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Abstract
This paper presents an optimal control strategy for the Zika virus disease with sexual transmission. A
mathematical model for the transmission of the Zika virus is considered with three preventive measures
as control, namely: the prevention of the sexual contagion with the use of condoms and the orientation in
the transmission of Zika in the homosexual and heterosexual relations, the campaigns against vectors and
the protection of the society regarding the contagion by mosquito bites. We examine the implementation of
various combinations of the control strategies in order to determine the most cost-effective one. The nec-
essary conditions for the optimal controls are determined using Pontryaguin’s maximum principle and the
optimality problem is solved using Runge-Kutta fourth order scheme. Based on the computational results,
we conclude that the most efficient control strategy is when it is applied on the infections in homosexual
relationships combined with the control in the transmission by vectors.
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Resumen
Este trabajo presenta una estrategia óptima de control para la enfermedad del virus Zika con transmisión
sexual. Se considera un modelo matemático para la transmisión del virus Zika con tres medidas preventivas
como control: la prevención del contagio sexual con el uso de preservativos y la orientación en la trans-
misión del Zika en las relaciones homosexuales y heterosexuales, las campañas contra los vectores y la
protección de la sociedad respecto al contagio por picaduras de mosquitos. Examinamos la aplicación de
diversas combinaciones de las estrategias de control para determinar la más eficaz en función de los costos.
Las condiciones necesarias para los controles óptimos se determinan utilizando el principio del máximo
de Pontryaguin y el problema de la optimización se resuelve utilizando el esquema de cuarto orden de
Runge-Kutta. Basándonos en los resultados computacionales, concluimos que la estrategia de control más
eficiente es cuando se combina la estrategia de prevención en las relaciones homosexuales con el control
en la transmisión por vectores.

Palabras clave. Control óptimo, estrategia, modelo, transmisión sexual, Zika.

1. Introduction. Zika fever (also known as Zika virus disease) is an illness caused by the Zika virus.
The disease is spread through the bite of daytime-active Aedes mosquitoes such as the A. aegypti and A.
albopictus (these are the same mosquitoes that spread dengue and chikungunya viruses). Its name comes
from Zika forest in Uganda, where the virus was first isolated from a rhesus monkey in 1947. The first
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human cases were reported in Nigeria in 1954. The first documented outbreak among people occurred in
2007, in the Federated State of Micronesia [2].

The disease of Zika virus is transmitted from infected Aedes mosquitoes to humans through mosquito
bites [1]. It can also be transmitted from human to human through the blood and semen of an infected
human, and through an infected pregnant woman to the fetus. Zika is a cause of microcephaly and other
severe brain defects [5].
There is no specific treatment or vaccine currently available for Zika virus disease. Prevention and control
relies on reducing mosquitoes through source reduction (removal and modification of breeding sites), and
reducing contacts between mosquitoes and people.

Education about the Zika virus mode of transmission and ways of preventing transmission are essential
in order to halt mosquito growth and thus Zika spread among a community or population, at regional,
national, and global levels. Control measures available are limited and include the use of insect repellents
to protect humans against mosquito bites and sex protection while engage in sexual activities. The Zika
virus can also be transmitted through sexual intercourse and has been detected in semen, blood, urine,
amniotic fluid and saliva, as well as in body fluids found in the brain and spinal cord [5, 6].

Optimal control is also an important mathematical method deciding a strategy regarding epidemic
control with provided scenarios [11, 12]. There are some studies of the optimal control of several diseases
such as dengue [13], chikungunya [14], and HIV [15]. The results show that optimal control helps in
reducing the number of infected individuals and the spread of the virus. The objective of this work is to
present a model for the transmission of Zika with the presence of sexual contagion and stratified by sex. In
the model, there are controls referring to the control over the contagion by mosquito bites and the sexual
contagion by homosexual and heterosexual relationships. Study the optimal control problem and carry out
computer simulations. The paper is organized as follows. Section 2 is devoted to a Zika model. Section
3 presents the Optimal control problem. Section 4 is devoted to computer simulations. Section 5 are the
conclusions of paper.

2. Formulation of Mathematical Model. The model variables are susceptible men Hs, susceptible
womenMs, exposed menHE , exposed womenME , infected menHI , infected womenMI , recovered men
HR, recovered women MR, susceptible mosquitoes Vs, exposed mosquitoes VE and infected mosquitoes
VI . The model is SEIR type (susceptible-exposed-infected-recovered) for humans and SEI (susceptible-
exposed-infected) for mosquitoes, because mosquitoes do not recover. The model is compartmentalized by
sex because we take into account sexual contagion in the dynamics of Zika transmission. The description
of the parameters of model (2.1) are in Table (2.1).
Assumptions for the construction of model:

• we assumed immunity in the recovered state.
• The death by natural causes is equal in any state, the death of mosquitoes will be due to environ-

mental factors because no control strategy is applied.
• The Hs,Ms, HE ,ME , HI ,MI , HR,MR, Vs, VE and VI are continuous functions and positive or

null (because we work with human and mosquitoes populations).
• The model is defined in an interval [0, tf ], where tf is finite.

