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Abstract. This is a survey paper on dendroids, smooth dendroids and mainly
on pointwise smooth dendroids based on the work of J. J. Charatonik and
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dendroids, including one using the strict point T -asymmetry property, defined
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Sobre Dendroides Puntualmente Suaves
Resumen. Éste es un artículo expositorio sobre dendroides, dendroides sua-
ves y, principalmente, sobre dendroides puntualmente suaves basado en el
trabajo de J. J. Charatonik y C. Eberhart (dendroides y dendroides suaves)
y S. T. Czuba (dendroides puntualmente suaves). Presentamos varias carac-
terizaciones de dendroides puntualmente suaves, incluyendo una utilizando la
propiedad de T -asimetría puntual estricta, definida por D. P.Bellamy.

Palabras clave: Continuo aposindético, continuo, dendrita, dendroide, dendroide pun-
tualmente suave, funciones T y K de Jones, continuo semiaposindético, dendroide suave,
continuo estrictamente puntualmente T -asimétrico.

1. Introduction

This is a survey paper on dendroids, smooth dendroids and mainly on pointwise smooth
dendroids based on the work of Janusz J. Charatonik and Carl Eberhart [2], [4] and
[12] (dendroids and smooth dendroids) and of Stanisław T. Czuba [7], [9], [10], and [11]
(pointwise smooth dendroids). We present several characterizations of pointwise smooth
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dendroids. In particular, a new one using the strict point T -asymmetry property (defined
by David P. Bellamy [19, p. 392]) and the nonexistence of R3-continua in the dendroid.
We give the appropriate references for the results whose proofs we do not include.

The paper is divided in six sections. After this Introduction, in section 2, we have the
preliminaries, here we include the definitions and some needed results for the rest of
the paper. In section 3, we introduce dendroids and present some of their properties,
for example that each subcontinuum of a dendroid is a dendroid (Theorem 3.1); that
dendroids are hereditarily decomposable continua (Theorem 3.2); that being a dendroid
is preserved by monotone maps (Theorem 3.4); we prove a characterization of monotone
maps between dendroids (Theorem 3.5), and characterize dendrites as aposyndetic den-
droids (Corollary 3.9). In section 4, we talk about smooth dendroids and prove that each
subcontinuum of a smooth dendroid is a smooth dendroid (Theorem 4.2); that smooth-
ness allows us to construct certain types of subcontinua (Theorem 4.6); and that smooth
dendroids are contractible (Theorem 4.7). In section 5, we introduce the main topic of the
paper, pointwise smooth dendroids, we show that a subcontinuum of a pointwise smooth
dendroid is a pointwise smooth dendroid (Theorem 5.1); that a fan is pointwise smooth
if and only if it is smooth (Theorem 5.3); we present a characterization of pointwise
smooth dendroids using Professor F. Burton Jones’ set function T and irreducible sub-
continua (Theorem 5.11); we give another characterization of pointwise smooth dendroids
using the images of singletons using Professor Jones’ set function K (Theorem 5.19); we
present some interrelationships of the set functions T and K on pointwise smooth den-
droids (Theorem 5.22); we show a characterization of pointwise smooth dendroids using
semi-aposyndesis and the nonexistence of R3-continua in the dendroid (Theorem 5.24).
In section 6, we introduce strict point T -asymmetry for continua, defined by David P.
Bellamy [19, p. 392]. We present new results about strict point T -asymmetry. We
show that strict point T -asymmetry is equivalent to semi-aposyndesis (Theorem 6.2);
we prove that each pointwise smooth dendroid is strictly point T -asymmetric (Corol-
lary 6.3); we demonstrate that, for fans, smoothness, pointwise smoothness and strict
point T -asymmetry are equivalent properties (Corollary 6.6) and we give a new charac-
terization of pointwise smooth dendroids using the strict point T -asymmetry property
and the nonexistence of R3-continua in the dendroid (Theorem 6.7).

2. Preliminaries

Let Z be a metric space. If A is a subset of Z, then Int(A), Bd(A) and Cl(A) denote
the interior, the boundary and the closure of A in Z, respectively. A map is a continuous
function. The symbol IN denotes the set of positive integers.

A continuum is a nonempty compact, connected, metric space. A subcontinuum is a
continuum contained in a metric space. A continuum X is connected im kleinen at a
point p of X provided that for each open subset U of X containing p, there exists a
subcontinuum W of X such that p ∈ Int(W ) ⊂ W ⊂ U . A continuum X is locally
connected at a point p if for every open subset U of X containing p, there exists a
connected open subset V of X such that p ∈ V ⊂ U . A continuum X is locally connected
provided that it is locally connected at each of its points. We do not define connectedness
im kleinen globally because a continuum is connected im kleinen at each of its points if
and only if it is locally connected [22, Theorem 1.4.18]. An arc is a continuum Z that
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On Pointwise Smooth Dendroids 139

is homeomorphic to [0, 1]. If h : [0, 1] →→ Z is a homeomorphism, then h(0) and h(1) are
the endpoints of Z.

Let X be a continuum and let p be a point of X. Then p is an endpoint of X provided that
it is an endpoint of every arc in X that contains it. A simple triod is a continuum Z such
that Z is the union of three arcs α1, α2 and α3 such that α1∩α2 = α1∩α3 = α2∩α3 = {v},
where v is called the vertex of the simple triod.

A continuum X is unicoherent if each time A and B are subcontinua of X such that
X = A∪B, we have that A∩B is connected. A continuum X is hereditarily unicoherent
provided that each of its subcontinua is unicoherent. Note that this is equivalent to
say that a continuum is hereditarily unicoherent if the intersection of each pair of its
subcontinua is connected.

Let X and Y be continua and let f : X →→ Y be a surjective map. We say that f is
monotone provided that for each connected subset C of Y , we have that f−1(C) is a
connected subset of X.

Theorem 2.1. Let X and Y be continua and let f : X →→ Y be a map. If X is hereditarily
unicoherent and f is monotone, then Y is hereditarily unicoherent.

Proof. Suppose Y has a subcontinuum Z that is not unicoherent. Then there exist
two subcontinua K and L of Z such that Z = K ∪ L and K ∩ L is not connected.
Since f is monotone, f−1(Z), f−1(K) and f−1(L) are subcontinua of X, and f−1(Z) =
f−1(K)∪f−1(L). Since f−1(K)∩f−1(L) = f−1(K∩L), we obtain that f−1(K)∩f−1(L)
is not connected. Hence, X is not hereditarily unicoherent. □✓✓✓

A continuum is decomposable if it can be written as the union of two of its proper
subcontinua; it is indecomposable if it is not decomposable. A continuum is hereditarily
decomposable provided that every nondegenerate subcontinuum of it is decomposable. A
continuum is hereditarily indecomposable if each of its subcontinua is indecomposable.

Let X be a continuum and let G be a family of subcontinua of X. Then G is a clump if∪
G is a subcontinuum of X and there exists a subcontinuum C of X, called the centre

of the clump, such that C is a proper subcontinuum of every element of G, and for each
pair G and G′ of elements of G, we have that G ∩G′ = C.

A continuum X is contractible provided that there exist a point p and a map F : X ×
[0, 1] →→ X such that, for each element x of X, F ((x, 0)) = x and F ((x, 1)) = p.

Given a continuum X, we define its n-fold hyperspace as:

Cn(X) = {A ⊂ X | A is a nonempty closed subset of
X with at most n components}.

