
∮
Revista Integración
Escuela de Matemáticas
Universidad Industrial de Santander
Vol. 39, N◦ 2, 2021, pág. 241–256

Induced (E ,M)−structures on Topological
Categories

Juan Angoa-Amador a, Agustín Contreras-Carreto b,
Jesús González-Sandoval c �

a,b,c Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico
Matemáticas, Puebla, México.

Abstract. In this paper, we describe a convenient categorical structure with
respect to a class of monomorphisms M and epimorphisms E for any topo-
logical category. We show in particular that the structure that we introduce
here, which is induced by topological functors and their initial liftings, allows
the study of some M−coreflective subcategories of a topological category.
We pay special attention to projective structures.
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respecto a una clase de monomorfismos M y una clase de epimorfismos E , para
cada categoría topológica. En particular, mostramos que la estructura que
introducimos aquí, que es inducida por functores topológicos y levantamientos
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1. Introduction

For arbitrary category various canonical factorization of arbitrary morphisms, through
regular epimorphisms, strong epimorphisms (the orthogonal class to monomorphisms),
and extremal epimorphisms, and its relations with limit operations were considered by
G. M. Kelly in [12]. He showed closure properties of the class of epimorphism factors
under composition, and cointersections in some cases, as well as essential uniqueness of
the canonical factorizations. He tried to avoid unnecessary completeness hypotheses to
prove J. R. Isbell’s results under other and usually weaker conditions. Isbell in [11] has
developed some notions and results of the structure theory of categories that relate ade-
quacy to ideal structure and completeness, in particular Theorem 3.2 of [11] established
that every reflexive set functor on a full subcategory of a well-behaved category C, with
free sums, direct product and (Mono,Epi) factorizations; is representable in C.

The notion of closure operator in an arbitrary category X , introduced in [4] and defined
on a class of subobjects, has led to a useful tool in diverse theories like Topos in [13],
Heyting algebras in [6] and in any partially-ordered set, viewed as a category, the full
reflexive subcategories are in one-to-one correspondence with the order-preserving ex-
pansive idempotent functions. For the Top category, closure operators have been used
to describe some relations and properties in “good” categories (see M. M. Clementino
in [3] and G. Castellini in [2]), these categories necessarily carry a special type of cate-
gorical structure (see 2.1 of [5]); in order to define a closure operator on a category X
with respect to a class of monomorphisms M, it is usually considered that X is finitely
M−complete and X has a factorization system (E ,M) for morphisms (see [5]), with E a
class of epimorphisms namely defined by M and the concept of orthogonal morphism. H.
Herrlich in Theorem 2.2 of [8] (and J. R. Isbell in [11]) gives the characterization for the
epi-reflexive subcategories, and in Theorem 6 of [7], H. Herrlich and G. E. Strecker proved
the theorem for mono-coreflective subcategories with the use of an (ExEpi,Mono) sys-
tem of factorization, the characterization theorem of M−coreflective subcategories that
are a categorical dual version of the theory of Stone-Čech compactification, requires an
M−wellpowered (E ,M)−category X with coproducts and M a class of monomorphisms.
For a topological category X in the sense of R. Nakagawa [14], we will show that X has
the categorical structure to hold closure operators and the characterization theorem of
M−coreflective subcategories.

We devote special attention to the case of a class M generated by an object and the
projective property. This class of subobjects has similar behavior under inverse image
and joins as the union of sets under inverse image. This last allows us to adapt, to
an arbitrary topological category, one method of relating lower limit operators with
bicoreflective categories that H. Herrlich provides in [9].

We now briefly describe the main content of the article. In the first section, we introduce
the notion of topological category and the notation for initial liftings that enables us to
give a common treatment of the categories studied here. In the second section, we enu-
merate the notion of M−subobjects, initial M−subobjects in a topological category, as
well as some results that make explicit the behavior that a topological category inherits,
through the topological functor, with respect to factorizations, separating objects and
limits. In the third section, we then prove our most general result relating the class of
morphisms for which the object in the fiber of a one-point set is projective and charac-
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terize the embedding as the orthogonal family associated with it, Proposition 4.3. The
last section is devoted to show that a correspondence between lower limit-operators and
bicoreflective subcategories can be established due to the properties that the subobjects
and initial subobjects have.

