
Gadea Mata Martínez

Julio Rubio García y Miguel Morales Fuciños

Facultad de Ciencia y Tecnología

Matemáticas y Computación

Título

Director/es

Facultad

Titulación

Departamento

TESIS DOCTORAL

Curso Académico

Processing biomedial images for the study of treatments
related to neurodegenerative diseases

Autor/es



© El autor
© Universidad de La Rioja, Servicio de Publicaciones, 2017

publicaciones.unirioja.es
E-mail: publicaciones@unirioja.es 

Processing biomedial images for the study of treatments related to 
neurodegenerative diseases, tesis doctoral de Gadea Mata Martínez, dirigida por Julio 

Rubio García y Miguel Morales Fuciños (publicada por la Universidad de La Rioja), se
difunde bajo una Licencia Creative Commons Reconocimiento-NoComercial-

SinObraDerivada 3.0 Unported.
 Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los 

titulares del copyright.



UNIVERSIDAD DE LA RIOJA

DOCTORAL THESIS

Processing Biomedical Images for the
Study of Treatments Related to

Neurodegenerative Diseases

Author:
Gadea Mata Martínez

Supervisors:
Julio Rubio García, PhD

Miguel Morales Fuciños, PhD

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Grupo de Informática
Departamento de Matemáticas y Computación

2017

http://www.unirioja.es
https://esus.unirioja.es/psycotrip/
http://www.unirioja.es/dptos/dmc/


ii

This work has been partially supported by an FPI grant from the Universidad
de La Rioja (FPI-UR-13) and projects MTM2014-54151-P from the Spanish Ministe-
rio de Economía y Competitividad, programme of grants ADER2011 from Agencia de
Desarrollo Económico de La Rioja, grant COLABORA 2010/07 under the title “Formal-
isation of Mathematics (For Math) FP7 STREP Project, number 243847” and grants
ATUR2014, ATUR2015, ATUR2016 from the Universidad de La Rioja.



iii

Abstract

The study of neuronal cell morphology and function in neurodegenerative disease
processes is essential in order to develop suitable treatments.

In fact, studies such as the quantification of either synapses or the neuronal den-
sity are instrumental in measuring the evolution and the behaviour of neurons under
the effects of certain physiological conditions.

In order to analyse this data, fully automatic methods are required. To this
end, we have studied and developed methods inspired by Computational Alge-
braic Topology and Machine Learning techniques. Notions such as the definition
of connected components, or others related to the persistent homology and zigzag
persistence theory have been used to compute the synaptic density or to recognise
the neuronal structure. In addition, machine learning methods have been used to
determine where neurons are located in large images and to ascertain which are the
best features to describe this kind of cells.





v

Resumen

El estudio de la morfología y de la funcionalidad de céludas neuronales en el pro-
ceso de enfermedades neurodegenerativas es de alta importancia para desarrollar
fármacos y terapias adecuadas.

De hecho, estudios como la cuantificación de sinapsis o la densidad neuronal
son fundamentales para medir la evolución y el comportamiento de neuronas bajo
el efecto de ciertas condiciones fisiológicas.

Para el análisis de estos datos se necesitan métodos completamente automatiza-
dos. Con esta finalidad, hemos estudiado y desarrollado métodos inspirados en la
Topología Algebraíca Computacional y técnicas de aprendizaje automatizado. No-
ciones como la definición de componente conexa u otras relacionadas con la ho-
mología persistente y la teoría de la persistencia zigzag han sido usadas para calcular
la densidad sináptica o reconocer la estructura neuronal. Además, se han utilizado
métodos de aprendizaje automatizado, para conocer dónde se encuentran las neu-
ronas en imágenes de gran tamaño y para determinar cuáles son las características
que mejor describen a este tipo de células.





vii

Contents

Abstract iii

Resumen v

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Synaptic Density and Verification 5
2.1 Synaptic Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Scientific Validations of the Computations . . . . . . . . . . . . 11
2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.7 Availability and Software Requirements . . . . . . . . . . . . . . 16

2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Neural Density 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Availability and Software Requirements . . . . . . . . . . . . . . . . . . 38

4 Neuron detection in stack images 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 A Persistent Homology Interpretation . . . . . . . . . . . . . . . . . . . 39

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.5 Availability and Software Requirements . . . . . . . . . . . . . . 48

4.3 Zigzag Persistence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 48



viii

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.5 Availability and Software Requirements . . . . . . . . . . . . . . 57

5 Location of neurons 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 An Approach Using Intensity Features . . . . . . . . . . . . . . . . . . . 59

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.4 Annotation of the Image Data . . . . . . . . . . . . . . . . . . . . 71

5.3 Methodology Used Over Binary Images . . . . . . . . . . . . . . . . . . 71
5.4 Methodology Used Over Textures Features . . . . . . . . . . . . . . . . 74

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Deeper Study about Features of Images and Machine Learning Algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6.4 Discussion and Current Work . . . . . . . . . . . . . . . . . . . . 87

6 Conclusions 89

7 Future Work 91

A Definitions 93

B Biology and Acquisition 101
B.1 Experimental Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.1.1 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . 101
B.1.2 Primary Neuronal Cultures . . . . . . . . . . . . . . . . . . . . . 102
B.1.3 Immunocytochemistry of neurons in cultures . . . . . . . . . . . 102

B.2 Acquisition of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.2.1 Images for the Analysis of Synaptic Density . . . . . . . . . . . 103
B.2.2 Images for the Analysis of the Immunocytochemistry of Neu-

rons in Cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.2.3 Images for the Analysis of the Structure of GFP-Transfected

Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
B.2.4 Images for the Analysis of the GFP-Transfected Neurons . . . . 106

C Technology 107

D Validation process of the plug-in NeuronZigzagJ 111
D.1 First experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
D.2 Second experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



ix

E Results of Machine Learning Experiments 119

Bibliography 129





xi

List of Figures

1.1 Draw by Ramón y Cajal . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Workflow of SynapCountJ. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Ex. of neuron with two antibody markers . . . . . . . . . . . . . . . . . 8
2.3 SynapCountJ window to configure the analysis. . . . . . . . . . . . . . 8
2.4 Window of threshold and result . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Binary image of connected components . . . . . . . . . . . . . . . . . . 9
2.6 Ex. of a high-content microscope image . . . . . . . . . . . . . . . . . . 10
2.7 Syanptic density study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Workflow to compute homology groups . . . . . . . . . . . . . . . . . . 14
2.9 Architecture of the I2EA framework integrating Coq . . . . . . . . . . . 25
2.10 Proof General with Coq2ACL2 extension . . . . . . . . . . . . . . . . . 28

3.1 Ex. of neurotoxicity cultures . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Ex. of a piece of a mosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Binary image with the nuclei . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Ex. the regions marked . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Study of the local intensity . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Ex. of a result image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Workflow of NucleusJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Interface NucleusJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Ex. of how the plug-in works . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Ex. tests with a transfected neuron . . . . . . . . . . . . . . . . . . . . . 40
4.2 Ex. of a Z-stack pre-processed . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Ex. of a process of filtration . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Ex. of a simplicial complex . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Ex. of a filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Ex. of barcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Summary of the connected components in a projection image . . . . . 44
4.8 Ex. of NeuronPersistentJ results . . . . . . . . . . . . . . . . . . . . . . . 46
4.9 Interfaz of NeuronzigzagJ . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.10 Ex. of neuron stained with DiI . . . . . . . . . . . . . . . . . . . . . . . . 55
4.11 Part of structure of a DiI-stained neuron . . . . . . . . . . . . . . . . . . 55
4.12 Graph of the results from the plug-in . . . . . . . . . . . . . . . . . . . . 55

5.1 Patch of a mosaic with neurons . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Graph of intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Ex. of using of the method . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Ex. of continuity in dendrites . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Ex. of the neurons found . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 Tests with different values . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Resutls vs solution by an expert . . . . . . . . . . . . . . . . . . . . . . . 66



xii

5.8 Histograms of the regions with and without neuron . . . . . . . . . . . 67
5.9 Manually-traced neurons . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.10 Ex. of combining different descriptors . . . . . . . . . . . . . . . . . . . 69
5.11 Ex. of binary patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.12 Graph of ROC space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.13 Ex. of a high-content microscope image . . . . . . . . . . . . . . . . . . 75
5.14 Ex. of a result using one of the machine learning techniques . . . . . . 79
5.15 Ex. of method for extracting positive patches . . . . . . . . . . . . . . . 81
5.16 Ex. of a mosaic sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.17 Ex. the SIFT-features in neruons and background patches . . . . . . . . 83
5.18 Error plot (AUROC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.1 Structure of a pyramidal hippocampal neuron . . . . . . . . . . . . . . 97

B.1 Ex. of image used to the study of Chapter 2 . . . . . . . . . . . . . . . . 104
B.2 Ex. of image used to the study of Chapter 3 . . . . . . . . . . . . . . . . 105
B.3 Ex. of images used for study, of Chapter 4 . . . . . . . . . . . . . . . . . 105
B.4 Ex. of image used to the study of Chapter 5 . . . . . . . . . . . . . . . . 106



xiii

List of Tables

2.1 Features of the analyzed software . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Features to quantify of the analyzed software . . . . . . . . . . . . . . . 15

4.1 Percentages of accuracy of NeuronPersistentJ . . . . . . . . . . . . . . . 47

5.1 Optimal values for the method . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Optimal values in the 2nd phase . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Theoretical confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Ex. of confusion matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Recall and precision for different combinations . . . . . . . . . . . . . . 74
5.6 Results of the first experiment . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7 Results of the second experiment . . . . . . . . . . . . . . . . . . . . . . 79
5.8 Features in each data set . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.9 Number of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.10 Percentage of the features selected . . . . . . . . . . . . . . . . . . . . . 87
5.11 Percentage of the features used to the selection . . . . . . . . . . . . . . 87

D.1 Results 1st experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
D.2 Summary of DiI-experiment . . . . . . . . . . . . . . . . . . . . . . . . . 115
D.3 Summary of GFP-experiment . . . . . . . . . . . . . . . . . . . . . . . . 116
D.4 Results 1st observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
D.5 Results 2nd observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
D.6 Results 3rd observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

E.1 Table of GLMNET results (1) . . . . . . . . . . . . . . . . . . . . . . . . . 120
E.2 Table of GLMNET results (2) . . . . . . . . . . . . . . . . . . . . . . . . . 121
E.3 Table of KNN results (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
E.4 Table of KNN results (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
E.5 Table of RF results (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
E.6 Table of RF results (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
E.7 Table of SVM results (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
E.8 Table of SVM results (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 127





xv

List of Abbreviations

1D 1 Dimensional
2D 2 Dimensional
3D 3 Dimensional
DAPI (see definition in Appendix A)
JML Java Modelling Language
FN False Negative
FP False Positive
GLMNET (see definition in Appendix A)
GFP Green Fluorescent Protein
HCA High-Content Analysis (see definition in Appendix A)
KNN k-Nearest Neighbours
MAP2B (see definition in Appendix A)
N (Condition) Negative
N’ (Predicted condition) Negative
NB Naïve Bayes
NMDA (see definition in Appendix A)
p precision (see definition in Appendix A)
P (Condition) Positive
P’ (Predicted condition) Positive
PI3K (see definition in Appendix A)
PO Proof Obligation
PPV Positive Predicted Value
PTD4-PI3K (see definition in Appendix A)
r recall (see definition in Appendix A)
RF Random Forests
RGB Red Green Blue (color model)
ROC Receiver Operating Characteristic (space)
ROI Region Of Interest
SIFT Scale Invarient Feature Transform
SVM Support Vector Machine
SSP Structural Synaptic Plasticity (group)
TN True Negative
TP True Positive
TPR True Positive Ratio
XLL Xmall Logical Language





xvii

List of Concepts

The definitions of these concepts are in Appendix A.

Adjacency
Artefact
Aspect Ratio
Centroid
Confusion Matrix
Connected component
DAPI
Dendrite
Feret’ s diameter
GLMNET
Gold Standard
High-Content Analysis
Homology group
Immunostaining
k-Means
k-Nearest Neighbours
Kurtosis
Machine Learning
Making an image binary with ImageJ
MAP2
Maximum
Mean

Median
Median Filter
Morphological operations
Neuron
NMDA
Noise
PI3K
Precision
PTD4-PI3K
Random Forests
Recall
ROC space
ROI
Skewness
Soma
Solidity
Standard Deviation
Supervised Learning
Support Vector Machine
Unsupervised Learning
Z-stack





xix

List of Symbols

N natural numbers
Z integer numbers
∅ empty set
H0 homology group of dimension 0
H1 homology group of dimension 1

XY XY-plane
Z Z-plane
µm microns
mm2 square millimeters
_c set complement
∪ union
∩ intersection
⊆ subset of
⊕ exclusive or - xor
	 symmetric difference





1

Chapter 1

Introduction

{Las neuronas son} células de formas
delicadas y elegantes, las misteriosas
mariposas del alma, cuyo batir de alas
quién sabe si esclarecerá algún día el
secreto de la vida mental.

Recuerdos de mi vida
Chapter VII of 2nd part

Santiago Ramón y Cajal.

Santiago Ramón y Cajal said, referring to neurons (Cajal, 1917): “they are cells of
delicate and elegant forms, the mysterious butterflies of the soul, whose wings flap
who knows if it will someday clarify the secret of the mental life”.

Ramón y Cajal spoke these words after spending countless hours examining
brain matter under a microscope, while all the time noting down what he saw in
pen and ink. Of course, since Ramón y Cajal drew these pictures two-hundred years
ago (see Figure 1.1) this technique has certainly advanced.

Nowadays, advanced microscopes acquire images, and their processing is faster
and more objective than in Ramón y Cajal's time. These advances led to the pos-
sibility of analysing samples in a more efficient and objective way, not to mention
time-saving for the researcher. This particular technological advance has been key
in the field of digital image processing. In fact, this branch of computer science was
originally developed for artificial intelligence and robotics.

A neurodegenerative disease occurs when there is a progressive loss of struc-
ture of the neuronal functions, which includes the death of neurons. Diseases such
as amyotrophic lateral sclerosis, Alzheimer's, Parkinson's and Huntington's disease
are the result of a neurodegenerative process. Until now, these diseases have been
incurable, although scientists are constantly searching for the means to understand
what occurs throughout these diseases and how the nervous system works in order
to discover a cure.

There are approximately 100 billion neurons in a brain. These cells are connected
to thousands of others forming a dense signal-processing network. This means that
the number of synapses (connections among neurons) is superior to 1,000 billions,
surpassing the amount of stars in the milky way. The pioneering works of Ramón y
Cajal suggested that neuronal morphology and physiology were intrinsically correlated.
The specificity of connections and information flux, as Ramón y Cajal proposed,
were closely dependent of neuronal structure (Cajal, 1889).

Different factors can determine the synapses distribution such as the environ-
ment where the animals were raised or if they have been trained to perform a spe-
cific task (see Gogolla, Galimberti, Deguchi, and Caroni, 2009, Xu, Yu, Perlik, Tobin,



2 Chapter 1. Introduction

FIGURE 1.1: Neuron drawn by Ramón y Cajal.

Zweig, Tennant, Jones, and Zuo, 2009). In addition, ageing is another factor which
influences in the synapses distribution tending to decrease them.

Studies about a type of bird, the zebra finches, have revealed there is and ev-
idence linking synapses formation and learning. Isolated birds present a lower
synaptic turnover while others which have been exposed to song tutoring lead to
high turnover (see Tschida and Mooney, 2012, Roberts, Tschida, E., and R., 2010).
Therefore the main process of these birds is to be able to modify the synaptogenic
rate.

As mentioned, ageing and diseases are other factors which affect to the synaptic
distribution. The study of synapses formation and their distribution was the focus
of the Structural Synaptic Plasticity group(SSP) ((see SpineUp, 2014), a group of bi-
ologists lead by Miguel Morales, PhD. The SSP group has previously demonstrated
that activation of the PI3K pathway increases synaptogenesis and improves learning
in mammals and invertebrates (Acebes and Morales; 2012), thus we have proposed
that a regulated activation of this pathway can be a putative target to develop drugs
to treat Alzheimer disease.

Currently, counting synapses relies on manual procedures. Although humans
are competent at recognizing objects and patterns in an image, these manual ap-
proaches can be slow, tedious, error-prone and subjective tasks, especially for sam-
ples with a large amount of spines (places where synapses take place) or even neu-
ronal densities. The capacity to rapidly evaluate these processes would help phar-
macological studies accelerate the process of compound development.

But before automating the study of synapses, many other tasks are needed. Some
of this tasks were carried out manually by the SSP group. The goal of this work is
to get an automatic or semi-automatic alternative approach to these previously non-
automatic processes. Biologists are the experts who assess the images and the new
process.



Chapter 1. Introduction 3

Roughly speaking, the programmed tasks are related to knowing the numbers of
cells in a sample, or delimiting them, etc. Each chapter is devoted to such a task, as
we are going to explain in the following paragraphs.

As we mentioned before, the quantification of synapses is instrumental to mea-
suring the evolution of synaptic densities of neurons under the effect of some phys-
iological conditions, such as neurological diseases or drug treatments. An approach
to determining the number and density of synapses is presented in Chapter 2.

Knowing the connections among neurons is as important as knowing the neu-
ronal density of a sample. One could suppose that if there are a small number of
neurons, the number of synapses are low as well. A method for finding the nuclei of
the neurons and, thus, knowing the number of neurons in a sample is presented in
Chapter 3.

Neuronal reconstruction and recognition have been, since Ramón y Cajal's work,
hindered by a similar problem: the discerning of a single neuron among hundreds
of millions. Several staining techniques are employed to identify a single neuron
(Ramón-Moliner, 1970); for instance, Golgi staining, iontophoretic intracellular in-
jection (Elston and DeFelipe, 2002; Ballesteros-Yáñez, Benavides-Piccione, Elston,
Yuste, and DeFelipe, 2006) and Diolostic gun (Heck, 2012). The use of optical and
confocal microscopy and digital reconstruction of neuronal morphology has become
a powerful technique for investigating the nervous system structure, providing us
with a large scale collection of images. An approach to discern the structure of a
neuron from a stack of images (several planes which depict the volume of the cell in
3D dimensions) is presented in Chapter 4.

Next, in Chapter 5, we present a study of two methods to find the neurons in
large images, also known as images for high-content analysis (HCA). One of the
methods is based on hysteresis thresholding, which only studies intensity features;
and the second applies machine learning techniques to locate neurons in these kinds
of images and find which are the best features to describe a patch of images contain-
ing a neuronal structure.

Finally, there are appendices which are divided in the following sections. The
first appendix, Appendix A, collects definitions of the most relevant concepts which
are used in this work. The biological methodology and the experiments are de-
scribed in Appendix B next to the description of the each kind of image. The tech-
nologies used are described in Appendix C. The last appendices, Appendix D and E,
contain the experimental results obtained in Chapters 4 and 5.

Looking for the means to make these tasks automatic, we have developed several
programmes which can be used as plug-ins of the platforms for bioimage process-
ing ImageJ and Fiji (Schneider, Rasband, and Eliceiri, 2012; Schindelin, Arganda-
Carreras, and Frise, 2012).

As mentioned before, this work is fruit of the collaboration established between
the Structural Synaptic Density group (SpineUp) and the Computer Science group
of the University of La Rioja. In addition, part of this work has taken place over
two three-month stays at the Biomedical Imaging Group Rotterdam of the Eras-
mus University Medical Center of Rotterdam in the Netherlands, under the super-
vision of Erik Meijering, PhD. Learning about biomedical analysis took place during
a third two-month stay at the Unit of Advanced Optical Microscopy (UMOA) of the
Scientific and Technological Centers (CCiT) of the University of Barcelona (UB) in
Barcelona, Spain under the supervision of María Calvo, PhD.





5

Chapter 2

Synaptic Density and Verification

2.1 Synaptic Density

The work explained in this section has been presented and published in several conferences
within the field of biology such as XIV Congreso Nacional Sociedad Española de Neuro-
ciencia (SENC), held in Salamanca, Spain, 2011. This is also the case within the field of
bioimage processing such as the first Congress of the Spanish Network of Advanced Optical
Microscopy (REMOA), held in Barcelona, Spain, 2012; the Bioimage Analysis Workshop -
Euro-bioimaging, held in Barcelona, Spain, 2012; and the third International Conference on
Bioimaging (BIOIMAGING, part of BIOSTEC), held in Rome, Italy, 2016, titled “Synap-
CountJ, a Tool for Analyzing Synaptic Densities in Neurons”. This contribution was later
published in the journal of the conference under the title: “SynapCountJ: A Validated Tool
for Analyzing Synaptic Densities in Neurons”, see Mata, Cuesto, Heras, Morales, Romero,
and Rubio, 2017.

2.1.1 Introduction

Synapses are the points of connection between neurons, and they are dynamic struc-
tures subject to a continuous process of formation and elimination. Pathological
conditions, such as the Alzheimer disease, have been related to synapse loss associ-
ated with memory impairments. Hence, the possibility of changing the number of
synapses may be an important asset to treat neurological diseases (Selkoe, 2002). To
this aim, it is necessary to determine the evolution of synaptic densities of neurons
under the effect of some physiological conditions, neuronal diseases or even drug
treatments.

The procedure to quantify synaptic density of a neuron is usually based on the
colocalization between signals generated by two antibodies (Cuesto and Enriquez-
Barreto, 2011). Namely, neuron cultures are permeabilized and treated with two dif-
ferent primary markers (for instance, bassoon and synapsin). These antibodies rec-
ognize specifically two presynaptic structures. Then, it is necessary a secondary an-
tibody couple attached to different fluorochromes (for instance red and green; note,
that several other combinations of colour are possible) making these two synap-
tic proteins visible under the fluorescence microscope. The two markers are pho-
tographed in two gray-scale images; that, in turn, are overlapped using respectively
the red and green channels. In the resultant image, the yellow points (colocalization
of the code channels) are the candidates to be the synapses.

The final step in the above procedure is the selection of the yellow points that
are localized either on the dendrites of the neuron or adjacent to them. Tools like
MetaMorph (Molecular Devices, 2015) or ImageJ (Schneider, Rasband, and Eliceiri,
2012) can be used to manually count the number of synapses; however, such a man-
ual quantification is a tedious, time-consuming, error-prone, and subjective task;



6 Chapter 2. Synaptic Density and Verification

hence, reliable tools that might automate this process are desirable. In this sec-
tion, we present SynapCountJ, an ImageJ plug-in, that semi-automatically quantifies
synapses and synaptic densities in neuron cultures. The programme is based on
Algebraic Topology techniques and has been validated by comparing some inter-
mediate results with those of Kenzo (Dousson, Rubio, Sergeraert, and Siret, 1999), a
(partially) formally verified programme.

2.1.2 Methodology

SynapCountJ supports two execution modes: individual treatment of a neuron and
batch processing — the workflow of both modes is provided in Figure 2.1.

Individual treatment of a neuron

The input of SynapCountJ in this execution mode are two images of a neuron
marked with two antibodies (an image per antibody), see Figure 2.2. SynapCountJ is
able to read tiff (a standard format for biological images) and lif files (obtained from
Leica confocal microscopes) — the latter requires the Bio-Formats plug-in (Linkert,
Rueden, and Allan, 2010). The following steps are applied to quantify the number
of synapses in the given images.

In the first step, from one of the two images, the region of interest (i.e. the den-
drites where the quantification of synapses will be performed) is manually specified
using NeuronJ (Meijering, Jacob, and Sarria, 2004) — an ImageJ plug-in for tracing
elongated image structures. In this way, the background of the image is removed.
The result is a file containing the traces of each dendrite of the image.

Subsequently, the user can decide whether to perform a global analysis of the
whole neuron, or a local analysis focused on each dendrite of the neuron. In both
cases, SynapCountJ requires additional information such as the scale and the mean
thickness (that is determined by the size of the subjacent dendrite) of the region
to analyze (see Figure 2.3) — these parameters determine the area of the dendrite
avoiding the background (i.e. all the non-synaptic marking).

Taking into account the settings provided by the user, SynapCountJ overlaps
the two original images of the neuron and the structure of the neuron previously
defined. From the resultant image, SynapCountJ identifies the almost white points
(the result of green, red, and blue combination) as synaptic candidates, and it allows
the user to modify the values of the red and green channels in order to modify the
detection threshold (see Figure 2.4).

Once the detection threshold has been fixed, the counting process is started. Such
a process is inspired by techniques coming from Computational Algebraic Topology.
In spite of being an abstract mathematical subject, Algebraic Topology has been suc-
cessfully applied in digital image analysis (González-Díaz and Real, 2005; Ségonne,
Grimson, and Fischl, 2003; Mata, Morales, Romero, and Rubio, 2015).

In our particular case, the white areas are segmented from the overlapped image,
and the colours of the resultant image are inverted — obtaining as a result a black-
and-white image (from this point forward, binary image), see Figure 2.5 where the
synapses are the black areas. From such an image, the problem of quantifying the
number of synapses is reduced to compute the homology group in dimension 0 of
the image; this corresponds to the computation of the number of connected com-
ponents of the image. Our algorithm to count synapses can be summarized as pre-
sented in Algorithm 1.



2.1. Synaptic Density 7

St
a

rt
B

at
ch

 
p

ro
ce

ss
in

g?
 

N
O

C
on

fi
gu

re
 s

et
ti

ng

C
ha

n
n

el
 

G
re

en
 Im

ag
e

C
ha

n
n

el
 R

ed
 

Im
ag

e
St

ru
ct

ur
e

 
(t

xt
-f

ile
)

K
no

w
n

 
th

re
sh

o
ld

?
Se

le
ct

 t
h

re
sh

o
ld

N
O

W
ri

te
 t

hr
es

h
o

ld

YE
S

Sa
ve

 t
h

e 
se

tt
in

gs
?

Im
ag

e
 w

it
h 

an
al

yz
e

d 
re

gi
o

n

Im
ag

e
 w

it
h 

in
d

ic
at

e
d 

sy
n

ap
se

s

X
m

l-
fi

le
 w

it
h 

th
e 

se
tt

in
gs

YE
S

Sh
ow

 t
he

 r
es

u
lt

s

Ta
b

le
 w

it
h 

an
al

ys
is

YE
S

P
at

h
 o

f 
d

ir
ec

to
ry

 w
it

h
 

im
ag

es

N
O

Li
f-

fi
le

s?

X
m

l-
fi

le
 w

it
h 

se
tt

in
gs

YE
S

Li
f-

fi
le

En
d

C
al

cu
la

te
 n

um
b

er
 

o
f s

yn
ap

se
s 

an
d

 

d
en

si
ty

Sh
ow

 t
ab

le
Sa

ve
 r

es
u

lt
 im

ag
es

Ta
b

le
 w

it
h 

an
al

ys
is

Im
ag

e
 w

it
h 

an
al

yz
e

d 
re

gi
o

n

Im
ag

e
 w

it
h 

in
d

ic
at

e
d 

sy
n

ap
se

s

N
O

Sa
ve

 s
et

ti
ng

s

C
al

cu
la

te
 n

um
b

er
 o

f 
sy

n
ap

se
s 

an
d

 
d

en
si

ty

C
ho

o
se

 in
p

u
t 

fi
le

s

In
p

u
t p

at
h 

of
 

fi
le

s

C
ho

o
se

 
d

ir
ec

to
ri

es

FI
G

U
R

E
2.

1:
W

or
kfl

ow
of

Sy
na

pC
ou

nt
J.



8 Chapter 2. Synaptic Density and Verification

(a) (b) (c)

FIGURE 2.2: Example of neuron with two antibody markers and its
structure. (a) Neuron marked with the bassoon antibody marker. (b)
Neuron marked with the synapsin antibody marker. (c) Structure of

the neuron. Scale bar: 50µm.

FIGURE 2.3: SynapCountJ window to configure the analysis.

(a) (b)

FIGURE 2.4: SynapCountJ window to modify the threshold of the red
and green channels. (a) Window to fix the threshold of the image.
(b) Fragment of the neuron image with the synapses indicated as the
red areas on the structure of the neuron marked in blue. Moving the
scrollbars of left window, the marked areas of the image are changed.



2.1. Synaptic Density 9

FIGURE 2.5: Binary image where the synapses are the black con-
nected components.

Algorithm 1.
Input: Two images of a neuron marked with two antibodies
Output: Number of synapses of the neuron

1. Create an image with the structure of the neuron using NeuronJ

2. Overlap the two original images of the neuron and the structure of the neuron

3. Fix the detection threshold

4. Segment the white areas of the overlapped image using the fixed threshold

5. Invert the colours of the segmented image

6. Count the number of connected components of the image.

Finally, SynapCountJ returns a table with the obtained data (length of dendrites
both in pixels and micras, number of synapses, and density of synapses per 100
micron) and two images showing, respectively, the analyzed region and the marked
synapses (see Figure 2.6).

Batch processing

Images obtained from the same biological experiment usually have similar settings;
hence, their processing in SynapCountJ will use the same configuration parameters.
In order to deal with this situation, SynapCountJ can be applied for batch processing
of several images using a configuration file. It is necessary to study at least one image
from experiment to get the optimal settings. The parameters are saved in a XML-file
(eXtensible Markup Language) and used to process the set of images from the same
experiment.

For batch processing, SynapCountJ reads tiff files organized in folders or a lif file
(the kind of files produced by Leica confocal microscopes), and using the configu-
ration file processes the different images. As a result, a table with the information
related to each neuron from the batch is obtained. The table includes an analysis



10 Chapter 2. Synaptic Density and Verification

(a)

(b) (c)

FIGURE 2.6: Results provided by SynapCountJ. (a) Table with the re-
sults obtained by SynapCountJ. (b) Image with the analyzed region of
the neuron. (c) Image with the counted synapses indicated by means

of blue crosses.

for both the whole neuron and from each of its dendrites. In addition, in the same
directory where the lif-file or tiff-files are stored, the plug-in saves all the resultant
images for each image from experiment (one of them shows the marked synapses
and the other one, the region which has been studied).

2.1.3 Experimental Results

A total of 13 individual images from three independent cultures were analyzed —
cultures treated according to the explanation given in Appendix B. In Figure 2.7 we
can observe that using a manual method to identify and count synapses, we obtain a
mean of 24.12 synapses in the control cultures and 16.74 in the treated cultures. The
results obtained with SynapCountJ are similar: there is a mean of 26.03 synapses in
the control cultures and 16.50 in the ones which have been treated.

Notwithstanding the differences in the quantification, in both procedures we ob-
tain almost the same inhibition percentage, a 30.51% manually and 36.61% auto-
matically. This shows the suitability of SynapCountJ to count synapses, meaning
a considerably reduction of the time employed in the manual process, namely, the
manual analysis of an image takes approximately 5 minutes; of a batch, 1 hour; and
of a complete study, 4 hours. Using SynapCountJ, the time to analyze an image is 30
seconds; a batch, 2 minutes; and a complete study, 6 minutes.



2.1. Synaptic Density 11

FIGURE 2.7: Hippocampal cultures were treated with the synapses
formation inhibitor SB 415286 for 48 hours. Left. Manual quantifi-
cation of synapses. Right. Quantification of synapses using Synap-

CountJ.

2.1.4 Scientific Validations of the Computations

Accuracy and reliability are two desirable properties of every software tool, espe-
cially in the case of biomedical software. A method to increase the trust in scientific
software is the use of mechanised theorem proving technology to verify the cor-
rectness of the programmes (Amorim, Collins, DeHon, Hritcu, Pichardie, Pierce,
Pollack, and Tolmach, 2014; Hales, 2005). However, such a formal verification is a
challenging task (Benton, 2006). As it implies a direct verification of the programmes
which is especially complicated in this case, for the following reasons:

• Our programmes are developed in Java (a general-purpose programming lan-
guage) and the common language to formalize them is a functional program-
ming language (for instance, Haskell).

• Accurate specification in detail is necessary to obtain all possible cases.

• The branch of the mathematics related to the problem has to be formalized,
although there are already a lot of basic notions formalized.

We were interested in increasing the reliability of our software; however, due to
the difficulty of directly verifying the correctness of our programmes — see a brief
explanation in Benton, 2006 —, we have followed an indirect method.

A key component of our algorithm to count synapses is the computation of con-
nected components of a binary image (see Algorithm 1). Such a computation can be
performed using two different methods:

• a direct approach, where the pixels of the image are directly processed; and,

• an indirect approach, where the notion of simplicial complex associated
with an image, and techniques from Algebraic Topology (namely, homology
groups) are employed to compute the connected components of the image.

The former is efficient and can be easily employed in ImageJ — in fact, it is the one
implemented in SynapCountJ — however, its formal verification is a challenging



12 Chapter 2. Synaptic Density and Verification

problem. The latter is slower than the former, is difficult to incorporate it into ImageJ;
but, it can rely on a previously developed software, the Kenzo system (Dousson,
Rubio, Sergeraert, and Siret, 1999), and therefore, it does not require any further
development. The formal verification of the Kenzo system is even harder than the
verification of the direct approach, but, fortunately, such a task was, at least partially,
tackled in the ForMath project (ForMath, 2010–2013) — a European project devoted
to the development of libraries of formalised mathematics concerning algebra, linear
algebra, real number computation, and Algebraic Topology.

In this context, where we have a fast but unverified algorithm, and a slow but
verified algorithm, the following strategy can be employed to increase the reliability
of the fast version thanks to the verified version. The strategy consists in performing
an intensive automated testing checking whether the results obtained with both ver-
sions are the same; if that is the case, the reliability of the fast algorithm is increased.
In our particular case, we have employed such a strategy to increase the reliability
of the computation of connected components of binary images using the fast version
implemented in SynapCountJ (the direct approach) thanks to the verified Kenzo sys-
tem (the indirect approach).

In the rest of this section, we thoroughly explain the two different approaches to
compute connected components of a binary image.

The direct approach

The direct approach to compute connected components of a binary image processes
directly the pixels of the image by means of an algorithm included in ImageJ which
is called FindMaxima (see Díaz de Greñu de Pedro, J., 2014). This algorithm can be
applied to black-and-white (or binary), grayscale or colour images and determines
the local maxima of the image, provided with segmented regions containing all the
pixels of the image whose value differs from the corresponding local maxima in less
than a chosen threshold. In the case of binary images, the result corresponds to the
different connected components.