We topologize Cn(X) with the topology given by the Hausdorff metric [21, Theorem
1.8.3]. With this topology, Cn(X) is an arcwise connected continuum [21, Theorem
1.8.12]. A Whitney map for Cn(X) is map µ : Cn(X) →→ [0, 1] such that µ({x}) = 0, for
all points x ∈ X, µ(X) = 1, and if A and B are two elements of Cn(X) and A ⊊ B, then
µ(A) < µ(B) [24, (0.50)].
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A continuum X is semi-aposyndetic provided that for each pair of points p and q of X,
there exists a subcontinuum W of X such that {p, q}∩Int(W ) ̸= ∅ and {p, q}∩(X\W ) ̸=
∅. A continuum X is aposyndetic if for each pair of points p and q of X, there exists a
subcontinuum W of X such that p ∈ Int(W ) ⊂ W ⊂ X \ {q}.
Given a continuum X and a point p of X, the composant of p in X, κp, consists of the
union of all proper subcontinua of X that contain p.
Let X be a continuum and let {An}∞n=1 be a sequence of nonempty closed subsets of X.
The limit inferior of the sequence, denoted by lim inf An, is the set:

{x ∈ X | for each open subset U of X
such that x ∈ U, there exists N ∈ IN such that

U ∩An ̸= ∅ for all n ≥ N}.

The limit superior of the sequence, denoted by lim supAn, is the set:

{x ∈ X | for every open subset U of X
such that x ∈ U, we have that U ∩An ̸= ∅

for infinitely many indexes n ∈ IN}.

If there exists a subset A of X such that lim inf An = lim supAn = A, we say that the
sequence {An}∞n=1 converges to A.

Theorem 2.2. [2, Lemma 1] Let X be a hereditarily unicoherent continuum. If {Wn}∞n=1

is a sequence of subcontinua of X, then lim infWn is a subcontinuum of X.

The following result is useful for studying smooth dendroids.

Theorem 2.3. Let X be a continuum and let p and q be two elements of X and let α
be an arc contained in X whose endpoints are p to q. If U is an open subset of X such
that p ∈ U and q ∈ X \U , then there exists an open subset V of X such that Bd(V )∩ α
consists of just one point.

Proof. Let U be an open subset of X such that p ∈ U and q ∈ X \ U . Since X is a
regular space, there exists an open subset W of X such that p ∈ W ⊂ Cl(W ) ⊂ U .
Since α is a connected set, p ∈ W and q ∈ X \ W , we have that α ∩ Bd(W ) ̸= ∅ [18,
Theorem 1, p. 127]. Let t be the first element of α in Bd(W ), from p to q. Since X is a
completely normal space, there exist two disjoint open subsets Y and Z of X such that
pt \ {t} ⊂ Y and tq \ {t} ⊂ Z, where pt and tq are the subarcs of α, from p to t and from
t to q, respectively. Let V = Y ∩U . Hence, t ∈ Bd(V ). Suppose that there exists a point
s in (Bd(V ) \ {t}) ∩ α. Then, we obtain that s ∈ tq \ {t}, because pt \ {t} ⊂ V ⊂ Y .
This implies that Y ∩ Z ̸= ∅, a contradiction. Therefore, α ∩ Bd(V ) = {t}. Also,
p ∈ V ⊂ Cl(V ) ⊂ Cl(W ) ⊂ U . □✓✓✓

Let X be a continuum. Define Professor F. Burton Jones set functions T and K as
follows: if A is a subset of X, then

T (A) = X \ {x ∈ X | there exists a subcontinuum
W of X such that x ∈ Int(W ) ⊂ W ⊂ X \A}.
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On Pointwise Smooth Dendroids 141

Observe that for any subset A of X, T (A) is a closed subset of X and A ⊂ T (A). A
continuum X is T -additive provided that for each pair A and B of closed subsets of X,
we have that T (A ∪B) = T (A) ∪ T (B).

Next, if A is a subset of X, then

K(A) =
∩

{W | W is a subcontinuum of X and A ⊂ Int(W )}.

Note that for any subset A of X, K(A) is a closed subset of X and A ⊂ K(A).

The next theorem follows from the definition of the set function K:

Theorem 2.4. If X is a hereditarily unicoherent continuum and A is a nonempty closed
subset of X, then K(A) is a subcontinuum of X.

Theorem 2.5. [22, Theorem 7.7.2] Let X be a continuum and let W be a subcontinuum
of X. Then K(W ) = {x ∈ X | T ({x}) ∩W} ̸= ∅.

Let X be a continuum and let K be a proper subcontinuum of X. Then K is an
R1-continuum if there exist an open subset U of X, containing K, and two sequences
{C1

n}∞n=1 and {C2
n}∞n=1 of components of U such that lim supC1

n ∩ lim supC2
n = K.

Remark 2.6. In [22] an R1-continuum is called an R-continuum.

Let X be a continuum and let K be a proper subcontinuum of X. Then K is an R3-
continuum if there exist an open subset U of X, containing K, and a sequence {Cn}∞n=1

of components of U such that lim inf Cn = K.

From [8, Corollary 11], we have the following:

Lemma 2.7. Let X be a dendroid. Then each R1-continuum contains an R3-continuum.
Also, if an R1-continuum is a single point, then it is also both an R2 and an R3-
continuum.

3. Dendroids

The class of dendroids was introduced by Bronisław Knaster in his seminar at the Insti-
tute of Mathematics of the University of Wrocław. We present properties of them.

A dendroid is an arcwise connected continuum that is hereditarily unicoherent; i.e., a
dendroid is an arcwise connected continuum in which the intersection of every pair of its
subcontinua is connected.

As an example of a dendroid, we have the comb space:
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Figure 1: Comb Space

Theorem 3.1. If X is a dendroid and Z is a subcontinuum of X, then Z is a dendroid.

Proof. Let X be a dendroid and let Z be a subcontinuum of X. We only need to show
that Z is arcwise connected. Let z0 and z1 be two points of Z. Since X is arcwise
connected, there exists an arc α in X whose endpoints are z0 and z1. Consider α ∩ Z.
Since X is hereditarily unicoherent, α∩Z is connected. Hence, since {z0, z1} ⊂ (α∩Z),
we obtain that α ∩ Z = α. Therefore, α ⊂ Z and Z is a dendroid. □✓✓✓

Theorem 3.2. If X is a dendroid, then X is hereditarily decomposable.

Proof. Let X be a dendroid. By Theorem 3.1, we only need to show that X is decompos-
able. Suppose that X is an indecomposable continuum. Let x1 and x2 be two points of
X that belong to two distinct composants of X (indecomposable continua have uncount-
ably many composants [16, Theorem 3-46] and they are pairwise disjoint [16, Theorem
3-47]). Since X is arcwise connected, there exists an arc α in X having x1 and x2 as
its endpoints. Since x1 and x2 are in distinct composants of X and X is indecompos-
able, the only subcontinuum of X containing {x1, x2} is X. Hence, α = X. This is a
contradiction, since an arc is a decomposable continuum. Therefore, X is hereditarily
decomposable. □✓✓✓

Notation. Let X be a dendroid. Since X is hereditarily unicoherent and arcwise con-
nected, given to elements x0 and x1 of X, there exists a unique arc whose endpoints are
x0 and x1, this arc is denoted by x0x1.