2. Preliminaries and notation

Let {(Xi, τi)|i ∈ I} be a family of topological spaces. For each family of functions
{fi : Y → Xi|i ∈ I} there is the coarser topology ρ on Y that makes continuous each fi :
(Y, ρ) → (Xi, τi). This fundamental construction in the Top category can be generated
in many categories similar to Top. The following definitions and results are on 12 of [14].
For a generic category S a functor F : X → S is said to be a topological functor if
for any F−source (X, (fλ : X → F (Xλ))λ∈Λ), there exists a unique X−source (X, (fλ :
X → Xλ)λ∈Λ), which will be called F−initial lift of (fλ)λ∈Λ , satisfying the following
conditions:

1. (F−lift) F (X) = X and F (fλ) = fλ for λ ∈ Λ;

2. (F−initiality) For an X−source (Y, (gλ : Y → Xλ)λ∈Λ) and an S−morphism
h : F (Y ) → X such that fλ ◦ h = F (gλ) for any λ ∈ Λ, there exists a unique
X−morphism {gλ} ◁h {fλ} : Y → X such that F ({gλ} ◁h {fλ}) = h and fλ ◦
({gλ} ◁h {fλ}) = gλ

X
fλ // Xλ X

fλ // F (Xλ)

Y

{gλ}◁h{fλ}

OO

gλ

??��������
F (Y )

h

OO

F (gλ)

;;vvvvvvvvv

An X−morphism f : X → Y is said to be an F−initial morphism in X if the X−source
(X, (f)) is an F−initial lift of (F (X), (F (f))).

Dual: S−sink, F−sink, cotopological functor, F−final morphism and F−final lift de-
scribed by the commutative diagram

Xλ

gλ
  
@@

@@
@@

@@

f
λ // X

{f
λ
}◁h{gλ}

��

F (Xλ)
fλ //

F (gλ) $$H
HH

HH
HH

HH
X

h

��

Y F (Y )

Proposition 2.1 (See 12.4 of [14]). If a functor F : X → S is topological, then it is
faithful.

Theorem 2.2 (See 12.7 of [14]). A functor F : X → S is topological if and only if it is
co-topological.

The next result gives a property of lifting of limits and colimits.
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Corollary 2.3 (See 12.9 of [14]). Suppose that F : X → S is a topological functor. If S is
complete, then X is complete and, if S is cocomplete, then X is cocomplete.

Definition 2.4 (See 13.1 of [14]). Let F : X → S be a functor. A pair (X , F ) with X a
locally small category is said to be a topological category if the following conditions
hold:

1. S = Set and F is a topological functor.

2. For any A ∈ Obj(Set), the class F−1(A) := {X ∈ Obj(X )|F (X) = A} is a set.

3. For a set {p} consists of precisely one point p, F−1({p}) consist of precisely one
X−object.

The proof of the dual theorem of next theorem is in 8 of [14].

Theorem 2.5 (Characterization of M−coreflective subcategories). Suppose that X is an
M−wellpowered (E ,M)−category with M ⊆ Mono(X ) and that X has coproducts.
Then, for a full and isomorphism-closed subcategory U of X , the following conditions
are equivalent:

1. U is M−coreflective in X .

2. U is closed under coproducts and satisfies that if f : X → Y belongs to E and
X ∈ Obj(U), then Y ∈ Obj(U).

3. Lifted structures to topological categories

A topological category (X , F ) is based on the category Set through the functor F , in
order to give a structure on X , we use the lifting property of F (initial or final) to lift
every structure of (M, E)−category on Set to a structure of (M′, E ′)−category on X ,
this structure inherits closure properties respect to composition, limits, and existence of
unions.

Notation. Let F : X → S be a topological functor and M ⊆ Mono(S),

MF := {m ∈ Mor(X )|F (m) ∈ M}

and
MF :=

{
m ∈ Mor(X )|F (m) ∈ M and m ∼= F (m)

}
,

where (M,F (m)) is an F−initial lift of (F (M), F (m)), and for every pair of
X−morphisms f and g, f ∼= g denotes that there is an X−isomorphism φ with
f = g ◦ φ. For every X−object X, an element of MF (or MF ) with codomain X
is called MF−subobject (or MF−subobject of X).

Proposition 3.1. If F : X → S is a topological functor with X locally small and M ⊆
Mono(S), then:
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1. MF ⊆ Mono(X ) and MF ⊆ Mono(X ).

2. If M contains all identity morphisms of S, MF and MF contain all identity
morphisms of X .

3. If M is closed under composition with isomorphisms, then MF and MF are closed
under composition with isomorphisms.

Proof. 1. It follows from proposition 21.13 part (1) of [1].

