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Abstract

Given the conjunction geometry between two objects
in orbit is inherently defined by the intersection be-
tween their respective orbital planes, it is reasonable
to study the dynamical evolution of their relative po-
sition when one of them is located along such intersec-
tion. Methods for determining the probability of col-
lision are either computationally intensive or referred
to a specific time of closest approach. Identifying the
domain of attraction for a collision, i.e. the region
within the initial probability distribution that leads
to a minimum distance below a prescribed threshold,
can aid in providing accurate estimates for collision
probability computations.

1 Introduction

Computationally efficient methods for determining
the probability of collision between two objects in
orbit are crucial for the continuation of Earth orbital
activities. The number of objects in Earth orbit capa-
ble of producing a catastrophic collision is currently
on the order of 105. Continuously monitoring these
objects and foreseeing close approaches among them
thus requires a huge computational effort. Driven by
this requirement, operational methods for determin-
ing the probability of collision between two objects
typically depend on linear-gaussian and geometric
assumptions that have been shown to fail for certain
type of approaches, e.g. low velocity encounters.
Various works have been proposed to overcome these
limitations, but their associated computational cost
is still beyond the current industry capabilities.

Within this work, the authors propose to study the
transport phenomena in the dynamical system that
models a collision in orbit. Through appropriate co-
ordinate transformations, it is possible to efficiently
explore the initial probability distribution function of
the state of both objects with the aim of determining
the domain of attraction of a potential collision. The
latter could be extremely useful in the computation
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of the probability of collision as defined by the inte-
gral over all possible state realizations that lead to a
minimum distance smaller than certain threshold.

2 Conjunction Geometry

For a collision to occur between two objects in or-
bit, both objects need to be located at one of the two
orbital plane intersections. The direction of such in-
tersections is commonly referred to as relative line of
nodes and is defined by

nc = ± h1 × h2

|h1 × h2|
, (1)

where hi = ri×vi is the angular momentum vector of
object i. Under the assumption of Keplerian dynam-
ics, i.e. the only forces acting on the subjects are due
to a central gravity field modeled as a restricted two-
body problem, the necessary conditions for a collision
reduce to:

1. The radii of both orbits along the collision direc-
tion should be coincident. This is measured by
the quantity

Γc = 1− r2,c
r1,c

, (2)

being ri,c = (h2
i /µ)/(1+ ei cos νi,c) and cos νi,c =

nc · ei/ |ei|. Note that in Keplerian motion this
angle remains constant for each relative node.

2. Both objects need to be located at a common
orbit intersection point, which can be measured
by the angular distance

∆c = ν2(tc,m)− ν2,c. (3)

This distance corresponds to the phase between
the collision anomaly of object two ν2,c, i.e. the
angular position of the secondary that complies
with the orbital intersection, and the actual an-
gular position of the secondary ν2(tc,m) when
the primary is located at its respective collision
anomaly, i.e. ν1(tc,m) = ν1,c. Under Keple-
rian assumptions, the time invested by object 1
to reach the collision direction can be computed
from Kepler’s equation√

µ

a31
(tc,0 − t0) =

(E1,c − E1,0)− e1 (sinE1,c − sinE1,0) ,

(4)
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where tc,m = tc,0 + mT1 and T1 is the orbital
period of the primary. In a similar fashion,
the corresponding true anomaly of the secondary
ν2(tc,m) can be derived from√

µ

a32
(tc,m − t0) =

(Em
2,c − E2,0)− e2

(
sinEm

2,c − sinE2,0

)
.

(5)

Moreover, the change in eccentric anomaly be-
tween two consecutive passages of the primary
through a relative node can be computed as

2π

√
a31
a32

=

(Em+1
2,c − Em

2,c)− e2
(
sinEm+1

2,c − sinEm
2,c

)
.

(6)

Appropriate thresholds may then be set for the dis-
tance in the conjunction map ξ = [Γ, ∆]T . Assuming
a combined hard body radius Rc = 10 m, such thresh-
olds would be Γth ∼ 10−6 and ∆th ∼ 10−6 for a typi-
cal LEO encounter at an altitude of 1, 000 km. Simi-
larly, a conjunction in the Geostationary region with
the same Rc would require distances in the conjunc-
tion map on the order of Γth ∼ 10−7 and ∆th ∼ 10−7.

3 Assessment of the approach

The proposed mapping based on relative orbital ge-
ometry has been successfully applied to collision risk
analysis, allowing to efficiently determine the Earth’s
orbital congestion (see [3]). Within this work, we
want to explore the capabilities of the method and,
in particular, determine the ability to approximate
the dynamical evolution of the conjunction geometry
in an efficient manner.