Let:
βy1

: (number of times a single mosquito bites a human per unit time × probability of pathogen transmis-
sion from an infectious mosquito to a susceptible human given that a contact between the two occurs)/the
total population of human within the model).
To define βy2 , βy5 , βy4 and βy3 we did an analogous study but taking into account the sexual contacts
(homosexual and heterosexual respectively) and the probability of infecting these contacts, the force of in-
fection from infected man to susceptible man by sexual contact βy2

, the force of infection from infected
woman to susceptible woman by sexual contact βy5

, the force of infection from infected man to susceptible
woman by sexual contact βy3

and the force of infection from infected woman to susceptible man by sexual
contact βy3 .
The βx : (number of times a single mosquito bites a human per unit time × probability of pathogen trans-
mission from an infectious human to a susceptible mosquito given that a contact between the two occurs)/the
total population of vectors within the model.

Let l1, l2, l3 the life expectancy of men, women and mosquitoes. We define µ1 =
1

l1
, µ2 =

1

l2
and η =

1

l3
such as death rates for men, women and mosquitoes respectively.
The control strategy for the outbreak is proposed considering campaigns and suggestions from WHO and
health organizations regarding Zika virus infection. Considering the vector transmission and sexual trans-
mission, three control parameters are introduced for constructing the control model. The control variable
u1(t) is the use of preventive measures such as insect repellent or mosquito net to reduce the contacts be-
tween human and mosquito. The control variable u2(t) is the control over homosexual contacts (use of
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condoms and information campaigns). The control variable u3(t) is the is the control over heterosexual
sexual contacts. Consequently, from control strategy, the forces of infection in the human population are
reduced by the factors of (1− u1(t)), (1− u2(t)) and (1− u3(t)).

Parameters Description Value

βy1 The force of infection from infected mosquito to susceptible human 0.7

βy2 The force of infection from infected man to susceptible man 0.34

βy5 The force of infection from infected woman to susceptible woman 0.1

βy3 The force of infection from infected man to susceptible woman 0.3

βy4 The force of infection from infected woman to susceptible man 0.2

βx The force of infection from infected human to susceptible mosquito 0.5

µ1, µ2, η Man, woman and mosquito mortality rate 0.45, 0.3, 0.95

ω1, ω2, ω3 The rate of progression of men, women and mosquitoes from the exposed state to the 0.25, 0.25, 0.35

infectious state

ε1, ε2 Disease-induced death rate for humans (men and women respectively) 0.15, 0.15

r1, r2 Per capital recovery rate for humans from the infectious (men and women respectively) 0.90, 0.94

N1, N2, N3 Recruitment rate of men, women and mosquitoes 0.5, 0.55, 0.75

Table 2.1: Description of parameters used in the model (2.1).

The transmission of the Zika is modeled by the system (2.1).

dHs

dt
= N1 − (1− u1)βy1

VIHs − (1− u2)βy2
HIHs − (1− u3)βy4

MIHs − µ1Hs,

dMs

dt
= N2 − (1− u1)βy1VIMs − (1− u2)βy5MIMs − (1− u3)βy3HIMs − µ2Ms,

dHE

dt
= (1− u1)βy1VIHs + (1− u2)βy2HIHs + (1− u3)βy4MIHs − (ω1 + µ1)HE ,

dME

dt
= (1− u1)βy1

VIMs + (1− u2)βy5
MIMs + (1− u3)βy3

HIMs − (ω2 + µ2)ME ,

dHI

dt
= ω1HE − (ε1 + µ1 + r1)HI ,

dMI

dt
= ω2ME − (ε2 + µ2 + r2)MI ,

dHR

dt
= r1HI − µ1HR,

dMR

dt
= r2MI − µ2MR,

dVs
dt

= N3 − βx(HI +MI)Vs − ηVs,

dVE
dt

= βx(HI +MI)Vs − (ω3 + η)VE ,

dVI
dt

= ω3VE − ηVI .(2.1)

Initial conditions:
Hs(0) = hs > 0, Ms(0) = ms ≥ 0, HI(0) = hi > 0,

MI(0) = mi > 0, HR(0) = hr ≥ 0, MR(0) = mr ≥ 0,

HE(0) = he ≥ 0, ME(0) = me ≥ 0, Vs(0) = vs > 0,

VI(0) = vi > 0, VE(0) = ve ≥ 0.

