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1 Introduction

The work of Yamanaka and Ankersen (hereafter YA)
in [1] represents a breakthrough in the modelling of
relative motion along close Keplerian orbits. In that
paper, the authors were able to obtain a fully analyt-
ical state transition matrix (STM) starting from the
linearized equations of relative motion with respect to
a Keplerian elliptical orbit, also known as Tschauner-
Hampel (TH) equations. Since that proposed STM
works for an arbitrary value of the nominal orbit ec-
centricity it is considered a milestone result in astro-
dynamics and is widely employed in the literature. A
fundamental, often overlooked, step in the derivation
of the YA STM, is the use of a “pulsating” reference
length unit very similar to the one employed in the
Nechvile curvilinear coordinates for the study of the
restricted three-body problem.

In this work, we rewrite the relative motion equa-
tions in pulsating cylindrical coordinates, then lin-
earize them obtaining a curvilinear analogue of the
TH equations, and finally obtain a curvilinear ana-
logue of the YA STM. The advantage of working with
curvilinear coordinates instead of Cartesian ones has
already been analyzed, for example in [2][3] for a cir-
cular case with a cylindrical system, and in [4] for an
elliptical orbit with a spherical one. Here, we apply
the cylindrical coordinates STM to the propagation of
orbit uncertainties showing an improvement in uncer-
tainty realism compared to the Cartesian case in the
great majority of relevant space situational awareness
applications.

2 Curvilinear system definition

Let us use the distance from the target to the cen-
tral body in each instant of time, R = p/γ(ν), as a
pulsating unit of distance, where γ(ν) = 1 + e cos ν
and p = a(1 − e2), being a, e and ν the semi-major
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axis, eccentricity and true anomaly of the target’s or-
bit, respectively. Using this, we define the in-plane
curvilinear coordinates, that appear on Figure 1, as:1

ρ =

√
(1 + x)

2
+ (y)2 − 1, (1)

θ = atan2∗(y, 1 + x), (2)

where the position of the chaser relative to the tar-
get in the local-horizontal (LVLH) frame, with the
orthonormal basis {i, j,k} (Figure 1)2, is:

d = xi+ yj+ zk. (3)

The out-of-plane curvilinear coordinate coincides with
the Cartesian one, that is, the mentioned z.

Figure 1: Relative motion geometry using the instant
radious of the target as the unit of distance.

3 State transition matrix in curvilinear coordi-
nates

First of all, we need the equations of motion in the
curvilinear coordinates. These are:

ρ′′ − 2θ′ − 3

γ
ρ = aiρ +

1

γ
agρ

θ′′ + 2ρ′ = aiθ

z′′ + z =
1

γ
agz,

(4)

1The function atan2∗ is mod (atan2(x, y) + 2π, 2π).
2Notice that the basis {i′, j′,k′} corresponds to the perifocal

coordinate system.
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where the right side contains the non-linear terms:

aiρ = θ′
2
(1 + ρ) + 2θ′ρ,

agρ = −2ρ+ 1− (1 + ρ)

[(1 + ρ)2 + z2]
3/2

,

aiθ =
2ρ′(ρ− θ′)

1 + ρ
,

agz = z − z

[(1 + ρ)2 + z2]
3/2

.

(5)

These equations are obtained following a procedure
similar to the one used in [2], but with an elliptical
orbit for the target instead of a circular one. The true
anomaly of the target is used as the independent vari-
able (whose derivatives are indicated with primes).

The linearized version of these equations has the
same structure as the TH equations:

ρ′′ − 2θ′ − 3

γ
ρ = 0

θ′′ + 2ρ′ = 0

z′′ + z = 0.

(6)

This similarity allows us to obtain a STM similar to
the YA one by following the same mathematical devel-
opment followed in [1]. Hence, the problem has to be
subdivided in the out-of-plane and in-plane motions.

3.1 Out-of-plane

In the out-of-plane motion, curvilinear and Cartesian
coordinates coincide. 3 Therefore, the STM coincides
too, being:[

z
z′

]
=

1

γν−ν0

[
c s
−s c

]
ν−ν0

[
z0
z′0

]
, (7)

where c = γ cos ν and s = γ sin ν.

3.2 In-plane

In this motion, cylindrical and Cartesian coordinates
differ. However, as the equations have a similar struc-
ture, the curvilinear STM can be obtained following
the same procedure depicted in [1]. The result is:


ρ
θ
ρ′

θ′

 =


0 s c (2− 3esJ)
−1 c (1 + 1/γ) −s (1 + 1/γ) −3γ2J
0 s′ c′ −3e

(
s′J + s/γ2

)
0 −2s −2c+ e −3 (1− 2esJ)


ν


K1

K2

K3

K4

 (8)


K1

K2

K3

K4

 =
1

e2 − 1


3e(s/γ)(1 + 1/γ) e2 − 1 2− ec es(1 + 1/γ)
−3(s/γ)(1 + e2/γ) 0 c− 2e −s(1 + 1/γ)

−3(c/γ + e) 0 −s −c(1 + 1/γ)− e
3γ + e2 − 1 0 es γ2


ν0


ρ0
θ0
ρ′0
θ′0

 , (9)

3Notice that in [1] the coordinate y is oriented following the
direction of −h (being h the angular momentum vector of the
target) while in our system z is oriented towards h.

where J(ν) =
∫ ν

ν0

dν

γ2(ν)
=

µ2

h3
(t − t0), being µ the

gravitational parameter of the central body and h the
angular momentum of the target.