2. Let IX be an identity morphism of X , F (IX) = IF (X) ∈ M, next we show that IX is an
F−initial morphism, suppose that g : Y → X is an X -morphism and h : F (Y ) → F (X)
is an S−morphism such that IF (X) ◦ h = F (g), then h = F (g), letting g ◁h IX := g, we
have F (g◁hIX) = F (g), the unicity of g◁hIX is a consequence of Proposition 2.1. Finally,
since all F−initial lifts of the same morphism are isomorphic, we have that IX ∼= IF (X).

3. Let m : M → X be an MF−subobject of X, i.e., m ∈ MF and Cod(m) = X, and
ϕ : Z → M an X−isomorphism, we have F (m ◦ ϕ) = F (m) ◦ F (ϕ) ∈ M , next we show
that if m ∈ MF , then m ◦ ϕ is an F−initial morphism, suppose that g : Y → X is an
S−morphism and h : F (Y ) → F (Z) such that F (ϕ ◦m) ◦ h = F (g), by the property of
F−initiality of m, there is a morphism g ◁F (ϕ)◦h m, letting

g ◁h (m ◦ ϕ) := ϕ−1 ◦ g ◁F (ϕ)◦h m,

we have that F (g ◁h (m ◦ ϕ)) = h, and

F (m ◦ ϕ ◦ g ◁h (m ◦ ϕ)) = F (m) ◦ F (g ◁F (ϕ)◦h m) = F (m) ◦ F (ϕ) ◦ h = F (g),

hence m◦ϕ◦g◁h (m◦ϕ) = g by Proposition 2.1, the unicity of g◁h (m◦ϕ) is a consequence
of Proposition 2.1. Finally since all F−initial lifts of the same morphism are isomorphic,
we obtain that m ◦ ϕ ∼= F (m ◦ ϕ). □✓✓✓

Notation. Let F : X → S be a topological functor and E ⊆ Epi(S),

EF := {e ∈ Mor(X )|F (e) ∈ E}

and
EF :=

{
e ∈ Mor(X )|F (e) ∈ E and e ∼= F (e)

}
,

with (E,F (e)) an F−final lift of (F (E), F (e)).

Proposition 3.2. If F : X → S is a topological functor and E ⊆ Epi(S), then:

1. EF ⊆ Epi(X ) and EF ⊆ Epi(X ).

2. If E contains all identity morphisms of S, EF and EF contains all identity mor-
phisms of X .

3. If E is closed under composition with isomorphisms, then EF and EF are closed
under composition with isomorphisms.
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For a topological category (X , F ) it is well known that X is well-powered and cowell-
powered (see 13.1 of [14] and 21.16 of [1]), that is X is Mono(Set)F−well-powered. A
similar result, with a similar proof, but with a minor variant is the following:
Proposition 3.3. Let F : X → S be a topological functor with X a locally small category
and M a class of monomorphisms in S closed under composition with isomorphism. If
S is M−wellpowered, then X is MF−wellpowered and MF−wellpowered.

Another property of topological functors is that it can reflect and preserve separators (see
21.16 of [1]), we indicate in particular the following separator object P in a topological
category (X , F ) since it can be detected as an object of a certain specific subcategory of
X (Proposition 5.6).
Proposition 3.4. Let (X , F ) be a topological category, for any set {p} consisting of pre-
cisely one point p, the object P ∈ F−1({p}) is a separator on X .

A version of the following Proposition for factorizations of initial sources or a version for
initial morphisms and (E ,M)−topological functor can be seen at 4.2 of [10] and 21.14 of
[1] respectively.
Proposition 3.5. Let F : X → S be a topological functor. If S has (E ,M)−factorization,
then X has (EF ,MF ) and (EF ,MF )−factorization.
Proposition 3.6. Let F : X → S be a topological functor. If S has M−pullbacks, then
X has MF−pullbacks and MF−pullbacks.

Proof. Let f : X → Y , m : M → Y and k : K → Y be X−morphisms with m ∈ MF

and k ∈ MF . Let n, h, and l, g be the M−pullbacks of F (m), F (f) and F (k), F (f),
respectively. Notice that n, h, and l, g′ are the MF−pullback and the MF−pullback,
respectively, where g′ = (f ◦ l) ◁g k. The universal property follows from the next
commutative diagrams

W
h //

n

��

M

m

��

W
h //

n

��

F (M)

F (m)

��

Q

r
����
��
��
��

s

@@��������ϕ′

^^>>>>>>>>

F (Q)

F (r)
{{ww
ww
ww
ww
w

F (s)

;;wwwwwwwwwϕ

ccGGGGGGGGGG

X
f

// Y F (X)
F (f)