Analysis of Model. In this section, we will prove that the solutions of system (2.1) with positive initial
conditions remain positive for all time t ≥ 0. We have the following result:

Theorem 2.1. Let the initial data for the model (2.1) beHs(0) ≥ 0,Ms(0) ≥ 0, HE(0) ≥ 0,ME(0) ≥
0, HI(0) ≥ 0,MI(0) ≥ 0, HR(0) ≥ 0,MR(0) ≥ 0, Vs(0) ≥ 0, VE(0) ≥ 0, VI(0) ≥ 0. Then the solutions
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(Hs(t),Ms(t), HE(t),ME(t), HI(t),MI(t), HR(t),MR(t), Vs(t), VE(t), VI(t)), of the model (2.1), with
positive initial data, will remain positive for all time t ≥ 0.

Proof: Under the given initial conditions, it is easy to prove that the components of solutions of the
model system (2.1) are positive; if not we assume a contradiction: that the exists a first time

t1 : Hs(t1) = 0,
dHs

dt
(t1) < 0,Ms(t1) > 0, HE(t1) > 0,ME(t1) > 0, HI(t1) > 0,MI(t1) > 0, HR(t1) > 0,

MR(t1) > 0, Vs(t1) > 0, VE(t1) > 0, VI(t1) > 0, for 0 < t < t1, or there exist a

t2 : Ms(t2) = 0,
dMs

dt
(t2) < 0, Hs(t2) > 0, HE(t2) > 0,ME(t2) > 0, HI(t2) > 0,MI(t2) > 0, HR(t2) > 0,

MR(t2) > 0, Vs(t2) > 0, VE(t2) > 0, VI(t2) > 0, for 0 < t < t2, or there exist a

t3 : HE(t3) = 0,
dHE

dt
(t3) < 0, Hs(t3) > 0,Ms(t3) > 0,ME(t3) > 0, HI(t3) > 0,MI(t3) > 0, HR(t3) > 0,

MR(t3) > 0, Vs(t3) > 0, VE(t3) > 0, VI(t3) > 0, for 0 < t < t3, or there exist a

t4 : ME(t4) = 0,
dME

dt
(t4) < 0, Hs(t4) > 0,Ms(t4) > 0, HE(t4) > 0, HI(t4) > 0,MI(t4) > 0, HR(t4) > 0,

MR(t4) > 0, Vs(t4) > 0, VE(t4) > 0, VI(t4) > 0, for 0 < t < t4, or there exist a

t5 : HI(t5) = 0,
dHI

dt
(t5) < 0, Hs(t5) > 0,Ms(t5) > 0, HE(t5) > 0,ME(t5) > 0,MI(t5) > 0, HR(t5) > 0,

MR(t5) > 0, Vs(t5) > 0, VE(t5) > 0, VI(t5) > 0, for 0 < t < t5, or there exist a

t6 : MI(t6) = 0,
dMI

dt
(t6) < 0, Hs(t6) > 0,Ms(t6) > 0, HE(t6) > 0,ME(t6) > 0, HI(t6) > 0, HR(t6) > 0,

MR(t6) > 0, Vs(t6) > 0, VE(t6) > 0, VI(t6) > 0, for 0 < t < t6, or there exist a

t7 : HR(t7) = 0,
dHR

dt
(t7) < 0, Hs(t7) > 0,Ms(t7) > 0, HE(t7) > 0,ME(t7) > 0, HI(t7) > 0,MI(t7) > 0,

MR(t7) > 0, Vs(t7) > 0, VE(t7) > 0, VI(t7) > 0, for 0 < t < t7, or there exist a

t8 : MR(t8) = 0,
dMR

dt
(t8) < 0, Hs(t8) > 0,Ms(t8) > 0, HE(t8) > 0,ME(t8) > 0, HI(t8) > 0,MI(t8) > 0,