4 Uncertainty Realism

One important application of the STM is the uncer-
tainty propagation. Hence, it is of high interest the
evaluation of the performance in uncertainty propa-
gation of the new curvilinear STM by comparing it
with the YA STM performance. This is carried out
by means of the Uncertainty Realism which is evalu-
ated using the Cramer-von Mises (CvM) test of the
Mahalanobis distance distribution. The details of this
test can be found in [5].

Considering an initial Gaussian Probability Density
Function (PDF) and its corresponding set of orbital
states sampled, the CvM test evaluates if the Maha-
lanobis distance of the samples follows a chi-squared
distribution for each epoch. When this is achieved
the PDF remains Gaussian, thus the uncertainty is
realistic. The Mahalanobis distance is defined as:

Mi(xi;µ,P) = (xi − µ)TP−1(xi − µ), (10)

where, at each time instance, xi is the ith sample
state propagated with a full nonlinear orbital dynam-
ics model, µ is the mean of the set of samples and
P is the linearly4 propagated covariance matrix. The
covariance matrix propagation is done by:

P(t) = Φ(t, t0)P(t0)Φ
T (t, t0), (11)

where Φ(t, t0) is the STM in the corresponding space.

4.1 Test conditions

In this work, the CvM test is performed in Cartesian
coordinates using YA STM and in curvilinear coordi-
nates with the STM obtained in section 3. In both
cases the set of samples has a size of N = 10000 and
the test is performed with a 99.9% confidence level.
This pair of confidence level and N implies that the
covariance is realistic while the value of the CvM test
statistics remains lower than 1.16204 [6]. The set of
samples is propagated using Matlab’s ode45 and a
Keplerian dynamic model.

5 Results

There are two different orbits to be studied whose ini-
tial orbital elements are shown in Table 1 and whose
initial covariance matrices written in the LVLH frame

4Notice that the CvM test can be used with nonlinear co-
variance propagation methods. However, as our interest lies
on the study of a STM, only the linear propagation has been
considered
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are shown in Table 2. When performing the test for
the curvilinear STM, the covariance matrix is trans-
formed by the full nonlinear elements conversion.

Type rp (km) e i (◦) Ω (◦) ω (◦) M (◦)
GEO 42164.1 0 0 0 0 0
LEO 7000 Variable 25 120 0 180

Table 1: Initial orbital elements

Case σx (m) σy (m) σz (m) σẋ (m/s) σẏ (m/s) σż (m/s)
GEO 1000 3000 5000 0.3 0.1 0.4
LEO 100 300 500 0.03 0.01 0.04

Table 2: Initial Covariance in LVLH frame

The first case of study is a GEO with a TLE-like co-
variance matrix. The values of the covariance matrix
have been obtained after analyzing the position and
velocity uncertainty for different satellites in GEO,
whose data were obtained as two-line elements (TLEs)
from the webpage https://www.space-track.org/.
As for the second case, it corresponds to a LEO that
is studied for different eccentricities: from the circular
case to e = 0.8 in intervals of 0.1. For this case, the
covariance matrix selected is the the GEO TLE-like
covariance reduced by a factor of 10.

The Cramer-von Mises (CvM) test statistics for the
circular cases, that is, the GEO and the circular LEO
is shown in Figure 2. In both cases, the CvM test fails
before 1 orbital period with the Cartesian YA STM
whereas with the curvilinear STM the realism is main-
tained for more than 10 orbits for GEO and more than
16 orbits for the circular LEO. Therefore, in these
cases curvilinear coordinates provides a huge improve-
ment in realism with respect to Cartesian ones.

Figure 2: CvM test statistics for: left, GEO; right,
circular LEO

Figure 3 shows the results for two of the eccen-
tricities studied for the eccentric LEO: the smallest,
e = 0.1, and the highest, e = 0.8. For e = 0.1, the re-
alism is maintained for half an orbit for YA STM and
around 4 orbits for curvilinear STM. This result en-
tails a better performance with the curvilinear STM
again. Regarding the case of e = 0.8, both YA and
the curvilinear STM provide the same results. As we
can see in the right graphics of figure 3, the test fails
before 1 orbital period, which is a poor result.

Figure 3: CvM test statistics for the LEO case with:
left, e = 0.1; right, e = 0.8

Eccentricity
STM 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Cart 0.47 0.52 1.32 1.38 1.42 1.45 1.46 0.49 0.48
Curv 16.48 4.25 2.37 2.35 2.37 2.4 2.42 1.47 0.48

Table 3: Number of orbital periods for the CvM test
before failure for LEO

The results obtained for the rest of the eccentricities
are summarized in table 3. As for the Cartesian YA
STM, the realism breaks down after only half an orbit
or one orbit and a half for all the cases considered.
On the other hand, the curvilinear STM maintains
covariance realism for a considerably higher number
of orbits as long as the eccentricity is not too high.
This advantage decreases as the eccentricity grows,
disappearing for eccentricities higher than 0.7 where
both Cartesian and curvilinear coordinates perform
poorly.
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