina Seidl, Marion Brandsteidl, Christian Huemer, and Gerti Kappel.
UML@Classroom. Springer, 2012.

[19] Sinan Si Alhir. UML in a nutshell: a desktop quick reference. " O’Reilly Media, Inc.",
1998.

[20] OMG. Analysis and Design Platform Task Force. White Paper on the Profile Mecha-
nism, Version 1.0. OMG Document ad/99-04-07. Available at http://www.omg.org/.
Last visited on July 2019.

[21] Luc Moreau and Paolo Missier (eds.). PROV-DM: The PROV Data Model. W3C
Recommendation REC-prov-dm-20130430, World Wide Web Consortium, 2013.

[22] Timothy Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhajjame, James Cheney,
David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik, and Jun Zhao.
PROV-O: The PROV Ontology. W3C Recommendation REC-prov-o-20130430,
World Wide Web Consortium, 2013.

[23] Hook Hua, Curt Tilmes, and Stephan Zednik (eds.). PROV-XML: The PROV XML
Schema. W3C Note, World Wide Web Consortium, 2013.

[24] James Cheney (ed.). Semantics of the PROV Data Model. W3C Note, World Wide
Web Consortium, 2013.

[25] James Cheney, Paolo Missier, and Luc Moreau (eds.). Constraints of the PROV Data
Model. W3C Recommendation, World Wide Web Consortium, 2013.

[26] Daniel Garijo and Kai Eckert (eds.). PROV-Constraints: Constraints of the PROV
Data Model. W3C Recommendation, World Wide Web Consortium, 2013.

[27] M. Dürst and M. Suignard. Internationalized Resource Identifiers (IRIs) (RFC 3987).
Available at http://www.ietf.org/rfc/rfc3987.txt. Last visited on July 2019.

[28] Danius Michaelides, Trung Dong Huynh, and Luc Moreau. PROV-TEMPLATE: A
Template System for PROV Documents. Jun 2014, Technical Note. Available at
provenance.ecs.soton.ac.uk/prov-template-2014-06-07/. Last visited on July 2019.

https://pypi.org/project/provpy/
https://pypi.org/project/provpy/
lucmoreau.github.io/ProvToolbox/
http://www.omg.org/
http://www.ietf.org/rfc/rfc3987.txt
provenance.ecs.soton.ac.uk/prov-template-2014-06-07/

References 151

[29] PROV Graph Layout Conventions. Available at www.w3.org/2011/prov/wiki/
Diagrams. Last accessed on July 2019.

[30] JSON-LD 1.0. A JSON-based Serialization for Linked Data. January, 2014. Available
at https://www.w3.org/TR/2014/REC-json-ld-20140116/. Last visited on July 2019.

[31] Bran Selic. The pragmatics of model-driven development. IEEE software, 20(5):19–25,
2003.

[32] OMG. OMG Model Driven Architecture. Available at https://www.omg.org/mda/.
Last visited on July 2019.

[33] ATL - a model transformation technology, version 3.8. Available at www.eclipse.org/
atl/. Last visited on July 2019.

[34] XSL Transformations (XSLT) Version 3.0. W3C Candidate Recommendation 7
February 2017. Available at www.w3.org/TR/xslt-30/. Last visited on July 2019.

[35] XPand. Eclipse platform. Available at wiki.eclipse.org/Xpand. Last visited on July
2019.

[36] XML Path Language (XPath) 3.1 . W3C Recommendation 21 March 2017 . Available
at https://www.w3.org/TR/xpath-31/. Last visited on July 2019.

[37] ATL Integrated Environment. Available at https://projects.eclipse.org/projects/
modeling.mmt.atl. Last visited on July 2019.

[38] XPand plugins for Eclipse platform. Available at https://www.eclipse.org/modeling/
m2t/downloads/?project=xpand. Last visited on July 2019.

[39] Ramnivas Laddad. Aspectj in action: enterprise AOP with spring applications.
Manning Publications Co., 2009.

[40] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP’97), pages
220–242, Berlin, Heidelberg, 1997.

[41] The AspectJ Project. Available at www.eclipse.org/aspectj/. Last visited on July 2019.

[42] The Ajaxpect library. Available at https://github.com/deepcode/ajaxpect. Last visited
on July 2019.

[43] The Aspects module for Python. Available at https://pypi.org/project/aspects/. Last
visited on July 2019.

[44] Carlos Saénz-Adán, Francisco J. García-Izquierdo, Ángel Luis Rubio, Eduardo Sáenz
de Cabezón Irigaray, Emilio Rodríguez-Priego, and Oscar Díaz. A Tool for Manage-
ment of Knowledge Dispersed throughout Multiple References. In Proceedings of the
10th International Conference on Software Paradigm Trends (ICSOFT-PT’15), pages
79–86, 2015.

www.w3.org/2011/prov/wiki/Diagrams
www.w3.org/2011/prov/wiki/Diagrams
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://www.omg.org/mda/
www.eclipse.org/atl/
www.eclipse.org/atl/
www.w3.org/TR/xslt-30/
wiki.eclipse.org/Xpand
https://www.w3.org/TR/xpath-31/
https://projects.eclipse.org/projects/modeling.mmt.atl
https://projects.eclipse.org/projects/modeling.mmt.atl
https://www.eclipse.org/modeling/m2t/downloads/?project=xpand
https://www.eclipse.org/modeling/m2t/downloads/?project=xpand
www.eclipse.org/aspectj/
https://github.com/deepcode/ajaxpect
https://pypi.org/project/aspects/

152 References

[45] Lucian Carata, Sherif Akoush, Nikilesh Balakrishnan, Thomas Bytheway, Ripduman
Sohan, Margo Seltzer, and Andy Hopper. A primer on provenance. Commun. ACM,
57(5):52–60, 2014.

[46] Susan B. Davidson and Juliana Freire. Provenance and scientific workflows: chal-
lenges and opportunities. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data (MOD’08), pages 1345–1350, New York, NY,
USA, 2008. ACM.

[47] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T. Silva. Provenance for
Computational Tasks: A Survey. Comput. Sci. Eng., 10(3):11–21, May 2008.

[48] Susan B. Davidson, Sarah Cohen-Boulakia, Anat Eyal, Bertram Ludäscher, Timothy M.
McPhillips, Shawn Bowers, Manish Kumar Anand, and Juliana Freire. Provenance in
Scientific Workflow Systems. IEEE Data Eng. Bull., 30(4):44–50, 2007.

[49] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Provenance
in e-Science. SIGMOD Rec., 34(3):31–36, 2005.

[50] Sérgio Manuel Serra da Cruz, María Luiza Machado Campos, and Marta Mattoso.
Towards a Taxonomy of Provenance in Scientific Workflow Management Systems. In
Proceedings of the IEEE Congress on Services, Part I, SERVICES I, pages 259–266,
2009.

[51] Boris Glavic and Klaus R. Dittrich. Data Provenance: A Categorization of Existing
Approaches. In Proceedings of Datenbanksysteme in Business, Technologie und Web
(BTW’07), pages 227–241, 2007.

[52] Wang Chiew Tan. Provenance in Databases: Past, Current, and Future. IEEE Data
Eng. Bull., 30(4):3–12, 2007.

[53] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and Where: A Char-
acterization of Data Provenance. In Proceedings of the 8th Intl. Conf. on Database
Theory (ICDT’01), pages 316–330, 2001.

[54] Peter Buneman and Wang Chiew Tan. Provenance in Databases. In Proceedings of the
2007 ACM SIGMOD International Conference on Management of Data (MOD’07),
pages 1171–1173. ACM, 2007.

[55] James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in Databases:
Why, How, and Where. Foundations and Trends in Databases, 1(4):379–474, April
2009.

[56] Luc Moreau. The Foundations for Provenance on the Web. Foundations and Trends
in Web Science, 2(2–3):99–241, 2010.

[57] P. Buneman and S. B. Davidson . Data provenance – the foundation of data
quality. Technical report, A Technical Report, September. Available at https:
//pdfs.semanticscholar.org/9ec4/275fed43df7145dec34cba9743a9186dc972.pdf. Last
visited on July 2019.

 https://pdfs.semanticscholar.org/9ec4/275fed43df7145dec34cba9743a9186dc972.pdf
 https://pdfs.semanticscholar.org/9ec4/275fed43df7145dec34cba9743a9186dc972.pdf

References 153

[58] Rajendra Bose and James Frew. Lineage retrieval for scientific data processing: a
survey. ACM Comput. Surv., 37(1):1–28, 2005.

[59] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Prove-
nance Techniques. Computer Science Department, Indiana University, Blooming-
ton IN, (612), 2005. Extended version of SIGMOD Record 2005. Available at:
www.cs.indiana.edu/pub/techreports/TR618.pdf.

[60] Alfredo Cuzzocrea. Big data provenance: State-of-the-art analysis and emerging
research challenges. In Proceedings of the Workshops of the EDBT/ICDT, pages
797–800, 2016.

[61] Gulustan Dogan. A survey of provenance in wireless sensor networks. Ad Hoc &
Sensor Wireless Networks, 30(1-2):21–45, 2016.

[62] Yu Shyang Tan, Ryan K. L. Ko, and Geoff Holmes. Security and data accountability
in distributed systems: A provenance survey. In Proceedings of the IEEE 10th
International Conference on High Performance Computing and Communications
(HPCC’13), pages 1571–1578. IEEE Computer Society, 2013.

[63] Changda Wang, Wen-yi Zheng, and Elisa Bertino. Provenance for wireless sensor
networks: A survey. Data Science and Engineering, 1(3):189–200, 2016.

[64] B.A. Kitchenham. Procedures for Performing Systematic Reviews. Keele, UK, Keele
University, 2004. At: http://www.inf.ufsc.br/ aldo.vw/kitchenham.pdf. Last visited on
July 2019.

[65] B. Kitchenham and S. Charters. Guidelines for performing Systematic
Literature Reviews in Software Engineering. Technical Report EBSE
2007–01, Technical report, Ver. 2.3 EBSE Technical Report. EBSE. At:
http://pages.cpsc.ucalgary.ca/∼sillito/cpsc-601.23/readings/kitchenham-2007.pdf.
Last visited on July 2019.

[66] B. Kitchenham, O. Pearl Brereton, D. Budgen, et al. Systematic Literature Reviews
in Software Engineering - A Systematic Literature Review. Inf. Softw. Technol.,
51(1):7–15, January 2009.

[67] Louis Bavoil, Steven P Callahan, Patricia J Crossno, et al. Vistrails: Enabling interac-
tive multiple-view visualizations. In Proceedings of the IEEE Visualization (VIS’05),
pages 135–142. IEEE, 2005.

[68] Juliana Freire, Cláudio T Silva, Steven P Callahan, et al. Managing rapidly-evolving
scientific workflows. In Proceedings of the International Provenance and Annotation
Workshop (IPAW’06), pages 10–18. Springer, 2006.