HR(t8) > 0, Vs(t8) > 0, VE(t8) > 0, VI(t8) > 0, for 0 < t < t8, or there exist a

t9 : Vs(t9) = 0,
dVs
dt

(t9) < 0, Hs(t9) > 0,Ms(t9) > 0, HE(t9) > 0,ME(t9) > 0, HI(t9) > 0,MI(t9) > 0,

HR(t9) > 0,MR(t9) > 0, VE(t9) > 0, VI(t9) > 0, for 0 < t < t9, or there exist a

t10 : VE(t10) = 0,
dVE
dt

(t10) < 0, Hs(t10) > 0,Ms(t10) > 0, HE(t10) > 0,ME(t10) > 0, HI(t10) > 0,

MI(t10) > 0, HR(t10) > 0,MR(t10) > 0, Vs(t10) > 0, VI(t10) > 0, for 0 < t < t10, or there exist a

t11 : VI(t10) = 0,
dVI
dt

(t11) < 0, Hs(t11) > 0,Ms(t11) > 0, HE(t11) > 0,ME(t11) > 0, HI(t11) > 0,

MI(t11) > 0, HR(t11) > 0,MR(t11) > 0, Vs(t11) > 0, VE(t11) > 0, for 0 < t < t11.
In the first case we have

dHs

dt
(t1) = N1 > 0

which is a contradiction meaning that Hs remains. In the second case we have

dMs

dt
(t2) = N2 > 0
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which is a contradiction meaning that Ms remains. In the third case we have

dHE

dt
(t3) = (1− u1)βy1VIHs + (1− u2)βy2HIHs + (1− u3)βy4MIHs ≥ 0

which is a contradiction meaning that HE remains. In the fourth case we have

dME

dt
(t4) = (1− u1)βy1VIMs + (1− u2)βy3HIMs + (1− u3)βy5MIMs ≥ 0

which is a contradiction meaning that ME remains. In the fifth case we have

dHI

dt
(t5) = ω1HE ≥ 0

which is a contradiction meaning that HI remains. In the sixth case we have

dMI

dt
(t6) = ω2ME ≥ 0

which is a contradiction meaning that MI remains. In the seventh case we have

dHR

dt
(t7) = r1HI ≥ 0

which is a contradiction meaning that HR remains. In the eighth case we have

dMR

dt
(t8) = r2MI ≥ 0

which is a contradiction meaning that MR remains. In the ninth case we have

dVs
dt

(t9) = N3 > 0

which is a contradiction meaning that Vs remains. In the tenth case we have

dVE
dt

(t10) = βx(HI +MI)Vs ≥ 0

which is a contradiction meaning that VE remains. In the eleventh case we have

dVI
dt

(t11) = ω3VE ≥ 0

which is a contradiction meaning that VI remains. Thus in all cases (Hs(t),Ms(t), HE(t),ME(t),
HI(t),MI(t), HR(t),MR(t), Vs(t), VE(t), VI(t)) remain positive.

We show that model (2.1) is dissipative. In other words, all solution are uniformly bounded and proper
subset D ⊂ R18

+ . Model system (2.1) has a varying population size (N 6= 0). Let:

Hs +HE +HI +HR = N,(2.2)
Ms +ME +MI +MR = M,(2.3)

Vs + VE + VI = V.(2.4)

Lemma 2.1. The closed set

D =

{
(Hs, HE , HI , HR,Ms,ME ,MI ,MR, Vs, VI , VR) ∈ <11

+ : N ≤ N1

µ1
,M ≤ N2

µ2
, V ≤ N3

η

}
,

is positively-invariant and attracts all positive solutions of the model (2.1).
Proof: Differentiating both sides of (2.2), (2.3) and (2.4) with appropriate substitutions, we obtained

the following differential equations:

N
′

= N1 − µ1N − ε1HI ≤ N1 − µ1N,(2.5)
M
′

= N2 − µ2M − ε2MI ≤ N2 − µ2M,(2.6)
V
′

= N3 − ηV.(2.7)
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Applying Grönwall Inequality in (2.5), (2.6) and (2.7), we obtained:

N(t) ≤ N(0) exp(−µ1t) +
N1

µ1
(1− exp(−µ1t)),

M(t) ≤M(0) exp(−µ2t) +
N2

µ2
(1− exp(−µ2t)),

V (t) ≤ V (0) exp(−ηt) +
N3

η
(1− exp(−ηt)),

where N(0), M(0) and V (0) represents the initial humans and mosquitoes population total.

Therefore, 0 ≤ N ≤ N1

µ1
, 0 ≤M ≤ N2

µ2
and 0 ≤ V ≤ N3

η
as t→∞. This implies,

N1

µ1
is an upper bound

for N(t),
N2

µ2
is an upper bound for ,M(t) and

N3

η
is an upper bound for V (t) provided N(0) ≤ N1

µ1
,

M(0) ≤ N2

µ2
and V (0) ≤ N3

η
.

Hence, all feasible solutions of model (2.1) enter the region Ω which is a positively invariant set. Thus, the
system is biologically meaningful and mathematically well-posed in the domain of Ω. In this domain, it is
sufficient to consider the dynamics of the flow generated by the model system described by (2.1).