// F (Y )

W
g′

//

l

��

K

k

��

W
g

//

l

��

F (K)

F (k)

��

Q

r
����
��
��
��

s

@@��������φ′

^^>>>>>>>>

F (Q)

F (r)
{{ww
ww
ww
ww
w

F (s)

;;wwwwwwwww
φ

ccGGGGGGGGGG

X
f

// Y F (X)
F (f)

// F (Y )
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where ϕ′ = {gi} ◁ϕ {f i} with f1 = n, f2 = h, g1 = r, g2 = s and φ′ = r ◁φ l. □✓✓✓

Corollary 3.7. Let F : X → S be a topological functor. If S is a finitely M−complete
category, then X is finitely MF−complete and finitely MF−complete.

The (E ,M)−situations generated by Herrlich in [10] has a similar construc-
tion of (E ,M)−structures for the concepts of (E ,M)−topological category and
(E ,M)−topological functor.

4. Lifting of projective objects

Definition 4.1. Let f : X → Y be an S−morphism, an S−object P is said to be projec-
tive with respect to f if for every S−morphism y : P → Y there is an S−morphism
x : P → X with f ◦ x = y. For every S−object P , one defines

ΠS(P ) := {f ∈ Mor(S)|P is projective with respect to f}.

Let (fλ : Xλ → Y )λ∈Λ be a sink in X , P is projective with respect to (fλ)λ∈Λ if for
every X−morphism y : P → Y there is a λ0 ∈ Λ and a morphism x : P → Xλ0

, with
fλ0

◦ x = y.

Remark 4.2. Let {p} be a set consisting of precisely one point, ΠSet({p}) = Epi(Set)
and (ΠSet({p}))⊥ = Mono(Set).

Proposition 4.3. If (X , F ) is a topological category and P ∈ F−1({p}), then the following
holds:

1. ΠX (P ) is stable under pullbacks and ΠX (P ) ⊂ Epi(X ).

2. (ΠX (P ))⊥ = Mono(Set)F .

3. X is a (ΠX (P ), (ΠX (P ))⊥)−category.

Proof. 1. Consider a pullback

D
m′

//

d
��

E

e

��

M
m

// Y

with e ∈ ΠX (P ), since P is projective with respect to e for every morphism y : P → M ,
there is a morphism x′ : P → E with e ◦ x′ = m ◦ y, by the pullback property there is a
morphism x : P → D with d ◦ x = y and m′ ◦ x = x′

D
m′

//

d

��

E

e

��

P

y
~~}}
}}
}}
}}

x′

??~~~~~~~~

x

``AAAAAAAA

M
m

// Y
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hence d ∈ ΠX (P ).

Let e ∈ ΠX (P ), one has F (e) ∈ ΠSet({p}), since for every y : {p} → F (X), there is an
X−morphism X such that the following diagram commutes

E

e

��

F (E)

F (e)

��

P

x

@@��������

y
��
>>

>>
>>

>>
{p}

F (x)
<<yyyyyyyy

y
""E

EE
EE

EE
E

X F (X)

For any two X−morphisms u, v : X → Z with u ◦ e = v ◦ e, one has F (u) ◦ F (e) =
F (v) ◦ F (e) hence F (u) = F (v) and u = v.

2. Let m ∈ (ΠX (P ))⊥, suppose that v ◦ e = F (m) ◦ u with e ∈ ΠSet({p}), consider
u : E → M and v : X → Y the F−initial lifts of u and v respectively. By F−initiality of
v, there is a X−morphism t = (m◦u)◁e v. Next we shown that t ∈ ΠX (P ), if y : P → X
is an X−morphism, there is a Set−morphism x : p → E with F (y) = e ◦ x, and the
F−initial lift x : P → E of x is an X−morphism with F (t ◦ x) = F (y), hence t ◦ x = y.
Since m ◦ u = v ◦ t, there exists an X−morphism with v = m ◦ d and u = d ◦ t. The
Set−morphism F (d) satisfies v = F (m) ◦ F (d) and u = F (d) ◦ e, and considering that e
is an epimorphism, F (d) is the unique Set−morphism with that property.