Theorem 3.3. [2, Corollary 1] Let X be a dendroid, let {an}∞n=1 and {bn}∞n=1 be two
convergent sequences of elements of X. If {an}∞n=1 and {bn}∞n=1 converge to a and b,
respectively, then lim inf anbn is a subcontinuum of X, and ab ⊂ lim inf anbn.

Theorem 3.4. Let X and Y be continua and let f : X →→ Y be a surjective map. If X is
a dendroid and f is monotone, then Y is a dendroid.
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Proof. Suppose X is a dendroid and f : X →→ Y is a surjective monotone map. By
Theorem 2.1, Y is hereditarily unicoherent. We need to show that Y is arcwise connected.
Let y0 and y1 be two elements of Y . Since f is surjective, there exist two points x0 and
x1 in X such that f(x0) = y0 and f(x1) = y1. Consider the arc x0x1 in X. By
[25, Theorem 8.14], we have that f(x0x1) is a locally connected subcontinuum of Y
containing f(x0) and f(x1). Since locally connected continua are arcwise connected
[25, Theorem 8.23], the arc y0y1 exists and is contained in Y . Therefore, Y is arcwise
connected and it is a dendroid. □✓✓✓

The following result gives a characterization of monotone maps between dendroids.

Theorem 3.5. Let X and Y be dendroids and let f : X →→ Y be a surjective map. Then
f is monotone if and only if f(x0x1) = f(x0)f(x1) for each pair of points x0 and x1 of
X.

Proof. Suppose f is monotone and let x0 and x1 be two elements of X. Note that
{f(x0), f(x1)} ⊂ f(x0x1). Hence, f(x0)f(x1) is an arc contained in the subdendroid
f(x0x1) (Theorem 3.1). Since f is monotone, f−1(f(x0)f(x1)) is a subdendroid of X
that contains {x0, x1}. Thus, x0x1 ⊂ f−1(f(x0)f(x1)). This implies that f(x0x1) ⊂
f(f−1(f(x0)f(x1))) = f(x0)f(x1). Thus, f(x0x1) = f(x0)f(x1).
Now, assume that f(x0x1) = f(x0)f(x1) for each pair of points x0 and x1 of X. Let y
be an element of Y and let x0 and x1 be two elements of f−1(y). By our assumption,
f(x0x1) = f(x0)f(x1) = {y}. Note that x0x1 ⊂ f−1(f(x0x1)) = f−1(f(x0)f(x1)) =
f−1({y}). Hence, f−1(y) is a connected subset of X. Thus, by [22, Theorem 1.4.46], f
is a monotone map. □✓✓✓

Important properties of dendroids are the following:

Theorem 3.6. [1, p. 18] Let X be a dendroid. If ξ : [0,∞) → X is a one-to-one map,
then the closure of ξ([0,∞)) is an arc (ξ([0,∞)) is called a Borsuk ray).

Theorem 3.7. [1, Theorem 2] If X is a dendroid and f : X → X is a map, then there
exists a point x in X such that f(x) = x.

A dendrite is a locally connected dendroid. Dendrites constitute an important class of
continua, the main properties of these spaces are given in [3].

Theorem 3.8. A dendroid is a dendrite if and only if T ({x}) = {x}, for all x in X.

Proof. If X is a dendrite, by [22, Theorem 2.1.37], T ({x}) = {x}, for all x in X.
Suppose X is a dendroid that satisfies that T ({x}) = {x}, for all x in X. Let p be an
element of X and let A be a nonempty closed subset of X such that p ∈ T (A). Since
X is hereditarily unicoherent, X is T -additive [22, Theorem 2.2.12]. Hence, by [22,
Corollary 2.2.13], we have that T (A) =

∪
{T ({a})| a ∈ A}. Thus, there exists a point

a in A such that p ∈ T ({a}). Since T ({a}) = {a}, we obtain that p = a, and p ∈ A.
Hence, by [22, Corollary 2.1.31], X is connected im kleinen at p. Since p is an arbitrary
point of X, we have that X is connected im kleinen at each of its points. Therefore, X
is locally connected [22, Theorem 1.4.18], and X is a dendrite. □✓✓✓
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The next result says that for the class of dendroids aposyndesis is equivalent to local
connectedness.

Corollary 3.9. A dendroid is a dendrite if and only if X is aposyndetic.

Proof. Let X be a dendroid. If X is a dendrite, by Theorem 3.8, we have that T ({x}) =
{x}, for all x in X. Hence, by [22, Theorem 2.1.34], X is aposyndetic. If X is an
aposyndetic dendroid, we obtain that, by [22, Theorem 2.1.34], that T ({x}) = {x}, for
all x in X. Thus, by Theorem 3.8, X is a dendrite. □✓✓✓

A fan is a dendroid with exactly one ramification point; i.e., a point that is the only
endpoint in common of at least three otherwise disjoint arcs. This point is called the top
of the fan. The cone over the harmonic sequence

{
1
n

}∞
n=1

∪ {0} is an example of a fan,
the so-called harmonic fan:

Figure 2: Harmonic Fan

4. Smooth Dendroids

The class of smooth dendroids was introduced by Janusz J. Charatonik and Carl Eberhart
[4] and [12].

A dendroid X is smooth at a point p of X provided that for each sequence {xn}n=1 of
points of X converging to a point x in X, the sequence of arcs {pxn}∞n=1 converges to
the arc px. The point p is called a point of smoothness of X. A dendroid X is smooth if
it is smooth at some of its points. A fan is smooth provided that it is smooth at its top.

As an example of a smooth dendroid we have the comb space and the harmonic fan
(Figures 1 and 2, respectively). Also, the cone over the Cantor set, called the Cantor
fan, is a smooth dendroid:
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ν

Figure 3: Cantor Fan

As a consequence of [2, Theorem 9, p. 27] and [12, Corollary 4], we have:

Theorem 4.1. A fan is smooth if and only if it can be embedded in the Cantor fan.

Theorem 4.2. If X is a smooth dendroid and Z is a subcontinuum of X, then Z is a
smooth dendroid.

Proof. Let X be a smooth dendroid, let Z be a subcontinuum of X, and let p be the
point of smoothness of X. By Theorem 3.1, Z is a dendroid. If p belongs to Z, we are
done. Assume that p ∈ X \Z. Let z′ be an element of Z and consider the arc pz′. Let t
be the first element of the arc pz′ in Z. We show that Z is smooth at t. Let {zn}∞n=1 be
a sequence of elements of Z converging to a point z in Z. Note that, for each n ∈ IN,

pzn = pt ∪ tzn.

Hence,
lim inf pzn = pt ∪ lim inf tzn

[17, p. 336], and
lim sup pzn = pt ∪ lim sup tzn

[17, p. 337]. Since X is smooth at p,

lim inf pzn = lim sup pzn.

Thus,
pt ∪ lim inf tzn = pt ∪ lim sup tzn.

Since pt ∩ lim inf tzn = {t} and pt ∩ lim sup tzn = {t}, we obtain that:

lim inf tzn = lim sup tzn.

Therefore, Z is smooth at t. □✓✓✓

Remark 4.3. An important characterization of smooth dendroids in terms of prohibited
subdendroids is given in [15].
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Theorem 4.4. [4, Corollary 10] Let X and Y be dendroids and let f : X →→ Y be a
surjective map. If X is smooth and f is monotone, then Y is smooth.

Note that if X is a dendroid that is not smooth at the point p, then there exists a
sequence {zn}∞n=1 of elements of X converging to a point z of X such that the sequence
of arcs {pzn}∞n=1 either does not converge or lim pzn ̸= pz. The next theorem shows that
we may always assume the second possibility.