The algorithm is divided into two steps:

Algorithm 2.
Input: Binary image
Output: Number of local maxima points

1. First of all, the local maxima of the image are determined, and they are ordered
in a decreasing way.

2. Secondly, a filling algorithm is applied for each local maximum to determine
its connected region. If a maximum produces a region which was already filled
by a previous maximum, the actual local maximum is discarded.

The first step is done by means of a method called getSortedMaxPoints. Here,
all the pixels in the image are studied comparing them with their adjacent pixels.
A pixel is chosen as local maxima if its value is higher than all their adjacent pix-
els. A threshold is also considered to discard those pixels with value lower than it.
The result is an array with the local maxima (with their coordinates) ordered in a
decreasing way.

Once the ordered list of local maxima has been obtained, the second step of the
algorithm FindMaxima is done by means of a method called analylizeAndMarkMax-
ima. In this method, a filling algorithm is applied to each local maximum going over



2.1. Synaptic Density 13

the list in a decreasing way. To determine the region associated to a local maximum,
an iterative process is applied considering the 8 adjacent pixels to the maximum
(see Rosenfeld, 1974), selecting those whose difference with the local maximum is
lower than a chosen parameter and studying then the adjacent pixels to those se-
lected in the previous step. If a selected pixel is higher than the local maxima then
it is stored as the maximum of the region and the previous one is discarded. If it is
equal, the new pixel is also stored in order to be able to compute the mean of all the
local maxima in the region as we will explain later. The process finishes when all
possible adjacent pixels to the previously selected ones have been studied.

Let us observe that when applying the filling algorithm to a local maximum, we
could find other maxima (included in the same connected component as the con-
sidered one). In that case, the process stops and the second maximum is discarded.
Moreover, in case of having several maxima with the same value in a region, the final
maximum is computed as the pixel with the same intensity as the local maximum
which is closest to the baricenter of all of them.

For a more complete study of the FindMaxima algorithm in ImageJ see Díaz de
Greñu de Pedro, J., 2014.

The indirect approach

The indirect approach to compute connected components of a binary image em-
ploys the Kenzo system. Kenzo (Dousson, Rubio, Sergeraert, and Siret, 1999) is a
Common Lisp system devoted to Algebraic Topology which has obtained some re-
sults not confirmed nor refuted by theoretical or computational means (Sergeraert,
1992), and also has been used to refute some computations obtained by theoreti-
cal means (Romero, Heras, Rubio, and Sergeraert, 2014; Romero and Rubio, 2013).
Then, the question of Kenzo reliability arose in a natural way, and several works
have been focussed on studying the correctness of Kenzo key fragments and algo-
rithms (Aransay, Ballarin, and Rubio, 2008; Domínguez and Rubio, 2011; Lambán,
Martín-Mateos, Rubio, and Ruiz-Reina, 2013).

The final aim of Kenzo was not the analysis of digital images, but it was extended
with a module that tackles such a problem (Heras, Pascual, and Rubio, 2012). In par-
ticular, such a module computes homological properties, that measure connected
components and holes of binary images. This Kenzo module for digital images has
been employed to validate the results obtained in SynapCountJ using the direct ap-
proach.

The Kenzo module for digital images works as follows (see Figure 2.8). Given
a binary image, a triangulation procedure is employed to obtain a simplicial com-
plex (a generalisation of the notion of graph to higher dimensions) — there are
several methods to construct a simplicial complex from a digital image, see Ayala,
Domínguez, Francés, and Quintero, 2003. From the simplicial complex, its bound-
ary (or incidence) matrices are constructed. Since the size of the boundary matrices
coming from biomedical images is too big to be handled directly by Kenzo, a re-
duction strategy is employed to work with smaller matrices, but preserving their
homological properties (Romero and Sergeraert, 2010). From the reduced boundary
matrices, homology groups in dimensions 0 and 1 are computed using a diagonal-
isation process (Munkres, 1984). The homology groups are either null or a direct
sum of Z components, and they should be interpreted as follows: the number of Z
components of the homology groups of dimension 0 and 1 measures respectively
the number of connected components and the number of holes of the image. Hence,



14 Chapter 2. Synaptic Density and Verification

Digital Image

Simplicial complex Incidence Matrices

Homology groups


1 0 1 . . . 0
−1 1 0 . . . 0
0 −1 −1 . . . 0

· · ·


reduction

H1 = Z⊕ Z⊕ Z
H0 = Z⊕ Z

FIGURE 2.8: Workflow to compute homology groups from digital
images. The homology groups indicate that the image has two con-

nected components and three holes.

computing the homology groups associated with a digital image, we can obtain the
number of connected components of the image.

The aforementioned workflow to compute homology groups from digital images
was fully verified, see Heras, Dénès, Mata, Mörtberg, Poza, and Siles, 2012; Poza,
Domínguez, Heras, and Rubio, 2014.

2.1.5 Discussion

Up to the best of our knowledge, four tools have been developed to quantify
synapses and measure synaptic density: Green and Red Puncta (Shiwarski, Dagda,
and T., 2014), Puncta Analyzer (Wark, 2013), SynD(Schmitz, Johannes Hjorth, and
Joemail, 2011) and SynPAnal (Danielson and Lee, 2014) — a summary of the general
features of these tools can be seen in Table 2.1. The rest of this section is devoted
to compare SynapCountJ with these tools — such a comparison is summarized in
Table 2.2.

Software Language Underlying Technology Types of Images Technique for detection

Green and Red Puncta Java ImageJ tiff Colocalization
Puncta Analyzer Java ImageJ2 tiff Colocalization

SynapCountJ Java ImageJ tiff and lif Colocalization
SynD Matlab Matlab tiff and lsm Brightness

SynPAnal Java tiff Brightness

TABLE 2.1: General features of the analyzed software.

There are two approaches to locate synapses in an RGB image (Red-Green-Blue
image) either based on colocalization or brightness. In the former, synapses are iden-
tified as the colocalization of bright points in the red and green channels — this
is the approach followed by Green and Red Puncta, Puncta Analyzer and Synap-
CountJ — in the latter, synapses are the bright points of a region of an image —
the approach employed in SynD and SynPAnal. In both approaches, it is necessary



2.1. Synaptic Density 15

Software Detection of
dendrites

Threshold Batch
Process-
ing

Dendrites
length

Density Export Save

Green and
Red Puncta

Not used X

Puncta Ana-
lyzer

Manual ROI X X

SynapCountJ Manual X X X X X X
SynD Automatic X X X X X
SynPAnal Manual X X X X X

TABLE 2.2: Features to quantify synapses and synaptic density of the
analyzed software

.

a threshold that can be manually adjusted to increase (or decrease) the number of
detected synapses; such a functionality is supported by all the tools.

In the quantification of synapses from RGB images, it is instrumental to deter-
mine the region of interest (i.e. the dendrites of the neurons where the synapses are
located); otherwise, the analysis will not be precise due to noise coming from irrele-
vant regions or the background of the image — this happens in the Green and Red
Puncta tool since it considers the whole image for the analysis. Puncta Analyzer
allows the user to fix a rectangle containing the dendrites of the neuron, but this is
not completely precise since some regions of the rectangle might contain points con-
sidered as synapses that do not belong to the structure of the neuron. SynD is the
only software that automatically detects the dendrites of a neuron; however, it can
only be applied to neurons with a cell-fill marker, and does not support the analysis
from specific regions, such as soma or distal dendrites. SynapCountJ and SynPAnal
provide the functionality to manually draw the dendrites of the image; allowing the
user to designate the specific areas where quantification is restricted.

The main output produced by all the available tools is the number of synapses of
a given image; additionally, SynapCountJ, SynD and SynPAnal provides the length
of the dendrites; and, SynapCountJ and SynPAnal are the only tools that output the
synaptic density per micron. All the tools but Green and Red Punctua can export
the results to an external file for storage and further processing.

Finally, as we have explained in Section 2.1.2, images obtained from the same
biological experiment usually have similar settings; hence, batch processing might
be useful. This functionality is featured by SynapCountJ and SynD, and requires a
previous step of saving the configuration of an individual analysis. SynPAnal does
not support batch processing, but the configuration of an individual analysis can be
saved to be later applied in other individual analysis.

As a summary, SynapCountJ is more complete than the rest of available pro-
grammes. It can use different types of synaptic markers and can process batch im-
ages. Furthermore, a differential feature of SynapCountJ is that it is based on a topo-
logical algorithm (namely, computing the number of connected components in a
combinatorial structure), allowing us to validate the correctness of our approach by
means of formal methods in software engineering.

2.1.6 Conclusions

SynapCountJ is an ImageJ plug-in that provides a semi-automatic procedure to
quantify synapses and measure synaptic density from immunofluorescence images



16 Chapter 2. Synaptic Density and Verification

obtained from neuron cultures. This plug-in has been tested not only with neu-
rons in development, but also with the neuromuscular union of Drosophila (genus
of small flies); therefore, it can be applied to the study of images that contain two
synaptic markers and a determined structure. The results obtained with Synap-
CountJ are consistent with the results obtained manually; and SynapCountJ dra-
matically reduces the time required for the quantification of synapses. Moreover,
the realiability of SynapCountJ has been increased by validating some of its compu-
tations using the formally verified module for digital images of Kenzo.

2.1.7 Availability and Software Requirements

SynapCountJ is an ImageJ plug-in that can be downloaded, together with its
documentation, from the external reference SynapCountJ. SynapCountJ is open
source and available for use under the GNU General Public License. This plug-in
runs within both ImageJ and Fiji (Schindelin, Arganda-Carreras, and Frise, 2012)
and has been tested on Windows, Macintosh and Linux machines.

2.2 Verification

The work explained in this section has been presented and published in the Conference on
Intelligent Computer Mathematics (CICM) held in Bath, United Kingdom, 2013, under
the title “Verifying a platform for digital imaging: a multi-tool strategy”, see Heras, Mata,
Romero, Rubio, and Sáenz, 2013.

2.2.1 Introduction

As a consequence of attempting to validate the computation of connected compo-
nents — explained in Section 2.1.4 —, we considered going one step further and
verifying the code used in the processing of images.

As previously mentioned (Section 2.1), we use Fiji in some pre-processing steps
before undertaking a homological digital processing of images.

Due to the fact that the reliability of results is instrumental in biomedical re-
search, we are working towards the certification of the programmes that we use
to analyse biomedical images — here, certification means verification assisted by
computers. In a previous work, see Heras, Poza, and Rubio, 2012; Heras, Coquand,
Mörtberg, and Siles, 2013, two homological techniques to process biomedical images
were formalised. However, in both cases, the verification of Fiji's pre-processing step
was not undertaken.

Being a software built by means of plug-ins developed by several authors, Fiji
is messy, very flexible (programme pieces are used in some occasions with a com-
pletely different objective from the one they were designed), contains many redun-
dancies and dead code, and so on. In summary, it is a big software system which has
not been devised to be formally verified. So, this endeavour is challenging.

There are several approaches to verify Java code; for instance, proving the cor-
rectness of the associated Java bytecode, see Liu and S., 2004. In this Section, we
use Krakatoa (Filliâtre and Marché, 2007) to specify and prove the correctness of
Fiji/Java programmes. This experience allows us to evaluate both the verification of
production Fiji/Java code, and the Krakatoa tool itself in an unprepared scenario.

Krakatoa uses some automated theorem provers (as Alt-Ergo (Bobot, Conchon,
Contejean, Iguernelala, Lescuyer, and Mebsout, 2008) or CVC3 (Barrett and Tinelli,



2.2. Verification 17

2007)) to discharge the proof obligations generated by means of the Why tool (Fil-
liâtre and Marché, 2007). When a proof obligation cannot be solved by means of the
automated provers, the corresponding statement is generated in Coq (COQ develop-
ment team, 2012). Then, the user can prove the missing property by interacting with
this proof assistant.

In this description, we add the ACL2 theorem prover (Kaufmann and Moore,
2012). ACL2 is an automated theorem prover but more powerful than others. In
many aspects, working with ACL2 is more similar to interactive provers than to au-
tomated ones (see Kaufmann and Moore, 2012). Instead of integrating ACL2 in the
architecture of Why/Krakatoa, we have followed another path leaving untouched
the Why/Krakatoa code. Our approach reuses a proposal presented in (Aransay,
Divasón, Heras, Lambán, Pascual, Rubio, and Rubio, 2012) to translate first-order
Isabelle/HOL theories to ACL2 through an XML specification language called XLL
(Aransay, Divasón, Heras, Lambán, Pascual, Rubio, and Rubio, 2012). We have en-
hanced our previous tools to translate Coq theories to the XLL language, and then
apply the tools developed in (Aransay, Divasón, Heras, Lambán, Pascual, Rubio,
and Rubio, 2012) to obtain ACL2 files. In this way, we can use, unmodified, the
Why/Krakatoa framework; the Coq statements are then translated (if needed) to
ACL2, where an automated proof is tried; if it succeeds, Coq is only an interme-
diary specification step; otherwise, both ACL2 or Coq can be interactively used to
complete the proof.

2.2.2 Context

The platforms for processing images, known as Fiji and ImageJ, offer plug-ins and
macros with different functionalities which allow us, among other things, to binarize
an image via different threshold algorithms, homogenise images through filters such
as the “median filter” or obtain the maximum projection of a stack of images.

In the frame of the ForMath European project (ForMath, 2010–2013), one of the
tasks is devoted to the topological aspects of digital image processing. The objec-
tive consists of formalising enough mathematics to verify programmes in the area
of biomedical imaging. In collaboration with the SSP-group (directed by Miguel
Morales, PhD), several plug-ins for Fiji have been developed — for instance, the
plug-in explained in the previous Section (Section 2.1).

These programmes are devoted to analysing the effects of some drugs on the neu-
ronal structure. At the end of such analyses, some homological processing is needed
(standard homology groups in SynapCountJ and persistent homology in Neuron-
PersistentJ, plug-in explained in Chapter 4). As explained in the introduction, we
have verified these last steps (Heras, Poza, and Rubio, 2012; Heras, Coquand, Mört-
berg, and Siles, 2013). But all the pre-processing steps, based on already-built Fiji
plug-ins and tools, kept unverified. This is the gap we try to fill now, by using the
facilities presented in the sequel.

Next, the tools used are explained.

Why/Krakatoa: Specifying and verifying Java code.

The Why/Krakatoa tools (Filliâtre and Marché, 2007) are an environment for prov-
ing the correctness of Java programmes annotated with JML (Java Modelling Lan-
guage, Burdy, 2005) specifications which have been successfully applied in different
contexts, see (Barthe, Pointcheval, and Zanella-Béguelin, 2012). The environment
involves three distinct components:



18 Chapter 2. Synaptic Density and Verification

• Krakatoa tool, which reads the annotated Java files and produces a represen-
tation of the semantics of the Java programme into Why's input language

• Why tool, which computes proof obligations (POs) for a core imperative lan-
guage annotated with pre- and post-conditions,

• several automated theorem provers which are included in the environment
and are used to prove the POs.

When some PO cannot be solved by means of the automated provers, correspond-
ing statements are automatically generated in Coq (COQ development team, 2012),
so that the user can prove the missing properties in this interactive theorem prover.
The POs generation is based on a Weakest Precondition calculus and the validity of all
generated POs implies the soundness of the code with respect to the given specifica-
tion. The Why/Krakatoa tools are available as open source software at the external
reference in Krakatoa.

Coq and ACL2: Interactive theorem proving.

Coq (COQ development team, 2012) is an interactive proof assistant for constructive
higher-order logic based on the Calculus of Inductive Construction. This system
provides a formal language to write mathematical definitions, executable algorithms
and theorems together with an environment for semi-interactive development of
machine-checked proofs. Coq has been successfully used in the formalisation of
relevant mathematical results; for instance, the Feit-Thompson Theorem (Gonthier,
2013).

ACL2 (Kaufmann and Moore, 2012) is a programming language, a first order
logic and an automated theorem prover. Thus, the system constitutes an environ-
ment in which algorithms can be defined and executed, and their properties can be
formally specified and proved with the assistance of a mechanical theorem prover.
ACL2 has elements of both interactive and automated provers. ACL2 is automatic
in the sense that once started on a problem, it proceeds without human assistance.
However, non-trivial results are not usually proved in the first attempt, and the user
has to lead the prover to a successful proof providing a set of lemmas, inspired by
the failed proof generated by ACL2. This system has been used for a variety of
important formal methods projects of industrial and commercial interest (Hardin,
2010) and for implementing large proofs in mathematics.

See more information about these tools in Appendix C.

2.2.3 Methodology

The method which we have applied to verify the Fiji code can be split into the fol-
lowing steps.

Algorithm 3.
Input: Java code
Output: Verified code

1. Transforming Fiji code into compilable Krakatoa code.

2. Specifying Java programmes.

3. Applying the Why tool.



2.2. Verification 19

4. If all the proof obligations are discharged automatically by the provers inte-
grated in Krakatoa, stop; the verification has ended.

5. Otherwise, study the failed attempts, and consider if they are under-specified;
if it is the case, go again to step (2).

6. Otherwise, consider the Coq expressions of the still-non-proven statements
and transform them to ACL2.

7. If all the statements are automatically proved in ACL2, stop; the verification
has ended.

8. Otherwise, by inspecting the failed ACL2 proofs, decide if other specifications
are needed (go to item (2)); if it is not the case, decide if the missing proofs
should be carried out in Coq or ACL2.

The first step is the most sensitive one, because it is the only point where informal
(or, rather, semi-formal) methods are needed. Thus, some unsafe, and manual, code
transformation can be required. To minimize this drawback, we apply two strate-
gies:

• First, only well-known transformations are applied; for instance, we elimi-
nate inheritance by “flattening” out the code, but without touching the real
behaviour of methods.

• Second, the equivalence between the original code and the transformed one is
systematically tested.

Employing both points together increases the reliability of our approach; a more
detailed description of the transformations needed in step one are explained in sub-
section titled “Transforming Fiji-Java to Krakatoa-Java”. Explanations about step
two are provided in subsection under title “Specifying programmes for digital imag-
ing”. Steps three to six are mechanized in Krakatoa. The role of ACL2 (steps six to
eight) is explained in subsection titled “The role of ACL2” and, by means of an ex-
ample, in section of experimental resutls (Section 2.2.4).

Transforming Fiji-Java to Krakatoa-Java

In its current state, the Why/Krakatoa system does not support the complete Java
programming language and has some limitations. In order to make a Fiji Java pro-
gramme compilable by Krakatoa we have to take several steps.

Algorithm 4.
Input: Java code from Fiji platform
Output: Compilable code by Krakatoa

1. Delete annotations. Krakatoa JML annotations will be placed between \*@ and
@*\. Therefore, we need to remove other Java Annotations preceded by @.

2. Move the classes that are referenced in the file that we want to compile into
the directory whyInstallationDir/java_api/. For example, the class RankFilters
uses the class java.awt.Rectangle; therefore, we need to create the folder awt in-
side the java directory that already exists, and put the file Rectangle.java into it.
Moreover, we remove the body of the methods because only the headers and



20 Chapter 2. Synaptic Density and Verification

the fields of the classes will be taken into consideration. We must iterate this
process over the classes which we add. The files that we add into the java_api
directory can contain import, extends and implements clauses although the
file that we want to compile cannot do it — Krakatoa does not support these
mechanisms. This is a tough process: for instance, to make use of the class
Rectangle, we need to add fifteen classes.

3. Reproduce the behaviour of the class which we want to compile. Considering
that we are not able to use extends and implements clauses, we need to move
the code from the upper classes into one whichcompiles and exhibits the same
behaviour. For instance, the class BinaryProcessor extends from ByteProcessor
and within its constructor it calls the constructor of ByteProcessor; to solve this
problem we need to copy the body of the super constructor at the beginning of
the constructor of the class BinaryProcessor. If we find the use of interfaces, we
can ignore them and remove the implements clause because the code will be
implemented in the class that makes use of the interface.

4. Remove import clauses. We need to delete them from the file that we want to
compile and change the places where the corresponding classes appear with
the full path codes. If for example we use the class Rectangle as we have ex-
plained in the second Step, we need to replace it by java.awt.Rectangle.

5. Owing to the fact that packages of declarations are forbidden, we need to re-
move them with the purpose of halting “unknown identifier packageName” er-
rors.

6. Rebuild native methods. The Java programming language allows the use of
native methods, which are written in C or C++ (programming languages) and
might be specific to a hardware and operating system platform. For exam-
ple, many of the methods in the class Math (which perform basic numeric
operations such as the elementary exponential, logarithm, square root, and
trigonometric functions) simply call the equivalent method included in a dif-
ferent class named StrictMath for their implementation, and then the code in
StrictMath of these methods is just a native call. Since native methods are not
written in Java, they cannot be specified and verified in Krakatoa. Therefore, if
our Fiji programme uses some native methods, it will be necessary to rewrite
them with our own code. See in Section 2.2.4 our implementation (and speci-
fication) of the native method sqrt computing the square root of a number of
type double, based on Newton's algorithm.

7. Add a clause in if-else structures in order to remove “Uncaught exception: In-
valid_argument(“equal: abstract value”)”. We can find an example in the method
filterEdge of the class MedianFilter where we have to replace the last else...
clause by else if(true)....

8. Remove debugging useless references. We have mentioned in a previous step
that we can only use certain static methods that we have manually added to
the Why core code and therefore we can remove some debugging instructions
like System.out.println(...). We can find the usage of standard output
printing statement in the method write of the class IJ (class of the Application
Programming Interface (API) from Fiji).



2.2. Verification 21

9. Modify the declaration of some variables to avoid syntax errors. There can be
some compilation errors with the definition of some floats and double values
that match the pattern <number>f or <number>d. We can see an example in
the line 180 of the file RankFilters.java; we have to transform the code: float f

= 50f; into float f = 50.

10. Change the way that Maximum and Minimum float numbers are written.
Those two special numbers are located in the file Float.java and there are widely
used to avoid overflow errors, but they generate an error due to the eP expo-
nent. To stop having errors with expressions like 0x1.fffffeP+127d we need
to convert it into 3.4028235e+38f.

Specifying programmes for digital imaging

As already said and it is explained in Appendix C, Fiji and ImageJ are open source
projects and many different people from many different teams (some of them not
being computer scientists) are involved in the development of the different plug-ins
for these platforms. This implies that the code of these programmes is in general not
suitable for its formal verification and a deep previous transformation process, fol-
lowing the steps explained in Section 2.2.3, is necessary before introducing the Java
programmes into the Why/Krakatoa system. Even after this initial transformation,
Fiji programmes usually remain complex and their specification in Krakatoa is not
a direct process. In this section we present some examples of Fiji methods that we
have specified in JML (Java Modelling Language) trying to show the difficulties we
have faced.

Once that a Fiji Java programme has been adapted, following the ideas of Sec-
tion 2.2.3, and is accepted by the Why/Krakatoa application, the following step in
order to certify its correctness consists in specifying its behaviour (that is, its precon-
dition and its postcondition) by writing annotations in the Java Modelling Language
(JML, Burdy, 2005) . The precondition of a method must be a proposition introduced
by the keyword requires which is supposed to hold in the pre-state, that is, when
the method is called. The postcondition is introduced by the keyword ensures, and
must be satisfied in the post-state, that is, when the method returns normally. The
notation \result denotes the returned value. To differentiate the value of a variable
in the pre- and post- states, we can use the keyword \old for the pre-state.

Let us begin by showing a simple example. The following Fiji method, included
in the class Rectangle, translates an object by given horizontal and vertical increments
dx and dy.

/*@ ensures x == \old(x) + dx && y == \old(y) + dy;
@*/

public void translate(final double dx, final double dy) {
this.x += dx; this.y += dy;

}

The postcondition expresses that the field x is modified by incrementing it by
dx, and the field y is increased by dy. In this case no precondition is given since all
values of dx and dy are valid, and the keyword \result does not appear because
the returned type is void.

Using this JML specification, Why/Krakatoa generates several lemmas (Proof
Obligations) which express the correctness of the programme. In this simple case,
the proof obligations are elementary and they are easily discharged by the auto-
mated theorem provers Alt-Ergo (Bobot, Conchon, Contejean, Iguernelala, Lescuyer,



22 Chapter 2. Synaptic Density and Verification

and Mebsout, 2008) and CVC3 (Barrett and Tinelli, 2007), which are included in
the environment. The proofs of these lemmas guarantee the correctness of the Fiji
method translate with respect to the given specification.

Unfortunately, this is not the general situation because, as already said, Fiji code
has not been designed for its formal verification and can be very complicated; so, in
most cases, Krakatoa is not able to prove the validity of a programme from the given
precondition and postcondition. In order to formally verify a Fiji method, it is usu-
ally necessary to include annotations in the intermediate points of the programme.
These annotations, introduced by the keyword assert, must hold at the correspond-
ing programme point. For loop constructs (while, for, etc), we must give an induc-
tive invariant, introduced by the keyword loop_invariant, which is a proposition
which must hold at the loop entry and be preserved by any iteration of the loop
body. One can also indicate a loop_variant, which must be an expression of type
integer, which remains non-negative and decreases at each loop iteration, assuring
in this way the termination of the loop. It is also possible to declare new logical
functions, lemmas and predicates, and to define ghost variables which allow one to
monitor the programme execution.

Let us consider the following Fiji method included in the class RankFilters. It
implements Hoare's find algorithm (also known as quickselect) for computing the
n-th lowest number in part of an unsorted array, generalizing in this way the com-
putation of the median element. This method appears in the implementation of
the“median filter”, a process very common in digital imaging which is used in or-
der to achieve greater homogeneity in an image and provide continuity, obtaining
in this way a good binarization of the image.

/*@ requires buf!=null && 1<= bufLength <= buf.length && 0<=n <bufLength;
@ ensures Permut{Old,Here}(buf,0,bufLength-1)
@ && (\forall integer k; (0<=k<=n-1 ==> buf[k]<=buf[n])
@ && (n+1<=k<=bufLength-1 ==> buf[k]>=buf[n]))
@ && \result==buf[n] ;
@*/

public final static float findNthLowestNumber
(float[] buf, int bufLength, int n) {

int i,j;
int l=0;
int m=bufLength-1;
float med=buf[n];
float dum ;
while (l<m) {

i=l ;
j=m ;
do {

while (buf[i]<med) i++ ;
while (med<buf[j]) j-- ;
dum=buf[j];
buf[j]=buf[i];
buf[i]=dum;
i++ ; j-- ;

} while ((j>=n) && (i<=n)) ;
if (j<n) l=i ;
if (n<i) m=j ;
med=buf[n] ;

}
return med ;

}

Given an array buf and two integers bufLength and n, the Fiji method
findNthLowestNumber returns the (n+ 1)-th lowest number in the first bufLength



2.2. Verification 23

components of buf. The precondition expresses that buf is not null, bufLength
must be an integer between 1 and the length of buf, and n is an integer between
0 and bufLength − 1. The definition of the postcondition includes the use of the
predicate Permut, a predefined predicate, which expresses that when the method
returns the (modified) bufLength first components of the array buf must be a per-
mutation of the initial ones. The array has been reordered such that the components
0, . . . , n− 1 are smaller than or equal to the component n, and the elements at posi-
tions n + 1, . . . , bufLength − 1 are greater than or equal to that in n. The returned
value must be equal to buf[n], which is therefore the (n + 1)-th lowest number in
the first bufLength components of buf.

In order to prove the correctness of this programme, we have included different
JML annotations in the Java code. First of all, loop invariants must be given for all
while and do structures appearing in the code. Difficulties have been found in order
to deduce the adequate properties for invariants which must be strong enough to
imply the programme (and other loops) postconditions; automated techniques like
discovery of loop invariants (Ireland and Stark, 1997) will be used in the future. We
show as an example the loop invariant (and variant) for the exterior while, which is
given by the following properties:

/*@ loop_invariant
@ 0<=l<=n+1 && n-1<=m<=bufLength-1 && l<=m+2
@ && (\forall integer k1 k2; (0<=k1<=n && m+1<=k2<=bufLength-1)
@ ==> buf[k1]<=buf[k2])
@ && (\forall integer k1 k2; (0<=k1<=l-1 && n<=k2<=bufLength-1)
@ ==> buf[k1]<=buf[k2])
@ && Permut{Pre,Here}(buf,0,buf.length-1) && med==buf[n]
@ && ((l<m)==> ((l<=n)&&(m>=n)));
@ loop_variant m - l+2;
@*/

To help the automated provers to verify the programme and prove the generated
proof obligations it is also necessary to introduce several assertions in some interme-
diate points of the programme and to use ghost variables which allow the system to
deduce that the loop variant decreases.

The final specification of this method includes 78 lines of JML annotations (for
only 24 Java code lines). Krakatoa/Why produces 175 proof obligations expressing
the validity of the programme. The automated theorem prover Alt-Ergo is able to
demonstrate all of them, although in some cases more than a minute (in an ordinary
computer) is needed; another prover included in Krakatoa, CVC3, is, on the contrary,
only capable of proving 171. The proofs of the lemmas obtained by means of Alt-
Ergo certify the correctness of the method with respect to the given specification.

In this particular example, the automated theorem provers integrated in Kraka-
toa are enough to discharge all the proof obligations. In other cases, some properties
are not proven, and then one should try to prove them using interactive theorem
provers, as Coq. In this architecture, we also introduce the ACL2 theorem prover, as
explained in the next subsection.

The role of ACL2

Over the following section, the role played by ACL2 in this infrastructure to verify
the correctness of Java programmes is explained. The Why platform relies on auto-
mated provers, such as Alt-Ergo or CVC3, and interactive provers, such as Coq or
PVS, to discharge proof obligations; however, it does not consider the ACL2 theorem



24 Chapter 2. Synaptic Density and Verification

prover to that aim. We believe that the use of ACL2 can help in the proof verification
process. The reason is twofold.

• The scope of automated provers is smaller than the one of ACL2; therefore,
ACL2 can prove some of the proof obligations which cannot be discharged by
automated provers.

• Moreover, interactive provers lack automation; then, ACL2 can automatically
discharge proof obligations which would require user interaction in interactive
provers.

A Proof General extension called Coq2ACL2 was developed, which integrates
ACL2 in this infrastructure to verify Java programmes; in particular, we work with
ACL2(r) a variant of ACL2 which supports the real numbers (Gamboa and Kauf-
mann, 2001) — the formalisation of real analysis in theorem provers is an outstand-
ing topic, see Boldo, Lelay, and Melquiond, 2013. Coq2ACL2 features three main
functions:

F1. it transforms Coq statements generated by Why to ACL2;

F2. it automatically sends the ACL2 statements to ACL2; and

F3. it displays the proof attempt generated by ACL2.

If all the statements are proved in ACL2; then, the verification process is ended.
Otherwise, the statements must be manually proved either in Coq or ACL2.

The major challenge in the development of Coq2ACL2 was the transformation of
Coq statements to ACL2. There is a considerable number of proposals documented
in the literature related to the area of theorem proving interoperability. It is possible
to classify the translations between proof assistants in two groups: deep (Gordon,
Kaufmann, and Ray, 2011; Jacquel, Berkani, Delahaye, and Dubois, 2011; Codescu,
2012) and shallow (Keller and Werner, 2011; Obua and Skalberg, 2006; Denney, 2000).

In this work, we took advantage of a previous shallow development presented
in Aransay, Divasón, Heras, Lambán, Pascual, Rubio, and Rubio, 2012, where a
framework called I2EA to import Isabelle/HOL theories into ACL2 was introduced.
That approach can be summarized as follows. Due to the different nature of Is-
abelle/HOL and ACL2, it is not feasible to replay proofs that have been recorded in
Isabelle/HOL within ACL2. Nevertheless, Isabelle/HOL statements dealing with
first order expressions can be transformed to ACL2; and then, they can be used as a
schema to guide the proof in ACL2.

A key component in the framework presented in (Aransay, Divasón, Heras,
Lambán, Pascual, Rubio, and Rubio, 2012) was an XML-based specification language
called XLL (that stands for Xmall Logical Language). XLL was developed to act as
an intermediate language to port Isabelle/HOL theories to both ACL2 and an Ecore
model (given by UML class definitions and OCL restrictions) — the translation to
Ecore serves as a general purpose formal specification of the theory carried out. The
transformations among the different languages are done by means of XSLT (Extensi-
ble Stylesheet Language Transformations) and some Java programmes. Coq system
has been integrated into the I2EA framework as can be seen in Figure 2.9; in this
way, we can reuse both the XLL language and some of the XSLT files developed in
(Aransay, Divasón, Heras, Lambán, Pascual, Rubio, and Rubio, 2012) to transform
(first-order like) Coq statements to ACL2.



2.2. Verification 25

Isabelle/HOL

Coq

XLL ACL2

FIGURE 2.9: Architecture of the I2EA framework integrating Coq.

In particular, functionality F1 of Coq2ACL2 can be split into two steps:

1. given a Coq statement, Coq2ACL2 transforms it to an XLL file using a Com-
mon Lisp translator programme; then,

2. the XLL file is transformed to ACL2 using an XSLT file previously developed
in (Aransay, Divasón, Heras, Lambán, Pascual, Rubio, and Rubio, 2012).

In this way, ACL2 has been integrated into our environment to verify Java pro-
grammes. As we will see in the following section, this has meant an improvement
to automatically discharge proof obligations.

2.2.4 Experimental Results

An immediate consequence of the collaboration with the SSP-group, was dealing
with images acquired by microscopy techniques from biological samples. These
samples have volume and the object of interest is not always in the same plane.
For this reason, it is necessary to obtain different planes from the same sample to
get more information. This means that several images are acquired in the same XY
plane at different levels of Z. To work with this stack of images, it is often necessary
to make their maximum projection. To this aim, Fiji provides several methods such as
maximum intensity or standard deviation to obtain the maximum projection of a set
of images.

We consider the Fiji code for computing the maximum projection of a set of
images based on the standard deviation, which uses in particular the method
calculateStdDev located in the class ImageStatistics.

double calculateStdDev(double n, double sum, double sum2) {
double stdDev = 0.0;
if (n>0.0) {

stdDev = (n*sum2-sum*sum)/n;
if (stdDev>0.0)

stdDev = Math.sqrt(stdDev/(n-1.0));
else

stdDev = 0.0;
} else
stdDev = 0.0;

}

The inputs are n (the number of data to be considered), sum (the sum of all con-
sidered values; in our case, these values will obtained from the pixels in an image)
and sum2 (the sum of the squares of the data values). The method calculateStdDev



26 Chapter 2. Synaptic Density and Verification

computes the standard deviation from these inputs and assigns it to the field stdDev.
The specification of this method is given by the following JML annotation.

