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Resumen

En este artículo se pretende mostrar los detalles de cálculo internos a los algoritmos de 
clasificación binaria mediante máquinas de vectores de soporte (SVM). En particular, se pre-
senta un ejemplo detallado del uso del algoritmo y el cálculo puntual de los parámetros aso-
ciados al sistema de entrenamiento mediante un kernel cuadrático. Las cuentas y definiciones 
presentadas en este trabajo, pueden ser de beneficio p ara l os e studiantes d e c iencias d e la 
computación, ingeniería, matemáticas y para cualquier persona interesada en aprender sobre 
inteligencia artificial.

Palabras Clave: Clasificación Binaria, Funciones de Similitud, Función de Clasificación; In-
teligencia Artificial.

Abstract

This article aims to illustrate the internal computation details of binary classification al-
gorithms using Support Vector Machines (SVM). Specifically, a detailed example of the algo-
rithm’s usage and the precise computation of parameters associated with the training system 
using a quadratic kernel are presented. The computations and definitions presented in this 
work may be of benefit to students of computer science, engineering, mathematics, and any-
one interested in learning about artificial intelligence.

Keywords: Binary Classification, Similarity Functions, Classification Function; Artificial In-
telligence.
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1. Introduction

Artificial Intelligence (AI) has transformed numerous fields, from medicine and industry to
entertainment and education. The ability of AI to analyze vast amounts of data and learn com-
plex patterns has led to significant advancements in problem-solving and decision-making [1].
Furthermore, AI can enhance the efficiency and productivity of businesses and organizations,
potentially exerting a significant impact on the global economy.

Binary classification is one of the most common applications of AI [2, 3, 4], employed to segrega-
te datasets into two distinct categories. However, this technique still poses significant challenges
and issues, such as lack of precision and a tendency to overfit the training data. These issues
can lead to inaccurate results and costly errors in decision-making.

To overcome these challenges, advanced binary classification algorithms, such as classification
kernels, have been developed [5, 6]. These algorithms utilize similarity functions to map the
data into a high-dimensional space, where it is easier to separate different categories. Further-
more, classification kernels are efficient in terms of computational resource usage, making them
ideal for deployment in real-time systems and online applications.

This article will present a detailed example to comprehend the utilization of the quadratic ker-
nel in the context of Support Vector Machines (SVM) for binary classification. In addition to
exploring the basics of SVM, specific techniques and necessary steps for constructing a decision
or classification function will be detailed, derived from the solution to the optimization pro-
blem with Lagrange coefficients. This article aims to serve as a practical guide for constructing
decision functions using different kernels in SVM for binary classification problems. It is expec-
ted that, through understanding the internal structure of SVM and using different kernels, the
concepts presented here can be applied in a variety of classification contexts and different pro-
gramming languages. With this in mind, this article will not only present the detailed example
but also the theoretical concepts necessary to comprehend the technical details behind construc-
ting a decision function in SVM.

2. Preliminaries

In this section, we will establish some fundamental concepts necessary to understand binary
classification using a separating hyperplane through Support Vector Machine (SVM).

Binary Classification Binary classification is a fundamental problem in the field of machine lear-
ning. It involves assigning instances to one of the two possible classes. For example, it could
be the classification of emails as ’spam’ or ’non-spam’ or the detection of bank transactions as
’fraudulent’ or ’legitimate’. In our case, we will focus on the classification of instances into two
classes labeled as ’positive’ and ’negative’.

Feature Vector. It is a mathematical entity representing a magnitude and direction in a multidi-
mensional space. In the context of classification, each instance is represented by a vector in a
vector space. A vector can have multiple components, representing the features of an instance.
For example, if classifying images of fruits, the vector components could be the size, color, and
texture of the fruit.

Feature Space. It is a representation in a dimensional space where each instance is described by a
feature vector. Each component of the vector represents a specific feature. By utilizing a feature
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space, we aim to transform instances into a space where it is easier to find a linear separation
between classes.

Support Vector Machines (SVM). SVMs are a widely used technique in machine learning for bi-
nary classification. Their primary objective is to find a separating hyperplane in the feature
space that maximizes the margin between instances of different classes. This hyperplane beco-
mes a decision boundary for classifying new instances

Optimization and Training. The training of an SVM model involves finding the optimal parame-
ters that define the separating hyperplane. This is achieved by formulating the problem as an
optimization problem and employing optimization techniques, such as quadratic programming
or maximizing the objective function. The goal is to find the hyperplane that generalizes well
for new instances and minimizes classification errors.