[69] David Gammack, Steve Scott, and Adriane P Chapman. Modelling provenance
collection points and their impact on provenance graphs. In Proceedings of the
International Provenance and Annotation Workshop (IPAW’16), pages 146–157, 2016.

[70] Fernando Chirigati, Juliana Freire, David Koop, and Cláudio Silva. Vistrails prove-
nance traces for benchmarking. In Proceedings of the Joint EDBT/ICDT 2013 Work-
shops, pages 323–324, 2013.

154 References

[71] Carlos E Scheidegger, Huy T Vo, et al. Querying and re-using workflows with vistrails.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data (MOD’08), pages 1251–1254, 2008.

[72] P. Missier, Stian Soiland-Reyes, Stuart Owen, et al. Taverna, reloaded. In Proceedings
of the International conference on scientific and statistical database management
(SSDBM’10), pages 471–481, 2010.

[73] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-
Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al. The Taverna workflow suite: designing
and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic
acids research, pages 557–561, 2013.

[74] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Green-
wood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, and Peter Li.
Taverna: a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045–3054, 2004.

[75] Pinar Alper, Khalid Belhajjame, and Carole A Goble. Static analysis of taverna
workflows to predict provenance patterns. Futur Gener Comput Syst, 75:310–329,
2017.

[76] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. Provenance Collection Sup-
port in the Kepler Scientific Workflow System. In Proceedings of the International
Provenance and Annotation Workshop (IPAW’06), pages 118–132, 2006.

[77] Daniel Crawl and Ilkay Altintas. A provenance-based fault tolerance mechanism for
scientific workflows. In Proceedings of the International Provenance and Annotation
Workshop (IPAW’08), pages 152–159, 2008.

[78] Kiran Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I Seltzer.
Provenance-Aware Storage Systems. In USENIX Annual Technical Conference, Gen-
eral Track, pages 43–56, 2006.

[79] K. K. Muniswamy-Reddy, Uri Braun, David A. Holland, et al. Layering in Provenance
Systems. In USENIX Annual Technical Conference, 2009.

[80] David A Holland, Margo I Seltzer, Uri Braun, and Kiran-Kumar Muniswamy-Reddy.
Passing the provenance challenge. Concurrency and Computation: Practice and
Experience, 20(5):531–540, 2008.

[81] Omar Benjelloun, Anish Das Sarma, Chris Hayworth, and Jennifer Widom. An
Introduction to ULDBs and the Trio System. Technical Report 2006-7, Stanford
InfoLab. Avail. at: http:// ilpubs.stanford.edu:8090/793/. Last visited on July 2019.

[82] Jennifer Widom. Trio: A System for Integrated Management of Data, Accu-
racy, and Lineage. Technical Report 2004-40, Stanford InfoLab. Available at:
http://ilpubs.stanford.edu:8090/658/. Last visited on July 2019.

[83] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, et al. Trio: A System for Data,
Uncertainty, and Lineage. In Proceedings of the International Conference on Very
Large Data Bases (VLDB’06), pages 1151–1154, September 2006.

References 155

[84] Michi Mutsuzaki, Martin Theobald, and et al. Trio-One: Layering Uncertainty and
Lineage on a Conventional DBMS. In Proceedings of the Conference on Innovative
Data Systems (CIDR’07), pages 269–274, 2007.

[85] Jennifer Widom. Trio: A System for Data, Uncertainty, and Lineage. In Managing
and Mining Uncertain Data. Springer, 2008.

[86] Parag Agrawal, Robert Ikeda, Hyunjung Park, and Jennifer Widom. Trio-ER: The
Trio System as a Workbench for Entity-Resolution. Technical report (march 2009),
Stanford University, 2009. Avail. at: http:// ilpubs.stanford.edu:8090/912/. Last visited
on July 2019.

[87] Yogesh L Simmhan, Beth Plale, Dennis Gannon, and Suresh Marru. Performance eval-
uation of the karma provenance framework for scientific workflows. In Proceedings
of the International Provenance and Annotation Workshop (IPAW’06), pages 222–236,
2006.

[88] Yogesh L Simmhan, Beth Plale, and Dennis Gannon. A framework for collecting
provenance in data-centric scientific workflows. In Proceedings of the International
Conference on Web Services (ICWS’06), pages 427–436. IEEE, 2006.

[89] Mohammad Rezwanul Huq, Andreas Wombacher, and Peter MG Apers. Inferring
fine-grained data provenance in stream data processing: reduced storage cost, high
accuracy. In Proceedings of the International Conference on Database and Expert
Systems Applications (DEXA’11), pages 118–127, 2011.

[90] Yogesh L Simmhan, Beth Plale, and Dennis Gannon. Karma2: Provenance manage-
ment for data-driven workflows. Web Services Research for Emerging Applications:
Discoveries and Trends: Discoveries and Trends, 317, 2010.

[91] Ian Foster, Jens Vöckler, Michael Wilde, and Yong Zhao. Chimera: A virtual data
system for representing, querying, and automating data derivation. In Proceedings of
SSDBM’02, pages 37–46. IEEE, 2002.

[92] Ben Clifford, Ian Foster, Jens-S Voeckler, et al. Tracking provenance in a virtual data
grid. Concurr Compute, 20(5):565–575, 2008.

[93] Yong Zhao, Michael Wilde, and Ian Foster. Applying the virtual data provenance
model. In Proceedings of the International Provenance and Annotation Workshop
(IPAW’06), volume 4145 of LNCS, pages 148–161. Springer, 2006.

[94] Olivier Biton, Sarah Cohen-Boulakia, and Susan B Davidson. Zoom*UserViews:
Querying relevant provenance in workflow systems. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB’07), pages 1366–1369. VLDB
Endowment, 2007.

[95] Sarah Cohen-Boulakia, Olivier Biton, Shirley Cohen, and Susan Davidson. Addressing
the Provenance Challenge using ZOOM. Concurr Comput, 20(5):497–506, 2008.

156 References

[96] Olivier Biton, Sarah Cohen-Boulakia, Susan B Davidson, and Carmem S Hara. Query-
ing and managing provenance through user views in scientific workflows. In Pro-
ceedings of the IEEE 24th International Conference on Data Engineering (ICDE’08),
pages 1072–1081. IEEE, 2008.

[97] James Cheney and Roly Perera. An analytical survey of provenance sanitization. In
Proceedings of the International Provenance and Annotation Workshop (IPAW’14),
pages 113–126, 2014.

[98] Yingwei Cui and Jennifer Widom. Lineage tracing in data warehouses. In Proceedings
of the 16th International Conference on Data Engineering, pages 367–378. IEEE,
2000.

[99] Yingwei Cui, Jennifer Widom, and Janet L Wiener. Tracing the lineage of view data
in a warehousing environment. ACM Transactions on Database Systems (TODS),
25(2):179–227, 2000.

[100] Yingwei Cui and Jennifer Widom. Practical lineage tracing in data warehouses. In
Proceedings of the 16th International Conference on Data Engineering (ICDE’00),
pages 367–378. IEEE, 2000.

[101] Janet Wiener, Himanshu Gupta, Wilburt Labio, et al. A system prototype for warehouse
view maintenance. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (MOD’95), pages 26–33, 1995.

[102] Yong Zhao, M Hategan, and et al. Swift: Fast, Reliable, Loosely Coupled Parallel
Computation. In IEEE International Conference on Services Computing - Workshops
(SCW’07), pages 199–206, 2007.

[103] Luiz MR Gadelha Jr, Ben Clifford, Marta Mattoso, et al. Provenance management in
Swift. Futur Gener Comput Syst, 27(6):775–780, 2011.

[104] Anderson Marinho, Daniel de Oliveira, Eduardo Ogasawara, et al. Deriving scientific
workflows from algebraic experiment lines: A practical approach. Futur Gener
Comput Syst, 68:111–127, 2017.

[105] Michael Wilde, Mihael Hategan, Justin M Wozniak, et al. Swift: A language for
distributed parallel scripting. Parallel Computing, 37(9):633–652, 2011.

[106] Paul Groth, Simon Miles, and Luc Moreau. PReServ: Provenance recording for
services. UK e-Science All Hands Meeting, 2005.

[107] Michael Stonebraker, Jolly Chen, Nobuko Nathan, et al. Tioga: Providing Data
Management Support for Scientific Visualization Applications. In Proceedings of the
International Conference on Very Large Data Bases (VLDB’93), pages 25–38, 1993.

[108] Allison Woodruff and Michael Stonebraker. Supporting Fine-grained Data Lineage
in a Database Visualization Environment. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE’97), pages 91–102, 1997.

References 157

[109] Alexander Aiken, Jolly Chen, Michael Stonebraker, and Allison Woodruff. Tioga-2:
A Direct Manipulation Database Visualization Environment. In Proceedings of the
Twelfth International Conference on Data Engineering (ICDE’96), pages 208–217,
1996.

[110] E. Deelman, Gurmeet Singh, Mei-Hui Su, et al. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Scientific Programming,
13(3):219–237, 2005.

[111] Jihie Kim, Ewa Deelman, Yolanda Gil, et al. Provenance Trails in the Wings/Pegasus
System. Concurr Comput, 20(5):587–597, 2008.

[112] Ewa Deelman, James Blythe, Yolanda Gil, et al. Pegasus: Mapping scientific work-
flows onto the grid. In Proceedings of the 2nd European Across Grids Conference
(EAGC’04), pages 11–20. Springer, 2004.

[113] Yolanda Gil, Varun Ratnakar, Ewa Deelman, et al. Wings for pegasus: Creating
large-scale scientific applications using semantic representations of computational
workflows. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence (AAAI’07), volume 22, page 1767, 2007.

[114] Ewa Deelman, Gaurang Mehta, Gurmeet Singh, et al. Pegasus: mapping large-
scale workflows to distributed resources. In Workflows for e-Science, pages 376–394.
Springer, 2007.

[115] Daniel Garijo, Yolanda Gil, and Óscar Corcho. Abstract, link, publish, exploit: An
end to end framework for workflow sharing. Futur Gener Comput Syst, 75:271–283,
2017.

[116] Yolanda Gil, Varun Ratnakar, Jihie Kim, et al. Wings: Intelligent workflow-based
design of computational experiments. IEEE Intelligent Systems, 26(1):62–72, 2011.

[117] Peter Buneman, Adriane Chapman, and James Cheney. Provenance Management in
Curated Databases. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (MOD’06), pages 539–550, 2006.

[118] Ashish Gehani and Dawood Tariq. SPADE: support for provenance auditing in
distributed environments. In Proceedings of the 13th International Middleware Con-
ference, pages 101–120, 2012.

[119] Ashish Gehani and Minyoung Kim. Mendel: Efficiently verifying the lineage of data
modified in multiple trust domains. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing (HPDC’10), pages 227–239.
ACM, 2010.