/*@ requires ((n==1.0)==> sum2==sum*sum) && ((n<=0.0) || (n>=1.0)) ;
@ behaviour negative_n :
@ assumes n<=0.0 || (n>0.0 && (n*sum2-sum*sum)/n <=0.0);
@ ensures stdDev == 0.0;
@ behaviour normal_behaviour :
@ assumes n>=1.0 && ((n*sum2-sum*sum)/n > 0.0);
@ ensures is_sqrt(stdDev,(double)((n*sum2-sum*sum)/n/(n-1.0)));

@*/

The precondition, introduced by the keyword requires, expresses that in the
case n = 1 (that is, there is only one element in the data) the inputs sum and sum2

must satisfy sum2 = sum∗sum. Moreover we must require that n is less than or equal
to 0 or greater than or equal to 1 to avoid the possible values in the interval (0, 1);
for n in this interval one has n− 1 < 0 and then it is not possible to apply the square
root function to the given argument stdDev/(n − 1.0). This fact has not been taken
into account by the author of the Fiji programme because in all real applications
the method will be called with n being a natural number; however, to formalise
the method we must specify this particular situation in the precondition. For the
postcondition we distinguish two different behaviours: if n is non-positive or sum
and sum2 are such that n ∗ sum2 − sum ∗ sum < 0, the field stdDev is assigned to 0;
otherwise, the standard deviation formula is applied and the result is assigned to
the field stdDev. The predicate is_sqrt is previously defined.

For the proof of correctness of the method calculateStdDev in Krakatoa, it is
necessary to specify (and verify) the method sqrt. The problem here, as already ex-
plained in previous section, is that the method sqrt of the class Math simply calls the
equivalent method in the class StrictMath, and the code in StrictMath of the method
sqrt is just a native call and might be implemented differently on different Java
platforms. In order to give a JML specification of the method sqrt is necessary then
to rewrite it with our own code. The documentation of StrictMath states “To help en-
sure portability of Java programmes, the definitions of some of the numeric functions in this
package require that they produce the same results as certain published algorithms. These
algorithms are available from the well-known network library netlib as the package “Freely
Distributable Math Library”, fdlibm”. In the case of the square root, one of these rec-
ommended algorithms is Newton's method; based on it, we have implemented and
specified in JML the computation of the square root of a given (non-negative) input
of type double.

/*@ requires c>=0 && epsi > 0 ;
@ ensures \result >=0 && (\result*\result>=c)
@ && \result*\result - c < epsi ;
@*/

public double sqrt(double c, double epsi){
double t;
if (c>1) t= c;

else t=1.1;
/*@ loop_invariant

@ (t >= 0) && (t*t> c) ;
@*/

while (t* t - c >= epsi) {
t = (c/t + t) / 2.0;

}
return t;

}



2.2. Verification 27

/*@ requires c>=0 ;
@ ensures (\result >=0) && (\result*\result>=c)
@ && (\result*\result - c < 1.2E-7);
@*/

public double sqrt(double c){
double eps=1.2E-7;
return sqrt(c,eps);

}

The first method computes the square root of a double x with a given precision
epsi; the second one calls the previous method with a precision less than 1.2E −
7. Using JUnit, we have run one million tests between 1E9 and 1E − 9 to show
that the results of our method sqrt have similar precision to those obtained by the
original method Math.sqrt. Here, we applied the “first test, then verify” approach
— intensive testing can be really useful to find bugs (and can save us time) before
starting the verification process.

From the given JML specification for the Fiji method calculateStdDev and our
sqrt method, Why/Krakatoa produces 52 proof obligations, 9 of them correspond-
ing to lemmas that we have introduced and which are used in order to prove the
correctness of the programmes. Alt-Ergo is able to prove 50 of these proof obliga-
tions, but two of the lemmas that we have defined remain unsolved. CVC3 on the
contrary only proves 44 proof obligations.

The two lemmas that Alt-Ergo (and CVC3) are not able to prove are the following
ones:

/*@ lemma double_div_pos :
@ \forall double x y; x>0 && y > 0 ==> x / y > 0;
@*/

/*@ lemma double_div_zero :
@ \forall double x y; x==0.0 && y > 0 ==> x / y == 0.0;
@*/

In order to discharge these two proof obligations, we can manually prove their
associated Coq expressions.

Lemma double_div_zero : (forall (x_0_0:R), (forall (y_0:R),
((eq x_0_0 (0)%R) /\ (Rgt y_0 (0)%R) -> (eq (Rdiv x_0_0 y_0) (0)%R)))).

Lemma double_div_pos : (forall (x_13:R), (forall (y:R),
((Rgt x_13 (0)%R) /\ (Rgt y (0)%R) -> (Rgt (Rdiv x_13 y) (0)%R)))).

Both lemmas can be proven in Coq in less than 4 lines, but, of course, it is neces-
sary some experience working with Coq. Therefore, it makes sense to delegate those
proofs to ACL2. Coq2ACL2 translates the Coq lemmas to the following ACL2 ones.
ACL2 can prove both lemmas without any user interaction (a screenshot of the proof
of one of this lemmas in ACL2 is shown in Figure 2.10).

(defthm double_div_zero
(implies (and (realp x_0_0) (realp y_0) (and (equal x_0_0 0) (> y_0 0)))

(equal (/ x_0_0 y_0) 0)))

(defthm double_div_pos
(implies (and (realp x_13) (realp y) (and (> x_13 0) (> y 0)))

(> (/ x_13 y) 0))



28 Chapter 2. Synaptic Density and Verification

FIGURE 2.10: The Coq2ACL2 extension consists of the Coq2ACL2
menu and the right-most button of the toolbar. Left: the Coq file gen-
erated by the Why tool. Top Right: current state of the Coq proof.

Bottom Right: ACL2 proof of the lemma.

2.2.5 Conclusions

This work reports an experience to verify actual Java code, as generated by different-
skilled programmers, in a multi-programmer tool called Fiji. As one could suspect,
the task is challenging and, in some sense, the objectives are impossible to accom-
plish, at least in their full extent – after our experiments, we have found that the Fiji
system is unsound, but the errors are minor (e.g. a variable declared as a real number
but which should be declared as an integer) and can be easily corrected.

Nevertheless, we defend the interest of this kind of experimental work. It is use-
ful to evaluate the degree of maturity of the verification tools (Krakatoa, in our case).
In addition, by a careful examination of the code really needed for a concrete appli-
cation, it is possible to isolate the relevant parts of the code, and then it is possible to
achieve a complete formalisation. As it was mentioned, several examples in our text
showed this feature.

In addition to Krakatoa, several theorem provers (Coq and ACL2) have been
used to discharge some proof obligations that were not automatically proved by
Krakatoa. To this aim, it has been necessary the integration of several tools, and our
approach can be considered as semi-formal: we keep transformations as simple as
possible, and substantiate the process by systematic testing.

As a further interest of our work, we have reused a previous interoperability-
proposal (Aransay, Divasón, Heras, Lambán, Pascual, Rubio, and Rubio, 2012), be-
tween Isabelle and ACL2, to get an integration of ACL2 (through a partial mapping
from Coq to ACL2), without touching the Krakatoa kernel.



29

Chapter 3

Neural Density

The work explained in this chapter has been presented as a poster in the conference within the
field of biology: XV Congreso Nacional Sociedad Española de Neurociencia (SENC), held in
Oviedo, Spain, 2013, under the title: “NucleusJ: Developing of a plug-in for FIJI to analyze
neuronal death model”.

3.1 Introduction

When an ictus occurs in a brain region, part of the neurons which are in that region
die. This damage can be more or less severe depending on the region it happens
in, and the damaged cerebral area. Several pharmaceutical treatments have been
developed aimed at minimizing this damage.

In this particular case, experts wish to observe whether it is possible to study the
action of a neuroprotector when an ictus is taking place, specifically the one which
prevents the death of the greatest number of neurons.

To this aim, a tool counting the number of living neurons in an image would be
of great help for the neurobiologist. This is the goal of the programme described in
this chapter.

In our case, the biological context for the experimental study is the following. It is
known as PI3K pathway activation has previously been implicated in neuronal sur-
vival. In fact, this experiment wants to study the potential neuroprotective activity
of a new PI3K activator compound (PTD4-PI3K Ac).

To this end, growing rat primary hippocampal cultures were employed. A com-
plete description of the experimental procedure is in Appendix B, however we
want to emphasise in some details. Cells were seeded in 12mm glass coverslips
and treated with NMDA — glutamatergic agonist — to induce controlled neuronal
death. Neuronal cultures were treated with different concentrations of NMDA in
combination with a fixed concentration of the PTD4-PI3K — peptide to control of
the PI3K-activity. Samples were then fixed and processed for immunostaining, em-
ploying DAPI (a specific dye for nuclei in blue) and MAP2B (a specific marker only
for neuronal structures in red), see Figure 3.1. The efficacy of the treatment was
estimated by calculating the percentage of survival neurons after the injury.

3.2 Methodology

This kind of image has two channels: one of them shows the nucleus of all the cells
which are in the sample, and the other shows the neurons, see Figure 3.2. In prin-
ciple, one could expect that the number of nuclei has to be the same as the number
of neurons. However, it is common for the number of nuclei to be higher since there
are other cells in the sample, such as, for example, astrocytes.



30 Chapter 3. Neural Density

(a) Sample of a culture (b) Sample of a culture in
in control conditions. NMDA treatment for 24 hours.

(c) Sample of a culture in NMDA and
PI3K-Activator treatment for 24 hours.

FIGURE 3.1: Example of hippocampal neurons cultures in control
conditions (a), treated with NMDA (b) and the PI3K-Activator (c).

Scale bar: 100µm.

In order to count the neurons, it is necessary to work with the split channels
of the image. One of them shows the channel where the nuclei are located (from
this point forward, first channel) and the other image shows the channel with the
neurons (from now on, second channel).

Before advancing with the method, it is important to remove any noise which
could appear in the image. To this aim, it is necessary to apply a filter. In this case,
the median filter is used as it has been observed, through several computations, to
perform better with this kind of image (see other alternatives to pre-process images
of nuclei in Miura, 2016). This filter is applied to both channels.

This phase of pre-processing and the rest of phases, are summarized in this out-
line of the algorithm:



3.2. Methodology 31

FIGURE 3.2: Example of a patch from a mosaic where the neurons are
in the red channel and the nuclei are in the blue channel. Scale bar:

20µm.

Algorithm 5.
Input: An image with two channels and some parameters given by the user
Output: Three results:

a Total number of cells

b Number of neurons

c List with the regions of the nuclei of neurons marked

1st phase: Pre-processing of the image

1. Split the channels in two images

2. Remove noise applying the median filter

2nd phase: Count the number of cells in the image

1. Work on the first channel (nuclei)

1.1. Make the image binary
1.2. Apply morphological operations
1.3. Select the objects by size
1.4. Count connected components — Total number of cells (output (a))

3rd phase: Count the number of neurons and localise them

1. Work on the first channel (nuclei)

1.1. Make the image binary through a manual threshold
1.2. Apply morphological operations
1.3. Select the objects by size

2. Work on the second channel (cell bodies of neurons)

2.1. Make the image binary

3. Work on both pre-processed channels



32 Chapter 3. Neural Density

3.1. Logical operation between the two channels (union)
3.2. Select the objects by their shape and the mode value of their intensity
3.3. Local study of the statistical mode of the objects
3.4. Count the connected components — Number of neurons (output (b))
3.5. Obtain the regions of each nucleus of neuron (output (c))

The second phase starts working with the first channel (or the channel of nuclei).
This image has a lot of information about where the neurons (and the rest of the
cells) can be found. In fact, there is a cell for each nucleus in the image. Therefore,
it is necessary to have two criteria of size to be able to differentiate first between the
cells and, the possible artefacts or noise of the image, and second, between the nuclei
of the neurons and the remainder of cells.

These two parameters of size are introduced by an expert who is able to capture
the differences among different experimental situations. In order to determine an
approximation of these two criteria, the nuclei of all the cells and the nuclei of the
neurons were measured and it was observed that a good approximation of the first
size is 20-300 microns and the area for the nuclei of the neurons is between 40-200
microns.

In order to select the nuclei of the cells, the image is converted to a binary image
using a variation of the IsoData algorithm, also known as iterative intermeans (Ri-
dler and Calvard, 1978). Subsequently, morphological operations such as dilating
and filling holes, are applied to obtain a better definition of the objects. The Wa-
tershed algorithm (Vincent and Soille, 1991, Roerdink and Meijster, 2000) is used to
divide the nuclei which are most likely creating a cluster, see Figure 3.3.

The nuclei of the image are counted using the first criterion of size, thus, the
number of cells is computed. It corresponds to the first output obtained by this
method (output (a) of the outline shown in algorithm 5).

FIGURE 3.3: Binary image of all the nuclei.

After this phase, the following step (the third phase) is to determine the number
of neurons. Beginning with the filtered image, the value of a threshold of intensity
is chosen manually, instead of automatically. While an automatic method was con-
sidered, its use would limit the use of the same method on other types of images. In
the first phase, it is possible to do it automatically since the nuclei belong to the cells



3.2. Methodology 33

(in general); however, in this step, we only want to segment the nucleus of a specific
cell, such as a neuron.

Before going any further, it is worth explaining that the next step of the study is
based on comparing different computations with some values given by the expert.
These values, as the size of the nuclei used in the previous step, are based on the
experience of the expert in this kind of images and analysis. These parameters are
necessary to determine a threshold in different aspects. Although the use of these
thresholds will be explained later, let us announce that there is a threshold to deter-
mine the optimal ‘aspect ratio’, another threshold for the statistical mode and one
more to define the number of circles fixed to perform a local study of the mode of
each object selected.

The next steps are similar to those in the first phase: apply the morphological
operations to the binary image, and run the Watershed algorithm to divide the clus-
ters. Finally, the second size of the nuclei, the relation with the nuclei of neurons,
is used to select the connected components which satisfy that size condition. The
connected components are identified and studied with the same process explained
in Chapter 2. This step returns a binary mask which will be used later.

Up to this point some of the nuclei have been selected to determine wether they
belong to the nuclei of a neuron or not.

This phase consists in discriminating whose candidates are really part of a neu-
ron. The main idea is to check in the candidate nucleus are overlapping with a binary
version of the second channel. The process begins with the filtered image of the sec-
ond channel; it is then made a binary image using the same method as in the first
phase (a variation of the IsoData method).

A logical operation is then used to choose the objects which overlap with neu-
rons. This operation is the union between a mask of the regions of interest selected
as the possible nuclei of the neurons (previously obtained) and the binary image
of the second channel. The nuclei which belong to a neuron will produce an object
more circular than the rest of nuclei. This operation then gives back a new binary im-
age where we can find the parts of the connected components which appear in both
images. These connected components are studied and classified according to their
shape. The ratio of the width to height of a connected component is determined,
and all with a higher value of this ratio, known as the aspect ratio, are removed.
In other words, the long objects are discarded as nucleus of neurons. It is the case,
for instance, when the nucleus of a cell is underneath the dendrite of a neuron, see
Figure 3.4.

The remaining objects are still not yet considered to be nuclei of neurons; they
overlap on the second channel of the original image (without filtering). A selection
is created for each object (or ROI, region of interest), and its statistical mode is com-
puted. If this value is less than a fixed value by the user, then those particular regions
of interest are removed.

The last process consists of studying locally the variability of intensity in the sec-
ond channel (the channel of neurons). Our hypothesis is that a nucleus of a neuron
has a determined intensity which is clearly lower around it. To measure this vari-
ability of intensity, we have chosen to study the statistical mode around the ROIs
selected up to this point. This study is a local way to analyze what is happening
in the area encircling a nucleus. For this step we needed another parameter given
by the user: the percentage of variability which is maximum to consider that the
intensity changes.

The outline of the algorithm for this step is the following.



34 Chapter 3. Neural Density

FIGURE 3.4: Example of an object (left region) to be removed due to
its high aspect ratio. However, the shape of the object on the right of
the image is more circular and its aspect ratio has a value close to 1;

thus, it is treated as a possible neuron. Scale bar: 20µm.

Algorithm 6.
Input: An image with two channels and the centroids of the regions of interest
Output: Number of neurons found

1. Tracing n circles: c1, c2, . . . , cn−1, cn; Let c1 be the smallest circle.

2. Computing the mode for each circle in the second channel of the image (chan-
nel of neurons). Let m1, . . . ,mn be the corresponding modes for each circle.

3. Computing the ratio of the each circle to the smallest: mi
m1

with i = {2, . . . , n}.

4. Comparing if the ratio computed is less than the minimum given by the user.

The centroid is computed for each ROI in the binary mask image. This point is
the center point of the component and the center of the n circles used to study the
variability of the intensity. In addition to computing the center, extracting the radius
is mandatory for tracing the circles. In the case that the smallest rectangle is a square,
we use circles for the study, by contrast, ovals will be used and we need two radii for
the axis. Anyway, the process to obtain them is the same in both cases (the first case
is a particular case of the second one). We are explaining for the case of an irregular
region because since is more general.

The radii for the smallest oval are obtained from the bounds of the smallest rect-
angle which enclose to a region. The radii for the oval are the value of these bounds
plus 6 µm. This number is choice like the best option analysed to increase the ovals
and to be able to study of the intensity.

Afterwards, this operation is repeated n − 1 times to trace the other circles. For
each circle the radii increase 3 µm or in other words, 6 µm are adding to the bounds
of the last circle traced (see Figure 3.5 (a)). When all circles are defined, the mode for
each one is computed over the second channel of the image (see Figure 3.5 (b)).



3.2. Methodology 35

(a) Circles traced in the binary mask (b) Circles traced in the second channel

FIGURE 3.5: Example of the study of the variability of the intensity in
a component or region. Scale bar: 20µm.

The next step consists of comparing the ratio of the circles to the smallest circle
(see formula in the point 3 of the algorithm 6) with a value given by the user. If
this ratio is lower than the percentage of variability considered as the maximum, it
means that the component is the nucleus of a neuron. On the other hand, if the ratio
is higher than this fixed value, the intensity around the component does not change
and thus, it is difficult to determine whether the component is a neuron or not. This
can happen when there is a cluster of neurons, noise or even artefacts in the image.

Finally, this method returns the number of neurons found and the regions where
their nuclei are located, see Figure 3.6 — outputs (b) and (c) of the outline shown in
algorithm 5. However, this is not an accurate process, and it is possible that neurons
may be lost along the way. This is due to the fact that the neurons appear in clusters
and sometimes is difficult to discriminate among them. Other usual aspects making
it difficult to detect all the neuron are related to the contrast and brightest of the
image, and to the role of the fixed parameters, which could distort the process.

FIGURE 3.6: Example of neurons found with this method. Scale bar:
20µm.



36 Chapter 3. Neural Density

This process has been implemented in Java and it is a plug-in of ImageJ / Fiji
called NucleusJ. This programme allows the biologist to work in a semi-automatic
way, and its workflow is provided in Figure 3.7.

Split Channels

i: Image

i1: Image i2: Image

Median Filter

im1: Image

Make Binary Manual Threshold

Dilate

Fill Holes

Apply Watershed

Dilate

Fill Holes

Apply Watershed

ib1: Image

it1: Image

Total Number of cells

it1: Image

A: Image

Median Filter

im2: Image

Make Binary

B: Image

AND

C: Image

Select nuclei of neurons 
(by size)

Select ROIs
(by Aspect Ratio and Mode)

C': Image

Select ROIs
(by local study of the Mode)

i: ImageNumber of the nuclei
of neurons

List of ROIs of the 
nuclei of neurons

ib1: Image

Select nuclei 
(by size)

FIGURE 3.7: Workflow of NucleusJ.

Next, the interface of the plug-in and the results obtained are presented.



3.3. Experimental Results 37

The first window of the plug-in shows the parameters which the user is required
to configure, see Figure 3.8, given that the method employs different criteria.

FIGURE 3.8: Interface of NucleusJ plug-in to configure the input pa-
rameters.

Firstly, the expert has to say which channel corresponds to the neurons and
which one to the nuclei. Depending on the way the images are acquired, the first
channel may reference to neurons or vice versa.

Likewise, the value for the radius of the median filter has to be introduced to be
able to begin the preprocessing of the image and to remove noise. Other settings
are related to the algorithms for discriminating the neuronal nuclei from other cells,
such as the maximum and minimum sizes of all the nuclei, or only those of the
neuronal nuclei. In addition, the values of the aspect ratio and the mode refer to
the geometrical criteria to discard the nuclei which do not have a circular shape or
a good intensity. The values for the number of circles and the percentages of the
modes are related to the study of the evolution of the mode in successive circular
areas and the removal of the nuclei which, for example, belong to a cluster.

Subsequently, the user has to choose a manual threshold to select the nuclei
which are neurons, see Figure 3.9 (a), and the number of total nuclei of all the cells
is shown in a table entitled Summary (Figure 3.9 (c)).

Finally, the plug-in returns the original image with the nuclei of the neurons
marked, and they are listed in a window called ROI Manager, see Figure 3.9 (b).
This window allows the user to select each nucleus individually and to check if the
expert agrees or not. Should a nucleus not be found, the expert can add it using the
functions of the ROI Manager window. By contrast, if the plug-in selects something
which is not a nucleus, the expert can remove it from the list using the corresponding
function. Furthermore, the plug-in returns the number of nuclei of neurons found
in the window entitled Summary, see Figure 3.9 (d).

3.3 Experimental Results

This method, developed in the plug-in, called NucleusJ, is in phase of validation by
expert users and there are still not enough results to be able to compare this method
to the manual one.



38 Chapter 3. Neural Density

(a) Patch of channel of nuclei with the (b) Patch of image with the nuclei of neurons
threshold window (top left). The figures marked and listed in a ROI manager
in red are the pixels which are between window (top left).

the limits of the threshold.

(c) Summary of the number of total cells. (d) Final summary of the number of the
total cells and the neurons found.

FIGURE 3.9: Example of how the plug-in works and the results ob-
tained.

3.4 Conclusions

The work presented in this chapter offers an approach to locate neurons in large
images using intensity and geometrical criteria. The images analysed have been
acquired as it is explained in Appendix B. However it is possible to use the plug-in
for other kinds of images with similar features.

This work includes the option for the user checks the results. This method can be
considered as a semi-automatic approach. However, this is a great advantage since
this task requires less time than to count manually neurons. In addition, it is possible
to compare the results among different experiments because the process is based on
objective criteria.

3.5 Availability and Software Requirements

NucleusJ is an ImageJ plug-in that can be downloaded, together with its documen-
tation, from the external reference NucleusJ. NucleusJ is open source and available
for use under the GNU General Public License. This plug-in runs within both
ImageJ and Fiji and has been tested on Windows, Macintosh and Linux machines.



39

Chapter 4

Neuron detection in stack images

4.1 Introduction

Dendritic neuronal trees and axonal growing are involved in neuronal computation
and brain functions. Dendritic growing and axonal pathfinding are modified dur-
ing brain development (Landmesser, 1994; Tessier-Lavigne and Goodman, 1996)
neuronal plasticity process (Govindarajan, 2011) and neural disorders such autism
(Calderón de Anda, 2012) or degenerative diseases such Alzheimer; for instance, in
this neurodegenerative process brains are characterized by the presence of numer-
ous atrophic neurons near the amyloidal plaques (Velez-Pardo, 2004; Goedert and
Spillantini, 2006). Therefore, visualization and analysis of neuronal morphology and
structure is of a critical importance to elucidate physiological changes.

The majority of reconstruction available software are manual or semiautomatic
(Meijering, 2010), in which axonal and dendritic process are drawing by hand and
consequently are not suitable for the analysis of large arrays of data sets. Subse-
quently the traces would transform into a geometrical format suitable for quanti-
tative analysis and computational modeling. Algorithmic automation of neuronal
tracing promises to increase the speed, accuracy, and reproducibility of morpholog-
ical reconstructions. In this way, large scale analysis is feasible and would allow
a high throughput strategy for the study of nervous system morphology in phar-
macology or degenerative diseases (Donohue and Ascoli, 2011). The properties of
optical microscopes images make it difficult to identify and automatically trace den-
drites accurately, the presence of noise and biological contaminations, i.e. dendritic
segments from neighbours neurons make difficult the digital encoding and recon-
struction of a single neuronal structure.

In order to find a solution to this problem, two approaches based on a branch
of mathematics called Algebraic Topology are explained in this chapter. The first
is based on the persistent homology theory (Edelsbrunner, Letscher, and Zomorodian,
2002; Zomorodian, 2001) and the second, an improvement on the first, is based on
the theory of zigzag persistence (Carlsson and DeSilva, 2010).

The following is an explanation of both approaches and their results.

4.2 A Persistent Homology Interpretation

The work explained in this section has been presented as a poster in the conference within the
field of bioimage processing: the first Congress of the Spanish Network of Advanced Optical
Microscopy (REMOA), held in Barcelona, Spain, 2012, under the title: “Developing new
tools to analyze neuronal morphology, spine and synaptic density”



40 Chapter 4. Neuron detection in stack images

4.2.1 Introduction

In this section we explain how, using geometric persistence models, it is possible to
extract the dendrites and neuronal morphology from a series of inmunohistochemi-
cal images. The application developed is based on the idea that the neuron that we
want to study persists in all the levels of the Z-stack. In this case, it is important to
regard the neurons as cells with volume, that is, objects which are not on one, single
plane. In fact, the image is a stack of images in which each slice depicts the cell a dif-
ferent height of the sample. The cultures were obtained according to the experiment
explained in Appendix B, Section B.1.1 and the acquisition of the images following
the criteria is detailed in the same appendix, Section B.2.

The method presented is not just theoretical but has also been implemented as a
new plug-in, called NeuronPersistentJ (NeuronPersistentJ), for the systems ImageJ and
Fiji.

4.2.2 Methodology

(a) (b) (c)

FIGURE 4.1: A 21 days in culture rat hippocampal neuron in culture,
transfected with Actin-GFP. (a) Maximum intensity projection from a
Z-stack. (b) Median filter of the same image. (c) Huang's thresholding

method applied to the same image. Scale bar: 10µm.

This method to detect the neuronal structure from images, like the one of Fig-
ure 4.1 (a), can be split into two steps, which will be called respectively salt-and-
pepper removal and persistent. In the former one, we reduce the salt-and-pepper noise,
and in the latter one we dismiss the elements which appear in the image but which
are not part of the structure of the main neuron (astrocytes, other neurons and so
on).

In order to carry out the task of reducing the salt-and-pepper noise, we apply
the following process both to the images of the stack and to the maximum intensity
projection image. Firstly, we apply a low-pass filter (Castleman, 1996) to the images.
In our case, the filter which fits better with our problem is the median one, since
such a filter reduces speckle noise while retaining sharp edges. The filter radius
is set to 10 pixels for the situation described in Appendix B, this value has been
pragmatically determined and it is the only parameter of the whole method which
must be changed if the acquisition procedure is modified. The result produced for
the maximum intensity projection image of Figure 4.1 (a) is shown in Figure 4.1 (b).

Afterwards, we obtain binary images using Huang's method (Huang and Wang,
1995). This procedure automatically determines an adequate threshold value for the
images. Applying that method to the image of Figure 4.1 (b), we obtain the result
depicted in Figure 4.1 (c).



4.2. A Persistent Homology Interpretation 41

FIGURE 4.2: Processed median and Huang's filter of each Z-stack
plane from Figure 4.1 neuron.

However, in the image of Figure 4.1 (c) we can see elements which does not
belong to the main neuronal structure. Let us explain how we manage to remove
those undesirable elements.

It is worth noting that part of the neuronal structure appears in every slide of a
Z-stack. On the contrary, irrelevant elements just appear in some of the slides. This
will be the key idea of our method.

More concretely, we proceed as follows. As it was explained previously, we ap-
ply the salt-and-pepper removal step to all the slides of the Z-stack, the result of that in
our case study can be seen in Figure 4.2.

In the persistent step, we firstly construct a filtration of the binary image associated
with the maximum projection image. A monochromatic image, D, can be seen as a
set of black pixels (which represent the foreground of the image), and a filtration of
D is a nested subsequence of images D0 ⊆ D1 ⊆ . . . ⊆ Dm = D.

In order to construct a filtration of the binary image associated with the maxi-
mum projection image we proceed as follows. Dm is the maximum projection image.
Dm−1 consists of the connected components of Dm whose intersection with the first
slide of the stack is non empty. Dm−2 consists of the connected components ofDm−1

whose intersection with the second slide of the stack is non empty, and so on. In
general, Dm−n consists of the connected components of Dm−n+1 whose intersection
with the n-th slide of the stack is non empty. In this way, a filtration of the maximum
projection image is obtained, see Figure 4.3.

As we know that the neuron appears in all the slides of the stack, the component
D0 of our filtration will be the structure of the neuron. As a final remark, we can
notice that the construction of the filtration reaches a point where it is stable; that is,
a level of the filtration Di of the filtration such thatDj is equal to Di for all 0 ≤ j < i.
An example can be seen in the components D0 to D4 of Figure 4.3. This observation
will be important in the next subsection.

Interpretation in terms of persistent homology

The persistent adjective of the second step of the method presented in the previous
subsection comes from the nice interpretation which can be given in terms of the
persistent homology theory (Edelsbrunner, Letscher, and Zomorodian, 2002), a branch
of Algebraic Topology (Maunder, 1996). In a nutshell, persistent homology is a tech-
nique which allows one to study the lifetimes of topological attributes. For a detailed



42 Chapter 4. Neuron detection in stack images

⊆

D0

⊆

D1

⊆

D2

⊆

D3

⊆

D4

⊆

D5

⊆

D6

⊆

D7

D8

FIGURE 4.3: A series of pictures depicting the process of filtration
from the Z-stack of Figure 4.1. From D0 to D8: Starting on D0 and
following to D8 each level of the filtration represent the containing,
⊆ information from the previous level. D8 contains all the connected

components from the image.

description of persistent homology see Edelsbrunner, Letscher, and Zomorodian,
2002; Zomorodian, 2001.

One of the most important notions in Algebraic Topology is the one of homology
groups. Next, we remember a brief description of homology group, which was also
explained in a previous chapter. However, we want to emphasise in this notion since
it is key for the method which is explained in this chapter.

The homology group in dimension n of an object X , denoted by Hn(X), is a
set which consists of the n-dimensional holes of X , also called n-dimensional homol-
ogy classes of X . To be more concrete, H0(X) measures the number of connected
components of X , and the homology groups Hn(X), with n > 0, measure higher
dimensional connectedness. In the case of 2 dimensional monochromatic or binary
images, the 0 and 1-dimensional homology classes are, respectively, the connected
components and the holes of the image; there are not homology classes in higher
dimensions.

Definition 4.2.1. An (ordered abstract) simplicial complex over V is a set of simplexes
K over V such that it is closed by taking faces (subsets); that is to say:

∀α ∈ K, if β ⊆ α⇒ β ∈ K

An example of a simplicial complex can be seen in Figure 4.4.
A subcomplex of K is a subset L ⊆ K that is also a simplicial complex.

Definition 4.2.2. A filtration of a simplicial complex K is a nested subsequence of
simplicial complexes

K0 ⊆ K1 ⊆ . . . ⊆ Km = K

An example of a filtration can be seen in Figure 4.5.



4.2. A Persistent Homology Interpretation 43

0

1

2

3 4

5

6

1

FIGURE 4.4: Butterfly Simplicial Complex.

FIGURE 4.5: Example of a filtration.

Definition 4.2.3. Given a filtration K0 ⊆ K1 ⊆ . . . ⊆ Km = K, a homology class α
is born at Ki if it is not in the image of the map induced by the inclusion Ki−1 ⊆ Ki.
Furthermore, if α is born at Ki it dies entering Kj if the image of the map induced by
Ki−1 ⊆ Kj−1 does not contain the image of α but the image of the map induced by
Ki−1 ⊆ Kj does. The persistence of α is j − i.

Now, it means, given a 2 dimensional monochromatic digital image D and a
filtration D0 ⊆ D1 ⊆ . . . ⊆ Dm = D of D, a n-homology class α is born at Di if
it belongs to the set Hn(D

i) but not to Hn(D
i−1). Furthermore, if α is born at Di

it dies entering Dj , with i < j, if it belongs to the set Hn(D
j−1) but not to Hn(D

j).
The persistence of α is j − i. We may represent the lifetime of a homology class as an
interval, and we define a barcode to be the set of resulting intervals of a filtration.

In the case of the filtrations presented in the previous subsection, the outstanding
barcode is the one of 0-dimensional homology classes. It is worth noting that the
structure of the neuron lives from the beginning to the end of the filtration while
external elements are short-lived.

For example, the barcode associated with the filtration of Figure 4.3 is the one
depicted in Figure 4.6.



44 Chapter 4. Neuron detection in stack images

D0 D1 D2 D3 D4 D5 D6 D7 D8

x0

x1

x2

x3

x0

x1

x2

x3

...

• • • • • • • • •

• • • •

• • •

• •

•

FIGURE 4.6: Barcode of the filtration of the Figure 4.3.

FIGURE 4.7: Summary picture of the connected components from
Figure 4.1 projection. Colour code: green, components that last one
plane. Orange, 2 planes. Yellow, three planes. Red, four planes and

blue, components that are present in the eight planes.

Let us analyze the information which can be extracted from such barcode. There
are several connected components whose life is reduced to the maximum projec-
tion image, the green connected components of Figure 4.7, and can be considered as
noise. Notwithstanding that the components x1, x2 and x3 (which are respectively
the red, yellow and orange connected components of Figure 4.7) live a bit longer
than green components; they are also short-lived; so, they cannot be part of the main
structure of the neuron, it is likely that these components come from other biological
elements. Eventually, we have the x0 component, the blue connected component of
Figure 4.7, which lives from the beginning to the end of the filtration; therefore, as it
lives from the beginning to the end of the filtration, it represents the structure of the
neuron.