In fact, we seek to perform low order approximations
to the difference between the predicted mapping at
the closest approach ξ(tc,m)kep under Keplerian mo-
tion, and the reference mapping ξ(tc,m) computed
using high-fidelity propagation. To validate the ap-
proach, a Monte Carlo simulation has been carried
out for a representative LEO test case based on the
Iridium-Kosmos 2009 collision [1]. The initial state of
the objects is assumed to follow a Gaussian distribu-
tion with mean states at the initial epoch t0 = 2009
FEB 03 20:01:28.126 UTC

rECI
1 (t0) =

 1286.102
−1129.618
−6957.400

 , vECI
1 (t0) =

 −3.970654
6.062485
−1.718518



rECI
2 (t0) =

 6308.427
3294.617
−916.8711

 , vECI
2 (t0) =

 −0.158786
2.243546
7.103635



expressed in km and km/s. The initial co-variance is
assumed equal for both objects and given by

PRTN (t0) = diag


41.42
2533
70.98

5.744 · 10−3

1.049 · 10−5

1.091 · 10−6


expressed in m2 and m2/s2. N = 500 samples are
drawn from a Gaussian distribution combining both
objects, and then propagated with a deterministic
dynamical model considering drag [4], solar radiation
pressure, Earth’s non spherical gravity up to degree
and order 10 and the Sun and Moon as third bodies.
A total propagation time of 7 days is set in order to
cover the reference collision epoch t∗c = 2009 FEB 10
16:55:59.806 UTC.

Figure 1 depicts the distribution of the distance of
closest approach with respect to the occurrence epoch.
Note there is a color code indicating the Mahalanobis
distance of each sample with respect to the initial dis-
tribution, defined as

dM,i =

√[
x1,i − x1

x1,i − x1

]T [
P 0
0 P

]−1 [
x1,i − x1

x1,i − x1

]
where both x and P are referred to t0. While most
of the particles that lead to minimum distances lower
that 1 km correspond to high probability (low dM )
regions, there is an even higher portion of particles
that lead to higher distances within the gross of the
initial distribution. This suggests that the domain
of attraction of a potential collision may not present
a smooth behavior in the probability space. In
addition, the scatter in the time of closest approach
(TCA) suggests that analyses based on a single
reference epoch may not be sufficient to determine
the set of states that lead to collision, note that
relative velocities are of the order of 10 km/s for this
particular case.

Fig. 2 shows the conjunction geometry at the first
node passage with a colormap indicating the distance
of closest approach. Note that at this specific pass
(referred to tc,0), the two objects are separated by an
angular distance of 75o and there is not a clear re-
gion that leads to (future) lower minimum distances.
Nonetheless, one can apply the same mapping to a fu-
ture conjunction (referred to tc,m) assuming Keplerian
motion, obtaining the distribution shown in Fig. 3.
Therein, one can see that the samples are somehow or-
dered so there is a clear relation between ||ξkep(tc,m)||
and ||r1,c − r2,c||. Thereafter, the transport of parti-
cles that lead to collision cannot be characterized as
a two-dimensional transformation T ′ : R2 → R2 but
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Figure 1: Minimum distance as a function of time.
Here t∗c is the reference collision epoch and dM is the
Mahalanobis distance with respect to the initial sam-
pling distribution.

Figure 2: Conjunction geometry at first node passage.

requires analyzing the complete dimensionality of the
state, thus the mapping T : R12 → R2. As a con-
sistency check, if the projection onto the conjunction
plane is performed for the particles propagated using
the high-fidelity dynamical model, the resulting dis-
tribution is very similar to the one predicted by the
Keplerian model (see Fig 4).

4 Preliminary conclusions

Statistical numerical integration has shown that there
is a class of two-dimensional mappings that naturally
captures the dynamical evolution of a conjunction in
orbit. Moreover, this mapping is not referred to a
specific conjunction geometry but simply the one that
leads to the closest approach, thus being free from any
temporal or spatial limitation. Based on these prelim-
inary results, it is possible to determine the domain of
attraction of a collision, as suggested by the extreme
value theory. The authors propose to 1) derive a low-

Figure 3: Conjunction geometry at closest approach
under Keplerian dynamics.

Figure 4: Conjunction geometry at closest approach
with high-fidelity propagation.

order expansion of the effect of orbital perturbations
in the conjunction geometry or 2) utilize sequential
sampling methods to approximate the domain of at-
traction of the collision in lieu of developing efficient
methods for computing the probability of collision.
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