2.1. Optimal control Problem. We define our objective function:

(2.8) J(u1, u2, u3) =

∫ tf

0

(
A1HE +A2ME +

1

2
(B1u

2
1 +B2u

2
2 +B3u

2
3)
)
dt,

subject to the state system of (2.1).
Next, we will find the optimal controls, namely the controls that optimize our objective function. Regarding
this work, we will find a set of controls that minimizes the number of exposed human. The constants A1

and A2, are the weighted constants associated with exposed human. The constants B1, B2, and B3 are the

weighted constants of the control variables u1, u2 and u3, respectively. The terms
B1u

2
1

2
,
B2u

2
2

2
and

B3u
2
3

2
are the costs associated with implementing each of the three controls. Let u∗1, u∗2 and u∗3 be the optimal
controls, we will find a set of control functions such that

(2.9) J(u∗1, u
∗
2, u

∗
3) = minJ(u1, u2, u3), (u1, u2, u3) ∈ Uad,

subject to the system (2.1), where the control set Uad is

Uad = {(u1, u2, u3)|ui(t) is Lebesgue measurable on [0, 1], 0 ≤ ui(t) ≤ 1, i = 1, 2, 3}.

2.2. Characterization of the control problem. Theorem 2.2. There exists an optimal control (u∗1, u
∗
2, u

∗
3)

to problem

min J(u1, u2, u3),

subject to (2.1),
where
Uad = {(u1, u2, u3)|ui(t) is Lebesgue measurable on [0, 1], 0 ≤ ui(t) ≤ 1, i = 1, 2, 3}

Proof: We follow the requirement from theorem presents in [10] and verify non trivial requirements.
Let r(t, ~v, ~u) be the right-hand of (2.1). We need to show the following conditions are satisfied:

1. r is of class C1 and there exists a constant C such that
|r(t, 0, 0)| ≤ C, |rx(t, ~x, ~u)| ≤ C(1 + |~u|), |ru(t, ~x, ~u)| ≤ C.

2. The admissible set F of all solution to system (2.1) with corresponding control inUad is non empty;
3. r(t, ~x, ~u) = a(t, ~x) + b(t, ~x)~u;
4. The control set U = [0, 1]× [0, 1]× [0, 1] is closed, convex and compact;
5. The integrand of the objective functional is convex in U .
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We write

r(t, ~x, ~u) =



N1 − (1− u1)βy1VIHs − (1− u2)βy2HIHs − (1− u3)βy4MIHs − µ1Hs

N2 − (1− u1)βy1
VIMs − (1− u2)βy5

MIMs − (1− u3)βy3
HIMs − µ2Ms

(1− u1)βy1
VIHs + (1− u2)βy2

HIHs + (1− u3)βy4
MIHs − (ω1 + µ1)HE

(1− u1)βy1
VIMs + (1− u2)βy5

MIMs + (1− u3)βy3
HIMs − (ω2 + µ2)ME

ω1HE − (ε1 + µ1 + r1)HI

ω2ME − (ε2 + µ2 + r2)MI

r1HI − µ1HR

r2MI − µ2MR

N3 − βx(HI +MI)Vs − ηVs
βx(HI +MI)Vs − (ω3 + η)VE

ω3VE − ηVI



.

Then it is easy to see that r(t, ~x, ~u) is of class C1 and

|ru(t, ~x, ~u)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

βy1VIHs βy2HIHs βy4MIHs

βy1
VIMs βy5

MIMs βy3
HIMs

−βy1
VIHs −βy2

HIHs −βy4
MIHs

−βy1
VIMs −βy5

MIMs −βy3
HIMs

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

A =



−(1 − u1)βy1
Vs − (1 − u2)βy2

HI − (1 − u3)βy4
MI − µ1 0 0

0 −(1 − u1)βy1
Vs − (1 − u2)βy5

MI − (1 − u3)βy3
HI − µ2 0

(1 − u1)βy1Vs + (1 − u2)βy2HI + (1 − u3)βy4MI 0 −(ω1 + µ1)

0 (1 − u1)βy1
Vs + (1 − u2)βy5

MI + (1 − u3)βy3
HI 0

0 0 ω1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



B =



0 −(1 − u2)βy2Hs −(1 − u3)βy4Hs 0 0 0 −(1 − u1)βy1Hs 0

0 −(1 − u3)βy3
−(1 − u2)βy5

Ms 0 0 0 −(1 − u1)βy1
Ms 0

0 (1 − u2)βy2Hs (1 − u3)βy4Hs 0 0 0 (1 − u1)βy1Hs 0

−(ω2 + µ2) −(1 − u3)βy3
−(1 − u2)βy5

Ms 0 0 0 (1 − u1)βy1
Ms 0

0 −(ε1 + µ1 + r1) 0 0 0 0 0 0

ω2 0 −(ε2 + µ2 + r2) 0 0 0 0 0

0 r1 0 −µ1 0 0 0 0

0 0 r2 0 −µ2 0 0 0

0 −βxVs −βxVs 0 0 −η 0 0

0 βxVs βxVs 0 0 0 −(ω3 + η) 0

0 0 0 0 0 0 ω3 −η


.

rx(t, ~x, ~u) = [AB],
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and

|r(t, 0, 0)| = |
(
N1, N2, 0, · · · , N3, 0, 0

)T
|.