We have devised an efficient algorithm to obtain the barcode of 0-dimensional
homology classes associated with the images that we have presented in the previous
subsection. This method takes advantage of both the way of building the filtration



4.2. A Persistent Homology Interpretation 45

and the stability of such a filtration. Firstly, we obtain the connected components of
the level 0 of the filtration, D0; this is a well-known process called connected compo-
nent labeling which can be solved using different efficient algorithms (see, Rakhmadi,
2010; Lee, 2007). Such connected components are 0-dimensional homology classes
which are born at D0 and live until the end of the filtration, this fact comes from
the filtration construction process. Now, we focus on the level 1 of the filtration, D1.
The filtration has a stability level; therefore, we consider two feasible cases. If D0

is equal to D1, we can pass to the next level of the filtration. Otherwise, we obtain
the connected components which appear at D1 but not at D0, such components are
0-dimensional homology classes which are born at D1 and live until the end of the
filtration. In order to check if D0 and D1 are equal, we use the MD6 Message-Digest
Algorithm (Rivest, 2008). Such algorithm is a cryptographic hash function which
given an image returns a unique string; therefore, if the result produced for D0 and
D1 is the same, we can claim that both images are equal. This procedure is faster
than comparing pixel by pixel the images.

The above process is iterated for the rest of the levels of the filtration. In general,
if we are in the level i of the filtration, there are two cases: ifDi−1 = Di (this is tested
with MD6 algorithm) then pass to level i + 1; otherwise the connected components
which appear in Di but not in Di−1 are the 0-dimensional homology classes which
are born at Di and live until the end of the filtration. In this way, we can obtain the
barcode of 0-dimensional homology classes without explicitly computing persistent
homology.

4.2.3 Experimental Results

The procedure to detect neural structure presented in the previous section has been
implemented as a new plug-in for ImageJ called NeuronPersistentJ. Figure 4.8 illus-
trates the results which are obtained with NeuronPersistentJ using three different
examples considering 10 as the radius (or the length) of the median filter. As can
be seen in such examples both the noise and structures of neighbour neurons are
removed from the final result.

We have validated our method and plug-in with a set of image stacks of real 3D
neuron dendrites acquired using the procedure explained in Appendix B. In order
to test the suitability of our software, we have compared a manual selection of the
region of interest with the results obtained using NeuronPersistentJ. The manual se-
lection was performed using the polygonal selection tool from ImageJ. In order to
compare the two tracings (the manual and the one obtained using NeuronPersis-
tentJ), we have considered both the accuracy and the efficiency.

The accuracy of the plug-in is measured with the three following relevant fea-
tures:

(1) the number of branches obtained with the manual tracing compared with the
number of branches detected with NeuronPersistentJ,

(2) the area of the region selected manually recognized with NeuronPersistentJ
(that is, the intersection, ∩, of the region selected manually and the one ob-
tained with NeuronPersistentJ),

(3) the area of the region detected by NeuronPersistentJ which does not appear in
the manual tracing with respect to the area which does not contain the manual
tracing (i.e. the area of the region recognized by NeuronPersistentJ minus, \,
the region manually selected with respect to the complement, _C , of the region
manually selected).



46 Chapter 4. Neuron detection in stack images

(a) (b) (c)

(a’) (b’) (c’)

FIGURE 4.8: From a to c: Three examples of dendritic fragments of
hippocampal neurons in culture transfected with Actin-GFP. From a’
to c’: Structures obtained with the NeuronPersistentJ application with

a median filter 10. Scale bar: 10µm.

To compute the percentages associated with these features, we use the following
formulas.

(1) =
Number of branches of NeuronPersistentJ tracing

Number of branches of manual tracing
× 100

(2) =
Area (NeuronPersistentJ tracing ∩ Manual tracing)

Area (Manual tracing)
× 100

(3) =
Area (NeuronPersistentJ tracing \ Manual tracing)

Area((Manual tracing)C)
× 100

It is worth noting that the higher the values for both (1) and (2) the better since
this means that we are close to detect all the branches and the whole region of inter-
est. On the contrary, the value of (3) should be small in order to avoid the inclusion
of regions which are not relevant.

The experimental results that we have obtained with our data set, considering
different radii for the median filter, using NeuronPersistentJ are shown in Table 4.1.
As we are seeking an equilibrium between the values of the features (2) and (3), the
best value for the radius of the filter is 10.

Let us consider the efficiency of the plug-in. As we have explained previously
the manual method to select the region of interest consists in using the polygonal
tool of ImageJ in the maximum projection image. This manual procedure takes ap-
proximately three minutes per neuron. On the contrary, the results are obtained in
half the time using NeuronPersistentJ. This is quite relevant since in order to test
the effect of some experimental treatments over neurons we do not study just one



4.2. A Persistent Homology Interpretation 47

hhhhhhhhhhhhhhhhhradius of filter
percentage

(1) (2) (3)

5 96.2% 78.06% 4.43%

10 98.2% 93.3% 4.19%

15 98.7% 94.9% 6.25%

TABLE 4.1: Percentages of accuracy of NeuronPersistentJ. (1) Percent-
age of components detects with NeuronPersistentJ versus manual
tracking. (2) Percentage of area detected with NeuronPersistentJ ver-
sus manual tracking. (3) Percentage of area draw by NeuronPersin-
tentJ not present in the manual tracking. Percentage is the mean value

from eight images.

neuron but batteries of neurons. Therefore, the use of NeuronPersistentJ means a
decreasing of the time invested to detect the neuronal structure.

In view of the results, our method can be considered as an approach, both from
the accuracy and efficiency point of view, to automatically trace neuronal morphol-
ogy from Z-stacks.

4.2.4 Discussion

The geometric persistence method reported here has been used to develop a plug-in
to extract the neuronal structure. In particular, the contour of the neuron is seg-
mented and therefore the region of interest is recognized.

The application is based on the fact that the neuronal structure is present, “or
persists”, in all the levels of Z-stack images. This plug-in, automatically, generates
a digital 2D representation of a three-dimensional neuron in the final picture. After
the extraction process, structures from neighbour neurons, background noise and
unspecific staining are eliminated from the final image.

The plug-in works analyzing every optical plane and comparing the maximum
intensity projection with the slides of the Z-stack. After a preprocessing step where
the salt-and-paper noise is removed, using the median filter, from the slides of the
Z-stack and the maximum intensity projection, the plug-in removes from the maxi-
mum intensity projection the elements which does not live enough (i.e. the elements
which do not appear in all the slices of the stack) obtaining as result the structure of
the neuron.

Transfected neurons were used to test this method. The protocol to obtain these
kind of cell and its acquisition is described in Appendix B.

In order to validate this method we have compared a manual surface tracking
employing the polygonal selection from ImageJ. The validation used as a control the
total area delimiting by a manual tracing and compared it with the area delimited by
NeuronPersistentJ. It is worth noting that the result of the comparison depends on
the value of the radius of the low pass filter selected; large values will led to a broad
structure, on the contrary small values will produce sharp and more defined im-
ages. Employing this validation method our results indicate that NeuronPersistentJ
is suitable to carry out the recognition of the neuron structure.

The number of manipulations during the reconstruction process is always a
drawback for a fully automatic process. NeuronPersitentJ requires a set of binary
images; thus, selection of the radius of a low-pass filter value that retains the maxi-
mal information from the Z-stack pictures is the only parameter determined by the



48 Chapter 4. Neuron detection in stack images

experimenter and clearly it depends on the images conditions. NeuronPersitentJ,
as it is usual in this kind of technique, works better with highly contrasted images,
such the ones obtained by inmunofluorescence.

The topological approach employed here and the use of binary pictures is inde-
pendent from the nature of the picture. However, as mentioned, highly contrasted
pictures and a clear and continuous staining are key elements for a fine reconstruc-
tion.

Skeletonization of neuronal structure has been a popular solution to neuronal
reconstruction and structure extraction (Meijering, 2010), and this method could be
used a basic towards the automatic detection and classification of different features
of neuronal structure, such spine density or dendritic arborization.

4.2.5 Availability and Software Requirements

NeuronPersistentJ is an ImageJ plug-in that can be downloaded, together with its
documentation, from the external reference NeuronPersistentJ. NeuronPersistentJ
is open source and available for use under the GNU General Public License.
This plug-in runs within both ImageJ and Fiji and has been tested on Windows,
Macintosh and Linux machines.

4.3 Zigzag Persistence Theory

The work explained in this section has been presented and published in several conferences
within the field of Computational Algebra such as XIV Encuentro de Álgebra Computacional
y Aplicaciones (EACA), held in Barcelona, Spain, 2014. This is also the case within the field
of bioimage processing such as the first NEUBIAS 2020 Conference - Network of European
Bioimage Analysts, held in Lisbon, Portugal, 2017; In addition, this work was published
in the Pattern Recognition Letters journal under the title: “Zigzag persistent homology for
processing neuronal images”, see Mata, Morales, Romero, and Rubio, 2015.

4.3.1 Introduction

The goal of this section is to improve the approach seen in the previous section, to
isolate the object of interest in a Z-stack of images. Up till now, we have described
the plug-in used to this end in Section 4.2, which was called NeuronPersistentJ. It
processes each layer of the stack in a cumulative manner and, doing a maximal pro-
jection at each step, allows us to find a covering of the neuron in the noisy images,
discarding some spurious elements in the picture (such as other cellular bodies or
dendrites coming from other neurons). Nevertheless, this algorithm is unable, by its
very nature, to distinguish between two dendrites that are crossing in space (since
they would necessarily intersect in any Z-projection).

The NeuronPersistentJ program proceeds by examining each projection, and
looking for the number of connected components (the 0-homology group of the digi-
tal images), until it stabilizes. This method admits an elegant interpretation in terms
of persistent homology, although this requires introducing a filtration which is un-
natural from the persistence perspective. Indeed, the layered structure of the stack
of images does not define a filtration.

Building on this weakness of the previous method, we take advantage now of the
zigzag persistence ideas, providing a new plug-in which maintains the performance
of NeuronPersistentJ and, in addition, has been capable of distinguishing among



4.3. Zigzag Persistence Theory 49

dendrites crossing in space, in actual images acquired from biological experiments.
This kind of object tracking has also been dealt with by other authors (Mori and Zijl,
2002; Weeden and Wang, 2008; Dellani and Glaser, 2007), in a different context from
ours (that of magnetic resonance imaging).

This plug-in, called NeuronzigzagJ, is reported in this section.

4.3.2 Methodology

The theory of zigzag persistence (Carlsson and DeSilva, 2010) is defined for dia-
grams of topological spaces of the form:

X1 ↔ X2 ↔ · · · ↔ Xm

where each arrow can point either left or right.
Considering the homology groups of each topological space and the induced

morphisms, for each n ∈ N one obtains a sequence of vector spaces and linear maps:

V1 ≡ Hn(X1)↔ V2 ≡ Hn(X2)↔ · · · ↔ Vm ≡ Hn(Xm)

which is called a zigzag module.
In Carlsson and DeSilva, 2010, it is shown that zigzag modules can be decom-

posed as a direct sum of submodules W i of the form

0↔ · · · ↔ 0↔W i
ai = F↔ · · · ↔W i

bi
= F↔ 0↔ · · · ↔ 0

for some 1 ≤ ai ≤ bi ≤ m, where F is the base field and all arrows are the identity
map. In this way, zigzag modules can be classified up to isomorphism by a multi-set
of intervals {[ai, bi]} with 1 ≤ ai ≤ bi ≤ m; drawing all of them as a disjoint union
of intervals leads to the graphical representation of zigzag modules by means of
barcode diagrams (see Carlsson and DeSilva, 2010), which can be used to get a visual
description of the evolution of the different homology classes along the different
spaces.

One of possible applications of zigzag persistence consists in studying the re-
lations of the homology classes of different subspaces X1, . . . , Xm of a topological
space X . To this aim, the following sequence is considered:

X1 ↪→ X1 ∪X2 ←↩ X2 ↪→ X2 ∪X3 ←↩ · · · ↪→ Xm−1 ∪Xm ←↩ Xm

The associated zigzag module determines the continuity of homology classes
between the terms in the above sequence, which allows one to know whether the
subspaces Xi contain the same homology classes in X or different ones.

Zigzag persistence provides an extension of persistent homology (explained in
the previous approach, Section 4.2), which is defined for diagrams of topological
spaces with inclusions:

X1 ↪→ X2 ↪→ · · · ↪→ Xm

In other words, in persistent homology theory a filtration of a global space X =
Xm is needed, whereas zigzag modules can be defined in a more general situation.

Zigzag persistence for 3D digital images

Let us consider a binary 3D digital image in the 3D integer grid; in other words, we
consider finitely many voxels having two possible values, usually black and white



50 Chapter 4. Neuron detection in stack images

(in this case, white pixels correspond with the figure in the image and black pixels
with the background). By cutting at heights z = j+1/2 (with j an integer) we get hor-
izontal slices which define a series of binary 2D images, denoted Si, for 1 ≤ i ≤ m.
The maximal projection of such a sequence of 2D-images consists, in general (in the
case of greyscale images), of projecting in a unique plane the pixels with maximum
intensities on every vertical view; for binary images the maximal projection is simply
given by the union of the white pixels of all slices S1, . . . , Sm.

In order to compute the different connected components of a binary 3D image, it
is well-known that graph theory can be used, for instance, in Shapiro and Stockman,
2002 there are some algorithms for 2D-images which can be generalized to arbitrary
dimension. If we are interested in how 3D connected components are mapped on
the maximal projection, we could simply project each component, since it is given by
a set of voxels. Let us observe that when in 3D images 26-adjacency is considered,
for 2D images 8-adjacency is obtained (see, Rosenfeld, 1974).

As an alternative, and based on the ideas of zigzag persistence presented in this
subsection, the following algorithm also allows us to mark over the maximal pro-
jection the fragments coming from different connected components of the 3D image
(they could be indicated graphically using different colours; see Figure 4.12).

Algorithm 7.
Input: Binary stack of images
Output: List whose elements correspond to the connected components of each slice
over the maximal projection

1. Compute separately (by means of some of the previously cited algorithms, for
instance, from Shapiro and Stockman, 2002) the connected components of all
slices Si and of the unions Si ∪ Si+1 for all i.

2. Consider each connected component Cj
1 of the first slice S1 and store it as the

first element of a new list lj1; we want to determine the projection over the
maximal projection of the 3D connected component corresponding to Cj

1 .

3. Obtain the connected component Ck
1∪2 of the union S1 ∪ S2 corresponding to

Cj
1 (that is, we take Ck

1∪2 such that Cj
1 ⊆ Ck

1∪2).

4. Compute the connected components Ci1
2 , . . . , C

ir
2 of the slice S2 which have

a non-empty intersection with Ck
1∪2. The result corresponds to the pixels of

S2 which in the 3D object are in the same connected component as Cj
1 . The

components Ci1
2 , . . . , C

ir
2 are added to the list lj1.

5. Repeat steps 3 and 4 for each component Cis
2 , considering now the following

slice S3 and the union S2 ∪ S3. We continue the process for every slice.

6. Once all the slices have been studied, the desired projection of Cj
1 over the

maximal projection of the image is given by the union of all elements in the
list lj1. It is a set of pixels that we denote by PCj

1 , and that is stored in the final
output list l.

7. Repeat steps 2-6 for all connected components of the first slice S1.

8. Repeat steps 2-7 for all connected components of the other slices S2, . . . , Sm
which have not been previously considered (that is, we consider only con-
nected components which are not present in any list lji constructed before).



4.3. Zigzag Persistence Theory 51

9. The output of the algorithm is the list l, whose elements are sets of pixels cor-
responding to the projection over the maximal projection of the different con-
nected components of the 3D image.

The algorithm allows us, in particular, to distinguish in the maximal projection
information coming from different connected components in the 3D image which
are crossing in space (that is to say, connected components that do not intersect, but
whose projections do).

The ideas of this algorithm can be formalised by means of zigzag persistence as
follows. Given a binary 2D-image, we consider the simplicial complex obtained by
triangulating each pixel by means of a diagonal edge (see Kozlov, 2008; a 2D-cubical
complex could also be used); this produces 8-adjacency, as required. Then, for each
slice Si, let us consider the associated simplicial complex, denoted by Xi. It is a
topological space, and the number of connected components of the image Si can be
determined as the rank of the homology groups in degree 0 of Xi. Similarly, we can
consider the simplicial complex associated with the union Si ∪ Si+1, that we denote
by Xi∪i+1, that is in fact equal to the union of the simplicial complexes Xi and Xi+1.
The 0-homology of Xi∪i+1 = Xi ∪ Xi+1 is related to the connected components of
the image Si ∪ Si+1. Then, we have the following diagram:

X1 ↪→ X1 ∪X2 ←↩ X2 ↪→ X2 ∪X3 ←↩ · · · ↪→ Xm−1 ∪Xm ←↩ Xm

and the corresponding zigzag module for degree 0:

H0(X1)→ H0(X1 ∪X2)← H0(X2)→ H0(X2 ∪X3)←
· · · → H0(Xm−1 ∪Xm)← H0(Xm)

Thanks to the ideas explained in Algorithm 7, it is not difficult to observe that
the different intervals of this zigzag module correspond to the connected compo-
nents of the 3D image. If homology with generators is computed at different steps,
then it is possible to determine in the simplicial complex the 2D connected compo-
nent associated with each generator in Si or Si ∪ Si+1. Subsequently, the looked-for
projection of each 3D connected component over the maximal projection of the im-
age can be determined as the union of the 2D connected components in each step Si
of the corresponding zigzag interval.

In this way, the computation of zigzag homology of the previous module allows
us to determine the different connected components in the 3D image. More con-
cretely, each connected component appearing in the initial 3D body is described in
the barcode diagram by means of an interval starting at X1 or at Xi ∪Xi+1 for some
i, and dying at Xm or at Xj ∪ Xj+1 for some j. We can also observe that intervals
starting at some Xi (with i > 1) correspond to different connected components in
Si which merge in Si−1 ∪ Si. Similarly, intervals dying at some Xj (with j < m)
represent components which merge with another one in Sj ∪ Sj+1.

Zigzag persistence for Z-stacks of images

In a more realistic situation, the microscope provides only a stack of several 2D
images I1, . . . , Im corresponding to different levels of the Z-axis, and therefore, the
complete 3D body is not available. In this case, we can binarize each slice Ii to get
a binary image Si, and then determine the maximal projection of S1, . . . , Sm which



52 Chapter 4. Neuron detection in stack images

is given by the union of white pixels of all of them — the white pixels are the fore-
ground.

In this case, information about the 3D volume is not complete and, therefore, it
is not possible to compute directly the connected components of the body (and their
projection over the maximal projection). However, we can apply Algorithm 7 to the
binary 2D images S1, . . . , Sm as in the “ideal” situation of the previous subsection.
More formally, we can also determine the barcode for the zigzag module

H0(X1)→ H0(X1 ∪X2)← H0(X2)→ H0(X2 ∪X3)←
· · · → H0(Xm−1 ∪Xm)← H0(Xm)

where each Xi is the simplicial complex associated to the binary image Si.
The result of Algorithm 7 is again a list whose elements are sets of pixels, which,

in this case, can be considered as an approximation of the projection over the maximal
projection of the different connected components of the 3D object. The associated
barcode diagram expresses again the continuity of 0-homology classes between the
different slices and represents graphically the results of Algorithm 7. As before,
connected components appearing in the initial 3D body correspond in the barcode
diagram to intervals starting at X1 or at Xi ∪ Xi+1 for some i and dying at Xm or
at Xj ∪ Xj+1 for some j. Intervals starting at some Xi (with i > 1) correspond to
different connected components in Si which merge in Si−1 ∪ Si. Similarly, intervals
dying at some Xj (with j < m) represent components which merge with another
one in Sj ∪ Sj+1.

It is worth emphasizing in this point that Algorithm 7 returns an approximation of
the desired projection of the different connected components of the 3D object, but we
cannot guarantee that the results are totally correct. The results depend on several
factors related to the quality of the Z-stack of images, factors as resolution, noise or
the real distance between slices (it could imply that some information is lost or con-
fused in the space between two consecutive slices). In general, Algorithm 7 returns
many connected components which are produced due to noise in the image and do
not correspond to the real situation. To avoid this problem, we considered that real
connected components correspond to zigzag intervals which persist many slices, and
those components which were present only in a few steps, were discarded. Let us re-
mark that, although in the ideal case of a 3D image, one connected component could
completely lie on a Z-plane (being discarded as noise), this could not occur in the
real situation, because a dendrite tends to be a quite warped object and the way of
acquiring images is precise enough to reflect this fact (see details in the Appendix B).

In addition to this homological criterion, we considered another one based on met-
ric information (more concretely, related to the radius of the different connected
components), because in some uncommon occasions isolated points can also per-
sist. Moreover, depending on the type of the image to be studied, the union of the
binary slices Si and Si+1 is replaced by the binarization of the maximal projection of
the initial images Ii and Ii+1.

Description of the plug-in

Once images have been acquired, zigzag persistence can be used to detect the differ-
ent dendrites appearing in an image and to discard non-relevant elements consid-
ered as noise. This approach is based on the following three hypotheses which are
supported by experimental evidences (these evidences are “a priori” ones, led by



4.3. Zigzag Persistence Theory 53

the expert knowledge of biologists; they are different from the conclusions extracted
from our computer experiments explained later on):

• A neuron is a continuous (connected) 3D body.

• The neuron which is the object of interest in the image appears in most layers
of the stack.

• It is not frequent that two different dendrites intersect over the same slice (in
that case, our algorithm would be unable to differentiate them).

With these assumptions, this aim is to apply Algorithm 7 considering that the
long intervals in the zigzag barcode will correspond to significant dendrite frag-
ments. Since we consider that starting from the upper or lower slices could be a bad
strategy (in general, relevant neuronal information will be concentrated on some in-
termediate slices), the plug-in works in such a way that an initial slice is chosen by
the user, and then Algorithm 7 is deployed.

Before defining the outputs of our plug-in, it is necessary to explain how we
transform the actual (greyscale) images in binary 2D-images where our homological
algorithm can be safely applied. In order to binarize a greyscale image it is necessary
to determine a threshold by means of some algorithm, and to transform the pixels
with intensity greater than the threshold into white pixels, the rest being converted
into black pixels. Notice that on greyscale images the binarization of a maximal
projection of two images is, in general, different from the union (maximal projection)
of the binarization of the two initial images (the reason being that the threshold is
computed on the whole image).

The algorithms employed to binarize and to compute the zigzag information
are different according to the two kinds of images which were used to test this
method. Both types of images are explained in Appendix B; they are images with
GFP-transfected neurons, and images with DiI-stained neurons.

Due to the fact that Actin-GFP staining produces poorly contrasted images, they
were preprocess by means of the median filter and then the operation Si ∪ Si+1

on slices was replaced by the binarization of the maximal projection of the initial
greyscale images Ii and Ii+1. In order to binarize the images, the Huang's thresh-
old algorithm (Huang and Wang, 1995) was used. This strategy allows us to avoid
many of the distortions produced during the acquisition process, getting a better
representation of the topological information. On the contrary, on DiI images, it was
enough to apply a Gauss filter (used to homogenize the noisy background), then
the “Default” method of auto thresholding available in Fiji/ImageJ, which is a varia-
tion of the IsoData algorithm (Ridler and Calvard, 1978). Finally, taking as operation
among slices the standard union of the binarized images. All these decisions have
been validated through experimental evidences (see subsection 4.3.3).

In order to get homological information about a single image, we used an algo-
rithm to determine local maximal intensities in images. To this end, we used the
same algorithm which was explained in the previous chapters and it is known as
FindMaxima. As it was mentioned, this algorithm computes the pixels with local
maximal intensity in a greyscale image, calculating an area of influence for each max-
imum. In the case of binary images, this amounts to determine the connected com-
ponents (with respect to the 8-adjacency) in the image. FindMaxima produces three
kind of results: the number of connected components (in other words, it determines
the H0 of the simplicial complex associated with the image), a point in each com-
ponent (homology with generators) and, in addition, a drawing of each connected



54 Chapter 4. Neuron detection in stack images

FIGURE 4.9: Interface of NeuronzigzagJ plug-in to configure the input
parameters.

component (producing, in our case, a segmentation of dendrite fragments). Thus,
by applying FindMaxima, all the functionality needed to implement Algorithm 7 ob-
tained. Let us observe that, since FindMaxima always determines the same generator
for the same component, it provides an efficient management of the component lists
involved in Algorithm 7.

After explaining some of the internal processing in our plug-in, let us briefly
describe the user interface. The user sets a number of parameters before starting the
execution. The slice where the processing will start from, and also the minimum life
of each component are fixed. The second value referes to the length of the barcode
to be considered with biological meaning. Furthermore, the visual interface allows
the user to choose freely among different filters and thresholding methods (even
if, for the two kind of images considered in our experimental study, some of these
parameters are strongly correlated), foreseeing that other kinds of images could need
other kinds of preprocessing (see Figure 4.9).

We explain now the outputs of the plug-in by means of an example. The plug-in
is applied on a selected part of the image where the object of interest is concen-
trated. For instance, in Figure 4.11 we have selected the part of Figure 4.10 which is
inside the white rectangle, because there is a possible crossing (a situation difficult
to analyze by automated methods; in particular it would be out of reaching for our
previous plug-in NeuronPersistentJ).

The plug-in studies all connected components contained in the different slices,
and studies their evolution throughout the Z-stack by means of the zigzag module.
Then, NeuronzigzagJ calculates the main structure and is able to check automatically
whether two dendrites that are linked in the maximal projection of the stack are
really the same, or are overlapped on the plane but there is no intersection between
them in the space.



4.3. Zigzag Persistence Theory 55

FIGURE 4.10: Basal dendritic segment of a CA1 mouse hippocampal
neuron stained with a DiI biolistic protocol. Scale bar: 10µm. Image

inverted.

FIGURE 4.11: A piece of Figure 4.10. This is a relevant part for our
study because we can see there two crossing dendrites. Image in-

verted.

(a) Summary picture of the (b) Barcode of all
main connected components. connected components.

FIGURE 4.12: Graphical results from the plug-in.

The final outputs are two images, see Figure 4.12. The first image (Figure 4.12
(a)) depicts the main connected components of the neuron structure, with different
colours. The plug-in considers that the main connected components are those that
live longer. In this example, there are 4 connected components which live in 5 or
more slices (the number 5 corresponds to the “life” parameter fixed by the user). This
Z-stack has 15 slices and these components have the longest life. We can see that they
represent the main dendritic structure in this image. The second image (Figure 4.12
(b)) is a barcode summarizing the life of all connected components which are in the
Z-stack. The barcode shows an abridged version of all the homological information;
in particular, the four longest dendrite fragments are clearly visualized. Let us stress
that even if the stack has 15 slices, the number of columns in the barcode is 29 (twice
15 minus 1), because the compound images Si ∪ Si+1 (got by union or by maximal



56 Chapter 4. Neuron detection in stack images

projection) are also considered there; concretely, even columns correspond to actual
slices, and odd ones to compound images.

4.3.3 Experimental Results

In order to validate our program and assumptions, we have undertaken two exper-
imental studies. In the first experiment, the aim was to investigate the role of the
maximal projection (t) and the union(∪) strategies (with the corresponding filter and
thresholding methods). In the second experiment, a more systematic study was car-
ried out to estimate the accuracy of our program with respect to the observations of
some human experts.

In the first study, we applied this plug-in starting from 1146 slices (coming from
12 Actin-GFP stacks of images, and 11 DiI stacks). The gathered-data were the num-
ber of slices and crossings with respect of each kind of strategy, together with a
control by a human who inspected the relevant number of connected components
(i.e., significant fragments of dendrites) in each stack. From the experimental data,
we obtained the confirmation of some of our assumptions about the role of the t
and ∪ operations, but also some unexpected insights about the importance of the
starting slice for the process, and the relevance of the barcode information. These
experiments suggest a strategy to work with this plug-in:

1. First, focus on the barcode diagram, looking for long bars and also considering
when two longs bars are not intersecting in the same column (in this second
case, it implies that no starting slice could produce all the relevant homological
information).

2. Second, produce the corresponding graphical outputs starting from one or
from several slices, determined by the barcode examination.

In the second experimental study, 60 images were selected (30 GFP images and
30 Dil images). They were randomly divided into three blocks of 30 images, and
each block was sent to a researcher to make a manual analysis. In that way, some
images were analyzed by more than one person, trying to measure the influence of
subjective behavior in the study. Two of the observers were biologists, and the third
one a computer scientist.

For each image, the human observer annotated the number of crossings, the
number of connected components, and also the exact location of each crossing and
each dendrite.

The result of the crossover study was clear: there was not any relevant discrep-
ancy among the interpretations of the three observers, when looking at the same
image.

This increases the reliability of the aggregated results obtained in the final report.
The success rate of the plug-in was remarkable with respect to GFP images (90%

of hits) and reasonable with respect to Dil images (77.6% of hits). Here hit means
that the plug-in found the same results than the human observers, up to some small
ambiguity present in the image. If we consider full hits, that is to say, exact equality
with respect to the four measured features (number of crossings, number of den-
drites, and location of both), the figures are 86% for GFP images, and 66.6% for Dil
images. The poorer performance for Dil images is explained because each image has
approximately 45 slices (theses are pictures from actual slices of brain tissue where
neurons growth in three-dimensional space); then, the human eye does not perceive
all the intricacies contained in the image; on the contrary, GFP pictures came from



4.3. Zigzag Persistence Theory 57

neurons in culture that tend to growth in a more limited space (growing in this case
is limited to the surface of the culture chamber).

A complete report on the validation performed is in Appendix D together with
some summary tables.

4.3.4 Conclusions

This section has presented the ideas underlying a Fiji/ImageJ plug-in for analyzing
neuronal structures in a stack of images. The algorithm is based on zigzag persis-
tence, a tool from Computational Topology. This approach is an improvement on
the previous one and offers an objective method on finding the structure of cells in
Z-stack images.

4.3.5 Availability and Software Requirements

NeuronzigzagJ is an ImageJ plug-in that can be downloaded, together with its
documentation, from the external reference NeuronzigzagJ. NeuronzigzagJ is open
source and available for use under the GNU General Public License. This plug-in
runs within both ImageJ and Fiji and has been tested on Windows, Macintosh and
Linux machines.





59

Chapter 5

Location of neurons

5.1 Introduction

The images studied in the previous chapters were acquired by an expert under fixed
conditions, according to a planned experiment. The sample was observed using a
microscope and the expert attempted to find the cells to be subsequently analysed.

In order to facilitate this task of searching and acquiring cells, the following idea
was devised.

By an automated process, an image with a low resolution is obtained, containing
a big part of the sample (High Content Screening). Once this is achieved, we should
design an algorithm to find cells from this poor image and obtain their location. The
last phase would consist of changing automatically the objective in the microscope
(by using the coordinates found by the location procedure) and acquiring a new
image for any cell located , in particular with a higher resolution. The programs
explained in previous chapters could then be applied on this rich pictures.

To summarise, the process includes obtaining a large image of the sample, find-
ing the cells within it, and finally, reconfiguring the microscope to acquire new im-
ages of those cells with better conditions.

The goal of this section is to explain a method which locates neurons in large
images. As explained in the previous chapters, the features based on the intensity of
the image help to segment and measure the objects of an image. However, we are
also explaining how other features and techniques can offer a good approach to this
aim.

5.2 An Approach Using Intensity Features

5.2.1 Introduction

Considering that transfected neurons ideally have clearly different intensities to the
background, in this approach only intensity and connectivity information is used to
detect neurons in the images. The main method described in this section is based on
hysteresis thresholding (Canny, 1986). It starts with a breadth-first search for image
pixels with an intensity above a global user-defined threshold. The chosen threshold
is sufficiently broad to include pixels with a very high probability of being part of a
neuron (true positives), and a very low probability of being part of the background
(false positives), although many turn out to be missed neuronal pixels (false nega-
tives). The latter are largely added in the second round — segmented pixels from
the first round are taken as seeds for a depth-first search to find connected pixels
with an intensity superior to a second, lower user-defined threshold. This a sensible
approach due to the way cells are dyed in the experiments and it allows for “graceful
degradation” of intensity within neuronal image structures.



60 Chapter 5. Location of neurons

5.2.2 Previous work

The objective is to find an effective method of locating neurons in a large image
based on the intensity of the pixels (an example of a fragment of such an image can
be found in Figure 5.1).

FIGURE 5.1: Patch of mosaic with neurons. Scale bar: 200µm. Image
inverted.

The process was divided into two phases, the first of which was to find the soma.
If it was located, a large part of the problem would be solved since the study of the
image only occurs around these smaller regions. The second phase was to segment
the rest of the body cell.

To this aim, different strategies were tested and are explained below.
The first strategy, based on the process described in Zhang, Zhou, Degterev, Lip-

inski, Adjeroh, Yuan, and Wong, 2007, requires a pre-processing of the image in
gray-scale. The first step consists of applying the morphological operation 5.1.

J = I + THT (I, E)−BHT (I, E) (5.1)

Where I is the original image, J is the resulting image and E is a structuring ele-
ment (a disc with a determined radius). The operators corresponding to these oper-
ations are the following:

• Dilation: D=I ⊕ E

• Erosion: Er=I 	 E

• Opening: O=I ◦ E=(I 	 E) ⊕ E

• Closing: C=I • E=(I ⊕ E) 	 E

• Morphological Gradient: D-Er=(I ⊕ E)-(I 	 E)

• Top-Hat Transform (THT): I-O=I-(I ◦ E)

• Bottom-Hat Transform (BHT): C-I=(I • E)-I



5.2. An Approach Using Intensity Features 61

The second step is to convert the 2D image into a 1D structure. Hence, the pix-
els are studied and classified into three groups using the algorithm called ‘fuzzy
c-means’ (Zhou, Wang, Dougherty, Russ, and Suh, 2004; Pham and Crane, 2004).

Dendrites BackgroundSoma = C

FIGURE 5.2: This graph shows the different groups regarding the val-
ues of intensity

The group with the highest values of intensity {C} (see Figure 5.2) is selected to
generate the threshold:

Tsoma = minC{I} (5.2)

The image is binarized and then only the somas are marked. After testing this
process in our group of images, we observed that several somas were segmented,
although this number was not high enough. There were too many neurons which
were not found.

The second strategy is based on the proposal described in Al-Kofahi, Lasek,
Szarowski, Pace, Nagy, Turner, and Roysam, 2002. While their process was de-
signed for 3D images, their idea could be adapted to 2D images. First, the authors
suggest using the morphological operation called ‘closing’. Therefore, the structural
element is adapted to the different structures in the image (soma or dendrites).

