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Abstract

In the circular restricted three-body problem, the
linearized phase space structure about the Lagrange
points controls dynamical transit at low energies be-
cause the geometry of the zero-velocity curve forces
the particle to pass through neighborhoods surround-
ing the equilibria. At high energies, the zero-velocity
curve disappears, so the Lagrange points no longer
dominate the dynamics. Recent numerical research
has revealed the existence of “arches of chaos” which
dramatically affect the courses of high-energy solar
system trajectories. We demonstrate through nu-
merical and analytical techniques that the arches of
chaos coincide with the finite-time stable and unstable
manifolds to the singularities at the primaries. Un-
der Levi-Civita regularization, the singularities can be
viewed as collision manifolds and the finite-time stable
and unstable manifolds can be viewed as approaching
the collision manifolds asymptotically, which enables
the use of linearization techniques. These lineariza-
tion techniques, as well as numerical experiments,
yield insight into the local geometry.

1 Introduction

Investigating the topological structures that under-
lie particle dynamics in higher-fidelity models such as
the circular restricted three body problem (CR3BP)
is a critical area of research in astrodynamics. Some
of these structures and their implications for space-
craft transport are well-understood—one example is
the manifold geometry emanating from the CR3BP
Lagrange points that controls transit throughout the
CR3BP at low energies [1]—whereas the identification
and analysis of others is a topic of active study. For
example, a recent study by Todorović et al., which ap-
plied the finite Lyapunov indicator (FLI) to solar sys-
tem dynamics, has revealed the existence of “Arches
of Chaos” stretching throughout phase space [2]. Ini-
tial conditions on either side of these structures di-
verge dramatically under the flow. In this work, we
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demonstrate that the arches of chaos may be iden-
tified with the stable and unstable manifolds to the
singularities in the CR3BP.

2 The Levi-Civita Regularization

The CR3BP Hamiltonian in the planar case is as fol-
lows [1]:

HCR3BP =
1

2

(
p2x + p2y

)
−xpy +ypx−

1− µ

r1
− µ

r2
(1)

ri is the distance between the particle and the ith
primary, i ∈ 1, 2, and µ is the mass parameter. The
Hamiltonian diverges as ri → 0, and so singularities
are present at the locations of the primaries, creat-
ing challenges for numerical and analytical investiga-
tion in arbitrarily small neighborhoods about the two
masses.

To resolve these difficulties, we utilize the Levi-
Civita regularization, which reformulates the CR3BP
in order to remove one of the singularities from the
system. We assume that the singularity to be regu-
larized is the singularity about m2. Then, the Levi-
Civita regularization recasts the phase space variables
into the following form [3]:

x− 1 + µ = u2
1 − u2

2,

y = 2u1u2,

px =
U1u1 − U2u2

2 |u|2
,

py − 1 + µ =
U1u2 + U2u1

2 |u|2

(2)

with |u|2 = u2
1 + u2

2. In addition, the standard time
t is rescaled into the Levi-Civita time τ according to
the conversion equation

dt = |u|2 dτ . (3)

Regularization recasts the singularity as a collision
manifold [4] which is included within the Levi-Civita
phase space. Regularization, in addition to its ana-
lytical value, also facilitates numerical investigation:
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Figure 1: A schematic of the numerical experiment
for examining how trajectories on either side of the
stable manifold to the singularity move throughout
phase space. The red and dark blue trajectories are
generated at an initial radius rce but have θ̇ < 0 and
θ̇ > 0, respectively. They reflect one choice of θ, but
a whole family of trajectories for different values of θ
must be generated in order to match + and - pairs
along the detection radius rd. We integrate forwards
and backwards and then match those + and - tra-
jectories whose final position in backwards time was
nearest to each other; in the schematic, the red - tra-
jectory has been matched with a light blue + tra-
jectory, generated in the same way as the dark blue
trajectory for a different value of θ. We then compare
the pre-encounter, four-dimensional phase space dis-
tance dpre with the post-encounter distance dpost for
each matched pair.

attempting to integrate the standard CR3BP equa-
tions of motion in the vicinity of the singularity of-
ten causes the algorithm to fail as the step size be-
comes too small. Performing the procedure in the
Levi-Civita equations of motion and then converting
to and from standard form as required is a very effi-
cient workaround.