Since all the variables are bounded, there exists a constant C such that

|r(t, 0, 0)| ≤ C, |rx(t, ~x, ~u)| ≤ C(1 + |~u|), |ru(t, ~x, ~u)| ≤ C.

This means that condition [1] holds.
Thanks to condition [1], there exists a unique solution to system (2.1) for a constant control, which further
implies that condition [2] holds.
In addition

r(t, ~x, ~u) =



N1 − βy1
VIHs − βy2

HIHs − βy4
MIHs − µ1Hs

N2 − βy1
VIMs − βy5

MIMs − βy3
HIMs − µ2Ms

βy1
VIHs + βy2

HIHs + βy4
MIHs − (ω1 + µ1)HE

βy1VIMs + βy5MIMs + βy3HIMs − (ω2 + µ2)ME

ω1HE − (ε1 + µ1 + r1)HI

ω2ME − (ε2 + µ2 + r2)MI

r1HI − µ1HR,

r2MI − µ2MR

N3 − βx(HI +MI)Vs − ηVs
βx(HI +MI)Vs − (ω3 + η)VE

ω3VE − ηVI



+ ru(t, ~x, ~u)×


u1

u2

u3

 .

Thus condition [3] is satisfied.
Condition [4] is obvious from the definition.
In order to show the convexity of the integrand in the objective functional f(t, ~x, ~u), we have to prove had

(1− q)f(t, ~x, ~u) + qf(t, ~x,~v) ≥ f(t, ~x, (1− q)~u+ q~v),

where f(t, ~x, ~u) = A1HE + A2ME + 1
2 (B1u

2
1 + B2u

2
2 + B3u

2
3) and ~u, ~v are two control vectors with

q ∈ [0, 1].
It follows that:

(1−q)f(t, ~x, ~u)+qf(t, ~x,~v) =

(1−q)(A1HE +A2ME +
1

2
(B1u

2
1 +B2u

2
2 +B3u

2
3))+q(A1HE +A2ME +

1

2
(B1u

2
1 +B2u

2
2 +B3u

2
3)) =

(1− q)(B1u
2
1 +B2u

2
2 +B3u

2
3) + q(B1v

2
1 +B2v

2
2 +B3v

2
3)

and

f(t, ~x, (1− q)~u+ q~v) =
1

2
B1[(1− q)u1 + qv1]2 +

1

2
B2[(1− q)u2 + qv2]2 +

1

2
B3[(1− q)u3 + qv3]2.

Furthermore, we have

(1− q)f(t, ~x, ~u) + qf(t, ~x,~v)− f(t, ~x, (1− q)~u+ q~v) =

1

2
B1[(1−q)u21+qv21 ]+

1

2
B2[(1−q)u22+qv22 ]+

1

2
B3[(1−q)u23+qv32 ]−B1[(1−q)u1+qv1]2−B2[(1−q)u2+qv1]2−
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−B3[(1− q)u3 + qv3]2 =

1

2
B1[
√
q(1− q)u1

√
q(1− q)v1]2+

1

2
B2[
√
q(1− q)u2

√
q(1− q)v2]2+

1

2
B3[
√
q(1− q)u3

√
q(1− q)v3]2 =

1

2
B1q(1− q)(u1 − v1)2 +

1

2
B2q(1− q)(u2 − v2)2 +

1

2
B3q(1− q)(u3 − v3)2 ≥ 0.

And so the proof is complete.