Theorem 4.5. Let X be a dendroid and let p be a point of X. If X is not smooth at
p, then there exists a sequence {an}∞n=1 of points of X converging to an element a of X
such that the sequence of arcs {pan}∞n=1 converges to a subdendroid L of X and pa ̸= L.

Proof. Suppose that X is not smooth at p. Let {an}∞n=1 be a sequence of points of
X that converges to an element a of X and the sequence {pan}∞n=1 does not converge.
Since pa ⊂ lim inf pan, we have that there exists a subsequence {ank

}∞k=1 of {an}∞n=1 such
that lim pank

̸= pa. To see this, note that, since {pan}∞n=1 does not converge, we have
that lim inf pan ̸= lim sup pan. Let x ∈ lim sup pan \ lim inf pan and let V be an open
subset of X containing x. Since x ∈ lim sup pan, we obtain that V intersects infinitely
many arcs pan. Hence, since C1(X) is compact [21, Theorem 1.8.5], we have that the
sequence of arcs {pan}∞n=1 has a convergent subsequence {pank

}∞k=1. Thus, {ank
}∞k=1 is

a subsequence of {an}∞n=1 such that the sequence of arcs {pank
}∞k=1 converges. Since

x ∈ lim pank
, pa ⊂ lim inf pan ⊂ lim pank

and x ∈ X \ lim inf pan, we obtain that
lim pank

̸= pa. □✓✓✓

Theorem 4.6. Let X be a dendroid that is smooth at the point p. If K is a closed subset
of X, then L =

∪
z∈K pz is a subcontinuum of X.

Proof. Note that L is a connected subset of X since L is the union of arcs all containing
the point p. Let x ∈ Cl(L). Then there exists a sequence {xn}∞n=1 of elements of L that
converges to x. For each n ∈ IN, there exists an element zn in K such that xn ∈ pzn.
Since K is compact, without loss of generality, we assume that there exists a point z
in K such that the sequence {zn}∞n=1 converges to z. Since X is smooth at p, we have
that the sequence of arcs {pzn}∞n=1 converges to the arc pz. Observe that we have that
x ∈ pz. Hence, x ∈ L and L is a subcontinuum of X. □✓✓✓

The following result is originally proved in [23, Theorem 1.16]. The proof given here is a
modification of [20, p. 41].

Theorem 4.7. If X is a smooth dendroid, then X is contractible.

Proof. Suppose X is a dendroid that is smooth at the point p. Let µ : C1(X) →→ [0, 1]
be a Whitney map. For each element x of X and every number t ∈ [0, 1], let xt be the
unique point in the arc px such that µ(pxt) = (1 − t)µ(px). Let F : X × [0, 1] →→ X be
given by F ((x, t)) = xt. Note that, for every x ∈ X, F ((x, 0)) = x and F ((x, 1)) = p.
We need to show that F is continuous. Let {(xn, tn)}∞n=1 be a sequence of points of
X × [0, 1] converging to a point (x, t) in X × [0, 1]. For each n ∈ IN, we have that
F ((xn, tn)) = xntn

. Since X is a continuum, we may assume that there exists an element
w of X such that the sequence {xntn

}∞n=1 converges to w. We prove that F ((x, t)) = w.
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From the definition of F , we obtain that, for every n ∈ IN, µ(pxntn
) = (1 − tn)µ(pxn).

Since X is smooth at p, {xn}∞n=1 converges to x and {xntn
}∞n=1 converges to w, we have

that lim pxn = px, lim pxntn
= pw and pw ⊂ px. Using the continuity of µ and the fact

that lim tn = t, these equalities imply that µ(pw) = (1− t)µ(px). Hence, F ((x, t)) = w.
Therefore, F is continuous. □✓✓✓

We end this section with a couple of characterizations of smooth dendroids.

Theorem 4.8. [4, Theorem 12] A dendroid X is smooth if and only if there exists a
point p in X such that for each pair of convergent sequences {an}∞n=1 and {bn}∞n=1, the
conditions:

lim an = a, lim bn = b,

and
an ∈ pbn

imply that:
lim anbn = ab.

Theorem 4.9. [4, Theorem 6] A dendroid X is smooth if and only if for each pair of
points x1 and x2 of X, we have that x1x2 ∩ T ({x1}) = {x1} or x1x2 ∩ T ({x2}) = {x2}.

5. Pointwise Smooth Dendroids

The class of pointwise smooth dendroids was introduced by Stanisław T. Czuba [7] as a
generalization of the class of smooth dendroids. He continued the study of this class of
dendroids in [9], [10], and [11].

A dendroid X is said to be pointwise smooth if, for each point x of X, there exists a
element p(x) of X such that for every sequence {xn}∞n=1 of points of X that converges
to x, the sequence of arcs {p(x)xn}∞n=1 converges to the arc p(x)x. The point p(x) is
called an initial point for x in X. Note that in the case of a smooth dendroid the point
of smoothness is the initial point of every element of the dendroid.

Theorem 5.1. If X is a pointwise smooth dendroid and Z is a subcontinuum of X, then
Z is a pointwise smooth dendroid.

Proof. Let X be a pointwise smooth dendroid and let Z be a subcontinuum of X. By
Theorem 3.1, Z is a dendroid. Let z be a point of Z. Since X is pointwise smooth, there
exists a point p(z) in X that is an initial point for z in X. We assume that p(z) ∈ X \Z.
Let p′(z) be the first point of the arc p(z)z that is in Z. We show that p′(z) is an initial
point for z in Z. To this end, let {zn}∞n=1 be a sequence of elements of Z converging to z.
Note that zp(z) = zp′(z) ∪ p′(z)p(z) and, for each n ∈ IN, znp(z) = znp′(z) ∪ p′(z)p(z).
A similar argument to the one given in Theorem 4.2 shows that the sequence of arcs
{znp′(z)}∞n=1 converges to the arc zp′(z). Therefore, Z is pointwise smooth. □✓✓✓

Remark 5.2. Note that the following dendroid:
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Figure 4.

is pointwise smooth but not smooth.

The next theorem shows that for the class of fans, pointwise smoothness and smoothness
are equivalent [7, Theorem 1].

Theorem 5.3. A fan X is pointwise smooth if and only if X is smooth.

Proof. Suppose X is a pointwise smooth fan, let τ be the top of X, and let x be a point
of X. We prove that τ is the initial point for x. Let {xn}∞n=1 be a sequence of elements
of X converging to x. If there exists N ∈ IN such that for n ≥ N , we have that both xn

and x belong to the same component of X \ {τ} (this is a semi-open arc), we obtain that
lim τxn = τx. Without loss of generality, we assume that for each n ∈ IN, we have that
xnp(x) = xnτ ∪τp(x) (if there exists an infinite set IK of IN and there exists a component
Z of X \ {τ} such that if n ∈ IK, then xn ∈ Z, we obtain that limxnτ = xτ (n ∈ IK) and
we only need to take care of the indexes that belong to IN \ IK, this set is infinite and if
n1 and n2 are two distinct elements of IN \ IK, then xn1 and xn2 belong to two distinct
components of X \ {τ}). Thus, for each n ∈ IN, we have that

xnp(x) = xnτ ∪ τp(x).