In order to segment the soma, an adaptive threshold is used to binarize the im-
age. The threshold is defined by the median intensity of all the images and the max-
imum of such medians (see more detail in Al-Kofahi, Lasek, Szarowski, Pace, Nagy,
Turner, and Roysam, 2002). This thresholding criterion ensures that the signal does
not produce an out-of-focus image.

Finally, an analysis of the connected components is completed in the binary im-
age to give a unique label to all the somas.

Both strategies inspired us to refine the following method. We pre-processed
the image, applying the median filter with different radii. The aim was to ob-
serve whether the noise of the image was removed and the objects were more ho-
mogenised. However, the results obtained were the same as the results without the
filter, so we concluded that this step was not necessary.

Therefore, in a second attempt to segment the soma, we used the algorithm called
‘Intermodes’, described in Prewitt and Mendelsohn, 1966. This algorithm uses a bi-
modal histogram which is iteratively smoothed until there are only two local max-
ima (j and k). Then, the threshold is computed as (j+k)

2 . Once we have a binary
image, the morphological operation known as ‘open’ is applied to remove the noise
or small artefacts.

In the end, the connected components, depicted the somas, are analysed.
All these strategies have an automatic process in order to obtain the threshold

which binarizes the image. While this offers the greatest advantage, it is also more
inconvenient, at least for the kinds of images which are object of study in this chap-
ter.

These are sizeable images which depict a substantial region of the sample. The
images were acquired by a confocal microscope, which focuses on one plane. This



62 Chapter 5. Location of neurons

technique is very good to clearly see the objects which are in the same plane, but
given that the cells are 3D structures, they are not only in a single plane. Most of
time it is possible to acquire the soma in a plane, however the dendrites can be
found on several planes. This is one of the reasons why the intensity of a neuron is
not the same in all its structure. Some areas may appear unfocused — with lower
intensity values — but the expert may consider them are clear enough to be taken
into account. A detailed description about the acquisition of the images used is in
Appendix B.

In light of this, we consider a user-given threshold. The specific method is de-
scribed in the following section.

5.2.3 Methodology

It is common to observe in images through this technique that the soma is brighter
than the rest of the neuron, like the dendrites. Hence, two thresholds are necessary,
one of them to distinguish the soma (first phase) and the second, to find the dendrites
(second phase).

On account of the considerable size of the image, it must be studied in smaller
patches. To this aim, a grid is created in the image where each individual tile has
a size fixed by the user. The process consists of looking for the tiles which have
a number of pixels with an intensity value higher than the threshold given for the
soma of the neurons. The user has to fix the minimum percentage of the area which
a tile has to have to meet the criterion, and to give the value of the threshold too.
This value determines whether a pixel is part of a soma or not.

To this aim, the process uses a linear or sequential search (Knuth, 1997) to check
all the tiles. In fact, the tiles which meet the criteria are termed candidate cells (see an
example of a candidate tile in Figure 5.3 (a)). As a result, several squares are labeled
candidates. They depict the somas found in the neurons of the image.

The second phase consists of studying the neighbouring squares of each candi-
date tile to find the structure of the neuron. To study the “neighbourhood” we use
what is termed the 4-adjacency (see Rosenfeld, 1974) — the tiles which are located
above, below, to the left and the right (see Figure 5.3 (b)).

(a) (b) (c)

(d) (e) (f)

FIGURE 5.3: Neuron from the top left of Figure 5.1. Example of how
the method described is applied in a particular case. Scale bar: 50µm.

Images inverted.



5.2. An Approach Using Intensity Features 63

The process for each candidate tile follows the same order for the search within
its neighbourhood: up, right, down and left. The method begins looking for the
brightest pixel in the tile to act as the starting point for the path — a set of pixels
which have an intensity value higher than a second fixed threshold. This threshold
is given by the user and determines wether a pixel belongs to a dendrite or not.

Two algorithms of ‘Backtracking’ (Gurari, 1999) are used in this second phase.
The first one is known as ‘Breadth First Search’ (Skiena, 2008). Beginning at the
brightest pixel, the algorithm begins searching for a path which meet all the criteria.
It builds paths which are possible candidates and abandons each partial path when
it determines that the path cannot be completed nor meets all the criteria. Given
that these circumstances would deem it an invalid path, the algorithm continues
searching.

At the moment that a valid path is found, that particular square is considered a
candidate tile. The search algorithm applied in this process takes into account the
8-adjacency (see Rosenfeld, 1974) to look for a valid path. Furthermore, a path is
considered valid by the algorithm if it at least has a determined length.

One of the problems with the digital images is that, while the objects can seem
continuous, sometimes they are not, see Figure 5.4. This idea is related to the notions
of distance in a discrete space and of generalised adjacency. With this in mind, the
user can allow gaps in the path of a determined number of pixels. To avoid a path
constituting more gaps that real pixels, the user can fix the number pixels which
have to be followed into the path, to allow a gap.

(a) (b)

FIGURE 5.4: (a) Example of dendrites which appear to contain a con-
tinuing trace. Scale bar: 10µm. (b) However, upon focusing on one
of the dendrites, the trace, while clearer, turns out to be discontinued.

Scale bar: 2µm. Both images inverted.

This process finishes when every candidate tile and its neighbourhood are stud-
ied (see Figure 5.3). In this case, the search algorithm used is ‘Depth First Search’
(Tarjan, 1972). The optimal values which have been found for this process and this
kind of image are in Table 5.1.

As a result, the method creates a rectangle around each group of connected tiles.
This region is created taking into account the tiles which are in the upper left and
lower right corner, see Figure 5.5.

This process was developed as a plug-in of ImageJ, called LocationJ.

Extrapolating the algorithm to detect the neuronal structure

Upon testing the method, results were observed such as those in Figure 5.5. This
led us to consider using the same algorithm to locate and define the structure of the
neurons.



64 Chapter 5. Location of neurons

Parameter Value
size of square 25x25px

percentage of the area 20%
thS 70
thd 20

lenght of a path 15px
size of a gap allowed 3

min. length of a path before a gap 5px

TABLE 5.1: Optimal values found upon running the method for this
kind of images. The term thS is the threshold chosen for finding so-

mas and thd is the threshold to find dendritical structure.

FIGURE 5.5: Example of the result given by the method in a patch of
the mosaic. Scale bar: 200µm. Image inverted.

To that end, the algorithm is applied to the patches obtained through the process
described in the previous section. The images are smaller than before, since they are
a patch of the mosaic, so the values of the parameters are smaller too; for example,
the size of the squares or the length of the path, see Figure 5.6.

The optimal conditions found are in the Table 5.2. An example of the result ob-
tained with these parameters is in Figure 5.7 (a), together with another example,
Figure 5.7 (b). The green squares are the tiles selected in the first phase of the pro-
cess. These squares meet the criteria of a soma. On the other hand, the blue squares
meet the criteria of part of the cell body. They are selected in the second phase of the
process.

Looking at Figure 5.7 (a or c), the result obtained is very accurate with respect to
the structure of the neuron. However, the second example (see Figure 5.7 (b or d))
shows that the area selected has all the structure of the neuron but also a region with
noise.

Looking at the pictures, it is very clear that the cell body has more intensity than
the rest of the image. Nevertheless, the previous process is not clever enough to



5.2. An Approach Using Intensity Features 65

(a) Patch obtained (b) s: 25x25px (c) s: 25x25px (d) s: 15x15px
with the first thd: 20 thd: 50 thd: 50

approach p: 15px p: 15px p: 15px

(e) s: 15x15px (f) s: 15x15px (g) s: 10x10px (h) s: 5x5px
thd: 20 thd: 20 thd: 20 thd: 20
p: 15px p: 6px p: 3px p: 3px

FIGURE 5.6: Results of applying different values in order to deter-
mine the best choice. The threshold for the soma is 70 in all examples,
and the percentage of each area with this intensity is equal or higher
than 20%. The rest of the parameters are indicated below each exam-
ple. In the pictures, variable called s means size of the square, th_d is
the threshold for the dendrites and p means the minimum length of

the path. Scale bar: 50µm. Images inverted.

Parameter Value
size of square 10x10px

percentage of the area 20%
thS 70
thd 20

lenght of a path 15px
size of a gap allowed 3

min. length of a path before a gap 5px

TABLE 5.2: Optimal values found upon running the method in this
phase. The term thS is the threshold chosen for finding somas and

thd is the threshold to find dendritical structure.

generalize since some images, such as Figure 5.7 (b or d), have not produced good
results.

In order to get a better understanding, the squares in the background that are
considered body cells, the histograms of samples containing squares both with and
without neuronal structures (the background) were obtained, see Figure 5.8. Upon
observing the results it was clear whether a square contains a neuronal structure or
not.

If we observe the histograms (see an example in Figure 5.8), instead of the image,
it is possible to distinguish them too.

This suggests that there are one or more parameters which define each stage of
the squares. Six statistical measurements related to the intensity are studied, since



66 Chapter 5. Location of neurons

(a) (b)

(c) (d)

FIGURE 5.7: (a) and (b) are examples of the patches of images after
running the process. (c) and (d) show the structure marked by the
expert in red and the region marked by the algorithm in black. Images

inverted.

the histogram depicts the amount of intensity values which there are in the selection.
The features are the following:

• mean

• median

• maximum

• standard deviation (StDev)

• Skewness

• Kurtosis

The measurements known as Kurtosis and Skewness provide information about
the distribution of a histogram of a selected area.



5.2. An Approach Using Intensity Features 67

FIGURE 5.8: (a) Neuron with two selected regions. Scale bar: 50µm.
Image inverted. (b) Histogram of the region with part of the neuronal
structure (foreground). It is the square on the left. (c) Histogram of
the region in the background. It is the square on the right. (d) Table

with the statistical measurements of both regions.

With this in mind, these specific features were extracted for a set of images. We
observed that they define the stage of a square (whether it contains a neuronal struc-
ture or not), however it is difficult to determine the weight of each one.

At this point, we considered the use of Machine Learning techniques to study
and determine whether a square is, in fact, part of a neuron or it simply belongs in
the background.

Upon considering it as a clustering problem, the k-means algorithm (Lloyd,
1982), an unsupervised technique, was applied.

This algorithm consists of partitioning the data into k clusters. Each value be-
longs to the cluster with the nearest mean or centroid. The Euclidean distance is
used to compute the distance among values. Each value is considered a point in an
n-dimensional space, n being the number of features which are used to describe the
data.

In our case, the number of clusters is two (k = 2): one containing the squares
with neuronal structure, and the other composed of the squares belonging to the
background. In addition, the six intensity features of each square previously men-
tioned are computed and the clustering algorithm is applied to this data.

With this in mind, the following algorithm is outlined.

Algorithm 8.
Input: A greyscale image
Output: Binary image in which each colour corresponds to the labels: neuron or
background

1. Make a grid in the image.

2. Compute the mean, mode, StDev, maximum, Skewness and Kurtosis for each
tile of the grid.



68 Chapter 5. Location of neurons

3. Apply the k-means algorithm.

4. Analyse the result.

In order to study the features, we use the ImageJ programme and the version
of the k-means algorithm implemented in Weka (Hall, Frank, Holmes, Pfahringer,
Reutemann, and Witten, 2009). In fact, we use these programmes to obtain results as
shown in Figure 5.10.

What we are mainly concerned with here is to define the structure of a neuron
and, to this aim, we use the patches obtained in section 5.2.3, with the plug-in Loca-
tionJ.

This algorithm was run on each image, creating a grid with tiles of 5×5 px.
Firstly, all features were used as descriptors of the squares and the results were sim-
ilar to those of the examples in Figure 5.10 (a). Then a descriptor was removed in or-
der to determine whether the results would improve. In the part (b) of Figure 5.10, it
is possible to observe some of the examples obtained with all features barring Skew-
ness. Likewise, this study was repeated removing each one of the descriptors. The
next step consisted of running the algorithm again, but in this case, with just four
descriptors, and so forth (see Figure 5.10).

(a) (b) (c) (d)

FIGURE 5.9: Example of four manually-traced neurons used in the
study (inverted images).

In order to determine which of these combinations offers a more accurate result,
we did the following study. We compared the results obtained with algorithm 8 and
with the manually traced neurons drawn by an expert.

After applying different combinations of the previously mentioned features, we
concluded that the best results were obtained using the followings two features:
maximum and standard deviation. However, this was further checked comparing
the results in this case to the manually traced neurons given by the expert.

Before explaining which process is used to study the results, certain keywords
are defined below.

Positive squares, or only positive (P), if the square contains neuronal structure,
as opposed to negative squares, or only negative (N), if the square only shows back-
ground; results obtained by the algorithm are called positive (P’) and negative (N’)
predictions; a square is true positive (TP) if the prediction done with an algorithm
and the description done by the expert is positive in both cases; and finally, a square
is false positive (FP) if the prediction done with an algorithm is positive but the de-
scription done by the expert is negative. In this case, the prediction of the algorithm
is erroneous. Analogous definitions also have the concepts true and false negative
(TN and FN respectively).



5.2. An Approach Using Intensity Features 69

(a) Images studied with all features.

(b) Images studied with just 5 features (no Skewness descriptor).

(c) Images studied with just 3 features: mean, maximum and standard deviation.

(d) Images studied with just 2 features: maximum and standard deviation.

FIGURE 5.10: Examples of the results obtained from applying Algo-
rithm 8 to different combinations of descriptors. From left to right are

the same examples as Figure 5.9, respectively.



70 Chapter 5. Location of neurons

Predicted condition
Positive (P’)

Predicted condition
Negative (N’)

Condition
Positive (P)

True Positive (TP) False Positive (FP)

Condition
Negative (N)

False Negative (FN) True Negative (TN)

TABLE 5.3: Theoretical confusion matrix.

All these outcomes can be formulated in a 2×2 matrix, called a confusion matrix
or contingency matrix, see Table 5.3. The confusion matrix allows the visualization
of the performance of an algorithm. Each column of the matrix depicts the predic-
tions of the algorithm while each row represents the ‘real’ instances - those defined
by the expert - or vice versa.

In order to compare the results obtained by the algorithm (with two features:
maximum and standard deviation) and the expert, we compute the confusion ma-
trix for each one of the images studied, see Table 5.4. In addition, terms and formulas
can be derived as a result of this matrix. The most commonly used parameters are
recall and precision, which are also analysed for each image. The parameter called
recall is also known as sensitivity or true positive rate (TPR). It measures the pro-
portion of positives which are correctly identified as such, see Equation 5.3 (i.e. the
percentage of squares containing neuronal structure which are correctly identified
as meeting a criteriom). On the other hand, precision (also called positive predictive
value (PPV)) is the fraction of relevant instances among the ones classified with the
same predicted condition (i.e. the percentage of squares which are correctly identify
as positive (TP) among all the squares classified with the same condition (P’)), see
Equation 5.3.

recall = TPR =
TP

TP + FN
and precision = PPV =

TP

TP + FP
(5.3)

The values shown in Table 5.4 are an example of the values obtained in this study.
While we can observe that the recall is high, which is a favourable result, the preci-
sion parameter is only approximately 50%, which is less than favourable, implying
these results could be considered random.

This study made it evident that, while the machine learning technique provided
neuronal structures, there was still a need to conduct a more in-depth study of the
features defining neurons and their processing.

Using the intensity features implies losing information in most cases. To segment
or, for instance, apply the morphological operations requires a threshold which re-
sults in losing information. It was evident we needed to choose another way to
study the problem. The starting point of this method had been, up to this point,
the brightest pixel in a region. We decided to change this process and studying the
whole mosaic by making a fixed grid and focusing on the tiles. This is explained in
the next section, Section 5.3.

In the light of this strategy, it is necessary to describe which is the process to
make a grid in the mosaic or large images.



5.3. Methodology Used Over Binary Images 71

P’ N’ P’ N’
P 312 37 349 P 231 18 249
N 209 5042 5251 N 180 5746 5926

521 5079 411 5764

r: 0.894 r: 0.928
p: 0.599 p: 0.562

(a) (b)

P’ N’ P’ N’
P 227 36 263 P 324 44 368
N 215 4397 4612 N 226 7806 8032

442 4433 550 7850

r: 0.863 r: 0.880
p: 0.514 p: 0.5889

(c) (d)

TABLE 5.4: Example of confusion matrices and the parameters: recall
(r) and precision (p) of the images of Figure 5.9. Data (a) corresponds

to image (a) and so on.

5.2.4 Annotation of the Image Data

When using the machine learning techniques, the patches to be classified must first
be sampled from the image, since it is computationally very costly to exhaustively
check all possible patch locations in an image.

An expert neurobiologist manually marked all regions in these images that con-
tained neurons (in our case, 409 neurons were marked). Through this we learned
that neuron regions in our images are typically 500× 500 pixels. From the non-
neuron regions in the images we randomly sampled approximately 1,000 patches
of this size to serve as negative examples (background). This sample of patches is
also known as gold standard (gs). It is a term used to refer to information provided
by a direct observation obtained by an expert.

5.3 Methodology Used Over Binary Images

We used this set of images to study the features which provide a better description of
a neuron. We based on the previous section to work on images with less information,
we mean, to transform each image of gray scale into a binary image. The binary
images are obtained applying the method described in Algorithm 8, although two
features were considered as descriptors. In this case the size of the square for the
grid made in the patch is 5×5 — it is the value of the size which gave us best results
— and only the standard deviation and maximum values are computed to obtain
the binary image. One of advantages of this method is that we avoided that the
expert decided a threshold to binarize the image. Figure 5.11 shows some examples
of patches binarized using this method.

It is possible to observe in Figure 5.11 that the binary images of neurons are dif-
ferent from the images of background. However there is a problem with the images
which are neurons (see Figure 5.11 (a.4)), but contain a lot of noise, or vice versa,



72 Chapter 5. Location of neurons

(a) Example of patches classified like a neuron by the expert.

(b) Example of patches classified as background by the expert.

FIGURE 5.11: Patches binarized using a method described in Algo-
rithm 8.

images which are not neurons, but they contain another cell as, for instance, an as-
trocyte (see Figure 5.11 (b.1)).

Taking this fact into account, the process used was the following. With these
new patches (binary patches) other features were studied such as the number of
connected components, the area of the background and others related to the biggest
connected component such as the solidity or Feret's diameter. The parameter called
solidity is computed through of the formula solidity = area

convex area , convex area being
the area enclosed by the convex hull of the outer contour of an object. On the other
hand, the value known as Feret's diameter is the longest distance between any two
points along the selected boundary, also known as maximum caliper.

These features were computed for each patch and they determined a vector of
descriptors which was the input for the unsupervised clustering algorithm. In fact,
different combinations of the descriptors were analysed by the clustering algorithm.
The results were compared with the real results and the recall and precision were
computed for each case. After several combinations of the features, we observed
that the best results obtained were with these features: the number of black pixels
which were in the patch (bp), the number of connected component (cc), the solidity
and the inverse number of connected component (inv(cc)).

To observe which was the best option among them, we study the ROC space
(receiver operating characteristic space, see Fawcett, 2006) compound of the combina-
tions which were being studied. The best possible method would yield a point in
the upper left corner (or coordinate (0, 1)) of the space. This corner represents 100%
sensitivity (no false negatives) and 100% specificity (no false positives). Therefore,
we obtained Figure 5.12.

Taking this into account, the features chosen to continue with the study are:

• (bp) the number of black pixels, which means that if there are a lot of fore-
ground or not

• (cc) the number of connected components, this value implies if the black pix-
els are dispersed or as opposed to they are closed and they compound a big
connected components



5.3. Methodology Used Over Binary Images 73

bp, cc

bp, cc, inv(cc)

bp, cc, solidity

0.702

0.704

0.706

0.708

0.71

0.712

0.714

0.716

0.718

0.72

0.722

0.724

0 0.2 0.4 0.6 0.8 1

TP
R

 o
r 

se
n

si
ti

vi
ty

 

FPR (1- specificity)

ROC space 

FIGURE 5.12: ROC space of same method with different features.

• (solidity) is the measurement of the overall concavity of a particle. It is defined
as solidity = area

convex area . The area and the convex hull area approach each other
for the solid particles (resulting a value close to 1).

On account of the fact that these are the best features we repeated the study with
different groups of patches to check the results. The neurons of the set of images
were split into two subsets. The first subset (g0_n) consists of the patches classi-
fied as neurons, however they have noise or their contrast was lower and the pro-
cess of binarization was not clear (in this group there are 146 patches). The second
(g1_n)) contains the neurons which are clear and they do not generate any problem
to analyse (the number of patches is 263). On the other hand, other two subsets were
created for the patches of the background. The first contains of the patches classi-
fied as background by the expert (they are 1497 patches and it is called bg_gs) and
the second contains patches which are background but in the previous process were
considered as neurons (bg_FP). We decided to work with these groups because from
them we could observe what happens with the patches which are not clear.

Table 5.5 shows the recall and precision values for the different combinations of
the groups when the clustering algorithm (k-means) is run on them.

Afterwards seeing and analysing these results, we conclude that when the neu-
ron is well-defined, that is to say, when the neuron is clear in the image, there are not
noise or artefacts on it, to classify the patches computing these features based on the
binarization of the patch is possible with a clustering technique. However, it is not
an easy problem when the image has noise or has not contrast.

In view of these results, we observed these features are not always enough. Using
the intensity features implies to loss information in most cases. To segment or, for
instance, apply the morphological operations requires to binarize the image which
results in losing information.



74 Chapter 5. Location of neurons

bp+cc+solidity
Sets of patches recall precision

gs 0.7213 0.7995
gs+bg_FP 0.6626 0.8187

g0_n+bg_gs 0.5548 0.2547
g1_n+bg_gs 1 1
g0_n+bg_FP 0 0
g1_n+bg_FP 0.9886 0.8125

TABLE 5.5: Recall and precision values for the different combinations
of the subsets of patches.

Thus, we decided to study other features related with other aspects of the image
and not only with the value of the intensity; for instance, the texture features, which
are based on the location of a pixel respect to its neighbours.

5.4 Methodology Used Over Textures Features

The work explained in this section has been presented and published in the IEEE 13th Inter-
national Symposium on Biomedical Imaging (ISBI) held in Prague, Czech Republic, 2016.
It was presented as a poster and published as a short-paper under the title: “Automatic de-
tection of neurons in high-content microscope images using machine learning approaches”,
see Mata, Radojevic, Smal, Morales, Meijering, and Rubio, 2016.

5.4.1 Introduction

Before going any further, we explain a term which is used in analysis of large images
and is the core of the next approach.

An exciting recent development in neuroscience is the use of high-content anal-
ysis (HCA). HCA generally refers to the combination of automated acquisition and
analysis of large microscopic image data sets for biological discovery and is often
employed by pharmaceutical and biotechnology companies but increasingly also
in academia and research institutes (see Xia and Wong, 2012). In view of the vast
amounts of data and the desire to eliminate possible human bias, automation is a
key requirement in HCA, and thus the analysis methods must be highly robust and
reliable. Although challenging, HCA is now used also in basic neuroscience research
(see Dragunow, 2008; Anderl, Redpath, and Ball, 2009; Radio, 2012), and various
image analysis pipelines have already been developed for neuron quantification in
high-content image data (see Vallotton, Lagerstrom, Sun, Buckley, Wang, DeSilva,
Tan, and Gunnersen, 2007; Zhang, Zhou, Degterev, Lipinski, Adjeroh, Yuan, and
Wong, 2007; Wu, Schulte, Sepp, Littleton, and Hong, 2010; Charoenkwan, Hwang,
Cutler, Lee, Ko, Huang, and Ho, 2013).

The first step in an HCA pipeline for neuron screening is to detect image regions
of interest containing neurons as opposed to background or irrelevant structures (see
Figure 5.13). Commonly this is done by image prefiltering (denoising, illumination
correction, contrast enhancement) followed by some form of intensity-based thresh-
olding. However, the images often contain debris and other artefacts that are larger
or more complex than standard prefiltering techniques can eliminate, and thus more
sophisticated solutions are needed.



5.4. Methodology Used Over Textures Features 75

Therefore, we studied the potential of machine learning based approaches for
automatic detection of neurons in microscopic images for HCA. In Section 5.2 we
studied an intensity-based detection method, using expert manual annotation as the
gold standard (see SubSection 5.2.4). In this section, we implement and compare
two approaches based on different feature sets and classifiers, and compare their
performance to each other.

We want to demonstrate that with the right feature set and training procedure,
machine learning can indeed improve neuron detection.

(a) Example high-content image. Scale bar: 600µm.

(b) Neuron region. (c) Background region.
Scale bar: 100µm. Scale bar: 100µm.

FIGURE 5.13: Example of a high-content microscope image (a) and
regions containing a neuron (b) and background (c). Image intensities

are inverted here for displaying purposes.



76 Chapter 5. Location of neurons

5.4.2 Context

As an alternative to intensity based neuron detection (Section 5.2) and previous sec-
tion (Section 5.3), we considered two machine learning based approaches. Detec-
tion was achieved by classification of image patches as positive (containing neuron
structure) or negative (containing background) using features computed from these
patches.

WND-CHARM tool

The first approach was based on computing an extensive list of image features using
the WND-CHARM library (Orlov, Shamir, Macura, Johnston, Eckley, and Goldberg,
2008).

This software is an open source designed to be used for biological image analysis,
in fact, this tool can be used for a wide range of biological data sets. This software has
two steps: firstly, it extracts image content descriptors from the raw image, image
transforms, and compound image transforms. Secondly, the most relevant features
are selected and the feature vector of each image is used to obtain a model and to
classify new images.

The type of features used by this software can be classified in four categories
(Orlov, Shamir, Macura, Johnston, Eckley, and Goldberg, 2008): different types of
polynomial decompositions, high contrast features, pixel statistics, and texture de-
scriptors. Polynomial decomposition is generated to approximate the image to some
fidelity, and its coefficients are used as descriptors for the image content. Other fea-
tures are based on high contrast, such as edges and objects, size, shape, spatial dis-
tribution, etc. Pixel statistics are based on the intensity within the image and use
histograms and moments. The last category is texture features which denotes the
pixel variation in intensity for different directions and resolutions.

These features are computed for raw images and in grayscale. In addition, an
image is subjected to three standard transforms (Fourier, wavelet and Chebyshev)
and some transform combinations.

To compute the information for each image, wnd-charm uses the following algo-
rithms, described more thoroughly in Orlov, Shamir, Macura, Johnston, Eckley, and
Goldberg, 2008:

• Radon transform features are computed from a projection of pixel intensities
onto a radial line from the image center at these angles: 0◦, 45◦, 90◦, and 135◦.
(Lim, 1990),

• Chebyshev Statistics and Chebyshev-Fourier features are computed from
Chebyshev polynomials (Gradshtein and Ryzhik, 1994),

• Gabor filters are based on Gabor wavelets (Gabor, 1946) to construct spectral
filters which search for image texture and periodicity descriptors,

• Multi-scale histograms are computed with different number of bins (3, 5, 7 and
9) as defined in Hadjidementriou, Grossberg, and Nayar, 2001,

• The first four Moments which are mean, variance, skewness and kurtosis are
also computed in four different directions: 0◦, 90◦, +45◦, and −45◦,

• Tamura texture features measure the scale of the texture (coarseness), estimate
the dynamic range of the pixel intensities (contrast), and indicate if the image
favours a certain direction (directionality)(Tamura, Mori, and Yamavaki, 1978),



5.4. Methodology Used Over Textures Features 77

• Edge Statistics features are calculated on the image's Prewitt (Prewitt, 1970),

• Object Statistics are computed from a binary mask obtained to apply to the
image the Otsu global threshold (Otsu, 1979),

• Zernike and Haralick features. First ones are the coefficients of the Zernike
polynomial approximation of the image and the others are calculated on the
image's co-occurrence matrix. Both algorithms to calculate these features are
described in (Murphy, 2001).

All these features are computed for all patches of images of the experiment. The
total number of descriptors which are calculated is 1059 for each image. They are
stored in a sig-file. However not all features may be equally relevant, in the training
step a Fisher discriminant score (Bishop, 2006) is computed for each, which allowed
building a ranked preference list of features. In the testing phase of the experiments
we used the top-15% features according this score. Classification of patches based
on these features was done using a weighted neighbour distances (WND) classifier
(Orlov, Shamir, Macura, Johnston, Eckley, and Goldberg, 2008).

SIFT-features

The second approach was based on computing the scale-invariant feature transform
(SIFT) described in Lowe, 2004. This approach consists of computing features which
are invariant to image scale and rotation, and partially invariant to change in illumi-
nation and 3D viewpoint.

To this aim, the method described by Lowe, 2004 is made up of four main steps.
The first is scale-space extreme detection which searches over different scales and

image locations to identify interest points. The next step consists of selecting some
points based on measures of stability. These points are called keypoints and this step
is recognised as keypoint localization. In the third step, the local image gradient
directions are used to assign one or more orientations to each keypoint location.
In the final step, a representation is obtained from the local image gradients. As a
consequence, it is possible to study levels of local shape distortion and change in
illumination.

Finally, each keypoint describes the local image region using a vector as a de-
scriptor, which is composed of 128 elements with the values of the orientation his-
togram entries. Additionally, this vector is normalized to unit length, hence the
effects of illumination change are reduced and the contrast changes are canceled by
this vector normalization. In addition, a brightness change does not affect the values
because they have been calculated from different pixels. Therefore, the descriptor is
invariant to these kinds of changes in the image.

In order to compare different images described with SIFT-features, it is neces-
sary to normalize the data since the descriptors for each image do not have to be an
identical number. The “Bag of Words" model (BoW model, Sivic, 2009) is a popu-
lar approach to achieve this normalization. This algorithm consists of obtaining a
“codeword", which is considered the base for generating the histogram of features.
This codeword is obtained using the method called k-means clustering (MacQueen,
1967) on all the descriptors. Finally, an image can be represented by a histogram
which indicates how many of its descriptors are in each cluster.

Classification of patches based on these features was done using the Naive-Bayes
(NB) classifier from the WEKA toolkit (Hall, Frank, Holmes, Pfahringer, Reutemann,
and Witten, 2009).



78 Chapter 5. Location of neurons

5.4.3 Methodology

The performance of the methods was initially evaluated directly on the expert an-
notated neuron patches (positives) and sampled background patches (negatives) as
described in Section 5.2.4. A random selection of 75% of the patches from each class
was used for training of the machine learning based detectors while the remaining
25% was used for testing. Given the classification output and the annotation, the
number of true positives (TP), false positives (FP), and false negatives (FN) could
automatically be determined for each method, from which the classification perfor-
mance was quantified in terms of recall and precision.

In order to use these machine learning approaches, we used the same gold stan-
dard obtained for the before section. About 1,000 patches (of 500× 500 pixels as mo-
tivated above) were sampled uniformly from the image, which suffices to capture
the true neuron regions (typically only several dozens).

The locations of the considered patches typically did not match exactly with
those of the annotated patches. Therefore patches classified as positive were further
examined: if a positive patch overlapped less than 20% with any annotated neuron
patch, it was declared a false positive, and all positive patches overlapping 20% or
more with the same annotated neuron patch were considered a unique (single) true
positive match. The 20% threshold may seem rather conservative but additional
experiments showed us that higher percentages did not consistently improve the
results.

Due to the sampling, many patches in the second experiment potentially con-
tained small portions of neuron structures, which to some degree caused a mis-
match with the initial training set. Therefore we expected the performance of the
methods to be lower in the second experiment as compared to the first. To improve
performance we implemented a bootstrapping approach, where the classifiers were
retrained in a second round using as negative examples only the false positives from
the first round, while continuing using the true positive examples from the expert
annotation. The machine learning detectors without (versus with) using bootstrap-
ping are referred to as WND-CHARM-A and NB-SIFT-A (versus WND-CHARM-B
and NB-SIFT-B).

5.4.4 Experimental Results

We compared the results obtained to apply the methods of Section 5.4 with the first
approach, also known as LocationJ (described in Section 5.2). Therefore, we observe
better the difference among all methods.

The results of the first experiment are presented in Table 5.6. Although WND-
CHARM-A showed perfect recall, its precision was lower than LocationJ, indicating
that it produced more false positives and the training set did not well-reflect possi-
ble background variability. Precision was drastically improved by using the boot-
strapped variant, WND-CHARM-B, with still near-perfect recall. Bootstrapping im-
proved the performance of NB-SIFT in terms of both measures, resulting in a better
recall than with LocationJ but a slightly lower precision. The negative effect of patch
sampling on the performance of all methods is seen from the results of the second
experiment in Table 5.7. As anticipated, in virtually all cases both the recall and the
precision was considerably lower than in the first experiment. The differences be-
tween the two measures are also much higher, with the precision being substantially



5.4. Methodology Used Over Textures Features 79

FIGURE 5.14: Example detection result using NB-SIFT-B. Shown are
part of a high-content microscope image of neurons and the borders
of various patches overlaid in colour coding: an expert annotated
neuron region missed by the detector (red), two annotated regions
found by the detector (white), true-positive patches (yellow) ignored
by the detector in favor of the best overlapping patch (green), and
false-positive patches (magenta). Image inverted. Scale bar: 100µm).

lower than the recall in all cases, indicating an increase of false positives. Of the ma-
chine learning approaches only NB-SIFT-B performed better than LocationJ in terms
of both measures in these experiments. Example detection results from NB-SIFT-B
are shown in Figure 5.14.

Method Recall Precision
LocationJ 0.80 0.86

WND-CHARM-A 1.00 0.62
WND-CHARM-B 0.97 0.82

NB-SIFT-A 0.74 0.46
NB-SIFT-B 0.88 0.83

TABLE 5.6: Results of the first experiment.

Method Recall Precision
LocationJ 0.64 0.50

WND-CHARM-A 0.89 0.19
WND-CHARM-B 0.66 0.44

NB-SIFT-A 0.60 0.26
NB-SIFT-B 0.94 0.57

TABLE 5.7: Results of the second experiment.



80 Chapter 5. Location of neurons

5.5 Discussion

Up till now, in this chapter we have investigated the problem of neuron detection
in high-content microscope images from screening experiments in neuroscience. We
have evaluated the performance of two machine learning based approaches using
different feature sets and classifiers in comparison with a method based on hys-
teresis thresholding of intensity information only. The results showed that machine
learning approaches may perform superiorly. However this improvement does not
come lightly and requires careful consideration of the ingredients. Of the two ma-
chine learning based approaches considered, the best results were obtained with
NB-SIFT in combination with a bootstrapping procedure for the training stage, even
though WND-CHARM takes into account a much wider variety of image features.
This suggests that selection of the right feature set as well as the right training set is
crucial to achieve good detection performance.