The Pontryaguin’s Maximum Principle provides the necessary conditions of optimality for the problem
of optimal control , but considering the characteristics of our objective functional, we use the variant of
minimum of this Principle. Firstly, the Lagrangian for the optimal control problem is defined by

(2.10) L = A1HE +A2ME +
1

2
(B1u

2
1B2u

2
2B3u

2
3)

and the Hamiltonian
H = A1HE +A2ME +

1

2
B1u

2
1+

1

2
B2u

2
2+

1

2
B3u

2
3+λ1(N1−(1−u1)βy1

VIHs−(1−u2)βy2
HIHs−

(1− u3)βy4
MIHs − µ1Hs) + λ2(N2 − (1− u1)βy1

VIMs − (1− u2)βy5
MIMs − (1− u3)βy3

HIMs −
µ2Ms) + λ3((1 − u1)βy1VIHs + (1 − u2)βy2HIHs + (1 − u3)βy4MIHs − (ω1 + µ1)HE) + λ4((1 −
u1)βy1VIMs + (1 − u2)βy5MIMs + (1 − u3)βy3HIMs − (ω2 + µ2)ME) + λ5(ω1HE − (ε1 + µ1 +
r1)HI)+λ6(ω2ME− (ε2 +µ2 +r2)MI)+λ7(r1HI −µ1HR)+λ8(r2MI −µ2MR)+λ9(N3−βx(HI +
MI)Vs − ηVs) + λ10(βx(HI +MI)Vs − (ω3 + η)VE) + λ11(ω3VE − ηVI).
where λ1, λ2, · · · , λ11 are the adjoint variables satisfying the following adjoint system:

λ
′

1 = − dH
dHs

= (λ1 − λ3)((1− u1)βy1VI + (1− u2)βy2HI + (1− u3)βy4MI) + µ1λ1,

λ
′

2 = − dH
dMs

= (λ2 − λ4)((1− u1)βy1
VI + (1− u2)βy5

MI + (1− u3)βy3
MI) + µ2λ2,

λ
′

3 = − dH
dHE

= ω1(λ3 − λ5) + µ1λ3 −A1,

λ
′

4 = − dH
dME

= ω2(λ4 − λ6) + µ2λ4 −A2,

λ
′

5 = − dH
dHI

= (ε1 + µ1)λ5 + r1(λ5 − λ7),

λ
′

6 = − dH
dMI

= (ε2 + µ2)λ6 + r2(λ6 − λ8),

λ
′

7 = − dH
dHR

= µ1λ7,

λ
′

8 = − dH
dMR

= µ1λ8,

λ
′

9 = − dH
dVs

= βx(HI +MI)(λ9 − λ10) + ηλ9,

λ
′

10 = − dH
dVE

= ω3(λ10 − λ11) + ηλ10,

λ
′

11 = − dH
dVI

= (1− u1)βy1 [Hs(λ1 − λ3) +Ms(λ2 − λ4)] + ηλ11.(2.11)

The transversality conditions (or boundary conditions) are

(2.12) λi(tf ) = 0, i = 1, ..., 11,

where tf is the end of the time period. By the optimality condition, we have

∂H
∂ui

= 0, i = 1, 2, 3→ u∗i .

Thus,

(2.13)
∂H
∂u1

= B1u1 + [(λ1 − λ3)Hs + (λ2 − λ4)Ms]βy1
VI = 0,



298 Delgado Moya EM, Marrero Severo A.- Selecciones Matemáticas. 2020; Vol. 7(2): 289-301

(2.14)
∂H
∂u2

= B2u2 + (λ1 − λ3)βy2
HIMs + (λ2 − λ4)MsMIβy5

= 0,

(2.15)
∂H
∂u3

= B3u3 + (λ1 − λ3)βy4
MIHs + (λ2 − λ3)MsHIβy3

= 0.

We obtain

u∗1 = max

{
min

{
[(λ3 − λ1)Hs + (λ4 − λ2)Ms]βy1

VI
B1

, 1

}
, 0

}
,(2.16)

u∗2 = max

{
min

{
[(λ3 − λ1)βy2HIMs + (λ4 − λ2)MsMIβy5

B2
, 1

}
, 0

}
,(2.17)

u∗2 = max

{
min

{
[(λ3 − λ1)βy4

MIHs + (λ4 − λ2)MsHIβy3

B3
, 1

}
, 0

}
.(2.18)

Therefore, we obtain the optimality system which helps describe the behavior of the system with the
optimal controls. The optimality system consists of the state system (2.1), initial conditions of the state
variables, the adjoint system (2.11), the transversality conditions (2.12), and the characterization of the
optimal control.