E
u //

(m◦u)◁ev

��

M

m

��

E
u //

e

��

F (M)

F (m)

��

P

x

99rrrrrrrrrrrrr

y

&&LL
LLL

LLL
LLL

LL {p}

x

>>~~~~~~~~

F (y)
  
@@

@@
@@

@@

X
v

//

d

GG���������������
Y X

v
//

F (d)

FF����������������
F (Y )

Hence F (m) ∈ (ΠSet({p}))⊥, and F (m) is a Set−monomorphism. To show the
F−initiality of m suppose that F (m) ◦ h = F (g) with g : Y → X a X−morphism
and h : F (Y ) → F (M) a Set−morphism, one has the following commutative diagram:

F (Y )
h //

Id

��

F (M)

F (m)

��

F (Y )
F (g)

//

h

;;vvvvvvvvv
F (Y )

for (F (Y ), (h, Id)) a F−initial lift of (F (Y ), (h, Id)) and letting g ◁h m := d one has the
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commutative diagram

F (Y )
h //

Id

��

M

m

��

F (Y )
h //

Id

��

F (M)

F (m)

��

Y
g

//

d

=={{{{{{{{{
Y F (Y )

F (g)
//

h

;;wwwwwwwww
F (Y )

hence m is F−initial.
Let m ∈ Mono(Set)F and e ∈ ΠX (P ) with m ◦ u = v ◦ e we have the commutative
diagrams:

E
u //

e

��

M

m

��

F (E)
F (u)

//

F (e)

��

F (M)

F (m)

��

Y
v

//

d′

??��������
X F (Y )

F (v)
//

d

;;vvvvvvvvv
F (X)

with d′ = v ◁d m, hence m ∈ (ΠX (P ))⊥.
3. Let f : X → Y be an X−morphism. Consider the factorization of F (f) in Set given
by the inclusion i of A = F (f)(F (X)) to F (Y ) and e the restriction of F (f) to A, then
F (f) = i ◦ e. Consider the F−initial lift i : A → Y of i, and t = f ◁e i, we have that
f = i ◦ t and, by (2), i ∈ (ΠX (P ))⊥, also as in the proof of (2) we have that t ∈ ΠX (P ).
Now we showed that the factorization f = i ◦ t has the diagonalization property. For
every n ∈ (ΠX (P ))⊥ and X−morphisms u : X → N and v : Y → Z with v ◦ f = n ◦ u
we have the following commutative diagrams

X

f

**

t
��

u // N

n

��

F (X)

F (f)

!!

e

��

F (u)
// F (N)

F (n)

��

A

i

��

d′

??��������
A

i

��

d

;;vvvvvvvvvv

Y
v

// Z F (Y )
F (v)

// F (Z)

with d′ = (v ◦ i) ◁d n, the existence, and uniqueness of d′ follow from the fact that n ∈
Mono(Set)F , this last by (2). Therefore, f = i◦ t is a (ΠX (P ), (ΠX (P ))⊥)−factorization
of f . □✓✓✓

Lemma 4.4. Let (X , F ) be a topological category, P ∈ F−1({p}) and (mλ : Mλ → X)λ∈Λ

a family of elements of (ΠX (P ))⊥, then

1. For NΛ = ∪F (mλ)(F (Mλ)) and i0 : NΛ → F (X) the inclusion, ∨mλ
∼= i0 holds.

2. P is projective with respect to the sink, belonging to (ΠX (P ))⊥−union, (jλ : Mλ →
∨Mλ)λ∈Λ.
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Proof. Let (mλ : Mλ → X)λ∈Λ be a class of elements of (ΠX (P ))⊥. For each λ ∈ Λ we
define:

(a) hλ as the restriction of F (mλ) to its image and Nλ as F (mλ)(F (Mλ)), note that
by definition and (2) of Proposition 4.3 we have that hλ is a bijection.

(b) iλ as the inclusion from Nλ to ∪F (mλ)(F (Mλ)).

(c) kλ : F (Mλ) → ∪F (mλ)(F (Mλ)) as kλ := iλ ◦ hλ.

Since i0 is an initial morphism, for every λ ∈ Λ there is a jλ := mλ◁
kλ i0 with mλ = i0◦jλ,

i.e., mλ ≤ i0.