5.6 Deeper Study about Features of Images and Machine
Learning Algorithms

The work explained in this section is still in progress and it is in collaboration with Erik Mei-
jering, PhD and his group, from the Biomedical Imaging Group Rotterdam of the Erasmus
University Medical Center of Rotterdam in the Netherlands, and Carlos Fernández-Lozano,
PhD, from the Instituto de Investigación Biomédica de A Coruña of the Complejo Hospita-
lario Universitario de A Coruña in Spain.

5.6.1 Introduction

Afterwards the results previously obtained, we aim to perform a more detailed
study of the effects of different types of features in combination with different types
of classifiers and training procedures. This work is described in the following sub-
sections.

5.6.2 Methodology

For the following study we also used the images explained in the previous section
and their experimental process described in Appendix B. It is important to highlight
that each image was approximately 10,000× 12,000 pixels (covering approximately
70 mm2 of the culture dish) and contained an average of 40 transfected (with the
fluorescent protein GFP) neurons (see Figure 5.13 (a)). Specimens usually have about
100 neurons but more than half are not imaged as they are in different optical planes
or close to the borders of the dish. This is a reason to take into account the HCA
techniques.

The image set was obtained in two steps. The first step, to obtain the gold standard
and the second, to generate the patches for the study.

Firstly, the gold standard was obtained by the same method which was explained
previously, however the following is a reminder of the aforementioned method. The
expert marked the neurons with different-sized regions, fixing each region to the
size of the neuron. The majority of neurons were fully contained in regions of a
determined size — in this case, 500x500 pixels. Afterwards, the expert marked the
neurons again using this same size to mark the regions, where the neurons are lo-
cated. On the other hand, the areas of the image which did not contain a neuron
were declared non-neuron regions.



5.6. Deeper Study about Features of Images and Machine Learning Algorithms 81

FIGURE 5.15: Example of two neurons. The gray regions represent all
possible patches with 50% or more of their area overlapping with the
neuron marked by the expert (square). They consist of all the upper-

left corners of these patches. Scale bar: 200µm. Image inverted.

The next step consists of obtaining the patches for the study. To this aim, each
mosaic is divided using a grid where each region is the same size (a square of 500
pixels of side), and the patches do not overlap but are side-by-side.

In order to be able to use these patches in our study with machine learning ap-
proaches, it is necessary to tag the patches. To this end, any patch which overlapped
with less than 50% of an annotated neuron patch from the gold standard, was de-
clared a background or non-neuron patch. On the contrary, all patches which over-
lapped with 50% or more of a positive patch from the gold standard, are considered
a neuron or positive patch. As it was mentioned, the expert found approximately
400 neurons in the set of mosaic and the remaining approximately 4,800 patches in
the image were negative, resulting in an imbalanced set.

On the other hand, data sets in machine learning techniques can be balanced or
imbalanced. Both kinds of sets are suitable, however imbalanced sets usually offer
misleading results since the class of interest is much smaller or rarer than the other
classes. This fact is common in a lot of the problems analysed with machine learning
methods, however, there are different techniques to convert sets from imbalanced to
balanced (see Batista, Prati, and Monard, 2004).

We used a balanced set and it was obtained using an oversampling method —
adding instances from the under-represented class.

Since a balanced set has to have approximately the same number of samples for
both classes. In our case, the negative patches were extracted using the same method
to obtain the patch sampling. However, as the positive patches are the class with less
samples, it was necessary to extract more patches. To this aim, a number of patches
meeting the criteria of positive patches, were extracted for each neuron marked by
the expert.

They were obtained randomly from among all the patches which overlapped
with more than 50% with the neurons from the gold standard (see Figure 5.15).

This fixed number is calculated by adding up the negative patches of all the
mosaics which belong to the set, and dividing this number by the total number of
neurons (which belong to the gold standard), see Figure 5.16.



82 Chapter 5. Location of neurons

FIGURE 5.16: Example of a mosaic sampling. The yellow square are
the neurons marked by the expert and the red dots are the upper-left

corner of the patches selected as neuron. Image inverted.

We considered several machine learning techniques based on two ways to ex-
tract the features from the images. The first approach was based on computing an
extensive list of image features using the WND-CHARM library (Shamir, Orlov, Eck-
ley, Macura, Johnston, and Goldberg, 2008). The second one was based on comput-
ing the scale-invariant feature transform (SIFT) with the method proposed by Lowe,
2004. Both approaches were explained in detail in the previous section, Section 5.4.2.
Although in this case, we only used the first approach, the WND-CHARM tool, to
compute the features of the images. We did not use the classifier offered by this
software.

The method proposed to extract the set of features in each patch is explained in
the following subsection.

Implementation Details

Firstly, the background set of the data set was obtained from creating a grid in the
mosaics. The patches which met the criteria to be considered background (their
overlapped area with a real neuron is less than 50%) were stored.

Next, the neuron set is created. The neuron patches are chosen randomly from
amongst all the possible patches which are classified as neurons. These patches are
all of the ones in which 50% of the area or more overlaps with a neuron from the gold
standard (see Figure 5.15). However, not all the patches have the same relevance.
The higher the percentage of overlapping, the higher the quantity neuron present in
the patch.



5.6. Deeper Study about Features of Images and Machine Learning Algorithms 83

(a) (b)

(c) (d)

FIGURE 5.17: Example of neuron patches, (a) and (b), and back-
ground patches, (c) and (d), with the SIFT-features computed. Images

inverted.

Based on this idea, the patches which can be classified as neurons have an asso-
ciated weight. Taking this into account, the patches which balance the data set are
chosen randomly. Once the data set is balanced (that is, there is a similar number of
background and neuron patches), the SIFT and CHARM-features are calculated for
each of the patches.

The WND-CHARM programme is used to obtain the CHARM-features as it was
explained before. The programme returns a file for each patch, which are processed
to create a new file with all patches and their features together.

Meanwhile the SIFT-features are calculated too. In this case, to obtain these fea-
tures we used MATLAB (MathWorks, 2016) and the library called VLFeat (Vedaldi
and Fulkerson, 2008), see an example of the SIFT-features extracted in Figure 5.17.
Using these tools, the descriptors from each patch are computed, though there does
not have to be an identical number for all of them. The algorithm called “Bag of
Words" model (BoW model, Sivic, 2009), is used to work with this kind of data and,
it explained in the previous section. To obtain the histograms for each patch, dif-
ferent number of clusters, such as 20, 40, 60, 80, 100, 150, 200 and 230, have been
studied to this end. As mentioned BoW model computes the centers of the clusters
(the centroids) and each descriptor of a patch is classified based on the proximity to
the centroids (using k-means algorithm). This process generates a new descriptor
for each patch based on the histogram (in this particular case, the histograms have
20, 40, 60, 80, 100, 150, 200 and 230 bins).



84 Chapter 5. Location of neurons

SIFT-features

data sets
CHARM
features

20 40 60 80 100 150 200 230

01 x
02 x
03 x
04 x
05 x
06 x
07 x
08 x
09 x
10 x x
11 x x
12 x x
13 x x
14 x x
15 x x
16 x x
17 x x

TABLE 5.8: Features in each data set.

Data sets Details

After obtaining the patches and computing their features, the data sets were created
as following. First, the features were considered separately. Consequently, different
files were obtained, one of them with only the CHARM-features; and others with
only SIFT-features, one data set for each number of cluster. Later, other data sets
were created mixing the features - adding the CHARM-features to each combination
of the SIFT-features. As a result, there are seventeen data sets, which are in the
Table 5.8.

We are currently working on the experimental step of this study. This phase con-
sists of evaluating the data sets using different machine learning algorithms which
is partially explained in the subsection below.

5.6.3 Experimental Results

This step is split into four phases:

1. choose the data sets which obtain the best results,

2. evaluate the algorithms with specific data sets to determine the best perfor-
mance,

3. ascertain which features are the most relevant in this study, and

4. from an experimental analysis determine the best model according to a null
hypothesis test.

In order to asses the data sets, four state-of-the-art machine learning algorithms
were used: Support Vector Machines (SVM) (Boser, Guyon, and Vapnik, 1992; Vap-
nik, 1999), Elastic Net (GLMNET) (Zou and Hastiel, 2005), Random Forest (RF)



5.6. Deeper Study about Features of Images and Machine Learning Algorithms 85

(Breiman, 2001) and k-Nearest Neighbour (KNN) (Hechenbichler and Schliep, 2006).
Those algorithms have different hyperparameters that need to be tuned in order to
get the best performance results. In order to assess that the tuning process does not
affect to the performance of the models (avoid overfitting) and to ensure that we
honestly compare all the algorithms under exactly the same conditions and with the
same samples within different experiments and folds, we included in this experi-
mental design a nested resampling.

In order to find the best tuning hyperparameters in the inner resampling loop
we perform these experiments following a holdout resampling (two-thirds of the
images for training and one-third for testing). In the outer resampling loop of a 10-
fold approach, we have ten pairs of training/test sets. On each of these outer training
sets in order to perform the parameter tuning we executed the inner resampling
loop. Generally speaking, we get one set of selected hyperparameters for each outer
training set. Afterwards, the learner is fitted on each outer training set using the best
hyperparameters and its performance is evaluated on the outer unknown test sets.

We used the Area Under the Receiver Operating Characteristic curve (AUROC)
measure to compare the performance of the algorithms, the tables of the results are
in Appendix E and we used R-programme to obtain these results (R Core Team,
2016).

We started our experiments using seventeen different data sets (see Table 5.8)
which tried to find which data set works better on different conditions and to ob-
serve the behaviour of these data sets on different methods.

The next phase of the experiment consists of a deeper study of the methods of
machine learning dealing with smaller data sets.

Based on the results obtained in the previous step (see Appendix E), it is appro-
priate to study the data set that have only CHARM-features. Besides, it is important
to choose the cluster that contains the correct number of SIFT-features in order to
choose a data set to continue. Regarding the results, a valid option for the number
of clusters is 230. Taking this into account, the data set with SIFT-features grouped
by 230 clusters and the data set which contains both kinds of features (CHARM and
SIFT-features) are selected too to continue to work with them.

At this point we have three different data sets (CHARM, CHARM_SIFT_230 and
SIFT_230) and four machine learning algorithms (SVM, RF, GLMNET and KNN)
following our experimental design with three repetitions of an outer 10-fold cross-
validation loop and an inner loop for tuning the hyperparameters.

As shown in Figure 5.18, we achieved the best results using SVM and RF with
the following data sets SIFT_230 and CHARM_SIFT_230. As mentioned before the
number of features for each data set is the following.

Number of Features
CHARM 1059

CHARM_SIFT_230 1289
SIFT_230 230

TABLE 5.9: Number of features for each data set.

The data set called CHARM_SIFT_230 is the result of the combination of the
other two, CHARM and SIFT_230, thus it is of relevance to notice that we achieved
the best result in AUROC with the data sets that had a higher number of features,
but the data set with the lower number is very close to both of them. At this point,
we studied the influence of the features following a Feature Selection (FS) approach.



86 Chapter 5. Location of neurons

SIFT_230

CHARM

CHARM_SIFT_230

0.95 0.96 0.97 0.98

AUROC

D
at

as
et

s

Machine Learning 
 Algorithms

SVM RF KNN GLMNET

FIGURE 5.18: Mean aggregated error of the algorithms with each one
of the data sets.

The third phase of this study was to determine which features are the most rele-
vant. Which of them are necessary for obtaining good results and which features are
noise.

To this aim, we analyzed the subsets of features and we realized that there are no
CHARM features in the 25 and 100 subsets of features. Furthermore, in the 200 and
600 subsets the number of SIFT features is always higher and with more relevance
than the CHARM ones. Each subset of features belongs to the subset with a higher
number of features, it means that subset25 ⊂ subset100 ⊂ subset200 ⊂ subset600. The
features selected for the subsets with 25 and 100 features are only compound for
features which belong to the CHARM-features. However, for the other subsets (of
200 and 600 features) have a higher percentage of the SIFT-features, see Table 5.10.

In addition, the features which are representation in the subsets are those
which are related with the First 4 Moments (also called Comb Moments in Ta-
bles 5.10 and 5.11), however the number of these features regarding to the total of
features computed of this kind is lower than others, for instance the features related
with the compute in a binary image, Object Statistics (also called Otsu Object Fea-
tures) are a low percentage in the subset, but three subsets have more than 20% of
these features.

Other relevant features are the Haralick Textures which study the co-occurrence
matrix and the features which study different scale of histograms (also called Multi-
scale Histograms in Tables 5.10 and 5.11).

On the other hand, the SIFT-features are not in the lowest subsets, however, this
kind of features is in the other subsets — 200 and 600 — and its presence is high. In
fact, the SIFT-features have the highest percentage of features, and the highest total.



5.6. Deeper Study about Features of Images and Machine Learning Algorithms 87

Subsets
Features 25 100 200 600

Radon Coefficients 12 13 6.5 3.83
Chebyshev Coefficients 4 5 2.5 3.5

Gabor Filters 0 0 0 0
Multiscale Histograms 16 13 11.5 10.67

Comb Moments 28 29 20 28
Tamura Textures 12 4 4.5 2.83

Edge Features 0 4 3 1.5
Otsu Object Features 8 15 9.5 6.5
Zernike Coefficients 0 0 1.5 6.33

Haralick Textures 20 15 8.5 9.5
Chebyshev-Fourier Coeff. 0 2 1.5 3

SIFT-features 0 0 31 24.33

TABLE 5.10: Percentage of the features selected for each subset.

Subsets
Features 25 100 200 600

Radon Coefficients 6.25 27.08 27.08 47.92
Chebyshev Coefficients 1.56 7.81 7.81 32.81

Gabor Filters 0 0 0 0
Multiscale Histograms 2.78 9.03 15.97 44.44

Comb Moments 2.43 10.07 13.89 58.33
Tamura Textures 8.33 11.11 25 47.22

Edge Features 0 14.29 21.43 32.14
Otsu Object Features 2.94 22.06 27.94 57.35
Zernike Coefficients 0 0 2.08 26.39

Haralick Textures 2.98 8.93 10.12 33.93
Chebyshev-Fourier Coeff. 0 3.13 4.69 28.13

SIFT-features 0 0 26.96 63.48

TABLE 5.11: Percentage of the features used to the selection regarding
to the total of features computed for each kind of features.

The last phase of this experiment consists of selecting the best model according
to the a null hypothesis test.

5.6.4 Discussion and Current Work

We are currently working on this last phase. The results show that in the first step,
Random Forest (RF) with only SIFT-features using either low or high numbers of
words gives the best AUROC and accuracy results. In addition, SIFT-features with
the rest of the methods give better results than the others features. In fact, our intu-
ition about that the combination of CHARM and SIFT-features would improve the
classification is not true, since only SIFT-features obtained the best results in the first
phase.

Additionally, looking at both the AUROC, of all classifiers and all possible data
sets, SVM with only SIFT (using the highest numbers of words) obtain the overall
best results (AUC > 0.98).



88 Chapter 5. Location of neurons

However, it is worth remarking that CHARM-features alone never performs
best, while SIFT-features alone or the combination formed by CHARM and SIFT-
features do, although this depends of the classifier. In fact CHARM-features alone
does perform second-best for the Random Forest method.

Therefore, we decided to fix the number of words for the SIFT-features and to
analyse better the behavior of the methods and study the data sets called SIFT_230,
CHARM and the combination of both, CHARM_SIFT_230-features.

The difference in performance between all four classifiers is smaller with
CHARM_SIFT_230 than with SIFT_230 alone or CHARM alone. In order to use
this last alone generally does not work as well. However, SIFT_230-features gives
better performance, so it was not a surprise to check that CHARM_SIFT_230 obtains
better results than CHARM-features alone. SIFT_230 features helps to improve the
classifications.

The experimental analysis and the extraction of information obtainable is ongo-
ing.



89

Chapter 6

Conclusions

This thesis has presented automatic and semi-automatic methods for analysing
biomedical images, in particular, images of fluorescence acquired with a confocal
microscope.

To begin with, one of the semi-automatic methods was explained in Chapter 2.
SynapCountJ is a plug-in for Fiji or ImageJ — platforms for processing images —
which allows us to quantify synapses in an efficient and objective way. Given that
the images are not always acquired using the same procedures, the quality of the
samples may vary due to the intensity of the lasers, the amount of noise, and other
factors. This means that in order to control the process, users have to be aware of the
optimal settings for the analysis of the images. Once these settings are known, it is
possible for the users to automatise the process by fixing the input parameters.

This procedure uses the mathematical concept of connected components. We
though the problem about knowing the synaptic density as a problem about count-
ing connected components, and then the process was validated through an indirect
approach.

In addition, based on this validation, we established a way to verify code de-
veloped in Java and to be used in Fiji and ImageJ. This work was explained in the
second part of Chapter 2. While this task was a challenge, there can be no doubt
about the significance of the work given the importance of being able to verify that
a programme is what it says and does what it is meant to.

Chapter 3 then went on to explain another plug-in used in the analysis of im-
ages. However, in this case, the aim was to determine the number of neurons in a
mosaic image. This procedure was developed using intensity and geometrical cri-
teria. NucleusJ ascertains the number of total cells and neurons found in an image.
Furthermore, the plug-in allows users to edit the result from their own experience.

The work explained in Chapter 4 is a clear example of how there are mathemati-
cal concepts which can be applied to the analysis of images. Both methods, based on
the persistence of the objects in the image, offer alternatives to recognise the struc-
ture of a cell — in particular, neuronal structures. The images studied were acquired
in different planes of the Z-plane.

In the case of the homology persistence, the procedure studies the filtrations ob-
tained as result of all the planes. In the second approach, based on Zigzag theory, the
structure is obtained studying the “life” of the connected components throughout all
planes.

The methods previously explained also offer a solution to the problem of distin-
guishing parts of cells which have crossed over with different cells; it can then be
difficult to differentiate them when using techniques such as segmentation.

In order to complete this study, we reviewed how machine learning techniques
help in the analysis of images. In Chapter 5, we described the natural process which



90 Chapter 6. Conclusions

we followed to finish our study using algorithms of machine learning to localise
neurons in mosaic images.

The first approach was to use the methods explained in the previous chapters.
This problem was dealt with using intensity and geometrical criteria. Although
these techniques came close to obtaining a good result, we observed that it was
possible to describe patches of the image with features which explained what was
happening in each case, for instance, whether a patch contains neuronal structure.

Therefore, we focused on finding the specific features which are the best algo-
rithms to classify these patches.

We are currently working on the final step of this investigation in order to submit
it for publication.

It is clear that the ability to process and analyse images is becoming more and
more necessary. It is not enough to merely observe - we must be capable of under-
standing their content.

The rapid advancement of technology today means that analysis techniques
should advance accordingly, though techniques of processing images must be veri-
fied to assure a correct functionality.

Images show moments which are represented by means of matrices of numbers
and there are abundant mathematical algorithms available to help process this infor-
mation, not to mention mathematical concepts which can be applied to study them.

Moreover, these problems have final users who require tools to facilitate their
tasks, making the computer science necessary to convert these ideas to tools.

We believe that this field (the field of biomedical images) is a multidisciplinary
area by necessity — no progress would be made otherwise.



91

Chapter 7

Future Work

The methods presented in this work are approaches to solving some of the problems
of the field of biomedical image analysis. However, we want to emphasise that these
are not the only solutions. As mentioned during this work, various types of biolog-
ical samples and microscopy techniques were used to acquire the images of these
samples, and thus, this particular field requires adaptability in the methods used to
deal with the aforementioned problems.

Further work on this project would include improving the usability of the plug-
ins. In addition, particulary for the plug-in explained in Chapter 2, it would be
useful to include a post-processing tool to manually edit the obtained results.

In the second part of Chapter 2, we explained some basic notions to be able to
verify the code produced, however it is possible to improve the method described.
For instance, the transformation from real Java code to Krakatoa could be automated
(the steps outlined in Algorithm 4 could be understood as a list of requirements with
this aim). Furthermore, a formal study of this transformation could be undertaken
to increase the reliability of the method. As for applications, more verification is
needed to obtain a certified version of a plug-in such as SynapCountJ. However,
these preliminary results allow us to be reasonably optimistic with respect to the
feasibility of this objective.

In order to continue the performance of the method described in Chapter 3 must
be determined. To this aim, it is necessary to obtain experimental results and to
compare them with the data manually obtained until now.

Additionally, we want to test whether the numerical methods used in Diffusion
Tensor Imaging for fiber tracking (Dellani and Glaser, 2007; Mori and Zijl, 2002;
Weeden and Wang, 2008) could be used to improve the algorithms explained in
Chapter 4. On top of that, we plan to automate the heuristics extracted from the
experimental study in subsection 4.3.3 in Chapter 4.

However, the current work, and thus the immediate future, consists of continu-
ing the study described in the final paragraphs of Chapter 5, finding the best features
for describing neurons in a determined kind of image. To this end it is important
to study the combinations of features and compare them with the use of different
methods. Determining which neuron detection methods are reliable would greatly
improve the efficiency of the biological experiments and this highlights the impor-
tance of reducing false positive detections.

Finally, the next step necessary in the biological process is the accurate neuron
reconstruction, and the analysis of the complexity of the dendritic arborizations and
spine properties.

The final aim is the complete automation of the whole process — using all these
methods to obtain a procedure which automatically detects the neuronal morphol-
ogy and its functionality.





93

Appendix A

Definitions

Adjacency: two elements A and B are adjacent if the distance between them is
less or equal than 1. In the particular case of the pixels: two pixels (x0, y0),(x1, y1)
are adjacent if |x0 − x1| ≤ 1 ∧ |y0 − y1| ≤ 1.

Artefact: part of the contents of an image that does not have a counterpart in
the physical object being imaged; false structures which can appear occasionally
in images acquired by microscope (e.g. aliasing artefact, beam hardening artefact,
motion artefact, partial volume artefact).

Aspect Ratio: the ratio of the height to the width of a rectangle. It can also be
defined as the ratio of the major axis to the minor axis of an ellipse. Objects with a
high aspect ratio are elongated.

Centroid: it is the center point of the region which is the average of the x and
y coordinates of all of the pixels in the region. In the binary regions, the centroid
match the center of mass -first order spatial moments.

Confusion Matrix: it is a special kind of contingency table. It is a table that is
often used to describe the performance of a classification model (or "classifier") on
a set of test data for which the true values are known. Each column of the matrix
represents the instances in a predicted class while each row represents the instances
in an actual class (or vice versa).

Connected component: to understand this term which is typical in Topology, it
is necessary to be familiar with the terms explained below (Kaczynski, Mischaikow,
and Mrozek, 2004):

Definition A.0.1. Let X be a topological space. X is connected if the only subsets
of X that are both open and closed are ∅ and X. If X is not connected, then it is
disconnected.

Definition A.0.2. Definition: A topological space X is a path connected if for every
two points x, y ∈ X there exists a continuous map f : [a, b] → X such that f(a) = x
and f(b) = y. Such a map is called a path joining x to y. Any interval is obviously
path-connected. A special case of a path connected set is a convex set.

Theorem A.0.1.
Any path-connected space is connected.

Also, intuitively, a connected component is a set made by only one piece, which
can not split. Two elements (e.g. pixels) are “connected” if they are adjacent.



94 Appendix A. Definitions

DAPI (or 4',6-diamidino-2-phenylindole): a fluorescent stain that binds strongly
to Adenine and Thymine rich regions in DNA. It is used extensively in fluorescence
microscopy. As DAPI can pass through an intact cell membrane, it can be used to
stain both live and fixed cells.

Dendrite: the branched projections of a neuron which propagates the electro-
chemical stimulation received from other neurons (see Figure A.1).

Feret's diameter: the longest distance between any two points along the selected
boundary, also known as maximum caliper.

GLMNET: Elsatic Net is a regularization method (Zou and Hastiel, 2005) based
on the lasso (penalized least squares method) developed in order to solve its limita-
tions (Tibshirani, 1996). Similar to the lasso, this algorithm does a continuous shrink-
age and it could get advantage of groups of correlated features. It linearly combines
different penalties of the lasso and ridge methods. Particularly, we fit a generalized
linear model via penalized maximum likelihood and using those penalties at a grid
of values for regularization parameter (Friedman, Hastie, and Tibshirani, 2010).

Gold Standard: refers to the group of samples which have been evaluated by
an expert under reasonable conditions. It is usually used in medicine and statistics.
This set of data is used to calibrate and validate a model, algorithm, procedure, etc.

High-Content Analysis (HCA): also known as High-Content Screening (HCS)
is the automated extraction and analysis of cellular images taken during high-
resolution light microscopy.

Homology group: to understand well what is an homology group, firstly there
has to be some mathematical concepts related to it.

Definition A.0.3. A chain complex C∗ is a family of pairs (Cn, dn)n∈Z where (Cn)n∈Z
is a graded module and (dn)n∈Z is a differential of C∗.

The module Cn is called the module of n-chains. The image Bn = Im dn+1 ⊆ Cn

is the (sub)module of n-boundaries. The kernel Zn = Ker dn ⊆ Cn is the (sub)module
of n-cycles.

In many situations the ring R is the integer ring, R = Z. In this case, a chain
complex C∗ is given by a graded abelian group (Cn)n∈Z and a graded group mor-
phism of degree -1, (dn : Cn → Cn−1)n∈Z, satisfying dn−1 ◦ dn = 0 for all n. From
now on in this memoir, we will work with R = Z. In fact, one of the most important
invariants used in Homological Algebra is the following. Given a chain complex
C∗ = (Cn, dn)n∈Z, the identities dn−1 ◦ dn = 0 mean the inclusion relations Bn ⊆ Zn:
every boundary is a cycle (the converse in general is not true). Thus the next defini-
tion makes sense.

Definition A.0.4. Let C∗ = (Cn, dn)n∈Z be a chain complex of R-modules. For each
degree n ∈ Z, the n-homology module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn



Appendix A. Definitions 95

It is worth noting that the homology groups of a space X are the ones of its asso-
ciated chain complex C∗(X); the way of constructing the chain complex associated
with a space X is explained, for instance, in Maunder, 1996.

In an intuitive sense, homology groups measure “n-dimensional holes” in topo-
logical spaces. H0 measures the number of connected components of a space and
H1 measures the number of the holes of a space. The homology groups Hn measure
higher dimensional connectedness. For instance, the n-sphere, Sn, has exactly one
n-dimensional hole and no m-dimensional holes if m 6= n.

Moreover, it is worth noting that homology groups are an invariant, see Maun-
der, 1996. That is to say, if two topological spaces are homeomorphic, then their
homology groups are isomorphic.

Immunostaining: a general term in biochemistry that applies to any use of an
antibody-based method to detect a specific protein in a sample (first time described
in Coons, Creech, and Jones, 1941). However, immunostaining now encompasses a
broad range of techniques used in histology, cell biology, and molecular biology that
utilise antibody-based staining methods.

k-Means: popular method for clustering. Its aim is the partition of n observa-
tions into k clusters. Each observation forms part of a cluster with the nearest mean
or centroid. In order to compute the distance among values to centroids is possi-
ble to use different methods of distance. The most popular distance is the Euclidean
distance.

k-Nearest Neighbours (KNN): it is a non-parametric method used for classifi-
cation and regression, in pattern recognition. A main property of this algorithm is
based on assigning to an unclassified image or datum the classification of the class
with highest frequency form the k-most similar images or data, more detailed in
Hechenbichler and Schliep, 2006.

Kurtosis: the fourth order spatial moment describes the flatness of a distribution.
The order spatial moments are powerful way to describe the spatial distribution of
values. The interpretation of this spatial moment is the following.

If its value is:

= 0 : there is a Gaussian (or ‘normal’) distribution

< 0 : the distribution is flatter than ‘normal’.

> 0 : the distribution is more peaked than ‘normal’.

< 1.2 : there is a bimodal (or multimodal) distribution.

Machine Learning: it is a special kind of artificial intelligence (AI) that as Arthur
Samuel in 1959 said: “it provides computers with the ability to learn without being
explicitly programmed”. It explores the study and construction of algorithms which
can learn from and make predictions on data. The machine learning task are mainly
classified in two categories: Supervised and Unsupervised learning, depending on
the nature of the learning.



96 Appendix A. Definitions

Making an image binary with ImageJ: it uses a variation of the IsoData algo-
rithm, also known as iterative intermeans (Ridler and Calvard, 1978). This method
divides the image into object and background with an initial threshold. The aver-
ages of the pixels below and above the threshold are computed. The average of these
values are also computed. The threshold is incremented and the process is repeated
until the value of threshold is higher than the composite average.

MAP2: it belongs to the Microtubule Associated Proteins (MAPs) family. This
protein is expressed only in neuronal cells, therefore the antibodies to MAP2 are
excellent markers on this particular kind of cell.

Maximum: the maximum value within the selection.

Mean: the average values. This is the sum of the values of all the pixels in the
selection divided by the number of pixels.

Median: the median value of the pixels in the image or selection.

Median Filter: a nonlinear digital filtering. It is normally used to reduce noise
in an image. It often does a better job than the mean filter of preserving useful detail
in the image. This filter considers each pixel around a main pixel (neighbourhood
of a pixel). These neighbours depends of a radio, for instance, if the radio is 1, the
neighbourhood is formed by 8 pixels and, if the radio is 2, there are 24 pixels around
of the main one. The median is calculated by first sorting all the pixel values from the
surrounding neighbourhood into numerical order and then replacing the pixel being
considered with the middle pixel value. If the neighbourhood under consideration
contains an even number of pixels, the average of the two middle pixel values is
used.

Morphological operations: a set of image processing operations that do so based
on shapes. In a morphological operation, the value of a pixel in the input image is
based on an operation of the corresponding pixel in the input image of its neighbour-
hood. The most basic morphological operations are erosion and dilation. Dilating an
object of the image consists of adding pixels to the boundaries of the object while
Eroding is to remove pixels from object boundaries.

Neuron: a specialized, impulse-conducting cell that is the functional unit of the
nervous system. It is consisting of the cell body and its processes, the axon and
dendrites (see Figure A.1).

NMDA: (N-Methyl- D- aspartic Acid). Activator of the neuronal NMDA recep-
tor, a subtype of glutamate receptors. Its activation has been implicated in neuronal
death by a process call excitoxicity. Its activation is also important in the process of
memory consolidation.

Noise: a random variation of brightness or colour information in images, usually
an aspect of electronic noise. It is not present in the object imaged. It can be produced
by the sensors and circuitry of a digital camera. Image noise is an undesirable by
product of image capturing that adds spurious and extraneous information.



Appendix A. Definitions 97

FIGURE A.1: Structure of a pyramidal hippocampal neuron.

PI3K: Phopho Inositol 3 Kinase. A kinase which is an enzyme whose activation
involves an important physiological regulation in many tissues. In mammals, PI3k
is very important for the development of the nervous system and inducing neuronal
survival.

Precision: also known as Positive Predictive Value (PPV) is the ratio of the
number of relevant records retrieved to the total number of irrelevant and relevant
records retrieved. It is obtained from this formula precision = PPV = TP

TP+FP , TP
and FP being the values of a confusion matrix .

PTD4-PI3K: it is a transduction peptide which can control of PI3K activity. It is
used to induce synaptogenesis and spinogeneis in hippocampal neurons. (Cuesto
and Enriquez-Barreto, 2011).

Random Forests (RF): Random forests are a combination of tree predictors such
that each tree depends on the values of a random vector sampled independently and
with the same distribution for all trees in the forest. More detailed in Breiman, 2001.



98 Appendix A. Definitions

Recall: also known as sensitivity or True Positive Rate is the fraction of relevant
instances that have been retrieved over total relevant instances in the image. It is
obtained through of the values of a confusion matrix using this formula recall =
TPR = TP

TP+FN = TP
P .

ROC space: a receiver operating characteristics (ROC) graph is a technique for
visualizing, organizing and selecting classifiers based on their performance. The
graph shows the ‘true positive rate’ (TPR, recall or sensitivity) against the ‘false pos-
itive rate’ (FPR, fall-out or probability of false alarm). The ROC space is defined
by FPR and TPR as x and y axes respectively. Each prediction result or instance of
a confusion matrix represents one point in the graph. The best possible prediction
method would yield a point in the upper left corner or coordinate (0,1) of the ROC
space, that means, there are not false positives and not false negatives. This point is
also called a ‘perfect classification’.

ROI: a region of interest (abbreviated ROI), a selection or subset of a sample
within a data set which has a particular purpose.

Skewness: the third order spatial moment measures the symmetry of a distribu-
tion. The order spatial moments are a powerful way to describe the spatial distribu-
tion of values. The interpretation of this spatial moment is the following.

If its value is:

= 0 : there is a symmetric distribution

< 0 : the distribution is asymmetric to the left (the tail of the graph extends left
of centre of mass).

> 0 : the distribution is asymmetric to the right (the tail of the graph extends
right of centre of mass).

Soma: or "cell body" is the bulbous, non-process portion of a neuron or other
brain cell type, containing the cell nucleus (see Figure A.1).

Solidity: the measurement of the overall concavity of an object. It is defined as
solidity = area

convex area . The area and the convex hull area approach each other for the
solid objects (resulting a value close to one).

Standard Deviation: a measure used to quantify the amount of variation or dis-
persion of values. If the value of standard deviation is low, it means that the data
tend to be close to the mean of the set. On the other hand, a high standard deviation
indicates that the data are spread out over a wider range of values.

Supervised Learning: it is a kind of machine learning algorithm that uses a
known data set (called the training data set and it usually based on a ground truth)
to make predictions. The training data set includes input data and response values.
From it, the supervised learning algorithm seeks to build a model that can make
predictions of the response values for a new data set. A test data set is often used to
validate the model. Using larger training data sets often yield models with higher
predictive power that can generalize well for new data sets. There are two cate-
gories of Supervised Learning methods: Classification and Regression. Some of the
common classification algorithms are the following:



Appendix A. Definitions 99

Classification:

– Support Vector Machine (SVM)

– Naïve Bayes

– Decision Trees

Regression:

– Linear regression

– Nonlinear regression

Support Vector Machine (SVM): it is an algorithm which solves problems in
classification, regression, and novelty detection. The goal of a SVM is to find the
optimal separating hyperplane which maximises the margin of the training data.
An important advantage of SVM is that the determination of the model parameters
corresponds to a convex optimization problem, and so any local solution is also a
global optimum (see Boser, Guyon, and Vapnik, 1992; Vapnik, 1999).