3. Numerical results and discussion. The goal of this section is to simulate the application of the
controls in the population. First, the optimality system is numerically solved using the iterative method
with the Runge-Kutta fourth order scheme. The state system (2.1) is solved by the forward Runge-Kutta
method with an initial conditions, and the adjoint system (2.11) is solved by the backward Runge-Kutta
method with the transversality condition [7].
For the human group, the initial number of susceptible, exposed, infected and recovered for men and women
(Hs,Ms, HE ,ME , HI ,MI , HR,MR) is set by (6020, 3100, 60, 38, 20, 15, 200, 210). For the mosquito
group, the initial number of susceptible, exposed, and infected mosquitoes (Vs, VE , VI) is set by (1000, 500,
250). The weight constants are given as A1 = 0.07, A2 = 0.06, B1 = 30, B2 = 10, and B3 = 10. The
tf is one year, that is, the study period is one year and the values of the parameters are extracted from
[14, 13, 12, 6, 5, 4, 3, 2], see Table (2.1). We present three control strategies:
Strategy I: u1 = 0, u2 6= 0 and u3 6= 0.
Strategy II: u1 6= 0, u2 = 0 and u3 6= 0.
Strategy III: u1 6= 0, u2 6= 0 and u3 = 0.
Because the main form of contagion is the mosquito bite and we decided in our different strategies to keep
in mind the control related to mosquitoes. In practice, our strategy cannot be completely implemented, so
the maximum value of each control is set to be 0.95 instead of 1.
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Figure 3.1: Behavior of susceptible and exposed men, comparison of different control strategies and without
the application of control.
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Figure 3.2: Behavior of infected men, comparison of different control strategies and without the application
of control.

Figure (3.1) shows the number of susceptible and exposed men from the optimality system without control
and the optimality system with controls. The figures (3.1a) show that the strategy from which all the controls
will be maintained will keep the largest number of susceptible. Figure (3.1b) shows that the best control is
obtained with strategy I, because the number of exposed is reduced and the process occurs with less speed,
but at the end of the study period the difference between the controls is smaller and the smaller number is
reported by the model without controls. This shows that at the end of the study period the efficiency of the
controls should be increased. Figure (3.2) shows the number of infected men from the optimality system
without control and the optimality system with controls. In the case of infected men, the least number of
cases reported is by strategy I, see Figure (3.2). It is reported a lower number of exposed with the strategy I
besides that with the application of control strategies the growth is lower and it takes more time to reach the
peak, but at the end of the study period the differences of the controls are not significant and it is reported
a lower number in the case without controls. With this results, we show that it is necessary to increase the
effectiveness of controls over time. In the case of infected men, the most effective strategy in the dynamics
is the activation of all controls, but the second effective option is strategy III, which demonstrates the influ-
ence that contagion through homosexual relations has on the dynamics of Zika transmission.
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Figure 3.3: Behavior of susceptible and exposed women, comparison of different control strategies and
without the application of control.

In the case of women, it happens analogously to the case of men but in a lesser number of cases, see Figu-
res (3.3) and (3.4). The most effective strategy is with the activation of all controls, but the application of
strategies II and III their difference is not significant as in men, in particular for those exposed and infected,
see Figures (3.1b), (3.1), (3.3b) and (3.4) until the end of the study period (one year). This shows that in
men in particular, infection through homosexual contact has a greater influence than in women.

The most effective strategy in the case of mosquitoes is strategy I, because it manages to maintain the
highest number of susceptible and reduce the number of exposed and infected, the second most effective is
strategy III, see Figures (3.5) and (3.6). Particularly for those exposed during the course of the study, the dif-
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Figure 3.4: Behavior of infected women, comparison of different control strategies and without the appli-
cation of control.
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Figure 3.5: Behavior of susceptible and exposed mosquitoes, comparison of different control strategies and
without the application of control.
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Figure 3.6: Behavior of infected mosquitoes, comparison of different control strategies and without the
application of control.

ference in behavior of the strategies is not significant and even better results are achieved without applying
controls, since in the dynamics we have factors such as the life cycle of the mosquito and environmental
factors that are related to this behavior, see Figure (3.5b). Strategy I reports the least number of infected
mosquitoes and was more efficient (in this compartment) than the other strategies and the uncontrolled
model, see figure (3.6).

4. Conclusions. In this paper, we presented a control model from the deterministic model of the Zika
virus infection with the presence of sexual transmission and sex stratification. The optimal control problem
is proposed with three selected controls; vector-to-human contact reduction, homosexual contact control,
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heterosexual contact control. The optimal control problem is developed to minimize the number of exposed
humans as well as the costs associated with implementing the controls. We use Pontryaguin’s maximum
principle to determine the necessary conditions, find the optimality system of the model and hence find
the solution to the optimal control problem. Numerical simulations comparing the systems without control
and the system with controls are presented. It is shown that an optimal control strategy is more effective
in reducing the infected humans and vectors than without control strategy. From the numerical results, it
is shown that the best strategy is to activate all the proposed controls. transmission through homosexual
sexual relations in the transmission of men where the second best strategy is based on this control along
with that applied to mosquitoes. This work contributes with a proposal of control policy with the objective
of eradicating Zika in the community.
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