Mλ

mλ
  
@@

@@
@@

@@
mλ◁

kλ i0=jλ // NΛ

i0��~~
~~
~~
~~

F (Mλ)

F (mλ) $$H
HH

HH
HH

HH
hλ // Nλ

iλ // NΛ

i0
||yy
yy
yy
yy
y

X F (X)

Next, we show that for every n ∈ (ΠX (P ))⊥, if {uλ : Mλ → N}λ∈Λ is a family of
X−morphisms and v : X → Y is an X−morphism such that for every λ ∈ Λ, n ◦ uλ =
v ◦mλ, then there is a uniquely determined morphism d : N → N with n ◦ d = v ◦ i0 and
d ◦ jλ = uλ for all λ ∈ Λ, definition of M−union (see 1.9 of [5]). Suppose that, for each
λ ∈ Λ there is a commutative diagram on X

Mλ

mλ

))

uλ //

jλ
��

N

n

��

F (Mλ)

F (mλ)

  

F (uλ)
//

kλ

��

F (N)

F (n)

��

NΛ

i0

��

NΛ

i0

��

X
v

// Y F (X)
F (v)

// F (Y )

with n ∈ (ΠX (P ))⊥. Considering the commutative diagram

Nλ

h−1
λ //

iλ

��

F (Mλ)
F (uλ)

// F (N)

F (n)

��

NΛ

∃!φ

44jjjjjjjjjjjjjjjjjjjj

i0

��

F (X)
F (v)

// F (Y )
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where φ is defined as follows, for every x ∈ NΛ, there is a λx ∈ Λ such that x ∈ Nλx
,

and φ(x) := F (uλx) ◦ h−1
λx

(x), note that if x ∈ Nα ∩Nβ , then

F (n)(F (uα) ◦ h−1
α (x)) = F (u)(i0(iα(x))) = F (u(x))

= F (u)(i0(iβ(x))) = F (n)(F (uβ) ◦ h−1
β (x)).

By (2) of Proposition 4.3, F (n) is a monomorphism, then F (uα) ◦ h−1
α (x) = F (uβ) ◦

h−1
β (x)), hence φ is well defined. We can define φ′ = (v ◦ i0) ◁

φ n, it makes the next
diagram commute

Mλ

mλ

))

uλ //

jλ
��

N

n

��

NΛ

i0
��

φ′

>>}}}}}}}}

X
v

// Y

hence ∨mλ
∼= i0 and for each λ ∈ Λ, jλ = mλ ◁kλ i0.

Finally, for any X−morphism y : P → NΛ, there is a λ0 ∈ Λ with F (y)(p) ∈ Nλ0 ,
let z : {p} → Nλ0

the constant function with value F (y)(p), we have the commutative
diagrams

Mλ0

jλ0

��

F (Mλ0)

hλ0

��

P

x

>>}}}}}}}}

y
  A

AA
AA

AA
A {p}

x

;;vvvvvvvvv
z //

F (y)
##H

HH
HH

HH
HH

Nλ0

iλ0

��

NΛ NΛ

where x : {p} → F (Mλ0
) is the constant function with value h−1

λ0
(F (y)(p)) and x is an

F−initial lift of x. Thus, P is projective with respect to (jλ)λ∈Λ. □✓✓✓

Next result gives a property of good behavior of inverse images with respect to unions
(see 1.L of [5]).

Proposition 4.5. Let X be an M−complete category with an object P such that for every
X−morphism e:

e ∈ E ⇔ P is projective with respect to e.

For every X−morphism f : X → Y and non-empty family (mλ)λ∈Λ in M|Y , if P is
projective with respect to (jλ : Mλ → M)λ∈Λ, the sink belonging to a union m = ∨mλ,
then f−1(∨mλ) ∼= ∨f−1(mλ).
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Corollary 4.6. Every topological category (X , F ) with P ∈ F−1(p) is a category with
(ΠX (P ), (ΠX (P ))⊥)−factorization, and for every X−morphism f : X → Y and non-
empty families (mα : Mα → Y )α∈Λ in (ΠX (P ))⊥, one has

f−1(∨mα) ∼= ∨f−1(mα).

Corollary 4.7. Let (X , F ) be a topological category and P ∈ F−1({p}), then the following
holds:

1. X is a (ΠX (P ),Mono(Set)F )−category.

2. (ΠX (P ))⊥ ⊂ Mono(X ).

3. For every X−morphism f : X → Y and every non-empty class (mλ)λ∈Λ in
(ΠX (P ))⊥|Y one has

f−1(∨mα) ∼= ∨f−1(mα).

Proof. By Proposition 3.1 and Proposition 4.3 we have (1) and (2), by Lemma 4.4 and
Proposition 4.5 we have (3). □✓✓✓

Theorem 4.8. Let (X , F ) be a topological category and P ∈ F−1({p}). If M = (ΠX (P ))⊥
and E = ΠX (P ), then the following holds:

1. X satisfies the hypothesis of the characterization of M−coreflective subcategories
(see Theorem 2.5).

2. Any object P with F (P ) = {p} is a separator in X ; furthermore, any
M−coreflective subcategory, with P as an object, is bicoreflective.