Hence,
lim inf xnp(x) = lim inf xnτ ∪ τp(x)

[17, p. 336] and that
lim supxnp(x) = lim sup xnτ ∪ τp(x)

[17, p. 337]. Since X is pointwise smooth fan and p(x) is the initial point for x in X, we
obtain that

lim inf xnp(x) = lim sup xnp(x),

from this, we have
τp(x) ∪ lim inf xnτ = τp(x) ∪ lim supxnτ .

Observe that xτ ⊂ lim inf xnτ ⊂ lim supxnτ . We prove that lim supxnτ ⊂ xτ . Suppose
that (lim sup xnτ) \ xτ ̸= ∅ and that (lim sup xnτ) \ xτ = zτ \ {τ} [22, Theorem 1.1.30].
Let w ∈ zτ \ {z, τ}. Let {xnℓ

}∞ℓ=1 be a subsequence of {xn}∞n=1 such that zτ ⊂ limxnℓ
τ .

For every ℓ ∈ IN, let wℓ be the first point of the arc xnℓ
τ , from xnℓ

to τ , such that
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d(w,wℓ) ≤ 1
ℓ . The sequence {wℓ}∞ℓ=1 converges to w. Note that zτ ⊂ lim inf wℓτ .

Hence, there does not exist an initial point p(w) for w in X, a contradiction. Thus,
lim supxnτ ⊂ xτ , and limxnτ = xτ . Therefore, X is a smooth fan. The reverse
implication is clear. □✓✓✓

The following two theorems give characterizations of pointwise smooth dendroids.

Theorem 5.4. [22, Theorem 7.3.15] Let X be a dendroid. Then X is pointwise smooth
if and only if for each pair of different points x1 and x2 of X, we have that either
x1x2 ∩ T ({x1}) = {x1} or x1x2 ∩ T ({x2}) = {x2} or T ({x1}) ∩ T ({x2}) = ∅.

Theorem 5.5. [22, Corollary 7.3.16] A dendroid X is pointwise smooth if and only if for
each point x of X, there exists a point p(x) in X such that for each sequence {xn}∞n=1

of points of X converging to x, the sequence of arcs {p(x)xn}∞n=1 converges to the arc
p(x)x and x ∈ T ({p(x)}).

Lemma 5.6. [22, Lemma 7.3.10] If X is a dendroid and A and B are closed subsets of X
such that A∩T (B) = ∅, T (A)∩B = ∅ and T (A)∩T (B) ̸= ∅, then there exist two points
p ∈ A and q ∈ B such that p ∈ X \ T ({q}), q ∈ X \ T ({p}) and T ({p}) ∩ T ({q}) ̸= ∅.

Remark 5.7. Lemma 5.6 is important since it gives a simple way to obtain the noncon-
tractibility of a dendroid [22, Theorem 7.2.2].

The next theorem gives a sufficient condition for a continuum to contain an R1-continuum
(R3-continuum (Lemma 2.7)).

Theorem 5.8. [22, Theorem 7.3.11] If X is a dendroid and A and B are subcontinua of
X such that A ∩ T (B) = ∅, T (A) ∩B = ∅, and T (A) ∩ T (B) ̸= ∅, then T (A) ∩ T (B) is
an R1-continuum. Therefore, it contains an R3-continuum.

Corollary 5.9. [22, Corollary 7.3.12] If X is a dendroid and A and B are closed subsets
of X such that A∩ T (B) = ∅, T (A)∩B = ∅ and T (A)∩ T (B) ̸= ∅, then X contains an
R1-continuum. Therefore, it contains an R3-continuum.

If X is a dendroid and K and L are two disjoint and nonempty closed subsets of X, then

Irr(K,L) =
∩

{W | W is a subcontinuum of X such that K ∪ L ⊂ W}.

The set Irr(K,L) is called the irreducible subcontinuum of X about K ∪ L.

Remark 5.10. If X is a dendroid and K and L are two disjoint subcontinua of X, then
by the arcwise connectedness and the hereditary unicoherence of X, we have that there
exist two points k0 in K and l0 in L such that the arc k0l0 satisfies that K ∩k0l0 = {k0},
L ∩ k0l0 = {l0} and Irr(K,L) = K ∪ k0l0 ∪ L.

The following result is [9, Corollary (3.3)].

Theorem 5.11. A dendroid is pointwise smooth if and only if for any two disjoint sub-
continua K and L of X, we have that T (K) ∩ Irr(K,L) = K or T (L) ∩ Irr(K,L) = L
or T (K) ∩ T (L) = ∅.
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Proof. Assume that X is a pointwise smooth dendroid and that K and L are two disjoint
subcontuna of X such that

(T (K) ∩ Irr(K,L)) \K ̸= ∅ and (T (L) ∩ Irr(K,L)) \ L ̸= ∅.

Observe that (Remark 5.10),

T (K) ∩ k0l0 = T ({k0}) ∩ k0l0 and T (L) ∩ k0l0 = T ({l0}) ∩ k0l0.

We show these two equalities are true. Note that T ({k0}) ∩ k0l0 ⊂ T (K) ∩ k0l0 [22,
Proposition 2.1.7]. Let z be an element of T (K) ∩ k0l0. Hence, if W is a subcontinuum
of X such that z ∈ Int(W ), then W ∩ K ̸= ∅. Since X is hereditarily unicoherent,
we obtain that k0 ∈ W . Thus, z ∈ T ({k0}), and z ∈ T ({k0}) ∩ k0l0. Therefore,
T (K) ∩ k0l0 = T ({k0}) ∩ k0l0. Similarly, we have that T (L) ∩ k0l0 = T ({l0}) ∩ k0l0.
Next, we claim that

T (K) ∩ L = ∅ and K ∩ T (L) = ∅.

Assume that T (K) ∩ L ̸= ∅. Since T (K) is a subcontinuum of X [22, Theorem 2.1.27]
and X is a dendroid, we have that k0l0 ⊂ T (K). Hence, T (K) ∩ k0l0 = k0l0. Since
T (K) ∩ k0l0 = T ({k0}) ∩ k0l0 and T (L) ∩ k0l0 = T ({l0}) ∩ k0l0, we obtain that l0 ∈
T ({k0})∩T ({l0}). Also, since (T (K)∩Irr(K,L))\K ̸= ∅ and (T (L)∩Irr(K,L))\L ̸= ∅,
we have that T ({k0})∩k0l0 ≠ {k0} and T ({l0})∩k0l0 ̸= {l0}. Similarly, if K∩T (L) ̸= ∅,
then k0 ∈ T ({k0}) ∩ T ({l0}), T ({k0}) ∩ k0l0 ̸= {k0} and T ({l0}) ∩ k0l0 ̸= {l0}. Thus,
in any case, we obtain a contradiction to Theorem 5.4. Therefore, T (K) ∩ L = ∅ and
K ∩ T (L) = ∅.
Since T (K) ∩ k0l0 = T ({k0}) ∩ k0l0, we have that:

T (K) ∩ Irr(K,L) = T (K) ∩ (k0l0 ∪K ∪ L) =

(T (K) ∩ k0l0) ∪K) = (T ({k0}) ∩ k0l0) ∪K.

Similarly, we obtain:

T (L) ∩ Irr(K,L) = (T ({l0}) ∩ k0l0) ∪ L.

Hence,
T (K) ∩ T (L) ∩ Irr(K,L) = T ({k0}) ∩ T ({l0}) ∩ k0l0.