3. Development

Suppose we want to classify with labels 1 or −1, the vectors

x = (−2, 1, 2) y y = (2, 1, 3). (1)

These could be, for example, the transformed coordinates for measurements obtained from two
new patients who underwent a liver examination [7] (size, dimension, degree of alcoholism),
and we want to classify whether each of these two patients has a fatty liver or not, using the
labels 1,−1, where 1 represents a healthy classification for a patient.

Additionally, suppose a quadratic kernel was selected for this task, given by K(x, y) = (x · y +
1)2, where x · y is the dot product between vectors x and y.

Remark: According to the Mercer’s theorem, not every function can be a kernel; in fact, the
theorem states that the function K must be symmetric and positive semi-definite [8, 9]. This
is: i) for all x, y ∈ Rn, it holds that K(x, y) = K(y, x), ii) for any finite set of n vectors A =
x1, x2, x3, · · ·, xn, the Gram matrix Gij = K(xi, xj), with i, j = 1, 2, 3, ..., n; must be positive semi-
definite (Eigenvalues greater than or equal to zero; or equivalently xiTGxi ≥ 0). Various fun-
ctions satisfy the conditions to be kernels; in [8], the reader can find different definitions of
kernels: linear, quadratic, polynomial, Gaussian (RBF), sigmoid, among others.

Next, the previously selected kernel is applied to the vectors x, y from (1):

K(x, y) = K((−2, 1, 2), (2, 1, 3)) = [(−2)(2) + (1)(1) + (2)(3) + 1]2 = 16.

we can observe that x and y could be similar or likely to belong to the same class, but this
value 16 is relative (two vectors will be similar or close if, when applying the kernel ’simila-
rity function’, a non-close-to-zero number is obtained [10]), and therefore, it is not decisive for
classifying vectors x, y. Consequently, a decision function f (x) must be constructed using a
prior training set with known labels and, of course, grounded in the selected kernel K(x, y).

By the above, let’s consider the following three training vectors:

x1 = (2, 1, 2); x2 = (3, 1, 0); x3 = (1, 3, 1)with their respective labels y1 = −1; y2 = 1; y3 = 1.
(2)
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Remark:

It is common practice to randomly select 70 % from a previously known database for the trai-
ning of the machine learning method (Machine Learning - AI). On the other hand, the remaining
30 % of the data, along with their respective labels −1, 1, is kept for evaluating the accuracy of
the constructed model or selection function [11].

Continuing with our goal of establishing the decision function f (x), we must first obtain the
following Gram matrix [12], applying the kernel to all training data given in (2):

Gij = K(xi, xj) =

K(x1, x1) K(x1, x2) K(x1, x3)
K(x2, x1) K(x2, x2) K(x2, x3)
K(x3, x1) K(x3, x2) K(x3, x3)

 =

100 64 64
64 121 49
64 49 144

 . (3)

We also need to obtain the cross-label matrix (or label Gram matrix) using (2):

Yij = yiyj =

y1y1 y1y2 y1y3
y2y1 y2y3 y2y3
y3y1 y3y2 y3y3

 =

 1 −1 −1
−1 1 1
−1 1 1

 . (4)

Now, it is important to present the decision function f (x), which, according to [8], is given by:

f (x) = Sign

[
n

∑
i=1

αiyiK(x, xi) + b

]
; where: (5)

(I) αi, are the Lagrange coefficients (They are found by solving the associated convex opti-
mization problem with the training data; this quadratic optimization problem is solved
using the method of Lagrange multipliers).

(II) yi are the respective labels of the training data.

(III) K(x, xi), is the similarity function (kernel) applied to the vector x to be classified with each
of the training vectors.

(IV) b is the bias term (also known as the threshold or as the value of the intersection of the
separating hyperplane with the vertical axis).

The main problem one always faces in (5) is determining the Lagrange coefficients αi, which are
necessary to obtain the decision function. In the example we are considering, we have vectors in
R3, which, as will be seen below, will not be very difficult to solve for the optimization problem.
However, the complexity will increase depending on the binary classification problem addres-
sed, due to the amount of data, the choice of similarity function (Kernel), the number of vector
components, and the number of training vectors available. Hence, the indispensable assistance
of computers, especially as more and more training data is introduced to enhance the models.
Performing the calculations manually becomes complex, and that’s why support machines or
assistance is required (we refer to such assistance as artificial intelligence (AI)).