[120] Sheung Chi Chan, Ashish Gehani, James Cheney, et al. Expressiveness benchmarking
for system-level provenance. In Proceedings of the International Workshop on Theory
and Practice of Provenance (TaPP’17). USENIX Association, 2017.

[121] Manolis Stamatogiannakis, Hasanat Kazmi, Hashim Sharif, et al. Trade-offs in
automatic provenance capture. In Proceedings of the International Provenance and
Annotation Workshop (IPAW’16), pages 29–41, 2016.

158 References

[122] Ashish Gehani, Hasanat Kazmi, and Hassaan Irshad. Scaling spade to “big prove-
nance”. In Proceedings of the International Workshop on Theory and Practice of
Provenance (TaPP’16), pages 26–33. USENIX Association, 2016.

[123] Zachary G Ives, Nitin Khandelwal, Aneesh Kapur, and Murat Cakir. ORCHESTRA:
Rapid, Collaborative Sharing of Dynamic Data. In Proceedings of the Conference on
Innovative Data Systems (CIDR’05), pages 107–118, 2005.

[124] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Update
Exchange with Mappings and Provenance. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB’07), pages 675–686, 2007.

[125] Todd J. Green, Gregory Karvounarakis, Nicholas E. Taylor, et al. ORCHESTRA: facil-
itating collaborative data sharing. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (MOD’07), pages 1131–1133, 2007.

[126] Todd J Green and Val Tannen. The semiring framework for database provenance. In
Proceedings of PODS’17, pages 93–99. ACM, 2017.

[127] Zachary G Ives, Todd J Green, Grigoris Karvounarakis, et al. The orchestra collabora-
tive data sharing system. ACM SIGMOD Record, 37(3):26–32, 2008.

[128] Boris Glavic. Perm: Efficient Provenance Support for Relational
Databases. PhD thesis, University of Zurich, 2010. Available at:
http://www.zora.uzh.ch/44573/1/dissGlavic.pdf. Last visited on July 2019.

[129] Bahareh Arab, Dieter Gawlick, Venkatesh Radhakrishnan, et al. A Generic Provenance
Middleware for Database Queries, Updates, and Transactions. In Proceedings of the
International Workshop on Theory and Practice of Provenance (TaPP’14), 2014.

[130] Boris Glavic, Renée J. Miller, and Gustavo Alonso. Using SQL for Efficient Generation
and Querying of Provenance Information. In In search of elegance in the theory and
practice of computation: a Festschrift in honour of Peter Buneman, pages 291–320,
2013.

[131] Boris Glavic and Gustavo Alonso. Perm: Processing Provenance and Data on the same
Data Model through Query Rewriting. In Proceedings of the 25th IEEE International
Conference on Data Engineering (ICDE’09), pages 174–185, 2009.

[132] Boris Glavic and Gustavo Alonso. Provenance for Nested Subqueries. In Proceedings
of the 12th International Conference on Extending Database Technology (EDBT’09),
pages 982–993, 2009.

[133] Boris Glavic and Gustavo Alonso. The Perm Provenance Management System in Ac-
tion. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (MOD’09) (Demonstration Track), pages 1055–1058, 2009.

[134] Xing Niu, Raghav Kapoor, Boris Glavic, et al. Interoperability for Provenance-aware
Databases using PROV and JSON. In Proceedings of the International Workshop on
Theory and Practice of Provenance (TaPP’15), 2015.

References 159

[135] Bahareh Arab, Dieter Gawlick, Vasudha Krishnaswamy, et al. Reenacting Transactions
to Compute their ProvenA system prototype for warehouse view maintenanceance.
Technical Report IIT/CS-DB-2014-02, Illinois Institute of Technology, 2014. Available
at: http://cs.iit.edu/ dbgroup/pdfpubls/AD14.pdf. Last visited on July 2019.

[136] Seokki Lee, Yuchen Tang, Sven Köhler, et al. An Efficient Implementation Of Game
Provenance In DBMS. Technical Report IIT/CS-DB-2015-02, Illinois Institute of
Technology, 2015.

[137] Xing Niu, Raghav Kapoor, and Boris Glavic. Heuristic and Cost-based Optimization
for Provenance Computation. In Proceedings of the International Workshop on Theory
and Practice of Provenance (TaPP’15), 2015.

[138] James Frew and Peter Slaughter. Es3: A demonstration of transparent provenance for
scientific computation. In Proceedings of the International Provenance and Annotation
Workshop (IPAW’08), volume 5272 of LNCS, pages 200–207. Springer, 2008.

[139] James Frew, Dominic Metzger, and Peter Slaughter. Automatic capture and recon-
struction of computational provenance. Concurr Comput, 20(5):485–496, 2008.

[140] Shawn Bowers, Timothy M. McPhillips, and Bertram Ludäscher. Provenance in
collection-oriented scientific workflows. Concurr Comput, 20(5):519–529, 2008.

[141] Deepavali Bhagwat, Laura Chiti cariu, Wang Chiew Tan, and Gaurav Vijayvargiya.
An annotation management system for relational databases. The VLDB Journal,
14(4):373–396, 2005.

[142] Laura Chiticariu, Wang Chiew Tan, and Gaurav Vijayvargiya. DBNotes: A Post-
It System for Relational Databases based on provenance. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (MOD’05), pages
942–944. ACM, 2005.

[143] Y. Amsterdamer, Susan B. Davidson, Daniel Deutch, et al. Putting Lipstick on Pig:
Enabling Database-style Workflow Provenance. PVLDB, 5(4):346–357, 2011.

[144] Roger S Barga and Luciano A Digiampietri. Automatic capture and efficient storage
of e-Science experiment provenance. Concurr Comput, 20(5):419–429, 2008.

[145] Philip J. Guo and Margo Seltzer. BURRITO: Wrapping Your Lab Notebook in
Computational Infrastructure. In Proceedings of the International Workshop on
Theory and Practice of Provenance (TaPP’12), 2012.

[146] Philip J. Guo. Software Tools to Facilitate Research Programming. PhD thesis,
Stanford University, May 2012.

[147] Peter Macko and Margo Seltzer. Provenance map orbiter: Interactive exploration of
large provenance graphs. In Proceedings of the International Workshop on Theory
and Practice of Provenance (TaPP’11), 2011.

[148] Adriane Chapman, Barbara T Blaustein, Len Seligman, and M David Allen. Plus:
A provenance manager for integrated information. In Proceedings of the IEEE
International Conference on Information Reuse and Integration (IRI’11), pages 269–
275. IEEE, 2011.

160 References

[149] Adriane Chapman, M David Allen, Barbara Blaustein, et al. Plus: Provenance for life,
the universe and stuff. VLDB’10, VLDB Endowment, pages 13–17, 2010.

[150] Barbara Blaustein, Len Seligman, Michael Morse, et al. Plus: Synthesizing privacy,
lineage, uncertainty and security. In Proceedings of the 24th International Conference
on Data Engineering Workshop (ICDEW’08), pages 242–245, 2008.

[151] Robert Ikeda, Hyunjung Park, and Jennifer Widom. Provenance for generalized map
and reduce workflows. In Proceedings of the Fifth Biennial Conference on Innovative
Data Systems (CIDR’11), pages 273–283, 2011.

[152] Hyunjung Park, Robert Ikeda, and Jennifer Widom. Ramp: A system for capturing
and tracing provenance in mapreduce workflows. PVLDB, 4(12):1351–1354, 2011.

[153] Emilio Rodriguez-Priego, Francisco J. García-Izquierdo, and Ángel Luis Rubio.
References-enriched Concept Map: a tool for collecting and comparing disparate
definitions appearing in multiple references. J. Information Science, 39(6):789–804,
2013.

[154] Novak, Joseph D. and Cañas, Alberto J. The theory underlying concept maps and
how to construct and use them. Technical report, 2008. Research report, 2006-01 Rev
2008-01. Florida Institute for Human and Machine Cognition, (2006). Available at
http://cmap.ihmc.us/docs/theory-of-concept-maps. Last visited on July 2019.

[155] Sérgio Manuel Serra da Cruz, Maria Luiza Machado Campos, and Marta Mattoso.
Towards a Taxonomy of Provenance in Scientific Workflow Management Systems. In
Proceedings of the IEEE Congress on Services, Part I, SERVICES I, pages 259–266,
2009.

[156] Szymon Klarman, Stefan Schlobach, and Luciano Serafini. Formal Verification of
Data Provenance Records. In Proceedings of the 11th International Semantic Web
Conference (ISWC’12) Part I, pages 215–230, 2012.

[157] Sean Bechhofer, David De Roure, Matthew Gamble, Carole Goble, and Iain Buchan.
Research objects Towards exchange and reuse of digital knowledge. The Future of the
Web for collaborative science. Raleigh: nature Precedings, 2010.

[158] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and Juliana
Freire. noworkflow: capturing and analyzing provenance of scripts. In International
Provenance and Annotation Workshop, pages 71–83. Springer, 2014.

[159] Paul Groth. The origin of data: Enabling the determination of provenance in multi-
institutional scientific systems through the documentation of processes. PhD thesis,
University of Southampton, 2007. Available at https://eprints.soton.ac.uk/264649/.
Last visited on July 2019.

[160] ProvExtract. Available at https://openprovenance.org/tools/extract/. Last visited on
July 2019.

[161] ProvVis. Available at https://openprovenance.org/vis/. Last visited on July 2019.

http://cmap.ihmc.us/docs/theory-of-concept-maps
https://eprints.soton.ac.uk/264649/
https://openprovenance.org/tools/extract/
https://openprovenance.org/vis/

References 161

[162] L. Carata, Sherif Akoush, Nikilesh Balakrishnan, et al. A primer on provenance.
Communications of the ACM, 57(5):52–60, January 2014.

[163] L. Carata, Sherif Akoush, Nikilesh Balakrishnan, et al. A Primer on Provenance.
Communications of the ACM, 12(3):10:10–10:23, March 2014.

[164] Carlos Sáenz-Adán, Beatriz Pérez, Trung Dong Huynh, and Luc Moreau. UML2PROV:
automating provenance capture in software engineering. In Proceedings of the 44th
International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM), pages 667–681, 2018.

[165] Carlos Sáenz-Adán, Luc Moreau, Beatriz Pérez, Simon Miles, and Francisco J. García-
Izquierdo. Automating provenance capture in software engineering with UML2PROV.
In Proceedings of the International Provenance and Annotation Workshop (IPAW’18),
pages 58–70, 2018.

[166] Alexander Knapp and Stephan Merz. Model checking and code generation for uml
state machines and collaborations. Proceedings of the 5th Wsh. Tools for System
Design and Verification (FM-TOOLS’02), pages 59–64, 2002.

[167] Natalia Kwasnikowska, Luc Moreau, and Jan Van Den Bussche. A formal account of
the open provenance model. ACM Trans. Web, 9(2):10:1–10:44, May 2015.