Recall that (T (K) ∩ Irr(K,L)) \ K ̸= ∅ implies that T ({k0}) ∩ k0l0 ̸= {k0} and that
(T (L) ∩ Irr(K,L)) \ L ̸= ∅ implies that T ({l0}) ∩ k0l0 ̸= {l0}. Thus, by Theorem 5.4,
we have that

T ({k0}) ∩ T ({l0}) ∩ k0l0 = T (K) ∩ T (L) ∩ Irr(K,L) = ∅.

Since X is hereditarily unicoherent, we obtain that T (K) ∩ T (L) = ∅.
The reverse implication is obtained by Theorem 5.4, taking K = {x1} and L = {x2}.
Note that, in this case, Irr({x1}, {x2}) = x1x2. □✓✓✓

Let X be a dendroid and let p and x two be points of X. Define the sets:

P (x) = {z ∈ X | z is an initial point for x in X}
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and
Q(p) = {z ∈ X | p is an initial point for z in X}.

Some consequences of the definition of these sets are:

Theorem 5.12. Let X be a dendroid. Then the following hold:

(1) X is pointwise smooth if and only if
∪
{Q(p) | p ∈ X} = X.

(2) X is smooth if and only if
∩
{P (x) | x ∈ X} ̸= ∅.

(3) X is smooth if and only if there exists an element p of X such that Q(p) = X.

Theorem 5.13. Let X be a dendroid and let x0 be a point of X. Then the following are
equivalent:

(1) P (x0) = X;

(2) x0 ∈ Q(x0);

(3) x0 ∈ P (x0);

(4) x0 ∈ X \ T ({x}), for all x ∈ X \ {x0};

(5) X is connected im kleinen at x0.

Proof. Assume that P (x0) = X. This means that each element x of X is an initial point
for x0 in X. In particular, x0 is an initial point for itself in X. Thus, x0 ∈ Q(x0). Next,
if x0 ∈ Q(x0), then x0 is an initial point for itself in X. Hence, x0 ∈ P (x0). Now,
assume that x0 ∈ P (x0). This implies that for each sequence {xn}∞n=1 of elements of X
converging to x0, we have that the sequence of arcs {x0xn}∞n=1 converges to {x0}. Thus,
lim diam(x0xn) = 0. From this, we obtain that if p is a point of X and {xn}∞n=1 is a
sequence of elements of X converging to x0, we have that the sequence of arcs {pxn}∞n=1

converges to the arc px0. Therefore, P (x0) = X. Hence, (1), (2) and (3) are equivalent.

Suppose that x0 ∈ X\T ({x}), for every point x in X\{x0}. We show that X is connected
im kleinen at x0. To this end, let A be a closed subset of X such that x0 ∈ T (A). Since
X is hereditarily unicoherent, by [22, Theorem 2.2.12], X is T -additive. Thus, by [22,
Corollary 2.2.13], we have that T (A) =

∪
{T ({a})| a ∈ A}. Hence, there exists a point a

in A such that x0 ∈ T ({a}). By our assumption, we obtain that x0 = a and x0 ∈ A. By
[22, Corollary 2.1.31], we conclude that X is connected im kleinen at x0. Now, assume
that X is connected im kleinen at x0, let x be an element of X \ {x0} and let U be an
open subset of X \ {x} that contains x0. Since X is connected im kleinen at x0, there
exists a subcontinuum W of X such that x0 ∈ Int(W ) ⊂ W ⊂ U ⊂ X \{x}. This implies
that x0 ∈ X \ T ({x}). Thus, (4) and (5) are equivalent.

Suppose that X is connected im kleinen at x0. Then x0 is in the interior of subcon-
tinua of X of arbitrary small diameters. By Lemma 3.1 each of these subcontinua is a
dendroid. This implies that if {xn}∞n=1 is a sequence of points of X converging to x0,
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then lim diam(x0xn) = 0. Hence, if p is an element of X and {xn}∞n=1 is a sequence of
points of X converging to x0, then the sequence of arcs {pxn}∞n=1 converges to the arc
px0. Therefore, P (x0) = X. Now, assume that X is not connected im kleinen at x0.
Thus, there exists an open subset U of X containing x0 such that no subcontinuum of
X contained in U has x0 in its interior. Since X is a regular space, there exists an open
subset V of X such that x0 ∈ V ⊂ ClX(V ) ⊂ U . Let W be the component of Cl(V ) that
contains x0. By [22, Theorem 1.4.36], we have that W is a nondegenerate subcontinuum
of X. By our assumption, x0 ∈ W \ Int(W ). Hence, there exists a sequence {xn}∞n=1 of
points of X \W that converges to x0. Consider the sequence of arcs {x0xn}∞n=1. Observe
that, for each n ∈ IN, we obtain that x0xn ∩ (X \ W ) ̸= ∅. We have two possibilities,
either the sequence {x0xn}∞n=1 converges and in this case, (X \W )∩lim x0xn ̸= ∅ or such
sequence does not converge. In either case, we obtain that x0 ∈ X \ P (x0). Therefore,
P (x0) ̸= X. Hence, (5) and (1) are equivalent. □✓✓✓

By Theorem 4.7, we know that a smooth dendroid is contractible. It was asked if the
same was true for pointwise smooth dendroids. Note the following result.

Theorem 5.14. Let X be a dendroid. Then X is pointwise smooth if and only if Cn(X)
is contractible, for each n ∈ IN.

Proof. By [5, Corollary, p. 411], we have that X is a pointwise smooth dendroid if and
only if C1(X) is contractible. Hence, by [21, Theorem 6.1.17], we obtain the result for
n ≥ 2. □✓✓✓

A dendroid X has property (CS) if there exists a clump G of smooth subdendroids of X
whose centre is C such that:

(1)
∪

G = X;

(2) there exists an element p ∈ C such that p is the point of smoothness of each of the
elements of G;

(3) the set Cl(
∪
G \ C) ∩ C is totally disconnected.

Theorem 5.15. [11, Theorem 3] If X is a pointwise smooth dendroid having property
(CS), then X is a smooth dendroid.

Regarding the contractibility of a pointwise smooth dendroid, we have:

Theorem 5.16. [11, Corollary 4] Let X be a dendroid having property (CS). Then the
following are equivalent:

(1) X is hereditarily contractible;

(2) X is pointwise smooth;

(3) X is smooth.

Let X be a continuum. If L is a subcontinuum of X that is contained in a subset A of
X, then C(A,K) denotes the component of A containing L.
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Theorem 5.17. Let X be a dendroid. Then the following are equivalent:

(1) X is pointwise smooth;

(2) for each point x of X, there exists a point z of X such that for every subcontinuum
K of X which contains an arc xz and for each open subset U of X that contains K, we
have that x ∈ Int(C(U,K));

(3) for each element x of X, there exists a point z of X such that for every open subset
U of X containing xz, we have x ∈ Int(C(U,K)).

Proof. To show that (1) implies (2), let x be a point of the pointwise smooth dendroid
X and let K be a subcontinuum of X containing the arc xp(x). Let U be an open subset
of X containing K. If x ∈ X \ Int(C(U,K)), then there exists a sequence {xn}∞n=1 of
points of X \ C(U,K) converging to x. Observe that xnp(x) \ U ̸= ∅. Thus, since X is
pointwise smooth, limxnp(x)∩ (X \U) ̸= ∅. Since K ⊂ U , we have that K∩ (X \U) = ∅.
By Theorem 3.1, limxnp(x) = xp(x) ⊂ K, a contradiction. Hence, x ∈ Int(C(U,K)).