To calculate the Lagrange coefficients αi, we proceed with the following steps:

1. We formulate the objective function: The objective function for the optimization problem
is known as the ’Lagrangian for optimization problems’ [13], which, for estimating the
separating plane, is given by:

LP =
1
2
∥w∥2 −

n

∑
i=1

λi (yi (w · xi + b)− 1) , (6)
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Equation (6) is also known as the Primal Lagrangian (Initial separation region minimiza-
tion problem), and its equivalent, the Dual Lagrangian [8], is given by:

LD =
n

∑
i=1

λi −
1
2 ∑

i,j
λiλjyiyjK(xi, xj); with the constraint

n

∑
i=1

αiyi = 0. (7)

Calculating the Lagrange coefficients using the Dual (7) is always the best option, as the
expression allows us to use the matrices (3) and (4), which are known data. Substituting
λi = αi, we have, for our example, that expression (7) transforms into:

L(α) =
3

∑
i=1

αi −
1
2

3

∑
i=1

3

∑
j=1

αiαjyiyjK(xi, xj), with the constraint
3

∑
i=1

αiyi = 0. (8)

Remark: The original minimization problem for the primal Lagrangian LP in (6) becomes
a maximization problem for the dual Lagrangian LD in (7) (See [14]).

2. Expanding in (8), we obtain:
L(α) = α1 + α2 + α3 − 1

2 [(α1y1)(α1y1)K(x1, x1) + (α1y1)(α2y2)K(x1, x2) + (α1y1)(α3y3)K(x1, x3)+
(α2y2)(α1y1)K(x2, x1) + (α2y2)(α2y2)K(x2, x2) + (α2y2)(α3y3)K(x2, x3) + (α3y3)(α1y1)K(x3, x1)+
(α3y3)(α2y2)K(x3, x2) + (α3y3)(α3y3)K(x3, x3)],

Using (3), (4), and simplifying, we obtain:

L(α) = α1 + α2 + α3 −
1
2
(100α1α1 − 128α1α2 − 128α1α3 + 121α2α2 + 98α2α3 + 144α3α3).

(9)

3. Formulate the optimization problem: the optimization problem is to maximize the objec-
tive function L(α) in (9), subject to the constraints αi ≥ 0 and ∑3

i=1 αiyi = 0.

4. Solve the optimization problem: to find the stationary points, we differentiate L(α) with
respect to each αi and set them equal to zero. Thus, from (9), we have:

∂L
∂α1

= 1 − 100α1 + 64α2 + 64α3 = 0.

∂L
∂α2

= 1 + 64α1 − 121α2 − 49α3 = 0.

∂L
∂α3

= 1 + 64α1 − 49α2 − 144α3 = 0.

with ∑3
i=1 αiyi = 0.

Solving the above system of linear equations, we obtain:

α1 =
25711
818268

; α2 =
3895

204567
; α3 =

984
68189

. (10)

Note that α1, α2, α3 satisfy ∑3
i=1 αiyi ≈ 0, in general, they satisfy the equation (9), for

L(α) = 0.

Finally, we proceed to calculate the threshold (also known as bias or intersection term) b. This
can be calculated using the values αi from (10) and the expression (see section 7.1.2 in [15]):

b =
1
yi

−
n

∑
j=1

αjyjK(xi, xj), (11)
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for any αi such that 0 ≤ αi. In this case, we can use α1, α2 and α3 as they are positive. Thus, in
(11), it holds

b =
1
y1

− α1y1K(x1, x1)− α2y2K(x1, x2)− α3y3K(x1, x3),

b = −1 − 25711
818268

(−1)(100)− 3895
204567

(1)(64)− 984
68189

(1)(64) ≈ 0.

Thus, with the threshold b = 0, we finally have the decision function f (x) defined in (5), for our
example, determined by

f (x) = Sign

[
3

∑
i=1

αiyiK(x, xi)

]
, (12)

with 0 ≤ αi given by (10).

We proceed then to fulfill our initial objective, classifying the vector x = (−2, 1, 2). Using x, (2),
(10) and the kernel operator in the decision function (12), with which we obtain:

f (x) = Sign
[

25711
818268

(−1)(2)2 +
3895

204567
(1)(−4)2 +

984
68189

(1)(4)2
]

,

f (x) = Sign
[

27947
68189

]
,

f (x) = 1.

Similarly, for y = (2, 1, 3), we obtain

f (y) = Sign
[

25711
818268

(−1)(12)2 +
3895

204567
(1)(8)2 +

984
68189

(1)(9)2
]

,

f (y) = Sign
[
−437204

204567

]
,

f (y) = −1.