Unsupervised Learning: it is a type of machine learning algorithm. It based
on obtaining inferences from data sets consisting of input data without labeled re-
sponses. The most common unsupervised learning method is “cluster analysis” and
among all algorithms, the most known is k-Means Clustering.

Z-stack: The output of the confocal microscope typically is a stack of images ac-
quired at different locations along the optical axis. In microscopy, this axis is gener-
ally labeled as the Z-axis (with the image planes, which are transverse to the optical
axis, denoted as X,Y planes). Thus the individual images are said to be taken at dif-
ferent Z-levels, and the collection of such images from a given acquisition is called a
Z-stack Pawley, 2006.





101

Appendix B

Biology and Acquisition

B.1 Experimental Phase

Neurons often have elaborate axonal and dendritic arbours which importance in
brain function has been recognized since the pioneer work of Cajal, 1998. Dendrites
are the neuronal features where most of synapse lay and where synaptic transmis-
sion take place and, therefore, the morphology of dendrites reflects connectivity be-
tween neurons. Hence, the complexity of neuron morphology contributes to the
formation of selective connections within the brain circuits and, consequently, to
the establishment of memories. Abnormal dendritic arborization and synaptic den-
sity are a recurrent theme in several autistic syndrome disorders, schizophrenia and
Alzheimer disease among other neurodegenerative diseases (Enríquez-Barreto and
Morales, 2016).

In the context of Alzheimer's disease, hippocampal loss of synaptic connectiv-
ity has been well described at early stages of the pathology both in humans and in
rodent models of the disease (Selkoe, 2002; Selkoe and Hardy, 2016). In fact, it has
been proposed that the distinctive memories losses, during Alzheimer development
is a consequence of this defect in synaptic contacts. Therefore the study of the sig-
naling pathways involved in synaptic formation and regulation has therapeutical
implications. Previous work of my research group has demonstrated that PI3K acti-
vation induce the formation of synapses both in vitro and in vivo (Cuesto, Carames,
Cantarero, Gasull, Acebes, and Morales, 2011; Enríquez-Barreto, Cuesto, Domíguez-
Iturza, Gavilán, Ruano, Sandi, Fernández-Ruiz, Martín-Vázquez, and Morales, 2014;
Cuesto, Jordán-Álvarez, and Enriquez-Barreto, 2015). Therefore, we have proposed
that the regulated activation of PI3K can be a putative target for Alzheimer treat-
ment.

Modem confocal microscopy and the wide use of digital acquisition of mi-
croscopy images has sparked the use of imaging techniques in biology sciences. One
of the aims of this work was to provide to the science community with a set of tools
for the acquisition and analysis of neuronal features, helping in the development of
therapeutical approaches to treating Alzheimer or other neurodegenerative diseases.

B.1.1 Experimental Methods

The main experimental system employed along this thesis was the in vitro cultures
of hippocampal neurons (Kaech and Banker, 2006). In this conditions, hippocampal
neurons become appropriately polarised, develop extensive axonal and dendritic ar-
bours and form numerous, functional synaptic connections with one another. Addi-
tionally, hippocampal cultures have been used widely for visualising the subcellular
localisation of endogenous or expressed proteins, for imaging protein trafficking and



102 Appendix B. Biology and Acquisition

for defining the molecular mechanisms underlying the development of neuronal po-
larity, dendritic growth and synapse formation.

Therefore all the images employed in this thesis were obtained from cultures of
rat hippocampal neurons in culture.

B.1.2 Primary Neuronal Cultures

Primary hippocampal cultures were obtained from P0 rat pups (Sprague-Dawley,
strain, Harlan Laboratories Models SL, France). Animals were anesthetized by hy-
pothermia in paper-lined towel over crushed-ice surface during 2-4 minutes and eu-
thanized by decapitation. Animals were handled and maintained in accordance with
the Council Directive guidelines 2010/63EU of the European Parliament. Briefly,
glass coverslips (12 mm in diameter) were coated with poly-L-lysine and laminin,
100 and 4 µg/ml respectively. Neurons at a 10 × 104 neurons/cm2 density were
seeded and grown in Neurobasal (Invitrogen, USA) culture medium was supple-
mented with glutamine 0.5 mM, 50 mg/ml penicillin, 50 units/ml streptomycin, 4%
FBS and 4% B27 (Invitrogen, CA, USA), as described before in Cuesto and Enriquez-
Barreto, 2011. At days 4, 7 and 14 in culture a 20% of culture medium was replace
by fresh medium. Cytosine-D-arabinofuranoside (4 µM) was added to prevent over-
growth of glial cells (day 4) — process as described in Morales, Colicos, and Goda,
2000.

B.1.3 Immunocytochemistry of neurons in cultures

Synaptic Density

Synaptic density on hippocampal cultures was identified as previously described
in Cuesto and Enriquez-Barreto, 2011. In short, cultures were rinsed in phosphate
buffer saline (PBS) and fixed for 30 min in 4% paraformaldehyde-PBS. Coverslips
were incubated overnight in blocking solution with the following antibodies: anti-
Bassoon monoclonal mouse antibody (ref. VAM-PS003, Stress Gen, USA) and rabbit
polyclonal sera against Synapsin (ref. 2312, Cell Signaling, USA). Samples were in-
cubated with a fluorescence-conjugated secondary antibody in PBS for 30 min. After
that, coverslips were washed three times in PBS and mounted using mowiol (all sec-
ondary antibodies from Molecular Probes-Invitrogen, USA).

Percentage of synaptic change is the average of different cultures under the same
experimental conditions. As a control, we used sister untreated cultures growing in
the same 24 well multi plate. Coverslips were stored a 4◦C in a dark place until the
moment of use.

Dendritic Morphology

Fixation of tissue was performed as described (see above). To visualise dendritic
structure a polyclonal antibody against MAP2B (protein specific of dendrites; Cell
Signaling reference 4542) was employed. Coverslips were incubated overnight in
the antibody solution. Subsequently, samples were washed three times with PBS,
and incubated for 30 min in PBS solution containing the fluorescence-conjugated
secondary antibodies, washed five times with PBS and mounted in mowiol. Cover-
slips were stored a 4◦C in a dark place until the moment of use.



B.2. Acquisition of Images 103

GFP-transfected Neurons

In this section primary cultures were prepared as described, although, in order to
visualise neuronal morphology, neurons were transfected with a plasmid encoding
the fluorescence protein GFP (Green Fluorescence Protein), fused with chicken b-
actin. The vector expression was under the control of the platelet-derived growth
factor promoter region, a neuronal promoter to ensure that Actin-GFP expression
was always under the physiological range (Morales, Colicos, and Goda, 2000). Elec-
troporation was performed before plating using a BioRad Cell electroporator system
following manufacturer instructions. Briefly, Approximately 4x106 cells and 10 mi-
crograms of plasmid were mixed in BioRad electroporation buffer (BioRad). An
exponential discharge protocol with the following parameters was employed: 220 V,
950 mF and resistance fixed to infinite. Neurons were plated immediately after elec-
troporation. At days 4, 7 and 14 in culture, a 20% of culture medium was replaced
by fresh medium. Cytosine-D-arabinofuranoside (4 µM) was added to prevent over-
growth of glial cells. After three weeks in vitro, the percentage of transfection varied
from 10 to 20%, allowing and easy identification of individual neurons.

Bioloistic Stainning

This section described the experimental procedure employed in Chapter 4. Brain
sections came from hippocampus of wild type mice. After dissection and brain fix-
ation, hippocampal neurons from the CA1 region were stained following a biolis-
tic labelling protocol (Enríquez-Barreto, Cuesto, Domíguez-Iturza, Gavilán, Ruano,
Sandi, Fernández-Ruiz, Martín-Vázquez, and Morales, 2014). Briefly, tissue slices of
400 microns thick were shot with a blend of tungsten particles (1.7 microns of di-
ameter, Bio-Rad) impregnated in DiI or DiO (lipophilic dies from Molecular Probes,
Invitrogen). Shooting was performed using a Helios Gene Gun System (Bio-Rad,
USA) following the instructions of the manufacturer. The mix of tungsten bullet
randomly impacted over the pyramidal neurons, when in contact with the cellular
membrane the lipophilic dye spread along the extracellular membranes, allowing an
easy identification of individual neurons by using a fluorescence microscope.

B.2 Acquisition of Images

For the work developed here, we used a Leica SP5 automated confocal microscope
for acquiring the images. However, different conditions of acquisition were neces-
sary for each one.

B.2.1 Images for the Analysis of Synaptic Density

The images used in Chapter 2 are stack images which contain the following features:

• pixel size: 0.09 microns

• Z step: 0.5 µm

• the objective was a 40x lens with a 1.3 NA (Numerical Aperture)

Figure B.1 is an example of such an image.



104 Appendix B. Biology and Acquisition

FIGURE B.1: Example of image used for study, described in Chap-
ter 2. This picture shows a neuron marked with the bassoon antibody
marker (green channel) and the synapsin antibody marker (red chan-

nel). Scale bar: 50µm.

B.2.2 Images for the Analysis of the Immunocytochemistry of Neurons in
Cultures

The images used in the study described in Chapter 3 were obtained using the Matrix
modules of Leica's microscope - Figure B.2. The acquisition protocol was divided
into two parts: an initial pre-autofocus test, followed by the acquisition itself.

• Autofocus job: Contrast Based Method 1, format is 512x512px, speed of 40 Hz
bidirectional and a capture length of 30µm; number of steps: 12 steps.

• Sequential job: two channels (DAPI and MAP2B), images format: 2048x2048px
with a zoom of 1.7 and speed of 700 Hz and Airy1 of pinhole.

Each image was approximately 14,000× 9,000 pixels (covering ≈ 8 mm2 of the
culture dish). These images were acquired with the following settings:

• pixel size: 0.07 microns

• the objective was 20x dry

B.2.3 Images for the Analysis of the Structure of GFP-Transfected Neu-
rons

Two kinds of images were used in Chapter 4 and although they came from two
different samples, the acquisition was the same. The images consist of Z-stacks,
with the number of slices depending on the thickness of the sample. These images
were acquired using:

• pixel size: 0.06 microns

• Z step: 1.01 µm



B.2. Acquisition of Images 105

FIGURE B.2: Example of image used for study, described in Chapter 3.
This picture shows a whole mosaic where the neurons are in the red

channel and the nuclei are in the blue channel. Scale bar: 200µm.

• the objective was a 63x oil-immersion

For instance, Figure B.3 shows the maximal intensity projection of a Z-stack com-
posed of 15 optical planes, each one 1.79 microns thick. This neuron was stained with
a DiI biolistic protocol.

(a) Sample neuron stained with a DiI (b) Sample of a transfected neuron
biolistic protocol. with GFP.

FIGURE B.3: Example of images used to the study described in the
Chapter 4. Scale bar: 50µm. Images inverted.



106 Appendix B. Biology and Acquisition

B.2.4 Images for the Analysis of the GFP-Transfected Neurons

In this case, the sample for acquiring the pictures is the same as the type of image
used to study the structure in the Chapter 4 - transfected neurons with GFP. How-
ever, the study described in the Chapter 5 involved images acquired using the Matrix
modules. Each image was approximately 10,000× 12,000 pixels (covering ≈ 70 mm2

of the culture dish) and contained an average of 40 transfected neurons (using the
fluorescent protein, GFP), see Figure B.4.

These images were acquired with the following settings:

• pixel size: 0.07 microns

• the objective was 20x dry

FIGURE B.4: Example of a whole mosaic used for study, described
in the Chapter 5. Image with transfected neurons. Scale bar: 500µm.

Image inverted.



107

Appendix C

Technology

• ACL2

A Computational Logic for Applicative Common Lisp (ACL2) is a logic and program-
ming language with which is possible to model computer systems and prove the
properties of those models. It is designed to support automated reasoning in induc-
tive logical theories, mostly for the purpose of software and hardware verification.
ACL2 is free and open source software under a BSD license.
See Kaufmann and Moore, 2012.

• Coq

It is an interactive theorem prover. If it is seen as a programming language, then
implements a dependently typed functional programming language, while if it is
seen as a logical system, it implements a higher-order type theory. The development
of Coq has been supported by INRIA with the collaboration of others (for instance,
École Polytechnique, CNRS, . . . ).
See COQ development team, 2012.

• ImageJ

A public domain Java image processing program inspired by National Institutes
of Health. NIH and ImageJ have been pioneers as open tools for the analysis of
scientific images. It runs, either as an online applet or as a downloadable appli-
cation, on any computer with a Java 1.4 or later virtual machine. Downloadable
distributions are available for Windows, Mac OS, Mac OS X and Linux. ImageJ was
designed with an open architecture that provides extensibility via Java plug-ins and
recordable macros.

These features make this programme is a useful tool for biological image pro-
cessing and analysis.
See Schneider, Rasband, and Eliceiri, 2012.

• Fiji

Fiji Is Just ImageJ is an open source image processing package based on ImageJ. in
fact, it provides a distribution of ImageJ with many bundled plug-ins. Fiji is main-
tained by Curtis Rueden and the ImageJ development team at the Laboratory for
Optical and Computational Instrumentation (LOCI) at the University of Wisconsin-
Madison. It is licensed under the GNU General Public License.
See Schindelin, Arganda-Carreras, and Frise, 2012.



108 Appendix C. Technology

• Kenzo

A Common Lisp programme (Graham, 1996) devoted to Symbolic Computa-
tion in Algebraic Topology that was developed by Francis Sergeraert and some co-
workers. Algebraic Topology is a vast and complex subject, in particular mixing
Algebra and (combinatorial) Topology. The fundamental idea of the Kenzo system
is the notion of object with effective homology combined with functional program-
ming.
See Dousson, Rubio, Sergeraert, and Siret, 1999.

• Krakatoa

A verification tool for Java programs. The Java Modeling Language (JML) has
been designed to formally specify the behaviour of Java programmes. This tool al-
lows one to certify that JML-annotated method of a Java programme meets its spec-
ifications (especially, pre/post-conditions and class invariants). Krakatoa involves
distinct components: the Why tool, which computes proof obligations for a core im-
perative language annotated with pre and post conditions, and Coq proof assistant
for modelisation of specifications and development of proofs.
See Filliâtre and Marché, 2007.

• Matlab

MATrix LABoratory is a proprietary programming language developed by Math-
Works Inc. (American privately held corporation). MATLAB allows matrix manip-
ulations, implementations of algorithms among other functionalities. It is popular
amongst scientists involved in image processing and in machine learning recently.
See MathWorks, 2016.

• Weka

A collection of machine learning algorithms for data mining tasks, developed at
the University of Waikato, New Zealand. Weka is licensed under the GNU General
Public License. It is implemented in the Java programming language and thus, it
runs on almost any computing platform.
See Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten, 2009.

• Why

A software verification platform which contains several tools, as Krakatoa which
is for the verification of Java programmes. This platform is used as a back-end by
other verification tools although, it can also used directly to verify programmes. One
of the main features of Why is to be integrated with existing provers (such as Coq,
CVC3 and more)
See Bobot, Filliâtre, Marché, Melquiond, and Paskevich, 2015.

• WND-CHARM

A generalized pattern recognition system for images developed by the Goldberg
group at the NIH/NIA. This tool extracts a large set of image features including
polynomial decompositions, high contrast features, pixel statistics, and textures. The
feature values are then used to classify test images into a set of pre-defined image
classes. The classifier, called Weighted Neighbour Distances (WND), was tested on
several different problems including biological image classification and face recog-
nition.
See Shamir, Orlov, Eckley, Macura, Johnston, and Goldberg, 2008.



Appendix C. Technology 109

• R

An open source programming language and software environment for statistical
computing and graphics. It is supported by the R Foundation for Statistical Comput-
ing. This language is common among statisticians and data miners for developing
statistical software and data analysis, for instance data analysis which were obtained
using algorithms of machine learning. R is a GNU package.
See R Core Team, 2016.





111

Appendix D

Validation process of the plug-in
NeuronZigzagJ

In order to validate the plug-in NeuronZigzagJ (Chapter 4, Section 4.3, we have
undertaken two experimental studies. In the first experience, the aim was to inves-
tigate the role of the maximal projection (t) and the union (∪) strategies (with the
corresponding filter and thresholding methods). In the second experiment, a more
systematic study was carried out to estimate the accuracy of our program with re-
spect to the observations of some human experts. The files containing the images
we have worked with are available at http://www.unirioja.es/cu/gamata/
repository-of-images.html, in order to allow other researchers to reproduce
our programming experiments.

D.1 First experiment

First of all, we have considered a series of actual neurophysiology images and we
have applied the plug-in using both the maximal projection and the union strategies
(with the corresponding filter and thresholding methods). Concretely, we have ap-
plied our plug-in starting from 1146 slices (coming from 12 GFP-Actin stacks of im-
ages, and 11 DiI stacks).

The results of the experimental study are collected in the table of Table D.1. The
description of the columns in the table is as follows. Column 1 contains an identifi-
cation number, and column 2 is the name of the file containing each stack. Column 3
indicates the number of slices in each stack. Data of column 4 are provided by a hu-
man, who inspected the relevant number of connected components (i.e., significant
fragments of dendrites) in each stack; it is the column of quality control of the table.
Then, each row is divided into two sub-rows, depending on the kind of operation
used to compute the zigzag persistence: the union ∪ or the maximal projection t (let
us stress that each operation comes with its own filtering and thresholding meth-
ods, as explained before). Finally, the last column indicates the slices from which
it is necessary start from to get some of the components (in brackets the number of
connected components reached from each slice).

The conclusions that we can extract from these experimental data are the follow-
ing.

1. An examination of table in Table D.1 shows the “right” slice to start from is not
always located at the same place in the stack (in principle, our conjecture was
that the intermediate slice would contain most of the relevant information);
this justifies our decision of letting the user choose the initial slice.

http://www.unirioja.es/cu/gamata/repository-of-images.html
http://www.unirioja.es/cu/gamata/repository-of-images.html


112 Appendix D. Validation process of the plug-in NeuronZigzagJ

2. In DiI images, in 40% of cases there is not a unique starting slice allowing
recovering all the information (because dendrites can sprout at distant layers
in the stack).

3. Our decision of treating differently GFP-Actin and DiI images is supported by
the experiments, since in the former case in a 33% of cases no information is
obtained with the union ∪ operation, while in the latter case both operations
behave similarly, and ∪ is preferred because it is cheaper to be computed.

4. To reinforce the previous conclusion, it was checked (but we are not able
to reflect it in the table), that the chosen combination filtering-operation-
thresholding produced a more accurate segmentation (other combinations
were tested, but getting always worst results; in any case, let us recall that
all these parameters can be fixed in the user interface, easing the reproduction
of our computer experiments).

5. Information in the graphical and barcode outputs is complementary, without
obtaining one as a by-product of the other one.

The last observation is specially interesting, because our preconception was that
the barcode information would be simply a visual aid to a better understanding of
the graphical output. This impression was biased because we underestimate the
importance of the choosing of the starting slice. These experiments suggest a way of
working with our plug-in:

1. First, focus on the barcode diagram, looking for long bars and also considering
when two longs bars are not intersecting in the same column (in this second
case, it implies that no starting slice could produce all the relevant homological
information).

2. Second, produce the corresponding graphical outputs starting from one or
from several slices, determined by the barcode examination.

D.2 Second experiment

In a second experiment, we have selected 60 images (30 GFP images and 30 Dil
images). They has been randomly divided into three blocks of 30 images, and each
block has been assigned to a researcher to make a manual analysis. In that way, we
got that some images were analyzed by more than one human, trying to measure the
influence of subjective behaviour in the study. Two of the observers were biologists,
and the third one a computer scientist (to also control in this way possible biases
with respect to the initial training of the testers).

For each image, the human observer had to annotate the number of crossings,
the number of connected components, and also the exact location of each crossing
and of each dendrite. In addition, a free text box was included where the observer
could write some comments about his/her interpretation (quality of the image, am-
biguities and so on). Tables D.2 and D.3 include a summary of the results of the three
observers. We also include in Tables D.4, D.5 and D.6 the individual studies.

The result of the crossover study was clear: there was not any relevant discrep-
ancy among the interpretations of the three observers, when looking at a same im-
age. Even the free comments were quite similar in each case. This increases the
reliability of the aggregated results obtained in the final table.



D.2. Second experiment 113

Actin-GFP Title Image No of Slices Main Components Operation Slices which show components

1 Actin01 4 1
⋃

None⊔
all(1)

2 Actin02 6 1
⋃

None⊔
5,6(1)

3 Actin03 4 2
⋃

3,4(2)⊔
3,4(2)

4 Actin04 5 1
⋃

4,5(1)⊔
all(1)

5 Actin05 8 1
⋃

all(1)⊔
all(1)

6 Actin06 4 2
⋃

all(2)⊔
all(2)

7 Actin07 4 1
⋃

2(1)⊔
all(1)

8 Actin08 5 1
⋃

all(1)⊔
all(1)

9 Actin09 3 1
⋃

all(1)⊔
all(1)

10 Actin10 5 1
⋃

None⊔
1(1)

11 Actin11 5 1
⋃

all(1)⊔
all(1)

12 Actin12 5 2
⋃

4,5(2)⊔
4,5(2)

DiI Title Image No of Slices Main Components Operation Slices which show components

1 R3N2S2C3 26 2
⋃

7-12(1)/14-23(1)⊔
7-12(1)/14-23(1)

2 R3N2S2C5 26 2
⋃

4-14(1)/17-26(1)⊔
4-14(1)/17-26(1)

3 R3PbR1N1C3 40 3
⋃

1-9(2)/14(1)⊔
1-8(2)/None

4 R3PbR1N1C4 59 3
⋃

4-9(2)/11-23(1)/24-31(1)/35-59(1)⊔
4-11(2)/18-23(1)/24-31(1)/35-59(1)

5 R3PbR1N1C5 59 3
⋃

11,12(3)⊔
11,12,13(3)

6 R3PbR1N1C6 59 1
⋃

18-43(1)⊔
18-43(1)

7 R3PbR1N1C7 59 2
⋃

36-44(2)⊔
39-47(2)

8 R3PbR1N1C8 59 4
⋃

17-18(3)/ 30-33(1)⊔
16-17(3)/27-32(1)

9 R1S8C5 44 2
⋃

36(2)⊔
35,36(2)

10 R1S8C2 40 1
⋃

11-34(1)⊔
11-34(1)

11 R1S8C4 44 2
⋃

28-38(2)⊔
27(2)

TABLE D.1: Results of first experiment.



114 Appendix D. Validation process of the plug-in NeuronZigzagJ

The success of the plug-in was remarkable with respect to GFP images (90% of
hits) and reasonable with respect to Dil images (77.6% of hits). Here hit means that
the plug-in found the same results than the human observers, up to some small
ambiguity present in the image. If we consider full hits, that is to say, exact equality
with respect to the four measured features (number of crossing, number of dendrites,
and location of both), the figures are 86% for GFP images, and 66% for Dil images.
The poorer performance for Dil images is explained because each image has around
45 slices; then the human eye did not perceive all the intricacies contained in the
image.



D.2. Second experiment 115

Title Image Tester 1 Tester 2 Tester 3 Conclusion
DiI01 OK OK OK 1
DiI02 OK OK 1
DiI03 OK 1
DiI04 It does not fit all 0
DiI05 It does not fit all There are more dendrites 0

in the PI because they are
in some slice with low intensity

DiI06 OK 1
DiI07 It counts one dendrite as 2 OK 1

but is just a ramification
DiI08 There are too many dendrites There are more dendrites 0

superpossed, it is very in the PI because they are in
difficult even by eye some slice with low intensity

DiI09 There is one piece that corresponds 0
to a dendrite after the crossing but it
is recognized as part of the other one

DiI10 OK OK OK 1
DiI11 The plug-in finds one dendrite 1

that the human does not
DiI12 OK The plug-in finds one dendrite 1

that the human does not
DiI13 OK OK 1
DiI14 Very difficult to say as there are a 0

lot and they all cross (not even sure
that there are 18) The program counts

a lot of them as the same in white
DiI15 OK 1
DiI16 OK 1
DiI17 OK OK 1
DiI18 It does not recognize one dendrite 0
DiI19 OK 1
DiI20 OK 1
DiI21 OK 1
DiI22 OK 1
DiI23 There are more dendrites 0

in the PI because they are in
some slice with low intensity

DiI24 OK 1
DiI25 OK 1
DiI26 The plug-in detects a crossing that 1

seems to be real although it is not
seen in the maximal projection

DiI27 OK 1
DiI28 The plug-in detects a crossing that 1

seems to be real although it is not
seen in the maximal projection

DiI29 OK 1
DiI30 OK, it is an axon 1

Total 23

TABLE D.2: Summary of second experiment - DiI images.



116 Appendix D. Validation process of the plug-in NeuronZigzagJ

Title Image Tester 1 Tester 2 Tester 3 Conclusion
GFP01 OK, but a piece of dendrite Loses half dendrite 1

from one of them is missing of one of them
in the plugging result

GFP02 OK 1
GFP03 OK 1
GFP04 OK OK 1
GFP05 They all came from the OK 1

same soma, so it finds them
persistent from there but they

are 3 diferent dendrites
GFP06 OK OK OK 1
GFP07 OK OK 1
GFP08 OK 1
GFP09 It has desconnected one dendrite Loses half dendrite The plug-in sees a dendrite 0

(it has a disconection point) which does not exist
GFP10 It loses the smallest dendrite OK 1
GFP11 OK 1
GFP12 OK, one of them is noise 1
GFP13 OK (this image has a soma, 1

and it is recognized too)
GFP14 OK OK OK 1
GFP15 OK 1
GFP16 OK, but they are probably OK OK, there are three of them 1

a bit connected but they but they are in the
are 2 I would say same cell, perfect

GFP17 It misses some pices It loses one dendrite 0
GFP18 Join both dendrites 1
GFP19 OK OK ( a few noise but it is ok) OK 1
GFP20 OK 1
GFP21 OK 1
GFP22 OK 1
GFP23 OK 1
GFP24 OK 1
GFP25 OK 1
GFP26 There are more dendrites 0

in the PI because they are in
some slice with low intensity

GFP27 OK 1
GFP28 OK 1
GFP29 OK OK 1
GFP30 OK 1

Total 27

TABLE D.3: Summary of second experiment - GFP images.



D.2. Second experiment 117

Kind of stained Original image(OI) Processed image(PI) Comparative OI vs. PI
Dendrites which Crossings which

Title Image DiI GFP Dendrites Crossings Dendrites Crossings coincide coincide
DiI01 1 2 1 2 1 2 1
DiI02 1 2 0 2 0 2 0
DiI04 1 5 3 3 3 2 3
DiI05 1 4 4 3 2 3 2
DiI06 1 3 0 3 0 3 0
DiI07 1 4 1 5 3 4 2
DiI08 1 10 3 8 2 8 2
DiI09 1 2 1 2 1 2 1
DiI10 1 2 1 2 1 2 1
DiI12 1 1 0 1 0 1 0
DiI13 1 2 0 2 0 2 0
DiI14 1 18 5 10 2 10 2
DiI16 1 2 0 2 0 2 0
DiI17 1 1 0 1 0 1 0

GFP01 1 2 0 2 0 2 0
GFP03 1 1 0 1 0 1 0
GFP04 1 2 0 2 0 2 0
GFP05 1 3 1 1 0 1 0
GFP06 1 1 0 1 0 1 0
GFP07 1 1 0 1 0 1 0
GFP09 1 1 0 2 0 1 0
GFP10 1 2 0 2 0 1 0
GFP12 1 1 0 2 0 1 0
GFP14 1 2 0 2 0 2 0
GFP16 1 2 0 1 0 1 0
GFP17 1 1 0 1 0 1 0
GFP18 1 2 1 1 0 1 0
GFP19 1 2 0 2 0 2 0
GFP20 1 1 0 1 0 1 0

TABLE D.4: Results of second experiment - first observer.

Kind of stained Original image(OI) Processed image(PI) Comparative OI vs. PI
Dendrites which Crossings which

Title Image DiI GFP Dendrites Crossings Dendrites Crossings coincide coincide
DiI01 1 2 1 2 1 2 1
DiI05 1 2 1 4 2 2 1
DiI07 1 3 0 3 0 3 0
DiI08 1 4 0 6 0 6 0
DiI10 1 2 1 2 1 2 1
DiI13 1 2 0 2 0 2 0
DiI17 1 2 0 2 0 2 0
DiI18 1 3 0 2 0 2 0
DiI19 1 1 0 1 0 1 0
DiI20 1 2 0 2 0 2 0
DiI21 1 2 0 2 0 2 0
DiI23 1 1 0 2 0 1 0

GFP01 1 2 0 2 0 2 0
GFP04 1 2 0 2 0 2 0
GFP06 1 1 0 1 0 1 0
GFP08 1 1 0 1 0 1 0
GFP09 1 1 0 1 0 1 0
GFP11 1 1 0 1 0 1 0
GFP13 1 2 0 2 0 2 0
GFP14 1 2 0 2 0 2 0
GFP15 1 2 0 2 0 2 0
GFP16 1 2 0 2 0 2 0
GFP19 1 1 0 1 0 1 0
GFP21 1 1 0 1 0 1 0
GFP23 1 2 0 2 0 2 0
GFP26 1 1 0 2 0 1 0
GFP28 1 2 0 2 0 2 0
GFP29 1 3 0 3 0 3 0
GFP30 1 1 0 1 0 1 0

TABLE D.5: Results of second experiment - second observer.



118 Appendix D. Validation process of the plug-in NeuronZigzagJ

Kind of stained Original image(OI) Processed image(PI) Comparative OI vs. PI
Dendrites which Crossings which

Title Image DiI GFP Dendrites Crossings Dendrites Crossings coincide coincide
DiI01 1 3 1 3 1 3 1
DiI02 1 2 0 2 0 2 0
DiI03 1 3 1 3 1 3 1
DiI10 1 2 1 2 1 2 1
DiI11 1 1 0 1 0 1 0
DiI12 1 1 0 2 1 1 0
DiI15 1 1 0 1 0 1 0
DiI22 1 2 0 2 0 2 0
DiI24 1 2 0 2 0 2 0
DiI25 1 1 0 1 0 1 0
DiI26 1 4 0 5 1 4 0
DiI27 1 2 0 2 0 2 0
DiI28 1 2 0 3 0 2 0
DiI29 1 2 0 2 0 2 0
DiI30 1 2 1 3 1 2 1

GFP02 1 3 0 3 0 3 0
GFP05 1 3 0 3 0 3 0
GFP06 1 1 0 1 0 1 0
GFP07 1 3 1 3 1 3 1
GFP09 1 1 0 2 0 1 0
GFP10 1 2 0 2 0 2 0
GFP14 1 2 0 2 0 2 0
GFP16 1 3 0 3 0 3 0
GFP17 1 2 0 1 0 1 0
GFP19 1 1 0 1 0 1 0
GFP22 1 1 0 1 0 1 0
GFP24 1 2 0 2 0 2 0
GFP25 1 1 0 1 0 1 0
GFP27 1 1 0 1 0 1 0
GFP29 1 3 0 3 0 3 0

TABLE D.6: Results of second experiment - third observer.



119

Appendix E

Results of Machine Learning
Experiments

The following tables are the results obtained after running the methods explained in
Subsection 5.6.3 in Chapter 5.

There are two tables for each algorithm (GLMNET, KNN, RF and SVM) and they
show the results according the AUROC obtained using the R-package, see R Core
Team, 2016.



120 Appendix E. Results of Machine Learning Experiments

●

●

●

●

●

●

●

SIFT_60 SIFT_80

SIFT_150 SIFT_20 SIFT_200 SIFT_230 SIFT_40

CHARM_SIFT_230 CHARM_SIFT_40 CHARM_SIFT_60 CHARM_SIFT_80 SIFT_100

CHARM CHARM_SIFT_100 CHARM_SIFT_150 CHARM_SIFT_20 CHARM_SIFT_200

classif.glm
net.tuned

classif.glm
net.tuned

classif.glm
net.tuned

classif.glm
net.tuned

classif.glm
net.tuned

0.94

0.96

0.98

0.94

0.96

0.98

0.94

0.96

0.98

0.94

0.96

0.98

A
re

a 
un

de
r 

th
e 

cu
rv

e

GLMNET-algorithm

TABLE E.1: Table of GLMNET results.



Appendix E. Results of Machine Learning Experiments 121

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●SIFT_80 

SIFT_60 

SIFT_40 

SIFT_230 

SIFT_200 

SIFT_20 

SIFT_150 

SIFT_100 

CHARM_SIFT_80 

CHARM_SIFT_60 

CHARM_SIFT_40 

CHARM_SIFT_230 

CHARM_SIFT_200 

CHARM_SIFT_20 

CHARM_SIFT_150 

CHARM_SIFT_100 

CHARM

0.94 0.95 0.96 0.97

auc.test.mean

learner.id

●

GLMNET-algorithm

TABLE E.2: Table of GLMNET results.



122 Appendix E. Results of Machine Learning Experiments

●

●

●

●

●

SIFT_60 SIFT_80

SIFT_150 SIFT_20 SIFT_200 SIFT_230 SIFT_40

CHARM_SIFT_230 CHARM_SIFT_40 CHARM_SIFT_60 CHARM_SIFT_80 SIFT_100

CHARM CHARM_SIFT_100 CHARM_SIFT_150 CHARM_SIFT_20 CHARM_SIFT_200

classif.kknn.tuned

classif.kknn.tuned

classif.kknn.tuned

classif.kknn.tuned

classif.kknn.tuned

0.93

0.94

0.95

0.96

0.97

0.98

0.93

0.94

0.95

0.96

0.97

0.98

0.93

0.94

0.95

0.96

0.97

0.98

0.93

0.94

0.95

0.96

0.97

0.98

A
re

a 
un

de
r 

th
e 

cu
rv

e

KNN-algorithm

TABLE E.3: Table of KNN results.



Appendix E. Results of Machine Learning Experiments 123

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●SIFT_80 

SIFT_60 

SIFT_40 

SIFT_230 

SIFT_200 

SIFT_20 

SIFT_150 

SIFT_100 

CHARM_SIFT_80 

CHARM_SIFT_60 

CHARM_SIFT_40 

CHARM_SIFT_230 

CHARM_SIFT_200 

CHARM_SIFT_20 

CHARM_SIFT_150 

CHARM_SIFT_100 

CHARM

0.950 0.955 0.960 0.965

auc.test.mean

learner.id

●

KNN-algorithm

TABLE E.4: Table of KNN results.