It is clear that (2) implies (3). Suppose (3), we prove (1). Let z be a point of X
and let {xn}∞n=1 be a sequence of elements of X converging to an element x of X. If
lim supxnz ̸= xz, then let w ∈ lim supxnz \ xz. Let U be an open subset of X such
that w ∈ Cl(U) and xz ⊂ U . Note that for each n ∈ IN, xn ∈ X \ C(U, {x}). Thus,
x ∈ X \ Int(C(U, {x})), a contradiction. Since lim inf xnz is a continuum (Theorem 2.2)
containing x and z, we have that lim inf xnz = lim supxnz = xz. Hence, we may take z
to be p(x), the initial point of x in X. □✓✓✓

Theorem 5.18. [10, Proposition 4] A dendroid X is pointwise smooth if and only if for
each point x of X and every sequence {xn}∞n=1 of elements of X converging to x, there
exists a point q of X such that lim supxnx = qx and for each initial point p(x) for x in
X, we have that qx ⊂ xp(x).

Theorem 5.19. A dendroid X is pointwise smooth if and only if for each point x of X,
K({x}) is an arc xz, where z may be taken as an initial point for x in X (z = p(x), in
the sense of Theorem 5.5).

Proof. Let X be a pointwise smooth dendroid, let x be an element of X and let p(x) be
an initial point for x in X (Theorem 5.5). Since x ∈ T ({p(x)}), by [22, Lemma 7.7.3],
p(x) ∈ K({x}). Thus, {x, p(x)} ⊂ K({x}) and, by Theorem 2.4, we have that xp(x) ⊂
K({x}). If K({x}) \ xp(x) ̸= ∅, let w ∈ K({x}) \ xp(x). We consider three cases.

Case (1). x ∈ wp(x).

In this case, {w} ̸= xw. Since w ∈ K({x}), by [22, Lemma 7.7.3], x ∈ T ({w}). Hence,
xw ⊂ wp(x) ⊂ T ({w}) [22, Theorem 2.1.27]. Also, {p(x)} ̸= xp(x). Since x ∈ T ({p(x)}),
we obtain that xp(x) ⊂ wp(x) ∩ T ({p(x)}). Form all of this, we have that {w} ̸=
wp(x) ∩ T ({w}), {p(x)} ̸= wp(x) ∩ T ({p(x)}) and x ∈ T ({w}) ∩ T ({p(x)}). Thus, by
Theorem 5.4, we have that X is not a pointwise smooth dendroid.

Case(2). p(x) ∈ xw.

It follows from Theorem 5.18 that p(x) is not an initial point for x in X.
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Case (3). wx ∪ xp(x) is a simple triod.

In this case, there exists an element t of X such that wx∪xp(x) = wt∪ tp(x)∪ tx, where
t is the vertex of the simple triod. Hence, {w} ̸= wt ⊂ wx. Since w ∈ K({x}), by [22,
Lemma 7.7.3], x ∈ T ({w}). Thus, wx ⊂ T ({w}) [22, Theorem 2.1.27]. Also, {x} ̸= tx ⊂
wx. Since w ∈ K({x}), we obtain that wx ⊂ T ({x}) [22, Theorem 2.1.27]. From all this,
we have that{w} ̸= wx ∩ T ({w}), {x} ̸= wx ∩ T ({x}) and t ∈ T ({w}) ∩ T ({x}). Thus,
by Theorem 5.4, we have that X is not a pointwise smooth dendroid.

From these cases, we obtain that K({x}) = xp(x).

Now, suppose X is not a pointwise smooth dendroid. Then, by Theorem 5.4, there
exist two elements a and b of X such that {a} ̸= ab ∩ T ({a}), {b} ̸= ab ∩ T ({b}),
and T ({a}) ∩ T ({b}) ̸= ∅. Since X is hereditarily unicoherent, there exists a point
x ∈ T ({a}) ∩ T ({b}) ∩ ab \ {a, b}. By [22, Lemma 7.7.3], we have that {a, b} ⊂ K({x}).
This implies that K({x}) is not an arc with x as one of its endpoints. □✓✓✓

As a consequence of Theorems 5.5 and 5.19, we have:

Corollary 5.20. If X is a pointwise smooth dendroid, then for each element x of X, there
exists a unique point p(x) (namely, the endpoint of the arc K({x}) different from x) such
that for each sequence {xn}∞n=1 of points of X converging to x, lim p(x)xn = p(x)x, and
x ∈ T ({p(x)}).

Corollary 5.21. If X is a pointwise smooth dendroid, then no point from the open arc
K({x}) \ {x, p(x)} is an initial point for x in X, where K({x}) = p(x)x.

Theorem 5.22. If X is a pointwise smooth dendroid, then for each pair of points x1 and
x2 of X, the following are satisfied:

(1) K({x1}) = K({x2}) if and only if x1 = x2;

(2) T ({x1}) = T ({x2}) if and only if x1 = x2;

(3) T ({x1}) ∩ K({x1}) = {x1};

(4) K(T ({x1})) = T ({x1}) ∪ K({x1}).

Proof. We show (1). If K({x1}) = K({x2}), by Theorem 5.19, K({x1}) = p1(x1)x1

and K({x2}) = p1(x2)x2. Hence, either, x1 = x2 or p(x1) = x2 or p(x2) = x1. If
p(x1) = x2, then K({x1}) = K({x2}) = x1x2. This implies, by [22, Lemma 7.7.3], that
T ({x1}) ∩ x1x2 = T ({x2}) ∩ x1x2 = x1x2 and x1x2 ⊂ T ({x1}) ∩ T ({x2}). Hence, by
Theorem 5.4, X is not a pointwise smooth dendroid, a contradiction. Similarly, we obtain
a contradiction if p(x2) = x1. Therefore, x1 = x2. The reverse implication is clear.

To prove (2), note that if T ({x1}) = T ({x2}) and x1 ̸= x2, then T ({x1}) ∩ x1x2 =
T ({x2}) ∩ x1x2 = x1x2 and x1x2 ⊂ T ({x1}) ∩ T ({x2}). Thus, by Theorem 5.4, X is
not a pointwise smooth dendroid, a contradiction. Therefore, x1 = x2. The reverse
implication is clear.

To see (3), let x3 ∈ T ({x1}) ∩ K({x1}) \ {x1}. Then, by [22, Lemma 7.7.3], we have
that x1 ∈ T ({x3}) and x3 ∈ T ({x1}). Hence, T ({x1}) ∩ x1x3 = T ({x3}) ∩ x1x3 = x1x3
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and x1x3 ⊂ T ({x1}) ∩ T ({x3}). Thus, by Theorem 5.4, X is not a pointwise smooth
dendroid, a contradiction. Therefore, T ({x1}) ∩ K({x1}) = {x1}.
To show (4), observe that since x1 ∈ T ({x1}), we have that K({x1}) ⊂ K(T ({x1}))
and, by definition, T ({x1}) ⊂ K(T ({x1})). Hence, T ({x1}) ∪ K({x1}) ⊂ K(T ({x1})).
Let x3 ∈ K(T ({x1})). By Theorem 2.5, we obtain that T ({x3}) ∩ T ({x1}) ̸= ∅. By
Theorem 5.4, we have that either T ({x1}) ∩ x1x3 = {x1} or T ({x3}) ∩ x1x3 = {x3}.
Suppose T ({x1})∩x1x3 = {x1}, the proof of the other case is analogous. We claim that,
in this case, x1x3 ⊂ T ({x3}). If this is not true, then (T ({x1})∪ T ({x3}))∪ x1x3 would
contain a nonunicohenrent subcontinuum of X (Let x4 be the first point of the arc x1x3

in T ({x3}), and let x5 ∈ T ({x3})∩T ({x1}). Then x1x4 ∪ x4x5 ∪ x5x1 is a simple closed
curve contained in X.), a contradiction. Hence, x1 ∈ T ({x3}) and, by [22, Lemma 7.7.3],
x3 ∈ K({x1}). Therefore, K(T ({x1})) = T ({x1}) ∪ K({x1}). □✓✓✓

Theorem 5.23. [9, Theorem 3.7] If X is a pointwise smooth dendroid, then X does not
contain an R3-continuum.