Then, the proposed objective in our example was achieved, and the respective classifications
are f (x) = 1, f (y) = −1.

The decision function f (x) is, in reality, equivalent to establishing a separation function through
a separating plane (or separating hyperplane in high dimensions). To corroborate this assertion,
the following is a way to construct the separation plane in the feature space, using the Lagrange
coefficients αi obtained in (10) and the value of the bias term b:

Finding the separation hyperplane.

The separating plane in binary SVM classification algorithms is defined by a linear equation of
the form wTX + b = 0, where w is a vector normal to the hyperplane that defines the direction
of the hyperplane, X is the feature vector (attributes or input) representing the object to be clas-
sified in the feature space, and b is a scalar indicating the distance from the hyperplane to the
origin or decision threshold. The expression wT denotes the transpose of the vector w. In this
context, the task of the SVM algorithm is to find the vector w and the scalar b that define the
optimal separating hyperplane between the two classes.
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The vector w defines the direction of the hyperplane and is perpendicular to it. Similarly, w
maximizes the distance between the hyperplane and the points of each class in the feature space.
According to [16], the vector w is calculated using the expression

w =
n

∑
i=1

αiyixi. (13)

Substituting the data for our example, given in (2) and (10), we obtain in (13):

w =
3

∑
i=1

αiyixi =
25711
818268

(−1)(2, 1, 2) +
3895

204567
(1)(3, 1, 0) +

984
68189

(1)(1, 3, 1),

w =

(
3563

409134
,

8431
272756

,− 19807
409134

)
.

Furthermore, as in our example b = 0, we finally have the separating plane wTX + b = 0, it is:

3563
409134

x.1 +
8431

272756
x.2 −

19807
409134

x.3 = 0, (14)

for all vector X =

x.1
x.2
x.3

 of attributes or inputs.

Once the separation plane (Hyperplane or decision boundary) has been found, it is also possible
to use it to classify new points using the following three rules:

(a) Take the feature vector of the new point to be classified and substitute it into the equation
of the separation plane.

(b) If, upon evaluation, the result is greater than zero, then the point is classified as belonging
to the positive class (+1), and if it is less than zero, then it is classified as belonging to the
negative class (−1).

(c) If the result is equal to zero, then the point is exactly on the separation plane and can be
classified as belonging to either of the two classes, depending on the convention being
used (this situation rarely occurs).

It is possible to summarize the three rules above implicitly through the following expression:

f (x) = Sign
(

wTX + b
)

.

As a result, the equivalence is finally fulfilled

f (x) = Sign
(

wTX + b
)
= Sign

[
n

∑
i=1

αiyiK(x, xi) + b

]
.

4. Some considerations and model validation

It is possible that the classifications obtained with the separation hyperplane (derived from
the Lagrange coefficients) do not match the classifications obtained directly from the decision
function (obtained with the Lagrange coefficients and the selected kernel) on new points. This
discrepancy can be attributed to various factors:
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1. Approximation error: The kernel function uses an approximation to map the data to a
higher-dimensional feature space. If this approximation, along with the estimation of La-
grange coefficients, is not accurate, the final decision function f (x) may not capture all the
complexities of the data, leading to classification errors.

2. Choice of kernel: The choice of the kernel can impact the model’s generalization ability.
Some kernels are more suitable for certain types of data than others, so choosing the wrong
kernel can result in a suboptimal model.

3. Sample bias: The Lagrange coefficients and the separation plane derived from them are
based on the training data. If the training data sample is biased or not representative of
the population, the separation plane may not generalize well to new points.

In particular, this last case is the factor in which the example we are considering fails, as the
data is not real in the sense that it was not selected from a particular database but rather chosen
randomly to illustrate in detail the functioning of the binary classification algorithm using SVM
(AI).

In general, it is important to remember that results obtained with machine learning models are
always approximations, and practical results may slightly differ from theoretical results. It is
always crucial to evaluate the performance of a model on independent test data to ensure that
the model generalizes well to new data.

To evaluate the performance of a binary SVM model, it is necessary to use appropriate evalua-
tion metrics for binary classifiers [17]. Some of the most common metrics include:

1. Accuracy:

E =
TP + TN

TP + TN + FP + FN
,

where TP: True Positives (positively labeled instances correctly classified). TN: True Ne-
gatives (negatively labeled instances correctly classified). FP: False Positives (negatively
labeled instances incorrectly classified as positive). FN: False Negatives (positively labe-
led instances incorrectly classified as negative).