3. For every morphism f , the operator f−1(_) preserves M−unions.

Proof. 1. By (2) of Proposition 4.3, we have that M = Mono(Set)F , and by (1)
of Proposition 3.1, we have that M ⊂ Mono(X ). By (3) of Proposition 4.3, X
is an (E ,M)−category. Note that in Set for every set X a representative set of
Mono(Set)−subobjects of X is the set of inclusion functions with codomain X,
thus Set is Mono(S)−wellpowered, and by Proposition 3.3 we have that X is
M−wellpowered.

2. It follows from Proposition 3.4 and Proposition 6.11 of [14].

3. It follows from (3) of Corollary 4.7. □✓✓✓

5. Lower limit-operators and bicoreflective subcategories

The bicoreflective subcategories of Top have been related to limit-operators of Kura-
towski closure operator (see Method 3 of [9]), as we will see below, the (E ,MF ) and
(EF ,M)−category structures inherited by the Set category to any topological category,
is ideal for extending the relationship presented in Top to a topological category (X , F ).
Let (X , F ) be a topological category, we denote by C0 an additive, grounded (see [5])
and defined by final sinks closure operator in X respect to MF , which is defined below.
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Definition 5.1. A closure operator C0 in X with respect to MF is said to be a closure
operator defined by final sinks if for all F−final sink (fλ : Xλ → X)λ∈λ, and any
MF subobject m of X, is C0−closed iff for all λ ∈ Λ, f−1

λ (m) is C0−closed, i.e.,

C0X(m) ∼= m ⇔ ∀λ ∈ Λ(C0Xλ
(f−1

λ (m)) ∼= f−1
λ (m)).

Definition 5.2. Let C0 be a closure operator in X with respect to N ⊂ Mono(X ), a
lower limit-operator with respect to C0, is given by a family l = {lX}X∈X of maps
lX : N|X → N|X such that for every X ∈ Obj(X ):

1. (Extension) m ≤ lX(m) ≤ C0X(m) for all m ∈ N|X ;

2. (Additivity) lX(m ∨ n) ∼= lX(m) ∨ lX(n) for m,n ∈ N|X ;

3. (Continuity) f : X → Y , f(lX(m)) ≤ lY (f(m)) for all f : X → Y and m ∈ N .

Remark 5.3. The additivity property implies the monotonicity of l (and then the well
defined by isomorphism, m ∼= n implies lX(m) ∼= lX(n)), hence the continuity condition
can equivalently be expressed as

lX(f−1(n)) ≤ f−1(lY (n))

for all f : X → Y and n ∈ M|Y .

Remark 5.4. Let X have (E ,M)−factorizations and M−pullbacks:

1. If h : X → Y is a X−isomorphism with g = h−1 : Y → X, for every M−subobject
m of Y , g(m) ∼= h−1(m);

2. for every commutative diagram in X

W
g

//

r

��

Z

s

��

X
f

// Y

and every M−subobject m of Z, r(g−1(m)) ≤ f−1(s(m)).

For every lower limit-operator l with respect to C0, note that for every M−subobject
with C0X(m) ∼= m we have that m ≤ lX(m) ≤ C0X(m) ≤ m, so we have that lX(m) ∼= m.
We denote by U(l) the full subcategory of X with class of objects:

Obj(U(l)) := {X ∈ Obj(X ) : (∀m ∈ M|X)lX(m) ∼= m ⇔ C0X(m) ∼= m} .

Proposition 5.5. For every lower limit-operator l with respect to C0 the subcategory U(l)
is replete.

Proof. Let X ∈ U(l) and h : X → Y be a X−isomorphism, suppose that m ∈ M|Y with
lY (m) ∼= m, for g := h−1 : Y → X, we have that for every n ∈ M|Y

lX(g(m)) ∼= lX(h−1(m)) ≤ h−1(lY (m)) ∼= g(lY (m)) ∼= g(m),
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hence lX(g(m)) ∼= g(m). Since X ∈ U(l) we have that C0X(g(m)) ∼= g(m), then

m ∼= g−1(g(m)) ∼= g−1(C0X(g(m))) ≥ C0Y (g
−1(g(m)) ∼= C0Y (m).

Thus, m ∼= C0Y (m) and Y ∈ U(l). □✓✓✓

Proposition 5.6. Let l be a lower limit-operator with respect to C0 and P be an object
such that F (P ) = {p}. The subcategory U(l) has P as an object.