[168] Carlos Sáenz-Adán, and Beatriz Pérez and Francisco J. García-Izquierdo and Luc
Moreau. Supplementary material submitted to IEEE Transactions on Software Engi-
neering. Available at https://www.unirioja.es/cu/casaenad/thesis.html.

[169] P. Clarke, B. Malloy, and P. Gibson. Using a taxonomy tool to identify changes in OO
software. In Proceedings of the 7th European Conference on Software Maintenance
and Reengineering (CSMR’03), pages 213–222, 2003.

[170] Michael A. C. Johnson, Luc Moreau, Adriane Chapman, Poshak Gandhi, and Carlos
Sáenz-Adán. Using the provenance from astronomical workflows to increase pro-
cessing efficiency. In Proceedings of the International Provenance and Annotation
Workshop (IPAW’18), pages 101–112, 2018.

[171] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison Wesley, 1995.

[172] Mikaël Peltier, Jean Bézivin, and Gabriel Guillaume. Mtrans: A general framework,
based on xslt, for model transformations. In Workshop on Transformations in UML
(WTUML), Genova, Italy, 2001.

[173] Catalina Martínez-Costa, Marcos Menárguez-Tortosa, and Jesualdo Tomás Fernández-
Breis. Clinical data interoperability based on archetype transformation. Journal of
Biomedical Informatics, 44(5):869–880, 2011.

[174] Java Class Proxy. Java Platform, Standard Edition 8 API Spec-
ification (Update 121), January 2017. Available at url-
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html. Last visited on
July 2019.

 https://www.unirioja.es/cu/casaenad/thesis.html

162 References

[175] Java Interface InvocationHandler. Java Platform, Standard Edition 8 API Specification
(Update 121), January 2017. Available at https://docs.oracle.com/javase/8/docs/api/
java/lang/reflect/InvocationHandler.html. Last visited on July 2019.

[176] Danius Michaelides, Trung Dong Huynh, and Luc Moreau. PROV-TEMPLATE: A
Template System for PROV Documents, 2014. Available at https://provenance.ecs.
soton.ac.uk/prov-template. Last visited on July 2019.

[177] MongoDB Inc. Version 4.0.2, August 2018. Available at www.mongodb.org/. Last
visited on July 2019.

[178] Jónathan Heras, César Domínguez, Eloy Mata, Vico Pascual, Carmen Lozano, Carmen
Torres, and Myriam Zarazaga. GelJ – a tool for analyzing DNA fingerprint gel images.
BMC Bioinformatics, 16(1), Aug 2015.

[179] Marina May Read. Trends in DNA Fingerprint Research. Nova Science Publishers,
Inc, New York, USA, 2005.

[180] Ira D. Baxter and Michael Mehlich. Reverse engineering is reverse forward engineer-
ing. Science of Computer Programming, 36(2):131 – 147, 2000.

[181] Akanksha Agarwal. Trace Abstraction Based on Automatic Detection of Execution
Phases. PhD thesis, Concordia University, 2011.

[182] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software engi-
neering (2. ed.). Prentice Hall, 2003.

[183] Visual Paradigm, UML modeling tool. Version 15.0, December 2018. Available at
www.visual-paradigm.com/. Last visited on July 2019.

[184] Papyrus, Modeling environment . Version 2.0.2, December 2018. Available at eclipse.
org/papyrus/. Last visited on July 2019.

[185] Modelio, UML modeling tool. Version 3.6, December 2018. Available at www.
modeliosoft.com/. Last visited on July 2019.

[186] The ObjectAid UML Explorer for Eclipse. Version 1.2.2, November 2017. Available
at www.objectaid.com/. Last visited on July 2019.

[187] Thoms Ball. The concept of dynamic analysis. In ACM SIGSOFT Software Engineer-
ing Notes, volume 24, pages 216–234. Springer-Verlag, 1999.

[188] MaintainJ. Version 4.2.0, 2014. Available at maintainj.com/. Last visited on July 2019.

[189] Lionel C. Briand, Yvan Labiche, and Y. Miao. Towards the reverse engineering
of UML sequence diagrams. In 10th Working Conference on Reverse Engineering,
WCRE 2003, Victoria, Canada, November 13-16, 2003, pages 57–66, 2003.

[190] Yann-Gaël Guéhéneuc and Tewfik Ziadi. Automated reverse-engineering of uml v2. 0
dynamic models. In Proceedings of the 6th ECOOP Workshop on Object-Oriented
Reengineering, 2005.

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/InvocationHandler.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/InvocationHandler.html
https://provenance.ecs.soton.ac.uk/prov-template
https://provenance.ecs.soton.ac.uk/prov-template
www.mongodb.org/
www.visual-paradigm.com/
eclipse.org/papyrus/
eclipse.org/papyrus/
www.modeliosoft.com/
www.modeliosoft.com/
www.objectaid.com/
maintainj.com/

References 163

[191] Neil Walkinshaw, Kirill Bogdanov, Shaukat Ali, and Mike Holcombe. Automated
discovery of state transitions and their functions in source code. Software Testing,
Verification and Reliability, 18(2):99–121, 2008.

[192] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards automat-
ing source-consistent uml refactorings. In International Conference on the Unified
Modeling Language, pages 144–158. Springer, 2003.

[193] Graham Klyne and Paul Groth (eds.). PROV-AQ: Provenance Access and Query.
W3C Note, World Wide Web Consortium, 2013. Available at https://www.w3.org/TR/
2013/NOTE-prov-aq-20130430/#accessing-provenance-records. Last visited on July
2019.

https://www.w3.org/TR/2013/NOTE-prov-aq-20130430/#accessing-provenance-records
https://www.w3.org/TR/2013/NOTE-prov-aq-20130430/#accessing-provenance-records

Appendix A

Provenance systems analysed in the
systematic review

In Tables A.1 and A.2 we show the set of provenance systems we have identified in the
systematic review in Chapter 3. More specifically, per each system we show (1) the identifier
together with its name, and (2) a brief description of the system.

Table A.1 A brief description of the surveyed systems (I)

[ID] System Description
[S1] VisTrails It is a scientific workflow system developed at the University of Utah. One re-

markable aspect of this system is the notion of provenance of workflow evolution.
[S2] myGrid/Taverna It is a domain-independent Workflow Management System. Initially created by

the myGrid team, it is now an Apache Incubator project.
[S3] Kepler provenance Kepler-provenance is an add-on module which adds provenance features to the

Kepler Scientific Workflow System presented in [76].
[S4] PASS PASS (Provenance Aware Storage System) was developed at Harvard University

as a storage system that supports the automatic collection and maintenance of
provenance.

[S5] Trio Developed at Stanford was defined as a new kind of database management system
which extends relational databases with support for provenance and uncertainty.

[S6] Karma It is a provenance collection and management system developed at Indiana
University. It collects provenance for data-centric workflows in a service oriented
architecture [87].

[S7] Chimera Chimera is a part of the GryPhyN project, a research project which develops
techniques for processing and managing large distributed data sets in data grids.

[S8] ZOOM ZOOM, for short, presents a model of provenance for scientific workflows. Its
main goal is to provide users with an interface to query provenance information
provided by a workflow system as well as to help them construct an appropriate
user view [94].

[S9] Cui 2000 We refer as Cui 2000 to the lineage tracing system developed by Cui and Widom
in 2000 [99], and which is based on the WHIPS [101] data warehousing system.

166 Provenance systems analysed in the systematic review

Table A.2 A brief description of the surveyed systems (II)

[ID] System Description
[S10] Swift A successor to Chimera (an outgrowth of the Chimera’s Virtual Data Language),

Swift is a scalable and reliable Grid workflow system that bridges scientific
workflows with parallel computing.

[S11] PASOA/PreServ PreServ (Provenance Recording for Services), developed within the PASOA
project, is a software package that allows developers to integrate process doc-
umentation recording into their applications.

[S12] Tioga Tioga is a DBMS-centric visualization tool developed at Berkeley. Based on this
tool, Tioga-2 was designed in 1996 as a more powerful and much easier to program
direct manipulation system.

[S13] Wings-Pegasus Wings-Pagasus constitute two different tolls which have been integrated to form a
provenance system which works as a whole used for grid computing [113].

[S14] Buneman In [117], Buneman et al. present a proposal in which the user’s actions are tracked
while browsing source databases and copying data into a target curated database,
in order to record the user’s actions in a convenient, queryable form. This proposal
is known by the copy-paste-model. In this review, we refer to this proposal as
Buneman, for short.

[S15] SPADE SPADE was developed as a distributed service for collecting, certifying, and
querying the provenance of Grid data.

[S16] ORCHESTA It is a collaborative data sharing system which focuses mainly on managing
disagreement among multiple data representations and instances.

[S17] Perm-GProM GProM (Generic Provenance Middleware) is defined as a generic provenance
database middleware that enables computation of provenance for queries, updates,
and transactions over several database back-ends (e.g., Oracle).

[S18] ES3 ES3 (Earth System Science Server) is a software system designed for automatically
and transparently capturing, managing, and reconstructing the provenance of
arbitrary, unmodified computational sequences.

[S19] COMAD CoMaD (Collection-Oriented Modeling and Design) is a provenance annotation-
based framework, implemented as a part of the Kepler Scientific Workflow System.

[S20] DBNotes DBNotes is an annotation management system for relational database systems.
[S21] Lipstick It is a framework that marries database-style and workflow provenance models,

capturing internal state as well as fine-grained dependencies in workflow prove-
nance.

[S22] Redux REDUX is a provenance management system which generates workflow prove-
nance automatically during runtime. It uses the Windows Workflow Foundation
(WinWF) [144] as workflow engine.

[S23] BURRITO It is a Linux-based system that helps programmers organize, annotate and recall
past insights about their experiments [146].

[S24] PLUS PLUS is a provenance manager that was inspired by U.S. government requirements
to enable provenance capture, storage and use across multi-organizational systems.

[S25] RAMP RAMP (Reduce And Map Provenance) is an extension to Hadoop that supports
provenance capture and tracing for MapReduce workflows. More specifically,
MapReduce is a programming model and an associated implementation for pro-
cessing and generating large data sets.

Appendix B

Description of the transformation
patterns used in this memoir

This chapter provides the systematic explanation of those transformation patterns that have
been used to illustrate this memoir (see Table B.1). The complete explanation of all the
patterns together is provided in [168].

Table B.1 Set of patterns used to illustrate this memoir

UML Sequence Diagrams Patterns
Pattern identifier Page
Sequence diagram Pattern 1 (SeqP1) 168
Sequence diagram Pattern 2 (SeqP2) 172

UML Class Diagrams Patterns
Pattern identifier Page
Class diagram Pattern 10 (ClP10) 177

UML State Machine Patterns
Pattern identifier Page
State machine diagram Pattern 1 (StP1) 184
State machine diagram Pattern 3 (StP3) 189

168 Description of the transformation patterns used in this memoir

Identifier Sequence diagram Pattern 1 (SeqP1)

Context

A participant (the sender) interacts with another participant (the recipient) by calling an
operation in the recipient, and then, it continues immediately. The call causes the recipient to
execute the operation.