124 Appendix E. Results of Machine Learning Experiments

●
●

●

●

●

●

SIFT_60 SIFT_80

SIFT_150 SIFT_20 SIFT_200 SIFT_230 SIFT_40

CHARM_SIFT_230 CHARM_SIFT_40 CHARM_SIFT_60 CHARM_SIFT_80 SIFT_100

CHARM CHARM_SIFT_100 CHARM_SIFT_150 CHARM_SIFT_20 CHARM_SIFT_200

classif.random
Forest.tuned

classif.random
Forest.tuned

classif.random
Forest.tuned

classif.random
Forest.tuned

classif.random
Forest.tuned

0.94

0.95

0.96

0.97

0.98

0.94

0.95

0.96

0.97

0.98

0.94

0.95

0.96

0.97

0.98

0.94

0.95

0.96

0.97

0.98

A
re

a 
un

de
r 

th
e 

cu
rv

e

RF-algorithm

TABLE E.5: Table of RF results.



Appendix E. Results of Machine Learning Experiments 125

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●SIFT_80 

SIFT_60 

SIFT_40 

SIFT_230 

SIFT_200 

SIFT_20 

SIFT_150 

SIFT_100 

CHARM_SIFT_80 

CHARM_SIFT_60 

CHARM_SIFT_40 

CHARM_SIFT_230 

CHARM_SIFT_200 

CHARM_SIFT_20 

CHARM_SIFT_150 

CHARM_SIFT_100 

CHARM

0.96 0.97

auc.test.mean

learner.id

●

RF-algorithm

TABLE E.6: Table of RF results.



126 Appendix E. Results of Machine Learning Experiments

●

●
● ●

●

SIFT_60 SIFT_80

SIFT_150 SIFT_20 SIFT_200 SIFT_230 SIFT_40

CHARM_SIFT_230 CHARM_SIFT_40 CHARM_SIFT_60 CHARM_SIFT_80 SIFT_100

CHARM CHARM_SIFT_100 CHARM_SIFT_150 CHARM_SIFT_20 CHARM_SIFT_200

classif.svm
.tuned

classif.svm
.tuned

classif.svm
.tuned

classif.svm
.tuned

classif.svm
.tuned

0.95

0.96

0.97

0.98

0.95

0.96

0.97

0.98

0.95

0.96

0.97

0.98

0.95

0.96

0.97

0.98

A
re

a 
un

de
r 

th
e 

cu
rv

e

SVM-algorithm

TABLE E.7: Table of SVM results.



Appendix E. Results of Machine Learning Experiments 127

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●SIFT_80 

SIFT_60 

SIFT_40 

SIFT_230 

SIFT_200 

SIFT_20 

SIFT_150 

SIFT_100 

CHARM_SIFT_80 

CHARM_SIFT_60 

CHARM_SIFT_40 

CHARM_SIFT_230 

CHARM_SIFT_200 

CHARM_SIFT_20 

CHARM_SIFT_150 

CHARM_SIFT_100 

CHARM

0.960 0.965 0.970 0.975 0.980

auc.test.mean

learner.id

●

SVM-algorithm

TABLE E.8: Table of SVM results.





129

Bibliography

Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N.,
and Roysam, B. (2002). “Rapid automated three-dimensional tracing of neurons
from confocal image stacks”. In: IEEE Transactions on Information Technology in
Biomedicine 6.2, pp. 171–187.

Amorim, A., Collins, N., DeHon, A., Hritcu, C., Pichardie, D., Pierce, B. C., Pol-
lack, R., and Tolmach, A. (2014). “A Verified Information-Flow Architecture”. In:
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’14).

Anderl, J. L., Redpath, S., and Ball, A. J. (2009). “A neuronal and astrocyte co-culture
assay for high content analysis of neurotoxicity”. In: J. Vis. Exp. 5.27, p. 1173.

Aransay, J., Ballarin, C., and Rubio, J. (2008). “A Mechanized Proof of the Basic Per-
turbation Lemma”. In: Journal of Automated Reasoning 40.4, pp. 271–292.

Aransay, J., Divasón, J., Heras, J., Lambán, L., Pascual, P., Rubio, A. L., and Rubio,
J. (2012). A report on an experiment in porting formal theories from Isabelle/HOL to
Ecore and ACL2. Tech. rep. URL: http://wiki.portal.chalmers.se/cse/
uploads/ForMath/isabelle_acl2_report.

Ayala, R., Domínguez, E., Francés, A. R., and Quintero, A. (2003). “Homotopy in
digital spaces”. In: Discrete Applied Mathematics 125, pp. 3–24.

Ballesteros-Yáñez, I., Benavides-Piccione, R., Elston, G.N., Yuste, R., and DeFelipe,
J. (2006). “Density and morphology of dendritic spines in mouse neocortex”. In:
Neuroscience 138.2, pp. 403–409.

Barrett, C. and Tinelli, C. (2007). “CVC3”. In: 19th International Conference on Computer
Aided Verification (CAV’07). Vol. 4590. LNCS, pp. 298–302.

Barthe, G., Pointcheval, D., and Zanella-Béguelin, S. (2012). “Verified Security of
Redundancy-Free Encryption from Rabin and RSA”. In: Proceedings 19th ACM
Conference on Computer and Communications Security (CCS’12), pp. 724–735.

Batista, Gustavo E. A. P. A., Prati, Ronaldo C., and Monard, Maria Carolina (2004).
“A Study of the Behavior of Several Methods for Balancing Machine Learning
Training Data”. In: SIGKDD Explor. Newsl. 6.1, pp. 20–29.

Benton, N. (2006). Machine Obstructed Proof: How many months can it take to verify 30
assembly instructions?

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY:
Springer.

Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., and Mebsout, A.
(2008). The Alt-Ergo automated theorem prover. URL: http://alt-ergo.lri.
fr/.

Bobot, F., Filliâtre, JC., Marché, C., Melquiond, G., and Paskevich, A. (2015). The
Why3 platform, version 0.86.1. version 0.86.1.

Boldo, S., Lelay, C., and Melquiond, G. (2013). Formalization of Real Analysis: A Survey
of Proof Assistants and Libraries. Tech. rep.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). “A Training Algorithm for Opti-
mal Margin Classifiers”. In: Proceedings of the 5th Annual ACM Workshop on Com-
putational Learning Theory. ACM Press, pp. 144–152.

http://wiki.portal.chalmers.se/cse/uploads/ForMath/isabelle_acl2_report
http://wiki.portal.chalmers.se/cse/uploads/ForMath/isabelle_acl2_report
http://alt-ergo.lri.fr/
http://alt-ergo.lri.fr/


130 BIBLIOGRAPHY

Breiman, L. (2001). “Random Forests”. In: Machine Learning 45.1, pp. 5–32.
Burdy, L. et al. (2005). “An overview of JML tools and applications”. In: International

Journal on Software Tools for Technology Transf 7.3, pp. 212–232.
Cajal, S. R. (1889). “Conexión general de los elementos nerviosos”. In: La Medicina

Práctica 2, pp. 341–346.
— (1917). Recuerdos de mi vida. Vol. 2. Imprenta y Librería de Nicolás Moya.
— (1998). La textura del sistema nervioso del hombre y los vertebrados (1899 reprint).

Springer Verlag.
Calderón de Anda, F. et al. (2012). “Autism spectrum disorder susceptibility gene

TAOK2 affects basal dendrite formation in the neocortex”. In: Natural Neuro-
science 15.7, pp. 1022–1031.

Canny, J. (1986). “A Computational Approach to Edge Detection”. In: IEEE Pattern
Anal. Mach. Intell. 8.6, pp. 679–698.

Carlsson, G. and DeSilva, V. (2010). “Zigzag persistence”. In: Foundations of Compu-
tational Mathematics 10.4, pp. 367–405.

Castleman, K. (1996). Digital Image Processing. Prentice-Hall.
Charoenkwan, P., Hwang, E., Cutler, R. W., Lee, H.-C., Ko, L.-W., Huang, H.-L., and

Ho, S.-Y. (2013). “HCS-Neurons: identifying phenotypic changes in multi-neuron
images upon drug treatments of high-content screening”. In: BMC Bioinform.
14.S16, S12.

Codescu, M. et al. (2012). “Towards Logical Frameworks in the Heterogeneous Tool
Set Hets”. In: Post-Proceedings 20th International Workshop on Recent Trends in Al-
gebraic Development Techniques (WADT’10). Vol. 7137. LNCS, pp. 139–159.

Coons, A. H., Creech, H. J., and Jones, R. N. (1941). “Immunological Properties of
an Antibody Containing a Fluorescent Group”. In: Proceedings of the Society for
Experimental Biology and Medicine 47.2, pp. 200–202.

COQ development team (2012). The COQ Proof Assistant, version 8.4. Tech. rep.
Cuesto, G., Carames, C., Cantarero, M., Gasull, X., Acebes, A., and Morales, M.

(2011). “PI3K activation modulates synaptogenesis and spinogenesis in a hipp-
pocampal culture model”. In: Journal of Neuroscience 31.8, pp. 2721–2733.

Cuesto, G., Enriquez-Barreto, L., et al. (2011). “Phosphoinositide-3-kinase activation
controls synaptogenesis and spinogenesis in hippocampal neurons”. In: Journal
of Neuroscience 31.8, pp. 2721–2733.

Cuesto, G., Jordán-Álvarez, S., Enriquez-Barreto, L., et al. (2015). “GSK3β inhibition
Promotes Synaptogenesis in Drosophila and Mammalian Neurons”. In: PlosOne
10.3.

Danielson, E. and Lee, S. H. (2014). “SynPAnal: Software for Rapid Quantification
of the Density and Intensity of Protein Puncta from Fluorescence Microscopy
Images of Neurons”. In: PLoS ONE 9.12.

Dellani, P. R., Glaser, M., et al. (2007). “White matter fiber tracking computation
based on Diffusion Tensor Imaging for clinical applications”. In: Journal of Digital
Imaging 20.1, pp. 88–97.

Denney, E. (2000). “A Prototype Proof Translator from HOL to Coq”. In: 13th Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLs’00). Vol. 1869.
LNCS, pp. 108–125.

Díaz de Greñu de Pedro, J. (2014). Análisis Matemático de rutinas de procesamiento de
imágenes digitales en Fiji/ImageJ. Tech. rep. Universidad de La Rioja.

Domínguez, C. and Rubio, J. (2011). “Effective homology of bicomplexes, formalized
in Coq”. In: Theoretical Computer Science 412.11, pp. 962–970.

Donohue, D. E. and Ascoli, G. A. (2011). “Automated reconstruction of neuronal
morphology: an overview”. In: Brain Research Reviews 67.1–2, pp. 94–102.



BIBLIOGRAPHY 131

Dousson, X., Rubio, J., Sergeraert, F., and Siret, Y. (1999). The Kenzo program. Institut
Fourier, Grenoble.

Dragunow, M. (2008). “High-content analysis in neuroscience”. In: Nat. Rev. Neurosci.
9.10, pp. 779–788.

Edelsbrunner, H., Letscher, D., and Zomorodian, A. (2002). “Topological persistence
and simplification”. In: Discrete Computional Geometry 28, pp. 511–533.

Elston, G. N. and DeFelipe, J. (2002). “Spine distribution in cortical pyramidal cells:
a common organizational principle across species”. In: Progress in Brain Research
136, pp. 109–133.

Enríquez-Barreto, L., Cuesto, G., Domíguez-Iturza, N., Gavilán, E., Ruano, D., Sandi,
C., Fernández-Ruiz, A., Martín-Vázquez, G., and Morales, M. (2014). “Learning
improvement after PI3K activation correlates with de novo formation of func-
tional small spines”. In: Frontiers in Molecular Neuroscience 6.54.

Enríquez-Barreto, L. and Morales, M. (2016). “The PI3K signaling pathway as a phar-
macological target in Autism related disorders and Schizophrenia”. In: Molecular
and Cellular Therapies 4.2.

Fawcett, T. (2006). “An introduction to {ROC} analysis”. In: Pattern Recognition Letters
27.8, pp. 861 –874.

Filliâtre, J. and Marché, C. (2007). “The Why/Krakatoa/Caduceus Platform for De-
ductive Program Verification”. In: 19th International Conference on Computer Aided
Verification (CAV’07). Vol. 4590. LNCS, pp. 173–177.

ForMath (2010–2013). ForMath: Formalisation of Mathematics, European Project. URL:
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/
ForMath.

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert (2010). “Regularization
Paths for Generalized Linear Models via Coordinate Descent”. In: Journal of Sta-
tistical Software 33.1, pp. 1–22.

Gabor, D. (1946). “Theory of communication”. In: Journal of IEEE 93, pp. 429–457.
Gamboa, R. and Kaufmann, M. (2001). “Non-Standard Analysis in ACL2”. In: Journal

of Automated Reasoning 27.4, pp. 323–351.
Goedert, M. and Spillantini, M. G. (2006). “A Century of Alzheimer’s Disease”. In:

Science 314, p. 777.
Gogolla, N., Galimberti, I., Deguchi, Y., and Caroni, P. (2009). “Wnt Signaling Medi-

ates Experience-Related Regulation of Synapse Numbers and Mossy Fiber Con-
nectivities in the Adult Hippocampus”. In: Neuron 62.4, pp. 510 –525.

Gonthier, G. et al. (2013). “A Machine-Checked Proof of the Odd Order Theorem”.
In: Proceedings 4th Conference on Interactive Theorem Proving (ITP’13). LNCS.

González-Díaz, R. and Real, P. (2005). “On the Cohomology of 3D Digital Images”.
In: Discrete Applied Mathematics 147.2–3, pp. 245–263.

Gordon, M. J. C., Kaufmann, M., and Ray, S. (2011). “The Right Tools for the Job:
Correctness of Cone of Influence Reduction Proved Using ACL2 and HOL4”. In:
Journal of Automated Reasoning, pp. 1–16.

Govindarajan, A. et al. (2011). “The dendritic branch is the preferred integrative unit
for protein synthesis-dependent LTP”. In: Neuron 69.1, pp. 132–146.

Gradshtein, I. and Ryzhik, I. (1994). “Table of integrals, series and products”. In:
Academic Press 5, p. 1054.

Graham, P. (1996). ANSI Common Lisp. Prentice Hall.
Gurari, E (1999). “Backtracking Algorithms CIS 680: Data Structures: Chapter 19:

Backtracking Algorithms”. In: Ohio State University 23.08.

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath


132 BIBLIOGRAPHY

Hadjidementriou, E., Grossberg, M., and Nayar, S. (2001). “Spatial information in
multiresolution histograms”. In: IEEE Conference on Computer Vision and Pattern
Recognition 1, p. 702.

Hales, T. (2005). The Flyspeck Project fact sheet. Project description available at http:
//code.google.com/p/flyspeck/.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H. (2009).
“The WEKA data mining software: an update”. In: SIGKDD Expl. 11.1, pp. 10–18.

Hardin, D. (2010). Design and Verification of Microprocessor Systems for High-Assurance
Applications. Springer.

Hechenbichler, K. and Schliep, K. (2006). “Weighted k-nearest-neighbor techniques
and ordinal classification”. In: Discussion Paper 399, SFB 386.

Heck, N. et al. (2012). “A deconvolution method to improve automated 3D-analysis
of dendritic spines: application to a mouse model of Huntington’s disease”. In:
Brain Structure and Function 217.2, pp. 421–434.

Heras, J., Coquand, T., Mörtberg, A., and Siles, V. (2013). “Computing Persistent Ho-
mology within Coq/SSReflect”. In: To appear in ACM Transactions on Computa-
tional Logic.

Heras, J., Dénès, M., Mata, G., Mörtberg, A., Poza, M., and Siles, V. (2012). “Towards
a Certified Computation of Homology Groups for Digital Images”. In: Computa-
tional Topology in Image Context: 4th International Workshop, CTIC 2012, Bertinoro,
Italy, May 28-30, 2012. Proceedings. Springer Berlin Heidelberg, pp. 49–57.

Heras, J., Mata, G., Romero, A., Rubio, J., and Sáenz, R. (2013). “Verifying a Plaftorm
for Digital Imaging: A Multi-tool Strategy”. In: Intelligent Computer Mathematics:
MKM, Calculemus, DML, and Systems and Projects 2013, Held as Part of CICM 2013,
Bath, UK. Proceedings. Springer Berlin Heidelberg, pp. 66–81.

Heras, J., Pascual, V., and Rubio, J. (2012). “A Certified Module to Study Digital
Images with the Kenzo system”. In: Proceedings of the 13th International Conference
on Computer Aided Systems Theory (EUROCAST’11). Vol. 6927. LNCS, pp. 113–120.

Heras, J., Poza, M., and Rubio, J. (2012). “Verifying an Algorithm Computing Dis-
crete Vector Fields for Digital Imaging”. In: AISC/MKM/Calculemus (CICM’12).
Vol. 7362. LNCS, pp. 216–230.

Huang, L-K. and Wang, M-J. J. (1995). “Image thresholding by minimizing the mea-
sure of fuzziness”. In: Pattern Recognition 28.1, pp. 41–51.

Ireland, A. and Stark, J. (1997). On the Automatic Discovery of Loop Invariants.
Jacquel, M., Berkani, K., Delahaye, D, and Dubois, C. (2011). “Verifying B Proof Rules

Using Deep Embedding and Automated Theorem Proving”. In: Proceedings 9th
International Conference on Software Engineering and Formal Methods (SEFM’11).
Vol. 7041. LNCS, pp. 253–268.

Kaczynski, T., Mischaikow, K., and Mrozek, M. (2004). Computational Homology.
Vol. 157, pp. 411–414.

Kaech, S. and Banker, G. (2006). “Culturing hippocampal neurons”. In: Nature Proto-
cols 1.5, pp. 2406–2415.

Kaufmann, M. and Moore, J. S. (2012). ACL2 Version 6.0. URL: http://www.cs.
utexas.edu/users/moore/acl2/.

Keller, C. and Werner, B. (2011). “Importing HOL Light into Coq”. In: Proceedings 1st
International Conference on Interactive Theorem Proving (ITP’11). Vol. 6172. LNCS,
pp. 307–322.

Knuth, D. E. (1997). The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc. Chap. 6.1. ISBN: 0-201-
89683-4.

Kozlov, D. N. (2008). Combinatorial Algebraic Topology. Vol. 21. Springer.

http://code.google.com/p/flyspeck/
http://code.google.com/p/flyspeck/
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/


BIBLIOGRAPHY 133

Krakatoa. Krakatoa. http://krakatoa.lri.fr.
Lambán, L., Martín-Mateos, F. J., Rubio, J., and Ruiz-Reina, J. L. (2013). “Verifying

the bridge between Simplicial Topology and Algebra: the Eilenberg-Zilber algo-
rithm”. In: Logic Journal of the IGPL 22.1, pp. 39–65.

Landmesser, L. (1994). “Axonal outgrowth and pathfinding”. In: Progress in Brain
Research 103, pp. 67–73.

Lee, D. R. et al. (2007). “FPGA based connected component labeling”. In: Proceedings
International Conference on Control, Automation and System, pp. 2313–2317.

Lim, J. S. (1990). “Two-Dimensional Signal and Image Processing”. In: Prentice Hall,
pp. 42–45.

Linkert, M., Rueden, C. T., Allan, C., et al. (2010). “Metadata matters: access to image
data in the real world”. In: The Journal of Cell Biology 189.5, pp. 777–782.

Liu, H. and S., Moore J. (2004). “Java Program Verification via a JVM Deep Embed-
ding in ACL2”. In: Proceedings 17th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs’04). Vol. 3223. LNCS, pp. 184–200.

Lloyd, S. P. (1982). “Least squares quantization in PCM”. In: IEEE Trans. Information
Theory 28.2, pp. 129–136.

Lowe, D. G. (2004). “Distinctive image features from scale-invariant keypoints”. In:
Int. J. Comput. Vis. 60.2, pp. 91–110.

MacQueen, J. (1967). “Some methods for classification and analysis of multivari-
ate observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics. Berkeley, C.: University of California
Press, pp. 281–297. URL: http://projecteuclid.org/euclid.bsmsp/
1200512992.

Mata, G. NeuronPersistentJ. http://imagejdocu.tudor.lu/doku.php?id=
plugin:utilities:neuronpersistentj:start.

— NeuronzigzagJ. http://spineup.jimdo.com/downloads/.
— NucleusJ. https://spineup.jimdo.com/downloads/.
— SynapCountJ. http://imagejdocu.tudor.lu/doku.php?id=plugin:

utilities:synapsescountj:start.
Mata, G., Cuesto, G., Heras, J., Morales, M., Romero, A., and Rubio, J. (2017). “Synap-

CountJ: A Validated Tool for Analyzing Synaptic Densities in Neurons”. In:
Biomedical Engineering Systems and Technologies: 9th International Joint Conference,
BIOSTEC 2016, Rome, Italy, Revised Selected Papers. Springer International Pub-
lishing, pp. 41–55.

Mata, G., Morales, M., Romero, A., and Rubio, J. (2015). “Zigzag persistent homology
for processing neuronal images”. In: Pattern Recognition Letters 62.1, pp. 55–60.

Mata, G., Radojevic, M., Smal, I., Morales, M., Meijering, E., and Rubio, J. (2016).
“Automatic Detection of Neurons in High-Content Microscope Images Using
Machine Learning Approaches”. In: Proceedings of the 13th IEEE International Sym-
posium on Biomedical Imaging (ISBI’2016). IEEE Xplore, pp. 330–333.

MathWorks (2016). version 9.0.0.341360 (R2016a). The MathWorks Inc.
Maunder, C. R. F. (1996). Algebraic Topology. Dover.
Meijering, E. (2010). “Neuron tracing in perspective”. In: Cytometry Part A 77.7,

pp. 693–704.
Meijering, E., Jacob, M., Sarria, J. C. F., et al. (2004). “Design and Validation of a

Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images”. In:
Cytometry Part A 58.2, pp. 167–176.

Miura, K. et al. (2016). Bioimage Data Analysis. Wiley-VCH.
Molecular Devices (2015). MetaMorph Research Imaging.

http://krakatoa.lri.fr
http://projecteuclid.org/euclid.bsmsp/1200512992
http://projecteuclid.org/euclid.bsmsp/1200512992
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:neuronpersistentj:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:neuronpersistentj:start
http://spineup.jimdo.com/downloads/
https://spineup.jimdo.com/downloads/
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:synapsescountj:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:synapsescountj:start


134 BIBLIOGRAPHY

Morales, M., Colicos, M. A., and Goda, Y. (2000). “Actin-dependent regulation of
neurotransmitter release at central synapses”. In: Neuron 27.3, pp. 539–550.

Mori, S. and Zijl, P. C. M. van (2002). “Fiber tracking: principles and strategies – a
technical review”. In: NMR Biomedicine 15, pp. 468–480.

Munkres, J. R. (1984). Elements of Algebraic Topology. Addison-Wesley.
Murphy, K. (2001). “The Bayes net toolbox for Mat-lab”. In: Computing Science and

Statistics 33, pp. 1–20.
Obua, S. and Skalberg, S. (2006). “Importing HOL into Isabelle/HOL”. In: 3rd In-

ternational Joint Conference on Automated Reasoning (IJCAR’06). Vol. 4130. LNCS,
pp. 298–302.

Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D. M., and Goldberg, I. G.
(2008). “WND-CHARM: multi-purpose image classification using compound
image transforms”. In: Pattern Recognit. Lett. 29.11, pp. 1684–1693.

Otsu, N. (1979). “A threshold selection method from gray level histograms”. In: IEEE
Transactions On Systems, Man and Cybernetics 9, pp. 62–66.

Pawley, J. B., ed. (2006). Handbook of Biological Confocal Microscopy. Springer.
Pham, T.D., Crane, T.D., et al. (2004). “Extraction of fluorescent cell puncta by adative

fuzzy segmentation”. In: Bioinformatics 20, 2189 – 2196.
Poza, M., Domínguez, C., Heras, J., and Rubio, J. (2014). “A certified reduction strat-

egy for homological image processing”. In: ACM Transactions on Computational
Logic 15.3.

Prewitt, J. and Mendelsohn, M. L. (1966). “The analysis of cell images”. In: Annals of
the New York Academy of Sciences 128.1, pp. 1035–1053.

Prewitt, J. M. (1970). “Object enhancement and extraction Picture Processing and
Psychopictoris”. In: Lipkin BS, Rosenfeld A, editors, pp. 75–149.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. URL: https://www.R-project.org/.

Radio, N. M. (2012). “Neurite Outgrowth Assessment Using High Content Analysis
Methodology”. In: Meth. Mol. Biol. 846, pp. 247–260.

Rakhmadi, A. et al. (2010). “Connected Component Labeling Using Compo-
nents Neighbors-Scan Labeling Approach”. In: Journal of Computer Science 6.10,
pp. 1096–1104.

Ramón-Moliner, E. (1970). “The Golgi-Cox technique”. In: Contemporary Methods in
Neuroanatomy, pp. 32–55.

Ridler, T. W. and Calvard, S. (1978). “Picture Thresholding Using an Iterative Selec-
tion Method”. In: IEEE Transactions on Systems, Man, and Cybernetics 8.8, pp. 630–
632.

Rivest, R. L. et al. (2008). The MD6 hash function A proposal to NIST for SHA-3. Tech.
rep.

Roberts, T. F., Tschida, K. A., E., Klein M., and R., Mooney (2010). “Rapid spine sta-
bilization and synaptic enhancement at the onset of behavioural learning”. In:
Nature 463, pp. 948 –952.

Roerdink, J. B. T. M. and Meijster, A. (2000). “The Watershed Transform: Definitions,
Algorithms and Parallelization Strategies”. In: Fundam. Inf. 41.1,2, pp. 187–228.

Romero, A., Heras, J., Rubio, J., and Sergeraert, F. (2014). “Defining and computing
persistent Z-homology in the general case”. In: CoRR abs/1403.7086.

Romero, A. and Rubio, J. (2013). “Homotopy groups of suspended classifying
spaces: An experimental approach”. In: Mathematics of Computation 82, pp. 2237–
2244.

Romero, A. and Sergeraert, F. (2010). Discrete Vector Fields and Fundamental Algebraic
Topology.

https://www.R-project.org/


BIBLIOGRAPHY 135

Rosenfeld, A. (1974). “Adjacency in digital pictures”. In: Information and Control 26.1,
pp. 24 –33.

Schindelin, J., Arganda-Carreras, I., Frise, E., et al. (2012). “Fiji: an open-source plat-
form for biological-image analysis”. In: Nature methods 9.7, pp. 676–682.

Schmitz, S. K., Johannes Hjorth, J. J., Joemail, R. M. S., et al. (2011). “Automated
analysis of neuronal morphology, synapse number and synaptic recruitment”.
In: Journal of Neuroscience Methods 195.2, pp. 185–193.

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). “NIH Image to ImageJ:
25 years of image analysis”. In: Nat. Meth. 9.7, pp. 671–675.

Ségonne, F., Grimson, E., and Fischl, B. (2003). “Topological Correction of Subcorti-
cal Segmentation”. In: Proceedings of the 6th International conference on Medical Im-
age Computing and Computer Assisted Intervention (MICCAI’03). Vol. 2879. LNCS,
pp. 695–702.

Selkoe, D. J. (2002). “Alzheimer’s diseases is a synaptic failure”. In: Science 298.5594,
pp. 789–791.

Selkoe, D. J. and Hardy, J. (2016). “The amyloid hypothesis of Alzheimer’s disease at
25 years”. In: EMBO Molecular Medicine 8.6, pp. 595–608.

Sergeraert, F. (1992). Effective homology, a survey. Tech. rep. Institut Fourier.
Shamir, L., Orlov, N., Eckley, D. M., Macura, T., Johnston, J., and Goldberg, I. G.

(2008). “Wndchrm – an open source utility for biological image analysis”. In:
Source Code Biol. Med. 3.13, pp. 1–13.

Shapiro, L. and Stockman, G. (2002). Computer Vision. Prentice Hall.
Shiwarski, D. J., Dagda, R. D., and T., Chu. C. (2014). Green and Red Puncta Colocal-

ization.
Sivic, J. (2009). “Efficient visual search of videos cast as text retrieval”. In: IEEE Trans-

actions On Pattern Analysis and Machine Intelligence 31.4, pp. 591–605.
Skiena, S. S. (2008). “Sorting and Searching”. In: The Algorithm Design Manual. Lon-

don: Springer London, pp. 103–144.
SpineUp (2014). SpineUp.es. http://spineup.es.
Tamura, H., Mori, S., and Yamavaki, T. (1978). “Textural features corresponding

to visual perception”. In: IEEE Transactions On Systems, Man and Cybernetics 8,
pp. 460–472.

Tarjan, R. (1972). “Depth first search and linear graph algorithms”. In: Siam Journal
on computing 1.2.

Tessier-Lavigne, M. and Goodman, C. S. (1996). “The molecular biology of axon
guidance”. In: Science 274.5290, pp. 1123–1133.

Tibshirani, Robert (1996). “Regression Shrinkage and Selection Via the Lasso”. In:
Journal of the Royal Statistical Society, Series B 58, pp. 267–288.

Tschida, K. A. and Mooney, R. (2012). “Deafening Drives Cell-Type-Specific Changes
to Dendritic Spines in a Sensorimotor Nucleus Important to Learned Vocaliza-
tions”. In: Neuron 73.5, pp. 1028 –1039.

Vallotton, P., Lagerstrom, R., Sun, C., Buckley, M., Wang, D., DeSilva, M., Tan, S.-
S., and Gunnersen, J. M. (2007). “Automated analysis of neurite branching in
cultured cortical neurons using HCA-Vision”. In: Cytom. A 71.10, pp. 889–895.

Vapnik, V. N. (1999). The Nature of Statistical Learning Theory.
Vedaldi, A. and Fulkerson, B. (2008). VLFeat: An Open and Portable Library of Computer

Vision Algorithms. http://www.vlfeat.org/.
Velez-Pardo, C. et al. (2004). “CA1 hippocampal neuronal loss in familial

Alzheimer’s disease presenilin-1 E280A mutation is related to epilepsy”. In:
Epilepsia 45.7, pp. 751–756.

http://spineup.es
http://www.vlfeat.org/


136 BIBLIOGRAPHY

Vincent, L. and Soille, P. (1991). “Watersheds in Digital Spaces: An Efficient Algo-
rithm Based on Immersion Simulations”. In: IEEE Trans. Pattern Anal. Mach. Intell.
13.6, pp. 583–598.

Wark, B. (2013). Puncta Analyzer v2.0. URL: https://github.com/physion/
puncta-analyzer.

Weeden, V. J., Wang, R. P., et al. (2008). “Diffusion spectrum magnetic resonance
imaging (DSI) tractography of crossing fibers”. In: NeuroImage 41, pp. 1267–1277.

Wu, C., Schulte, J., Sepp, K. J., Littleton, J. T., and Hong, P. (2010). “Automatic robust
neurite detection and morphological analysis of neuronal cell cultures in high-
content screening”. In: Neuroinform. 8.2, pp. 83–100.

Xia, X. and Wong, S. T. C. (2012). “Concise review: a high-content screening approach
to stem cell research and drug discovery”. In: Stem Cells 30.9, pp. 1800–1807.

Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., Jones, T., and Zuo,
Y. (2009). “Rapid formation and selective stabilization of synapses for enduring
motor memories”. In: Nature 462, pp. 915 –919.

Zhang, Y., Zhou, X., Degterev, A., Lipinski, M., Adjeroh, D., Yuan, J., and Wong, S. T.
C. (2007). “A novel tracing algorithm for high throughput imaging: screening of
neuron-based assays”. In: J. Neurosci. Meth. 160.1, pp. 149–162.

Zhou, X., Wang, X., Dougherty, ER., Russ, D., and Suh, E. (2004). “Gene Clustering
Based on Clusterwide Mutual Information”. In: Journal of Computational Biology
11.1, pp. 147 –161.

Zomorodian, A. (2001). “Computing and Comprehending Topology: Persistence and
Hierarchical Morse Complexes”. PhD thesis. University of Illionois at Urbana-
Champaign.

Zou, H. and Hastiel, T. (2005). “Regularization and variable selection via the Elastic
Net”. In: Journal of the Royal Statistical Society, Series B 67, pp. 301–320.

https://github.com/physion/puncta-analyzer
https://github.com/physion/puncta-analyzer

	122711.pdf
	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	Introduction
	Synaptic Density and Verification
	Synaptic Density
	Introduction
	Methodology
	Experimental Results
	Scientific Validations of the Computations
	Discussion
	Conclusions 
	Availability and Software Requirements

	Verification
	Introduction
	Context
	Methodology
	Experimental Results
	Conclusions 


	Neural Density
	Introduction
	Methodology
	Experimental Results
	Conclusions
	Availability and Software Requirements

	Neuron detection in stack images
	Introduction
	A Persistent Homology Interpretation
	Introduction
	Methodology
	Experimental Results
	Discussion
	Availability and Software Requirements

	Zigzag Persistence Theory
	Introduction
	Methodology
	Experimental Results
	Conclusions
	Availability and Software Requirements


	Location of neurons
	Introduction
	An Approach Using Intensity Features
	Introduction
	Previous work
	Methodology
	Annotation of the Image Data

	Methodology Used Over Binary Images
	Methodology Used Over Textures Features
	Introduction
	Context
	Methodology
	Experimental Results

	Discussion
	Deeper Study about Features of Images and Machine Learning Algorithms
	Introduction
	Methodology
	Experimental Results
	Discussion and Current Work


	Conclusions
	Future Work
	Definitions
	Biology and Acquisition
	Experimental Phase
	Experimental Methods
	Primary Neuronal Cultures
	Immunocytochemistry of neurons in cultures

	Acquisition of Images
	Images for the Analysis of Synaptic Density
	Images for the Analysis of the Immunocytochemistry of Neurons in Cultures
	Images for the Analysis of the Structure of GFP-Transfected Neurons
	Images for the Analysis of the GFP-Transfected Neurons


	Technology
	Validation process of the plug-in NeuronZigzagJ
	First experiment
	Second experiment

	Results of Machine Learning Experiments
	Bibliography