Proof. Let m : M → P be an M−subobject of P . Suppose that m = oX , then
C0X(oX) ∼= oX since C0 is grounded. On the other hand, if F (m) is the constant
function {q} → {p}, then F (C0X(m)) is a constant function {r} → {p}. The F−initial
lift of the constant function {r} → {q} shows that C0X(m) ≤ m. □✓✓✓

Proposition 5.7. For every lower limit-operator l with respect to C0 one has:

1. U(l) is closed under coproducts.

2. If f : X → Y is in EF and X ∈ Obj(U(l)), then Y ∈ Obj(U(l)).

Proof.

1 Let {Xλ}λ∈Λ be a class of X -objects indexed by a set Λ. The final lift (X, (iλ)λ∈Λ) of
the F−sink (

⨿
F (Xλ), (iλ : F (Xλ) →

⨿
F (X)λ)λ∈Λ) is the coproduct of {Xλ}λ∈Λ in X .

Let m ∈ M|X with lX(m) ∼= m, for every λ ∈ Λ one has that

lXλ
(i−1

λ (m)) ≤ i−1
λ (lX(m)) ∼= i−1

λ (m),

hence lXλ
(i−1

λ (m)) ∼= i−1
λ (m), since every Xλ is an U(l)-object one has that

C0Xλ
(i−1

λ (m)) ∼= i−1
λ (m),

finally C0X(m) ∼= m.

2 Let f : X → Y in EF and X ∈ Obj(U(l)), and m ∈ MF |Y with lY (m) ∼= m, one has

lX(f−1(m)) ≤ f−1(lY (m)) ∼= f−1(m),

hence lX(f−1(m)) ∼= f−1(m), since X ∈ Obj(U(l)), one has C0X(f−1(m)) ∼= f−1(m),
and C0Y (m) ∼= m since C0 is defined by final sink. □✓✓✓

Theorem 5.8. For every lower limit-operator l with respect to C0, the full subcategory
U(l) is a bicoreflective subcategory of X .

Proof. The Theorem of characterization of M-coreflective subcategories applied to the
(EF ,MF ) structure on X , Theorem 4.8 part (1) and Proposition 5.7, shows that U(l) is
M−coreflective in X . By Proposition 5.6 and (2) of Theorem 4.8 one has that U(l) is
bicoreflective in X . □✓✓✓
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For M = Mono(Set) and a topological category (X , F ) we consider the (EF ,MF )-
structure for X induced by F . We consider K0 an additive closure operator on X with
respect to MF .

Theorem 5.9. Let A be a bicoreflective subcategory of X , and for every X -object X let
rX : A(X) → X be an A-coreflector of X . The operator L(A) =

{
lAX

}
X∈Obj(X )

defined
(up to isomorphism) by:

lAX(m) := m ∨ rX(K0A(X)(r
−1
X (m)))

for every m ∈ MF |X , is a lower-limit operator with respect to K0. Furthermore, if C0

is idempotent, and A is MF -coreflective, then L(A) is idempotent.

Proof. Let X be a X−object, and m ∈ MF |X , by (2) of Lemma 4.4 and (2) of Proposition
4.3 we have that lAX(m) is in MF , by definition m ≤ lAX(m). Since

rx(K0A(X)(r
−1
X (m))) ≤ rX(r−1

X (K0X(m))) ≤ K0X(m)

one has that lAX(m) ≤ K0X(m).

For m,n ∈ MF |X , by Corollary 4.6 one has that

r−1
X (m ∨ n) ∼= r−1

X (m) ∨ r−1
X (n),

hence lAX(m ∨ n) ∼= lAX(m) ∨ lAX(n).

Let f : X → Y an X−morphism and m ∈ MF |Y , and Rf the X -morphism with
f ◦ rX = rY ◦Rf , one has that:

rX(K0A(x)(r
−1
X (f−1(m)))) ∼= rX(K0A(x)((f ◦ rX)−1(m))) ∼=

rX(K0A(x)((rY ◦Rf)−1(m))) ∼= rX(K0A(X)(Rf−1(r−1
Y (m)))) ≤

rX(Rf−1(K0A(Y )(r
−1
Y (m))) ≤ f−1(rY (K0A(x)(r

−1
Y (m))),

then lAX(f−1(m))) ≤ f−1(lAY (m)). If K0 is idempotent, and every rX is in MF , then

rX(K0RX(r−1
X (rX(K0A(X)(r

−1
X (m)))))) ∼= rX(K0A(X)(K0A(X)(r

−1
X (m))))

∼= rX(K0A(X)(r
−1
X (m))),

hence l(U) is idempotent. □✓✓✓
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