Key elements

Sender The participant that makes the operation call.

Operation call The call that starts the execution of the operation.

Input data The information (if any) passed to the operation through the Opera-
tion call.

Operation execution The execution of the operation.

UML Diagram

Key
Element

UML Rationale

Sender Lifeline 1 It models the Sender participant involved in the
interaction.

Operation call Asynchronous Message 2 It models the Operation call when the Sender does
not wait for a response, but instead continues im-
mediately after sending the message.

Input data Input Arguments 3 They specify the information passed to the opera-
tion through the Operation call.

Operation exe-
cution

ExecutionSpecification 4 It shows the period of time that the recipient’s par-
ticipant devotes to the Operation execution.

:Lifeline1 :Lifeline2

asynch(inArgs)

1

3

4
2

Fig. B.1 UML representation that models the context given by SeqP1

Sequence diagram Pattern 1 (SeqP1)

169

Mapping to PROV

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

var:operation

wasAssociatedWithc

wasStartedBy

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:senderObject

1
2

3

4

a

b

u2p:typeName var:senderClassName

usedd

prov:value var:inputValue
u2p:typeName var:inputType

Fig. B.2 PROV template generated from the UML representation used in SeqP1 (Figure B.1)

PROV elements

UML PROV / id Rationale

Lifeline 1 prov:Agent 1 /
var:senderObject

The sender Lifeline 1 is mapped
to a prov:Agent identified by
var:senderObject. It assumes
the responsibility for starting the
ExecutionSpecification 4 .

Asynchronous Message 2 prov:Entity 2 /
var:starter

The Asynchronous Message 2 that initi-
ates the ExecutionSpecification 4 of
the recipient is a prov:Entity with identi-
fier var:starter.

Input Arguments 3 prov:Entity 3 /
var:input

Each argument of Input Arguments 3

is a separate prov:Entity identified as
var:input.

ExecutionSpecification 4 prov:Activity 4 /
var:operation

The ExecutionSpecification 4

is a prov:Activity with identifier
var:operation.

Sequence diagram Pattern 1 (SeqP1)

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity

170 Description of the transformation patterns used in this memoir

Attributes

PROV Element Attribute / Value Description

var:senderObject 1 u2p:typeName /
var:senderClassName

The value var:senderClassName is the string
with the name of the class to which the
var:senderObject 1 belongs.

var:starter 2 prov:type /
u2p:RequestMessage

The value u2p:RequestMessage shows that
var:starter 2 is a request message.

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct repre-
sentation of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the
name of the class to which var:input 3 be-
longs.

var:operation 4 prov:type /
var:operationName

The value var:operationName is the name of
the operation var:operation 4 .

tmpl:startTime /
var:operationStartTime

var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 4 .

tmpl:endTime /
var:operationEndTime

var:operationEndTime is an xsd:dateTime
value for the end of var:operation 4 .

PROV relations

PROV Relation Description
a prov:hadMember It states that var:input is one of the elements in var:starter.
b prov:wasStartedBy var:operation is deemed to have been started by var:starter.
c prov:wasAssociatedWith It is the assignment of responsibility to var:senderObject for

var:operation.
d prov:used It is the beginning of utilizing var:starter by var:operation.

Discussion

• Figure B.2 depicts the responsibility of the Sender lifeline (var:senderObject) for the
recipient lifeline to execute the operation (var:operation). However, the recipient lifeline
is not modeled in this PROV template, even though it is the participant that executes
the operation. This decision is based on other patterns’ better ability to both (1) identify
the participant responsible for executing that operation, and (2) give a more detailed
information about the implications that the execution of that operation has in the recipient
participant. More specifically, these patterns are: StP1-StP3, which mainly focus on
representing possible changes in an object’s state caused by an Operation execution; and
patterns ClP1-ClP10, which put more stress on how the execution affects the status of the
object responsible for performing such an execution.

Sequence diagram Pattern 1 (SeqP1)

http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#RequestMessage
http://uml2prov.unirioja.es/ns/u2p.html#RequestMessage
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#used

171

• Although the context of this pattern does not explicitly state that Input data should be passed
to the operation, we have considered this circumstance with the aim of covering a wider
spectrum of cases. When the Operation call lacks Input data, the UML representation in
Figure B.1 will not include Input Arguments 3 . As a consequence, the resulting PROV
template in Figure B.2 will also lack var:input 3 and its associated PROV relations.
Finally, we remark that the resulting PROV template does not reflect the usage of var:input
3 by var:operation 4 because SqDs stick to the flow of information, not its usage. Patterns
addressing CDs (ClP1-ClP10) are better suited for this purpose.

Sequence diagram Pattern 1 (SeqP1)

172 Description of the transformation patterns used in this memoir

Identifier Sequence diagram Pattern 2 (SeqP2)

Context

A participant (the sender) interacts with another participant (the recipient) by calling an
operation in the recipient and waiting for a response. The call causes the recipient to execute
the operation and to respond the sender after the execution.

Key elements

Sender The participant that makes the operation call.

Operation call The call that starts the execution of the operation.

Input data The information (if any) passed to the operation through the Opera-
tion call.

Operation execution The execution of the operation.

Response The recipient’s response to the Operation call.

Output data The information contained in the Response.

UML Diagram

Key
Element

UML Rationale

Sender Lifeline 1 It models the Sender participant involved in the
interaction.

Operation call Synchronous Message 2 It models the Operation call when the Sender waits
for a response.

Input data Input Arguments 3 They specify the information passed to the opera-
tion through the Operation call.

Operation exe-
cution

ExecutionSpecification 4 It shows the period of time that the recipient’s par-
ticipant devotes to the Operation execution.

Response Reply Message 5 It specifies the response to the Operation call.
Output data Output Arguments 6 They specify the information contained in the Re-

sponse.

Sequence diagram Pattern 2 (SeqP2)

173

:Lifeline1 :Lifeline2

synch(inArgs)

1

3

4

2

synch(outArgs)
6

5

Fig. B.3 UML representation that models the context given by SeqP2

Mapping to PROV

var:starter

var:input

hadMember

prov:type u2p:RequestMessage

prov:value var:inputValue
u2p:className var:inputType

var:operation

wasAssociatedWithc

wasStartedBy
prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

var:senderObject

1
2

3

4

a

b

var:response

var:output

hadMember

prov:type u2p:ReplyMessage

prov:value var:outputValue
u2p:className var:outputType

5

6

f

wasGeneratedByd

wasDerivedFrome

usedg

u2p:typeName var:senderClassName

Fig. B.4 PROV template generated from the UML representation used in SeqP2 (Figure B.3)

PROV elements

UML PROV / id Rationale

Lifeline 1 prov:Agent 1 /
var:senderObject

The sender Lifeline 1 is mapped
to a prov:Agent identified by
var:senderObject. It assumes
the responsibility for starting the
ExecutionSpecification 4 .

Synchronous Message 2 prov:Entity 2 /
var:starter

The Synchronous Message 2 that initi-
ates the ExecutionSpecification 4 of
the recipient is a prov:Entity with identifier
var:starter.

Sequence diagram Pattern 2 (SeqP2)

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

174 Description of the transformation patterns used in this memoir

PROV elements

UML PROV / id Rationale

Input Arguments 3 prov:Entity 3 /
var:input

Each argument of Input Arguments 3

is a separate prov:Entity identified as
var:input.

ExecutionSpecification 4 prov:Activity 4 /
var:operation

The ExecutionSpecification 4

is a prov:Activity with identifier
var:operation.

Reply Message 5 prov:Entity 5 /
var:response

The Reply Message 5 that responds to the
Synchronous Message 2 is a prov:Entity
with identifier var:response.

Output Arguments 6 prov:Entity 6 /
var:output

Each argument of Output Arguments 6

is a separate prov:Entity identified as
var:output.

Attributes

PROV Element Attribute / Value Description

var:senderObject 1 u2p:typeName /
var:senderClassName

The value var:senderClassName is the string
with the name of the class to which the
var:senderObject 1 belongs.

var:starter 2 prov:type /
u2p:RequestMessage

The value u2p:RequestMessage shows that
var:starter 2 is a request message.

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the direct repre-
sentation of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the string with the
name of the class to which the var:input 3

belongs.
var:operation 4 prov:type /

var:operationName
The value var:operationName is the name of
the operation var:operation 4 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 4 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an
xsd:dateTime value for the end of
var:operation 4 .

Sequence diagram Pattern 2 (SeqP2)

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#RequestMessage
http://uml2prov.unirioja.es/ns/u2p.html#RequestMessage
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime

175

Attributes

PROV Element Attribute / Value Description

var:response 5 prov:type /
u2p:ReplyMessage

The value u2p:ReplyMessage shows that
var:response 5 is a reply message.

var:output 6 prov:value /
var:outputValue

The value var:outputValue is the direct repre-
sentation of var:output 6 .

u2p:typeName /
var:outputType

The value var:outputType is a string with the
name of the class to which var:output 6 be-
longs.

PROV relations

PROV Relation Description
a prov:hadMember It states that var:input is one of the elements in var:starter.
b prov:wasStartedBy var:operation is deemed to have been started by var:starter.
c prov:wasAssociatedWith It is the assignment of responsibility to var:senderObject for

var:operation.
d prov:wasGeneratedBy It is the completion of production of var:response by

var:operation.
e prov:wasDerivedFrom It is the construction of var:response based on var:starter recep-

tion.
f prov:hadMember It states that var:output is one of the elements in var:response.
g prov:used It is the beginning of utilizing var:starter by var:operation.

Discussion

• Figure B.4 depicts the responsibility of the Sender lifeline (var:senderObject) for executing
the operation (var:operation) in a recipient lifeline. However, the recipient lifeline is not
modeled in this PROV template, even though it is the participant that executes the operation.
This decision is based on other patterns’ better ability to both (1) identify the participant
responsible for executing that operation, and (2) give a more detailed information about
the implications that the execution of that operation has in the recipient participant. More
specifically, these patterns are: StP1-StP3, which mainly focus on representing possible
changes in an object’s state caused by an Operation execution; and patterns ClP1-ClP10,
which put more stress on how the execution affects the status of the object responsible for
performing such an execution.

• Although the context of this pattern does not explicitly state that Input data should be passed
to the operation, we have considered this circumstance with the aim of covering a wider

Sequence diagram Pattern 2 (SeqP2)

http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#ReplyMessage
http://uml2prov.unirioja.es/ns/u2p.html#ReplyMessage
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasStartedBy
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#used

176 Description of the transformation patterns used in this memoir

spectrum of cases. When the Operation call lacks Input data, the UML representation in
Figure B.3 will not include Input Arguments 3 . As a consequence, the resulting PROV
template in Figure B.4 will also lack var:input 3 and its associated PROV relations.
Finally, we remark that the resulting PROV template does not reflect the usage of var:input
3 by var:operation 4 because SqDs stick to the flow of information, not its usage. Patterns
addressing CDs (ClP1-ClP10) are better suited for this purpose.