The following result is [10, Theorem 16].

Theorem 5.24. If X is a dendroid, then the following are equivalent:

(1) X is pointwise smooth dendroid.

(2) X is semi-aposyndetic and X does not contain an R3-continuum.

(3) X is semi-aposyndetic and X does not contain two points x1 and x2 such that x1 ∈
X \ T ({x2}), x2 ∈ X \ T ({x1}) and T ({x1}) ∩ T ({x2}) ̸= ∅.

Proof. We prove that (1) implies (2). Suppose X is a pointwise smooth dendroid. Let x1

and x2 be two points of X. By Theorem 5.4, either x1 ∈ X\T ({x2}) or x2 ∈ X\T ({x1}).
Hence, by [22, Theorem 2.1.32], X is semi-aposyndetic. By Theorem 5.23, X does not
contain an R3-continuum. The fact that (2) implies (3) follows from Corollary 5.9 and
[22, Lemma 7.3.10]. To show (3) implies (1), let x1 and x2 be two points of X such
that T ({x2}) ∩ x1x2 ̸= {x2} and T ({x1}) ∩ x1x2 ̸= {x1}. Suppose that T ({x1}) ∩
T ({x2}) ̸= ∅. Then, since X is hereditarily unicoherent, T ({x1}) ∩ T ({x2}) ∩ x1x2 ̸= ∅.
If T ({x1}) ∩ T ({x2}) ∩ x1x2 = {w}, for some element w of X, we have that w ∈
X \ {x1, x2}. Hence, x1 ∈ X \ T ({x2}) and x2 ∈ X \ T ({x1}) (if x1 ∈ T ({x2}), then
x1x2 ⊂ T ({x2}) and T ({x1})∩T ({x2})∩x1x2 = T ({x1})∩x1x2 ̸= {w}, a contradiction;
similarly if x2 ∈ X \ T ({x1})). Thus, we obtain a contradiction to our assumption. If
T ({x1}) ∩ T ({x2}) ∩ x1x2 = wz, where w ∈ x1z, then, since z ∈ T ({x1}), we have that
z ∈ T ({w}) (if z ∈ X \ T ({w}), then there exists a subcontinuum Z of X such that
z ∈ Int(Z) ⊂ Z ⊂ X \ {w}, since z ∈ T ({x1}), we obtain that x1 ∈ Z; thus, w ∈ Z,
a contradiction). Also, since w ∈ T ({x2}), we have that w ∈ T ({z}). Hence, by [22,
Lemma 2.1.32], X is not semi-aposyndetic. Thus, T ({x1})∩T ({x2}) = ∅. Therefore, by
Theorem 5.4, X is pointwise smooth. □✓✓✓

6. Strict Point T -asymmetry on Dendroids

Strict point T -asymmetric continua were defined by David P. Bellamy [19, p. 392]. We
present new results about strict point T - asymmetry.
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A continuum X is strictly point T -asymmetric if for any two distinct points p and q of
X with p ∈ T ({q}), we have that q ∈ X \ T ({p}).

David P. Bellamy asked:

Question 6.1. [22, Question 8.1.9] If X is a strictly point T -asymmetric dendroid, then
is X smooth?

Leobardo Fernández gave a negative answer to this question [13]. The dendroid presented
in Remark 5.2 (Figure 4) is an example of a nonsmooth dendroid that is strictly point
T -asymmetric. He proved that the reverse implication is true [13, Corollary 3.3]. He
also showed that for fans strict point T -asymmetry is equivalent to smoothness [13,
Theorem 3.5]. We extend these results to pointwise smooth dendroids (Corollary 6.3).

We present a characterize of strictly point T -asymmetric continua as semi-aposyndetic
continua.

Theorem 6.2. Let X be a continuum. Then X is point T -asymmetric if and only if X
is semi-aposyndetic.

Proof. Suppose X is strictly point T -asymmetric and let p and q be two points of X.
We have that either p ∈ X \T ({q}) or p ∈ T ({q}). In the second case, since X is strictly
point T -asymmetric, we obtain that q ∈ X \ T ({p}). Therefore, X is semi-aposyndetic
[22, Theorem 2.1.32].

Assume that X is semi-aposyndetic and let p and q be two points of X. Suppose p ∈
T ({q}). Since X is semi-aposyndetic and p ∈ T ({q}), we have that q ∈ X \ T ({p}) [22,
Theorem 2.1.32]. Therefore, X is strictly point T -asymmetric. □✓✓✓

Next, we show that pointwise smooth dendroids are strictly point T -asymmetric.

Corollary 6.3. If X is a pointwise smooth dendroid, then X is strictly point T -
asymmetric.

Proof. Suppose X is not strictly point T -asymmetric. Then there exist two points x1 and
x2 of X such that x1 ∈ T ({x2}) and x2 ∈ T ({x1}). Since {x1, x2} ⊂ T ({x2}), we have
that x1x2 ⊂ T ({x2}). Similarly, we have that x1x2 ⊂ T ({x1}). Hence, x1x2∩T ({x2}) =
x1x2 and x1x2 ∩ T ({x1}) = x1x2. Thus, x1x2 ⊂ T ({x1}) ∩ T ({x2}). Therefore, by
Theorem 5.4, X is not pointwise smooth. □✓✓✓

As a consequence of Theorem 6.2 and Corollary 6.3, we have:

Corollary 6.4. If X is a pointwise smooth dendroid, then X is semi-aposyndetic.

Remark 6.5. Note that Corollary 6.4 is also a consequence of Theorem 5.24.
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Corollary 6.6. Let X be a fan. Then the following are equivalent:

(1) X is strictly point T -asymmetric.

(2) X is a smooth fan.

(3) X is a pointwise smooth fan.

(4) X is semi-aposyndetic.

Proof. By [13, Theorem 3.5], (1) and (2) are equivalent. By Theorem 5.3, (2) and (3)
are equivalent. By Theorem 6.2, (1) and (4) are equivalent. □✓✓✓

We end the paper with another characterization of pointwise smooth dendroids.

Theorem 6.7. A dendroid X is pointwise smooth if and only if X is strictly point
T -asymmetric and X does not contain an R3-continuum.

Proof. Suppose X is a pointwise smooth dendroid. Then, by Theorem 5.24, X is semi-
aposyndetic and X does not contain an R3-continuum. Since X is semi-aposyndetic, by
Theorem 6.2, X is strictly point T -asymmetric.

Assume that X is a strictly point T -asymmetric dendroid such that X does not contain
an R3-continuum. Since X is strictly point T -asymmetric, by Theorem 6.2, X is semi-
aposyndetic. Hence, by Theorem 5.24, X is pointwise smooth. □✓✓✓
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