3 Linearization of the Collision Manifold

The Hamiltonian for the system becomes

HLCR =

(
U1 + 2|u|2u2

)2
8

+
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U2 − 2|u|2u1

)2
8
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Figure 2: The + and - trajectories have an es-
sentially constant, very small initial separation pre-
encounter, but post-encounter their separation varies
significantly depending on the angle along the de-
tection circle (in this case, we use θ+post, the post-
encounter angle of each + trajectory, as the angle for
identifying and sorting matched pairs of + and - tra-
jectories).

where E is the HCR3BP energy of the trajectory
under consideration. HLCR is defined at the collision
manifold; although E diverges, |u|2 = 0, and so the
Hamiltonian overall does not diverge. Furthermore,
the right-hand side of the equations of motion asso-
ciated with this Hamiltonian is equal to zero at the
collision manifold, and so the singularity becomes an
equilibrium point under Levi-Civita regularization.

We demonstrate that linearizing this singularity re-
veals it to be a saddle × saddle point in Levi-Civita
space. Although the point itself is excised from the
phase space when converted back to the standard
CR3BP, the local geometry about the point is pre-
served, and so linearizing the collision manifold is key
to understanding the dynamical geometry in standard
form.

4 Sample Numerical Results

4.1 Quantifying divergence due to the manifolds

We investigate the collision manifold and its stable
and unstable manifolds using numerical experiments
in order to develop intuition regarding the nature of
the system.

For example, consider only the stable manifolds
for simplicity. In m2-centered polar coordinates[
r θ ṙ θ̇

]
T
, initial conditions sufficiently close to

the singularity along the stable manifolds have the
form

[
r 0 ṙ 0

]
T
for 0 < r ≪ 1 and ṙ ≫ 1. One

can consequently construct initial conditions on either
side of the stable manifold that narrowly miss the sin-
gularity and whose local closest encounter distance to
the singularity is given by rce. These initial conditions
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Figure 3: A portion of the semi-major axis/eccentricity plot of the Arches of Chaos given in [2], overlaid with the
closest encounter distances of trajectories integrated within the basic CR3BP. The structures correspond almost
exactly.

are given by
[
rce θ 0 ±θ̇

]
T
where θ ∈ [−π, π), θ̇

is chosen to target a desired energy, and the choice
of ± determines the side to which these initial con-
ditions belong. For convenience, we call trajectories
with positive θ̇ “+ trajectories” and trajectories with
negative θ̇ “- trajectories.”

We integrate + and - trajectories forwards and back-
wards until they intercept a detection radius rd ≫ rce
around m2 in both directions. + and - trajectories are
matched into pairs based on which trajectories in each
set had the closest pre-encounter angles along the detec-
tion radius with respect to each other. We then compare
the pre-encounter distance dpre and post-encounter dis-
tance dpost for each matched pair of + and - trajectories
(see Figure 1). We discover that different intercept an-
gles along the detection circle yield noticeably different
post-encounter distances between + and - trajectories
even though they start with the same extremely small
pre-encounter distances (see Figure 2).

4.2 Replication of the arches

One very straightforward numerical experiment that
demonstrates the connection between the stable and un-
stable manifolds to the singularities and the Arches of
Chaos is to integrate grids of initial conditions and then
to determine the minimum encounter distance of each
trajectory to the singularity. By definition, trajectories
with closer encounters to the singularity are closer to ly-
ing on the stable and unstable manifolds. By generating
and plotting initial conditions in the same manner as in
[2], the resultant structures can be compared (see Fig.
3).
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