Sequence diagram Pattern 2 (SeqP2)

177

Identifier Class diagram Pattern 10 (ClP10)

Context

The execution of an operation on an object directly adds the information passed to the opera-
tion as new element(s) of a concrete object’s collection attribute, thus provoking a change in
the object’s status.

Key elements

Object The object to which the operation to be executed belongs.

Pre-operation object The object with the status before the execu-
tion of the operation.

Post-operation object The object with the status after the execution
of the operation.

Operation execution The execution of the behaviour specified by the operation.

Input data The information passed into the Operation execution.

Object’s attributes All the characteristics of the Object. Since, as a consequence of the
Operation execution, a concrete collection attribute changes, we have
identified:

Modified collection attribute The modified Object’s attribute.

Unmodified attributes The not modified Object’s attributes.

UML Diagram

Key
Element

UML Rationale

Object Class 1 Objects are classified attending to their characteristics and be-
haviour by means of classes. Thus, we use Class 1 to
represent the Object both before and after the execution of the
operation (Pre-operation object and Post-operation object, re-
spectively).

Operation
execution

Operation 2

«add»
The Operation 2 stereotyped by «add» represents the exe-
cuted operation. Concretely, the stereotype «add» denotes that a
new element (or elements) is directly added to a concrete collec-
tion attribute.

Input data Input Parameters 3 They specify the information passed into the Operation execu-
tion.

Object’s at-
tributes

Attributes 4 They represent the characteristics of the Object.

Class diagram Pattern 10 (ClP10)

178 Description of the transformation patterns used in this memoir

Class
+attributeName: Type1

add +operationName(in param1: Type2, in param2:Type3) 2
3

1

4

Fig. B.5 UML representation that models the context given by ClP10

Mapping to PROV

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

u2p:typeName var:typeName
prov:type u2p:Object

u2p:typeName var:typeName
prov:type u2p:Object

var:modCollAttribute

4.1

wasDerivedFrom

g

h hadMember

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

Fig. B.6 PROV template generated from the UML representation used in ClP10 (Figure B.5)

PROV elements

UML PROV / id Rationale

Class 1
prov:Entity 1.1 /
var:preObject

The Pre-operation object, i.e. the object with the
status before the execution of the operation, which
is represented by Class 1 , is a prov:Entity
identified as var:preObject.

prov:Entity 1.2 /
var:postObject

The Post-operation object, i.e. the object with the
status after the execution of the operation, which
is represented by Class 1 , is a prov:Entity
identified as var:postObject.

Operation 2

«add»
prov:Activity 2 /
var:operation

The execution of Operation 2 stereotyped
by «add» is a prov:Activity identified by
var:operation.

Class diagram Pattern 10 (ClP10)

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity

179

PROV elements

UML PROV / id Rationale

Input Parameters 3 prov:Entity 3 /
var:input

Each parameter of Input Parameters 3 is a
separate prov:Entity identified as var:input.

Attributes 4
prov:Entity 4.1 /
var:modCollAttribute

The Modified collection attribute (belonging to
Attributes 4) is a prov:Entity with identifier
var:modCollAttribute.
Additionally, each element in this collec-
tion is a separate prov:Entity identified by
var:collElement 4.1.1

prov:Entity 4.2 /
var:attribute

Each Unmodified attribute (belonging to
Attributes 4) is mapped to a separate
prov:Entity with identifier var:attribute.

Attributes

PROV Element Attribute / Value Description

var:preObject 1.1 u2p:typeName /
var:typeName

The value var:typeName is the string
with the name of the class to which
var:preObject 1.1 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that
var:preObject 1.1 is an object.

var:postObject 1.2 u2p:typeName /
var:typeName

The value var:typeName is the string
with the name of the class to which
var:postObject 1.2 belongs.

prov:type /
u2p:Object

The value u2p:Object shows that
var:postObject 1.2 is an object.

var:operation 2 prov:type /
var:operationName

The value var:operationName
is the name of the operation
var:operation 2 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 2 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an
xsd:dateTime value for the end of
var:operation 2 .

var:input 3 prov:value /
var:inputValue

The value var:inputValue is the di-
rect representation of var:input 3 .

u2p:typeName /
var:inputType

The value var:inputType is the
string with the name of the type of
var:input 3 .

Class diagram Pattern 10 (ClP10)

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#Object
http://uml2prov.unirioja.es/ns/u2p.html#Object
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#Object
http://uml2prov.unirioja.es/ns/u2p.html#Object
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName

180 Description of the transformation patterns used in this memoir

Attributes

PROV Element Attribute / Value Description

var:modCollAttribute 4.1 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
var:modCollAttribute 4.1 is an at-
tribute.

prov:value /
var:newCollValue

The value var:newCollValue
is the direct representation of
var:modCollAttribute 4.1 .

u2p:attributeName /
var:newCollName

The value var:newCollName
is the string with the name of
var:modCollAttribute 4.1 .

u2p:typeName /
var:newCollType

The value var:newCollType is the
string with the name of the type of
var:modCollAttribute 4.1 .

var:attribute 4.2 prov:type /
u2p:Attribute

The value u2p:Attribute shows that
attribute 4.2 is an attribute.

prov:value /
var:attributeValue

The value var:attributeValue is
the direct representation of attribute
4.2 .

u2p:attributeName /
var:attributeName

The value var:attributeName is the
string with the name of attribute 4.2 .

u2p:typeName /
var:attributeClass

The value var:attributeClass is
the string with the name of the type
of attribute 4.2 .

PROV relations

PROV Relation Description
a prov:used It is the beginning of utilizing var:input by var:operation.
b prov:used It is the beginning of utilizing var:preObject by var:operation.
c prov:wasGeneratedBy It is the completion of production of var:postObject by

var:operation.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:hadMember It states that var:attribute is one of the elements in

var:postObject.
f prov:wasDerivedFrom It is the construction of var:postObject based on var:input.
g prov:hadMember It states that var:modCollAttribute is one of the elements in

var:postObject.

Class diagram Pattern 10 (ClP10)

http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#Attribute
http://uml2prov.unirioja.es/ns/u2p.html#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#attributeName
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#Attribute
http://uml2prov.unirioja.es/ns/u2p.html#Attribute
http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#attributeName
http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#hadMember

181

PROV relations

PROV Relation Description

h prov:hadMember It states that var:input is one of the elements in
var:modCollAttribute. This is due to the fact that in this
context the input information is directly added to the object’s collection
attribute.

i prov:wasGeneratedBy It is the completion of production of var:modCollAttribute by
var:operation.

j prov:hadMember It states that var:collElement is one of the elements in
var:modCollAttribute.

Discussion

• Among the Class Diagrams patterns, patterns from ClP6 to ClP10 address the execution
of operations that change an object’s status. While, ClP6 changes the object’s status as
a whole (being the concrete modified attributes unknown or irrelevant), in patterns ClP7-
ClP10 the concrete attributes modified by the Operation execution are explicitly known. In
contrast to ClP7 which directly sets the information passed into the Operation execution
as values of concrete object’s attributes, the other mentioned patterns use such information
to change the object’s status as a whole or the values of concrete object’s attributes. It
must also be noted that patterns ClP9 and ClP10 address the execution of operations which
remove or add elements from/into an object’s collection attribute, while patterns ClP7 and
ClP8 affect either a univalued attribute or a collection attribute as a whole.

• A question that might arise is why in Figure B.6 var:attribute 4.2 is associated with
var:postObject 1.2 (which represents the object with the status after the execution of the
operation), but it is not associated with var:preObject 1.1 (the object with the status before
the execution). We have made this decision because an object that acts as a var:preObject

in an operation execution, was a var:postObject in a previous operation execution. Thus,
the attributes associated with such an object in a var:preObject were registered when it
previously played the role of var:postObject.

• Although the context of this pattern does not explicitly state that output data should be
obtained from the Operation execution, this could be the case. However, we do not include
this output data in this pattern description to avoid overburden both the UML and PROV
explanations with information out of the scope of the context.

Aiming at giving an insight into how the inclusion of Output data affects both UML
representation and the resulting PROV template, Figure B.7 depicts a UML representation

Class diagram Pattern 10 (ClP10)

http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#hadMember

182 Description of the transformation patterns used in this memoir

with the Output data modeled as Output Parameters 5 (in this case with return direction,
though the translation of inout and out directions would be equivalent). Figure B.8 depicts
its transformation into PROV. Both Figure B.7 and B.8 highlight the elements related to
the inclusion of the Output data by blurring the elements coming from Figure B.5 and B.6,
respectively.

Class
+attributeName: Type1

add +operationName(in param1: Type2, in param2:Type3): 2
3

1

4

5
Type4

Fig. B.7 UML representation that models the context given by ClP10, including Output
Parameters

var:attribute

var:preObject

var:operation

var:postObject

var:input

1.1

1.2

2

3

4.2

a

b

c

f

e

d wasDerivedFrom

wasGeneratedBy

i wasGeneratedBy

var:collElement

4.1.1

j hadMember

hadMember

hadMember

prov:value var:inputValue
u2p:typeName var:inputType

used

used

u2p:typeName var:typeName
prov:type u2p:Object

u2p:typeName var:typeName
prov:type u2p:Object

var:modCollAttribute

4.1

wasDerivedFrom

g

h hadMember

prov:type u2p:Attribute
prov:value var:attributeValue
u2p:attributeName var:attributeName
u2p:typeName var:attributeType

prov:type u2p:Attribute
prov:value var:modCollAttributeValue
u2p:attributeName var:modCollAttributeName
u2p:typeName var:modCollAttributeType

tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:operationName

var:output
k wasDerivedFrom

l wasGeneratedBy

prov:value var:outputValue
u2p:typeName var:outputType

m wasDerivedFrom

5

Fig. B.8 PROV template generated from the UML representation used in ClP10, including
Output Parameters (Figure B.7)

PROV elements

UML PROV / id Rationale

Output Parameters 5 prov:Entity 5 /
var:output

Each parameter of Output Parameters 5 is a sepa-
rate prov:Entity identified as var:output.

PROV relations

PROV Relation Description
k prov:wasDerivedFrom It is the construction of var:output based on var:input.
l prov:wasGeneratedBy It is the completion of production of var:output by var:operation.

m prov:wasDerivedFrom It is the construction of var:output based on var:preObject.

Class diagram Pattern 10 (ClP10)

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasDerivedFrom

183

Attributes

PROV Element Attribute / Value Description

var:output 5 prov:value /
var:outputValue

The value var:outputValue is the direct representation of
var:output 5 .

u2p:typeName /
var:outputType

The value var:outputType is the string with the name of the
type of var:output 5 .