2. Precision:
P∗ =

TP
TP + FP

.

Precision P∗, gauges the model’s ability to accurately identify positive instances, disregar-
ding instances of negative classification errors.

3. Sensitivity or True Positive Rate

S =
TP

TP + FN
.

Sensitivity measures the model’s ability to accurately detect positive instances but does
not account for incorrectly classified negative instances (false positives), which constitutes
a significant limitation.

4. F1 Score:

2 · Precision · Sensitivity
Precision + Sensitivity

=
P∗. S

P∗ + S
.F1 score =
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The F1 Score combines both precision and sensitivity into a single measure, making it
useful when seeking a balance between the two.

Validation

To validate the constructed model, for our example, let’s recall that our decision function is gi-
ven by f (x) = Sign

[
∑3

i=1 αiyiK(x, xi)
]
, as presented in (12). We will use the Accuracy measure

E (also known as ’Exactitud’ in Spanish [18]), with 0 ≤ E ≤ 1, to assess the performance of our
function f (x) or binary classification SVM model.

Consider the following feature vectors and their respective labels as real data presented in the
Table 1, for model validation:

Tabla 1: Validation data
Feature vector Label
(−2, 1, 2) 1 (Positive)
(2, 1, 2) −1 (Negative)
(3, 1, 0) 1 (Positive)
(1, 3, 1) 1 (Positivo)
(0, 2, 1) −1 (Negative)
(3,−1, 2) 1 (Positive)
(2, 1, 3) −1 (Negative)

Tabla 2: Classified data through f (x).
Feature vector Label with f (x) Element of the confusion matrix
(−2, 1, 2) 1 (Positive) TP
(2, 1, 2) −1 (Negative) TN
(3, 1, 0) 1 (Positive) TP
(1, 3, 1) 1 (Positive) TP
(0, 2, 1) 1 (Positive) FP
(3,−1, 2) −1 (Negative) FN
(2, 1, 3) −1 (Negative) TN

Table 2, presents the classifications obtained through the decision function f (x), along with
their respective nomenclature as elements for a confusion matrix (through direct comparison
with the Table 1).

Finally, based on the Table 2, we can measure the Accuracy E for the decision function f (x)
considered in our example:

E =
TP + TN

TP + TN + FP + FN
=

3 + 2
3 + 2 + 1 + 1

= 0, 71428571.

The accuracy of our decision function is reasonably high (Aprox. 71, 43 %), since it is above
50 %, which would be the expected accuracy for a model making random predictions in a binary
classification.

Remark. An accuracy of 0 means that the model did not correctly predict any samples from
either the positive or negative class, indicating that the model is extremely deficient in the clas-
sification task. On the other hand, an accuracy close to 1 indicates that the model is predicting
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correctly almost all samples from both the positive and negative classes, achieving highly ac-
curate classification. It’s important to note that accuracy alone can be misleading, especially if
the classes are imbalanced, so it is crucial to complement its evaluation with other performance
metrics.

5. Conclusions

In this paper, the technical details behind the construction of a decision function using SVM and
the use of a quadratic kernel for binary classification problems have been presented. A detailed
example was provided, illustrating how SVM can be used to classify vectors into two distinct
categories {1,−1}. Through this example, it was observed that SVM is an efficient and accurate
algorithm for binary classification, and its use within AI has multiple applications. Furthermo-
re, it was demonstrated how SVM can be used to avoid problems such as overfitting of training
data. In particular, the specific calculations were highlighted where computers can be an ideal
support, leading to reduced times and improved accuracy in estimations

Finally, it is important to highlight that the concepts presented in this article can be of great use
for students in computer science, engineering, mathematics, and anyone interested in learning
about artificial intelligence and binary classification. Además, se espera que este artículo sirva
como una guía práctica para la construcción de funciones de decisión utilizando diferentes ker-
nels (acorde al teorema de Mercer) para SVM, así como su integración en diferentes lenguajes
de programación.

As for future research, various areas can be further explored regarding the implementation of
SVM and its use in binary classification. One of them is the exploration of different kernels, be-
yond the quadratic kernel used in this example, for specific problems that require greater com-
plexity. Similarly, different techniques for the optimal selection of SVM algorithm parameters
can be studied to achieve better performance and avoid overfitting or underfitting. Furthermo-
re, possibilities of implementing SVM in the analysis of large datasets can be explored, which
might involve the use of dimensionality reduction techniques such as Principal Component
Analysis (PCA), which has gained high importance in AI.
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