Class diagram Pattern 10 (ClP10)

http://www.w3.org/ns/prov#value
http://uml2prov.unirioja.es/ns/u2p.html#typeName

184 Description of the transformation patterns used in this memoir

Identifier State machine diagram Pattern 1 (StP1)

Context

As a consequence of the execution of an operation, an object is created in its first state. This
operation is usually the constructor of the object.

Key elements

Object The object created as a consequence of the execution of the opera-
tion.

First object’s state The first state after the object creation. This is
the first state the object may undergo during its
lifetime.

Object creation The execution of the operation that creates the object.

UML Diagram

Key
Element

UML Rationale

Object Object 1 It represents the created object.
Note: since Object lacks a graphical representation in UML
State Machine diagrams, Figure B.9 does not depict this ele-
ment.

StateMachine 2 In UML, a StateMachine represents the set of states an Object
can go through during its lifetime in response to events.

Object creation Initial
Pseudostate 3

It refers to the execution of the operation that creates the Object,
leading it to its first state.

First object’s state State 4 It models the first state of the Object.

State Machine2

State

43

Fig. B.9 UML representation that models the context given by StP1

State machine diagram Pattern 1 (StP1)

185

Mapping to PROV

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine

var:operation

4

3

a

c

b

specializationOf

wasGeneratedBy

prov:type var:className
u2p:state var:targetState

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

1

2

u2p:typeName var:typeName

Fig. B.10 PROV template generated from the UML representation used in StP1 (Figure B.9)

PROV elements

UML PROV / id Rationale

Object 1 prov:Agent 1 /
var:object

The Object 1 bears some form of responsibility for the
existence of the StateMachine 2 , since the existence
of StateMachine 2 does not make sense without an
Object 1 . To reflect this fact, the Object 1 is mapped
to a prov:Agent identified by var:object.

StateMachine 2 prov:Entity 2 /
var:objectSM

The StateMachine 2 is a prov:Entity identified by
var:objectSM. It reflects the abstraction of the object’s
states, which will be specialized by each concrete state
the object goes through.

Initial
Pseudostate 3

prov:Activity 3 /
var:operation

The Initial Pseudostate 3 , referring to the execu-
tion of the operation that creates the Object 1 , is a
prov:Activity with the identifier var:operation.

State 4 prov:Entity 4 /
var:postObject

The State 4 is a prov:Entity identified by
var:postObject. We use this name for this identifier
because it corresponds to the state of the Object 1 after
(post) the object creation.

State machine diagram Pattern 1 (StP1)

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity

186 Description of the transformation patterns used in this memoir

Attributes

PROV Element Attribute / Value Description

var:object 1 u2p:typeName /
var:typeName

The value var:typeName is the string with the name
of the class to which var:object 1 belongs.

var:objectSM 2 prov:type /
u2p:StateMachine

The value u2p:StateMachine shows that
var:objectSM 2 is a state machine.

var:operation 3 prov:type /
var:operationName

The value var:operationName is the name of the
operation var:operation 3

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 3 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an xsd:dateTime
value for the end of var:operation 3 .

var:postObject 4 prov:type /
var:typeName

The value var:typeName is the name of the class to
which the object in the state var:postObject 4

belongs.
u2p:state /
var:targetState

The value var:targetState is the string with the
name of the state var:postObject 4 .

PROV relations

PROV Relation Description
a prov:wasAttributedTo It is the assignment of responsibility to var:object for var:objectSM.
b prov:wasGeneratedBy It is the completion of production of var:postObject by

var:operation.
c prov:specializationOf var:postObject is a specialization of var:objectSM.

Discussion

• Note that Figure B.9 only contains simple states. We do not deal with composite or subma-
chine states, and focus only on simple states, because the former may be transformed into
the latter by resorting to a flattening process consisting of removing composite states as
well as submachine states. In fact, to flatten State Machine diagrams is a very common
approach in contexts such as model checking and code generation [166]. However, the
user might be interested in representing composite states directly into the PROV templates,
perhaps because she/he is interested in collecting information about them, or just because
she/he does not want to flatten the State Machine diagram. We can give an insight into how
composite states can be mapped to PROV by placing the elements from Figure B.9 inside
a Composite State 5 (see Figure B.11). A reader familiar with the UML specification
will realize that the semantics of the Initial Pseudostate 3 in Figures B.9 and B.11 are

State machine diagram Pattern 1 (StP1)

http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#StateMachine
http://uml2prov.unirioja.es/ns/u2p.html#StateMachine
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#state
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#specializationOf

187

different, but these semantic nuances would have no effect on the PROV transformation.
The transformation of Figure B.11 is shown in Figure B.12. Both Figure B.11 and B.12
highlight the added elements by blurring the elements coming from Figure B.9 and Fig-
ure B.10, respectively. Briefly speaking, the new Composite State 5 is translated into
a prov:Entity identified by var:compState 5 , which is associated with var:objectSM 2

and var:targetState 4 by means of the relations d prov:specializationOf and e

prov:hadMember, respectively. At this point, it is also worth remarking that for this example
we have used a simple composite state (i.e., Composite State 5), which means that only
one substate is active at a given time within such a state; but we could have used orthogonal
composite states instead, which means that within such a state several substates are active
at the same time. Note that both types of composite states would be translated into the
same PROV template (see Figure B.12); nevertheless, the generated bindings would be
different. In case of a simple composite state, as there can be only one active substate at the
same time, there would be only one value associated with the variable var:postObject 4 .
Conversely, in case of an orthogonal composite state, var:postObject 4 will be associated
with several values (as many as active states).

State Machine2

State2

4

Composite State5

3

Fig. B.11 Excerpt of a UML State Machine diagram locating the UML elements from StP1 in a
simple composite state

var:postObject

var:objectSM

wasAttributedTovar:operation

4

3

a

d

b

specializationOf

wasGeneratedBy

1

2

e hadMember

var:compState

5

var:object
prov:type var: operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

prov:type var:className
u2p:state var:targetState

prov:type u2p:StateMachine

u2p:state var:compStateName

u2p:typeName var:typeName

Fig. B.12 PROV template generated from the UML diagram in Figure B.11

State machine diagram Pattern 1 (StP1)

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#hadMember

188 Description of the transformation patterns used in this memoir

PROV elements

UML PROV / id Rationale

Composite State 5 prov:Entity 5 /
var:compState

The Composite State 5 is a prov:Entity identi-
fied by var:compState.

Attributes

PROV Element Attribute / Value Description

var:compState 5 u2p:state /
var:compStateName

The value var:compStateName is the string with the
name of the state var:compState 5

PROV relations

PROV Relation Description

d prov:specializationOf var:compState is a specialization of var:objectSM.
e prov:hadMember It states that var:postObject is one of the elements in

var:compState.

State machine diagram Pattern 1 (StP1)

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p.html#state
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#hadMember

189

Identifier State machine diagram Pattern 3 (StP3)

Context

As a consequence of the execution of an operation, an object changes its state.

Key elements

Object The object that changes its state.

Pre-operation object’s state The state of the object before the ex-
ecution of the operation. This is one
of the states the object may undergo
during its lifeline.

Post-operation object’s state The state of the object after the exe-
cution of the operation. This is one
of the states the object may undergo
during its lifeline.

Operation execution The execution of the operation that leads a change in the Object’s
state.

UML Diagram

Key
Element

UML Rationale

Object Object 1 It represents the object that changes its state.
Note: since Object lacks a graphical representation in UML
State Machine diagrams, Figure B.13 does not depict this ele-
ment.

StateMachine 2 In UML, a StateMachine can be used to express the set of
object’s states through which the Object goes during its lifetime
in response to events.

Pre-operation
object’s state

State 3 It models the state of the Object before the Operation execution.

Post-operation ob-
ject’s state

State 4 It models the state of the Object after the Operation execution.

Operation execu-
tion

Event 5 It specifies that the Operation execution that triggers the change
in the Object’s state has taken place.

State machine diagram Pattern 3 (StP3)

190 Description of the transformation patterns used in this memoir

State1
event

State Machine2

3 5

State2

4

Fig. B.13 UML representation that models the context given by StP3

Mapping to PROV

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine

var:preObject specializationOf

var:operation

wasInvalidatedBy

3

4

5

a

c

b

d

g

f

e

specializationOf

wasDerivedFrom
wasGeneratedBy

used

1

2

prov:type var: className
u2p:state var:sourceState

prov:type var: className
u2p:state var:targetState

prov:type var:operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:typeName var:typeName

Fig. B.14 PROV template generated from the UML representation used in StP3 (Figure B.13)

PROV elements

UML PROV / id Rationale

Object 1 prov:Agent 1 /
var:object

The Object 1 bears some form of responsibility for the
existence of the StateMachine 2 , since the existence of
StateMachine 2 does not make sense without an Object
1 . To reflect this fact, the Object 1 is mapped to a
prov:Agent identified by var:object.

StateMachine 2 prov:Entity 2 /
var:objectSM

The StateMachine 2 is a prov:Entity identified by
var:objectSM. It reflects the abstraction of the object’s states,
which will be specialized by each state the object goes through.

State 3 prov:Entity 3 /
var:preObject

The State 3 is a prov:Entity identified by
var:preObject. We use this name for this identifier
because it corresponds to the state of the Object 1 before
(pre) the execution of the operation.

State 4 prov:Entity 4 /
var:postObject

The State 4 is a prov:Entity identified by
var:postObject. We use this name for this identifier
because it corresponds to the state of the Object 1 after
(post) the execution of the operation.

Event 5 prov:Activity 5 /
var:operation

The Event 5 represents that the execution of an operation
has taken place. Such an execution is a prov:Activity with
the identifier var:operation.

State machine diagram Pattern 3 (StP3)

http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Agent
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Activity
http://www.w3.org/ns/prov#Activity

191

Attributes

PROV Element Attribute / Value Description

var:object 1 u2p:typeName /
var:typeName

The value var:typeName is the string with the
name of the class to which var:object 1 belongs.

var:objectSM 2 prov:type /
u2p:StateMachine

The value u2p:StateMachine shows that
var:objectSM 2 is a state machine.

var:preObject 3 prov:type /
var:typeName

The value var:typeName is the name of the class
to which the object in the state var:preObject 3

belongs.
u2p:state /
var:sourceState

The value var:sourceState is the string with the
name of the state var:preObject 3 .

var:postObject 4 prov:type /
var:typeName

The value var:typeName is the name of the class to
which the object in the state var:postObject 4

belongs.
u2p:state /
var:targetState

The value var:targetState is the string with the
name of the state var:postObject 4 .

var:operation 5 prov:type /
var:operationName

The value var:operationName is the name of the
operation var:operation 5 .

tmpl:startTime /
var:operationStartTime

The var:operationStartTime is an
xsd:dateTime value for the start of
var:operation 5 .

tmpl:endTime /
var:operationEndTime

The var:operationEndTime is an
xsd:dateTime value for the end of
var:operation 5 .

PROV relations

PROV Relation Description
a prov:wasAttributedTo It is the assignment of responsibility to var:object for var:objectSM.
b prov:specializationOf var:preObject is a specialization of var:objectSM.
c prov:specializationOf var:postObject is a specialization of var:objectSM.
d prov:wasDerivedFrom It is the update of var:preObject resulting in var:postObject.
e prov:used It is the beginning of utilizing var:preObject by var:operation.
f prov:wasGeneratedBy It is the completion of production of var:postObject by

var:operation.
g prov:wasInvalidatedBy It shows that var:preObject is not longer available for use.

Discussion

• Figure B.13 only contains simple states. We do not deal with composite or submachine
states, and focus only on simple states, because the former may be transformed into the

State machine diagram Pattern 3 (StP3)

http://uml2prov.unirioja.es/ns/u2p.html#typeName
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#StateMachine
http://uml2prov.unirioja.es/ns/u2p.html#StateMachine
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#state
http://www.w3.org/ns/prov#type
http://uml2prov.unirioja.es/ns/u2p.html#state
http://www.w3.org/ns/prov#type
https://openprovenance.org/tmpl#startTime
https://www.w3.org/TR/xmlschema11-2#dateTime
https://openprovenance.org/tmpl#endTime
https://www.w3.org/TR/xmlschema11-2#dateTime
http://www.w3.org/ns/prov#wasAttributedTo
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#wasDerivedFrom
http://www.w3.org/ns/prov#used
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasInvalidatedBy

192 Description of the transformation patterns used in this memoir

latter by resorting to a flattening process consisting of removing composite states as well as
submachine states. In fact, to flatten State Machine diagrams is a very common approach
in contexts such as model checking and code generation [166]. However, the user might
be interested in representing composite states directly into the PROV templates, perhaps
because she/he is interested in collecting information about them, or just because she/he
does not want to flatten the State Machine diagram. We can give an insight into how
composite states can be mapped to PROV by placing the elements from Figure B.13 inside
a Composite State 5 (see Figure B.15). A reader familiar with the UML specification will
realize that the semantics of the UML representation in Figures B.13 and B.15 are different,
but these semantic nuances would have no effect on the PROV transformation. The
transformation of Figure B.15 is shown in Figure B.16. Both Figure B.15 and B.16 highlight
the added elements by blurring the elements coming from Figure B.13 and Figure B.14,
respectively. Briefly speaking, the new Composite State 6 is translated into a prov:Entity

identified by var:compState 6 , which is associated with var:objectSM 2 , var:preObject
3 , and var:postObject 4 by means of the relations j prov:specializationOf, h

prov:hadMember, and i prov:hadMember, respectively. At this point, it is also worth
remarking that for this example we have used a simple composite state (i.e., Composite
State 6), which means that only one substate is active at a given time within such a state;
but we could have used orthogonal composite states instead, which means that within such
a state several substates are active at the same time. Note that both types of composite
states would be translated into the same PROV template (see Figure B.16); nevertheless,
the generated bindings would be different. In case of a simple composite state, as there
can be only one active substate at the same time, there would be only one value associated
with the variable var:preObject 3 and another value with var:postObject 4 . Conversely,
in case of an orthogonal composite state, var:preObject 3 and var:postObject 4 will be
associated with several values (as many as active states).

State1
event

State Machine2

3 5

State2

4

Composite State6

Fig. B.15 Excerpt of a UML State Machine diagram locating the UML elements from StP3 in a
simple composite state

State machine diagram Pattern 3 (StP3)

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember

193

var:postObject

var:objectSM

var:object

wasAttributedTo

prov:type u2p:StateMachine
var:preObject

hadMember

var:operation

wasInvalidatedBy

3

4

5
a

i

h

d

g

f

e

prov:type var:className
u2p:state var:sourceState

hadMember

wasGeneratedBy

prov:type var:className
u2p:state var:targetState

used

1

2

var:compState

6

specializationOfj

wasDerivedFrom

prov:type var: operationName
tmpl:startTime var:operationStartTime
tmpl:endTime var:operationEndTime

u2p:state var:compStateName

u2p:typeName var:typeName

Fig. B.16 PROV template generated from the UML diagram in Figure B.15

PROV elements

UML PROV / id Rationale

Composite State 6 prov:Entity 6 /
var:compState

The Composite State 6 is a prov:Entity identified
by var:compState.

Attributes

PROV Element Attribute / Value Description

var:compState 6 u2p:state /
var:compStateName

The value var:compStateName is the string with the
name of the state var:compState 6

PROV relations

PROV Relation Description

h prov:hadMember It states that var:preObject is one of the elements in var:compState.
i prov:hadMember It states that var:postObject is one of the elements in

var:compState.
j prov:specializationOf var:compState is a specialization of var:objectSM.

State machine diagram Pattern 3 (StP3)

http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov#Entity
http://uml2prov.unirioja.es/ns/u2p.html#state
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#hadMember
http://www.w3.org/ns/prov#specializationOf

Appendix C

Sequence of interactions with GelJ

Figure C.1 depicts the sequence of interactions among the 13 substeps of GelJ used for
performing the evaluation of UML2PROV. Each rounded rectangle corresponds to a task
performed by the user, such a task is named by the text provided by the GelJ interface (e.g.,
corp for cropping the image). When there is a rounded rectangles without text means that
there are no tasks performed in that step. Additionally, these rounded rectangles may go
with a label at the top right, this label denotes the number of times that such a task has been
performed. Finally, we use green arrows for specifying when the user goes to the following
step (next), or red arrows when the user goes to the previous step (back).

196 Sequence of interactions with GelJ

cr
op n

ex
t

u
n
d
o

in
ve

rt

cr
op

in
ve

rt

au
to

in
ve

rt

au
to

h
or

iz
on

ta
l

fl
ip

ro
ta

te
9
0

h
or

iz
on

ta
l

fl
ip

h
or

iz
on

ta
l

fl
ip

d
el

et
e

ad
d

M
ov

in
g
 s

lid
e

b
ar

 t
h
e

fu
rt

h
es

t
le

ft

ad
d

d
el

et
e

S
te

p
 1

.1

S
te

p
 1

.2

S
te

p
 1

.3

S
te

p
 1

.4

S
te

p
 2

.1

S
te

p
 2

.2

S
te

p
 2

.3

S
te

p
 3

.1

S
te

p
 3

.2

S
te

p
 3

.3

S
te

p
 4

.1

S
te

p
 4

.2

S
te

p
 4

.3

n
ex

t

n
ex

t

n
ex

t

n
ex

t
n
ex

t

n
ex

t

n
ex

t

n
ex

t

n
ex

t

n
ex

t
n
ex

t

n
ex

t

n
ex

t

n
ex

t
n
ex

t

n
ex

t

n
ex

t

n
ex

t

n
ex

t

b
ac

k

b
ac

k

b
ac

k

b
ac

k
b
ac

k

b
ac

k

n
ex

t

b
ac

k
b
ac

k

b
ac

k

b
ac

k

2
0

2

1
0

1
0

1

1
0

6
6

5
5

N
o

ta
sk

s
p
er

fo
rm

ed

To
 p

er
fo

rm
 t

as
k

ta
sk

N
am

e
ta

sk
N

am
e

ta
sk

N
am

eN
Ta

sk
 t

as
kN

am
e

is
 p

er
fo

rm
ed

 N
 t

im
es

L
E

G
E

N
D

Fig. C.1 Sequence of interactions with GelJ used to perform the evaluation of UML2PROV

	Saenz Adan, Carlos_texto_completo_no_colgar_todvia_falta_version_revisada_autor.pdf
	Table of contents
	List of figures
	List of tables
	List of Abbreviations
	1 Introduction
	1.1 Main goal and contributions of the thesis
	1.2 Thesis overview
	1.3 Publications

	2 Background
	2.1 Conceptual Background
	2.1.1 The Unified Modeling Language
	2.1.2 Provenance-related background

	2.2 Implementation Background
	2.2.1 Model-Driven Approaches
	2.2.2 Aspect Oriented Programming

	3 State of the art: A systematic review of provenance systems
	3.1 Introduction
	3.2 Towards the definition of a taxonomy of provenance systems characteristics
	3.3 Taxonomy of provenance systems characteristics: an overview
	3.3.1 General Aspects dimension
	3.3.2 Subject dimension
	3.3.3 Storage dimension
	3.3.4 Data Capture dimension
	3.3.5 Data Access dimension
	3.3.6 Non–functional Requirements dimension

	3.4 Open problems
	3.4.1 Integration
	3.4.2 Interoperability
	3.4.3 Computational overhead
	3.4.4 Querying

	3.5 Conclusions

	4 Conceptual definition of UML2PROV
	4.1 Motivation for UML2PROV
	4.2 UML2PROV architecture
	4.2.1 Stakeholders
	4.2.2 Key facets
	4.2.3 How to use UML2PROV

	4.3 From UML to PROV: the transformation patterns
	4.3.1 Considered UML elements
	4.3.2 Principles for the definition of UML to PROV patterns
	4.3.3 Structure of the patterns
	4.3.4 Overview of the defined transformation patterns
	4.3.5 Three patterns as an example

	4.4 Towards the generation of bindings. BGM features and requirements
	4.5 The consistency between templates and bindings
	4.6 Conclusions

	5 Implementation of UML2PROV
	5.1 Introduction
	5.2 A Proof of concept for implementing UML2PROV
	5.2.1 Automatization of the transformation patterns: an XSLT-based approach
	5.2.2 Automatization of the generation of the BGM: a Proxy-pattern and XSLT-based approach

	5.3 Reference implementation
	5.3.1 Automatization of the transformation patterns: an ATL and XPand-based approach
	5.3.2 Automatization of the generation of the BGM: an event-based and an XPand-based approach
	5.3.3 Fulfilment of BGM requirements

	5.4 Conclusions

	6 Evaluation
	6.1 Introduction
	6.2 GelJ and the Design Strategies
	6.2.1 UML design of GelJ
	6.2.2 Strategies for obtaining GelJ design

	6.3 Analysing the benefits and trade-offs of using UML2PROV
	6.3.1 Aspect 1: Generation of the provenance design
	6.3.2 Aspect 2: Instrumentation of the application
	6.3.3 Aspect 3: Maintenance of provenance capabilities
	6.3.4 Aspect 4: Run-time overhead and storage needs
	6.3.5 Aspect 5: Quality of provenance

	6.4 Conclusions and discussion

	7 Conclusions and future work
	7.1 Summary of results
	7.1.1 A systematic review of provenance systems
	7.1.2 A conceptual definition of UML2PROV
	7.1.3 An implementation of UML2PROV

	7.2 Limitation of the study and future work

	Conclusiones
	References
	Appendix A Provenance systems analysed in the systematic review
	Appendix B Description of the transformation patterns used in this memoir
	Appendix C Sequence of interactions with GelJ

